JPH11326008A - Device for simply restructuring stereoscopic image and three-dimensional traveling speed distribution of three-dimensional space distribution of powder in fluid - Google Patents
Device for simply restructuring stereoscopic image and three-dimensional traveling speed distribution of three-dimensional space distribution of powder in fluidInfo
- Publication number
- JPH11326008A JPH11326008A JP10153970A JP15397098A JPH11326008A JP H11326008 A JPH11326008 A JP H11326008A JP 10153970 A JP10153970 A JP 10153970A JP 15397098 A JP15397098 A JP 15397098A JP H11326008 A JPH11326008 A JP H11326008A
- Authority
- JP
- Japan
- Prior art keywords
- distribution
- powder
- image
- dimensional
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Image Processing (AREA)
- Image Generation (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、粉体などの濃度
分布の立体像の簡易再構築装置に関し、詳細には複数方
向からの平行光線の透過光による像をCCDカメラ等を用
いて撮影し、粉体等の瞬間的な濃度分布および当該分布
の3次元移動速度分布を簡易的に立体構成する粉体分布
の立体像の簡易再構築装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for easily reconstructing a three-dimensional image of a concentration distribution of a powder or the like, and more particularly, to an image formed by transmitting parallel light beams from a plurality of directions using a CCD camera or the like. The present invention relates to an apparatus for simply reconstructing a three-dimensional image of a powder distribution, which simply and three-dimensionally constitutes an instantaneous concentration distribution of a powder or the like and a three-dimensional moving velocity distribution of the distribution.
【0002】[0002]
【従来の技術】従来より、物体表面および物体内部構造
の空間分布の立体像および当該分布の3次元移動速度分
布の再構築装置が提案されている。この物体表面および
物体内部構造の空間分布の立体像を再構築することに関
する技術は、例えば、(1)CT法として知られるよう
に、例えば点光源とセンサーの列を可視化領域の回りに
配置し、投影像に再構成関数を畳み込み演算し、逆投影
して原画像を再構成する方法、すなわち、投影像に‘逆
投影すると無関係な座標の値が打ち消し合うような関
数’を掛けて積分する(投影方向の数だけ総和をとる)
方法(Hounsfield(1967年ころ):以
下、「先行技術例1」という)(2)光切断法として知
られるように、「静止スリット光源の照射光軸を境にそ
の両側から静止スリット光の交差する走査スリット光を
測定対象物に照射することにより,対象物を広範囲に撮
像して,スリット画像の合成を容易かつ精度良く行う」
ことを目的とし、「基準レーザから静止スリット光であ
る基準スリット光が測定対象物に照射される。この時,
基準レーザからの基準スリット光による測定対象物上の
基準光切断線は右側CCDカメラ及び左側CCDカメラ
により撮像される。撮像された基準光切断線6は画像プ
ロセツサにより画像イメージの基準シリンダ画像として
画像処理される。そして,画像プロセッサは,基準スリ
ット画像の各画像イメージ上における位置を検出し,こ
の位置データを画像メモリに格納する」する方法(特開
平4−42010号公報:以下、「先行技術例2」とい
う)等がある。2. Description of the Related Art Conventionally, there has been proposed an apparatus for reconstructing a three-dimensional image of a spatial distribution of an object surface and an internal structure of an object and a three-dimensional moving velocity distribution of the distribution. Techniques related to reconstructing a stereoscopic image of the spatial distribution of the object surface and the internal structure of the object include, for example, (1) as known as a CT method, for example, arranging a row of point light sources and sensors around a visualization area. A method of reconstructing the original image by convolving the projection image with a reconstruction function and backprojecting it, that is, multiplying the projection image by a function that cancels out the values of irrelevant coordinates when backprojected, and integrates (Sum the number of projections)
Method (Hounsfield (around 1967): hereinafter, referred to as "prior art example 1") (2) As is known as a light sectioning method, "intersection of stationary slit light from both sides of an irradiation optical axis of a stationary slit light source as a boundary. By irradiating the object with the scanning slit light to be scanned, the object can be imaged over a wide area and the slit images can be synthesized easily and accurately. "
For this purpose, "a reference slit light, which is a stationary slit light, is irradiated from a reference laser onto a measurement object.
The reference light cutting line on the measurement object by the reference slit light from the reference laser is imaged by the right CCD camera and the left CCD camera. The imaged reference light section line 6 is image-processed by an image processor as a reference cylinder image of the image. Then, the image processor detects the position of the reference slit image on each image image and stores this position data in the image memory (Japanese Patent Laid-Open No. 4-42010: hereinafter referred to as "Prior Art Example 2"). ).
【0003】また流体の2次元移動速度分布の平面像を
再構築することに関する技術は、例えば、(3)「気液
混相流れ場において液速度の計測を行うことができるよ
うにすること」を目的として「硫化亜鉛粒子、または硫
化亜鉛を表面にコーティングした粒子をトレーサ粒子と
して気液混相流れ場に混入するとともに、近紫外線領域
の波長のパルスレーザ光を照射して上記トレーサ粒子か
らルミネセンスによる蛍光を発するようにするととも
に、上記トレーサ粒子の発する蛍光のみを画像化するよ
うにし、上記画像化により得られた画像から上記トレー
サ粒子の移動速度を算出することにより、気液混相流れ
場の液速度計測」を行う方法(特開平7−63642号
公報:以下、「先行技術例3」という)(4)「粒子径
2mm以下10μm以上の粒子を混入した流体中にレー
ザ光を光シート状に2次元的に広げて連続的に照射する
ことにより,流れ場を可視化して,定量的に流れ場の物
理量を求めること」を目的とし、「微細粒子を混入した
液体中の粒子がレーザシート面を通過する時に散乱若し
くは螢光した光をシート面と直交する方向からCCDカ
メラにて撮影し,この粒子の散乱光または螢光をカメラ
を介して記録媒体に録画し,画像情報から粒子の速度に
応じた時間間隔で時刻乃至6時刻分のフィールド情報を
取り出す。そして,これらの情報を夫々画像処理するこ
とによつて流れ領域を一度に可視化し,流体の速度や流
れ関数等の物理量を測定する」方法(特許191253
3号公報:以下、「先行技術例4」という)などがあ
る。A technique for reconstructing a planar image of a two-dimensional moving velocity distribution of a fluid is described in, for example, (3) "Measuring liquid velocity in a gas-liquid multiphase flow field". For the purpose, `` Zinc sulfide particles, or particles coated with zinc sulfide on the surface are mixed into the gas-liquid multiphase flow field as tracer particles, and irradiate pulse laser light with a wavelength in the near ultraviolet region to emit luminescence from the tracer particles. Along with emitting the fluorescence, only the fluorescence emitted by the tracer particles is imaged, and by calculating the moving speed of the tracer particles from the image obtained by the imaging, the liquid in the gas-liquid multiphase flow field is calculated. (Japanese Patent Laid-Open Publication No. 7-63642: hereinafter referred to as “prior art example 3”) (4) “Particle size 2 mm or less 10 μm” The purpose is to visualize the flow field and quantitatively determine the physical quantity of the flow field by irradiating the laser light two-dimensionally in a light sheet shape and continuously irradiating it in the fluid mixed with the particles above. ""When the particles in the liquid containing the fine particles pass through the laser sheet surface, the scattered or fluorescent light is photographed by a CCD camera from a direction perpendicular to the sheet surface, and the scattered or fluorescent light of the particles is taken. The information is recorded on a recording medium via a camera, and field information for time to six times is extracted from the image information at time intervals corresponding to the speed of the particles, and the flow area is obtained by performing image processing on the information. Visualize all at once and measure physical quantities such as fluid velocity and flow function "(Patent 191253
No. 3, hereinafter referred to as “prior art example 4”).
【0004】[0004]
【発明が解決しようとする課題】図10aに示すとおり
従来は、上記(1)の先行技術例1のCT法として知られ
るように、放射状に光を発する点光源1とセンサーの列
2を可視化領域3の回りに配置し、投影像に再構成関数
を畳み込み演算し、逆投影して原画像を再構成する方法
や、図10bに示す上記(2)先行技術例2の光切断法
として知られるように、走査スリット光4を測定対象物
5に照射することにより,対象物上の基準光切断線6を
CCDカメラ7により撮像し、撮像された基準光切断線
は画像プロセッサにより画像イメージとして画像処理す
る方法等があるが、装置が高価であること、あるいは、
粉体の空間移動のように10ミリ秒程度の短時間の連続
的な現象を追従するには、電子ビームスキャンを用いた
CTでも処理時間が最小で0.1秒以上であるため対応
できず、また記録媒体も大量に必要となってくること、
という問題があった。Conventionally, as shown in FIG. 10a, a point light source 1 emitting light radially and a sensor array 2 are visualized as known as the CT method of the prior art example 1 of (1). This is known as a method of arranging around a region 3 and convolving a reconstruction function with a projection image, and backprojecting to reconstruct an original image, or the (2) light section method of the prior art example 2 shown in FIG. By irradiating the measurement object 5 with the scanning slit light 4, the reference light cutting line 6 on the object is imaged by the CCD camera 7, and the imaged reference light cutting line is converted into an image by the image processor. There are methods such as image processing, but the equipment is expensive, or
In order to follow a continuous phenomenon of a short time of about 10 milliseconds, such as a spatial movement of powder, CT using an electron beam scan cannot cope because the processing time is at least 0.1 second or more. , And the need for large amounts of recording media,
There was a problem.
【0005】また、上記(3)(4)で示した先行技術
例3,4として示した、流体の2次元移動速度分布の平
面像を再構築する技術として、図10cに示す如く、徴
細粒子を混入した流体8中にレーザ光を光シート状に2
次元的に広げて連続的に照射し、粒子がレーザシート面
9を通過する時に散乱若しくは螢光した光をシート面と
直交する方向からCCDカメラ10にて撮影し,この粒
子の散乱光または螢光をカメラを介して記録媒体に録画
し,画像情報から粒子の速度に応じた時間間隔で時刻乃
至6時刻分のフィールド情報を取り出し,これらの情報
を夫々画像処理することによつて流れ領域を一度に可視
化し,流体の速度や流れ関数等の物理量を測定するもの
であるが、装置が高価であること、また、高精度ではあ
るものの再構成できるのが2次元のデータにとどまるこ
と、さらに、粉体等によって照射光が弱まると、計測が
困難となる、という問題があった。As a technique for reconstructing a planar image of a two-dimensional moving velocity distribution of a fluid shown in prior art examples 3 and 4 shown in the above (3) and (4), as shown in FIG. The laser light is applied to the fluid 8 containing the particles in the form of a light sheet.
When the particles pass through the laser sheet surface 9, the light scattered or fluoresced is photographed by a CCD camera 10 from a direction perpendicular to the sheet surface. Light is recorded on a recording medium via a camera, field information for time to six times is extracted from the image information at time intervals corresponding to the speed of the particles, and the flow area is obtained by performing image processing on the information. It visualizes at one time and measures physical quantities such as fluid velocity and flow function. However, the equipment is expensive, and although it is highly accurate, it can be reconstructed only in two-dimensional data. When the irradiation light is weakened by powder or the like, there is a problem that the measurement becomes difficult.
【0006】本発明は、上記課題に鑑み、粉体の空間移
動のように10ミリ秒程度の短時間の連続的な現象に追
従でき、簡易な構成で、安価に実現可能で、低精度では
あるものの3次元分布が再構成でき、さらに、粉体等に
よって照射光が多少弱まっても計測することができる流
体中の粉体などの3次元移動速度分布の簡易再構築装置
を提供することを目的とする。In view of the above-mentioned problems, the present invention can follow a short-time continuous phenomenon of about 10 milliseconds, such as a spatial movement of a powder, can be realized with a simple configuration, at low cost, and with low accuracy. An object of the present invention is to provide a simple reconstruction apparatus for a three-dimensional moving velocity distribution of a powder or the like in a fluid, which can reconstruct a three-dimensional distribution of the powder, and can measure even if irradiation light is slightly weakened by the powder or the like. Aim.
【0007】[0007]
【課題を解決するための手段】本発明者は、粉体の空間
移動のように10ミリ秒程度の短時間の連続的な現象に
追従でき、処理時間が短く対応可能で、記録媒体も少量
とすることができる粉体の空間分布の立体像を簡易再構
築し、安価で実現可能で、低精度ではあるものの3次元
分布が再構成でき、さらに、粉体等によって照射光が多
少弱まっても計測することができる流体中の粉体の3次
元空間分布の立体像及び当該分布の3次元移動速度分布
の簡易再構築装置を提供するに際し、数値シミュレーシ
ョン等を用いて鋭意検討を重ねた結果、複数方向から平
行光線を可視化領域に導き透過させ、平行光線による投
影像としてCCDカメラ等により撮影した像を画像処理し
て得られた同時刻における複数の輝度の数値マトリック
スを用いて、可視化領域内のすべての領域について,任
意座標の粉体等の濃度分布を、複数の同時刻の数値マト
リックスの当該射影座標成分の関数Rとして求め再構成
することにより、安価で実現可能で、粉体の空間移動の
ように10ミリ秒程度の短時間の連続的な現象に追従す
るため、処理時間が短く対応可能で、また記録媒体容量
も少量とすることができることを見出した。The inventor of the present invention can follow a short continuous phenomenon of about 10 milliseconds, such as a spatial movement of a powder, can cope with a short processing time, and uses a small amount of a recording medium. It is possible to easily reconstruct a three-dimensional image of the spatial distribution of the powder, which can be realized at low cost and with low accuracy, but to reconstruct the three-dimensional distribution. To provide a three-dimensional image of the three-dimensional spatial distribution of the powder in the fluid and a simple reconstruction device for the three-dimensional moving velocity distribution of the distribution, which can also be measured by using a numerical simulation. , Parallel light from multiple directions is guided to the visualization area, transmitted, and visualized using multiple numerical value matrices at the same time obtained by image processing the image taken by a CCD camera etc. as a projected image by parallel light By obtaining and reconstructing the density distribution of powder or the like at arbitrary coordinates as a function R of the projective coordinate component of a plurality of numerical matrices at the same time for all the regions in the region, the present invention can be realized at low cost and can realize powder at low cost. It has been found that, since it follows a short-term continuous phenomenon of about 10 milliseconds like a spatial movement, the processing time can be reduced and the recording medium capacity can be reduced.
【0008】本発明は以上の知見に基づいてなされたも
のであって、その要旨とするところは、(1)複数方向
からの平行光線の透過光による像を撮影手段を用いて撮
影し、流体中の粉体の瞬間的な濃度分布を立体構成する
粉体分布の立体像の簡易再構築装置において、二以上の
位置よりそれぞれ発生させた平行光線を被検出物の粉体
が位置する可視化領域に導き透過させる投影手段と、投
影手段により投影する投影像を撮影し画像処理する投影
像画像処理手段と、可視化領域内のすべての領域につい
て,任意の座標の粉体濃度分布を、前記投影像画像処理
手段で得られた同時刻における複数の輝度の数値マトリ
ックスを用いて、当該座標の粉体濃度分布を投影座標成
分の関数として求め再構築する3次元空間分布の立体像
構築手段と、上記立体像構築手段を連続した2時刻で行
い、2時刻分の粉体空間分布の各相互相関をベクトル値
の分布で表す、粉体移動速度分布構築手段とからなるこ
とを特徴とする流体中の粉体の3次元空間分布の立体像
および当該分布の3次元移動速度分布の簡易再構築装置
であり、(2)前記(1)に記載の3次元空間分布の立
体像構築手段として、投影像画像処理手段により得られ
た像を画像処理して得られた同時刻における複数の輝度
の数値マトリックスA=(A(u,k)),B=(B
(v,k)),C=(C(w,k))…を用いて、可視
化領域内のすべての領域について,任意座標(i,j,
k)の粉体等の3次元濃度分布R(i,j,k)を、複
数の同時刻の数値マトリックスの当該射影座標成分A
(u,k),B(v,k),C(w,k)…の関数R
(i,j,k)=f(A(u,k),B(v,k),C
(w,k)…),ただし、u=g(i,j),v=h
(i,j),w=m(i,j)として求め再構成するこ
と、また、(3)可視化領域内のすべての領域につい
て,ある座標(i,j,k)の粉体等の3次元移動速度
分布V(i,j,k)を、前記(2)に記載の立体像構
築手段を連続した2時刻T1秒とT1+ΔT秒で施し、
2時刻分の3次元空間分布の立体像の各部分の相互相関
が最大となるベクトル値L(i,j,k)=(L 1,
L2,L3)を求め、ΔTで除したベクトル値V(i,
j,k)=(L1/ΔT,L2/ΔT,L3/ΔT)の
分布として求め再構成すること、また、(4)前記
(1)での複数方向を、90度回転した2方向とするこ
と、つまりR(i,j,k)=f(A(i,k),B
(j,k))とすること、また、(5)数値マトリック
スの当該座標成分の関数を、輝度の数値マトリックスの
当該射影座標成分の重みつき掛け算とすること、つまり
R(i,j,k)=(定数)×A(i,j)×B(i,
k)とすること、また、(6)数値マトリックスの当該
座標成分の関数を、輝度の数値マトリックスの当該射影
座標成分の重みつき掛け算のべき乗とすること、また、
(7)平行光線を、X線ないしレーザー光とすること、
また、(8)2組のシュリーレン装置を用いて、同一可
視化領域に2方向から平行光線を導き透過させること、
また、(9)2組のシュリーレン装置を用いて、同一可
視化領域に2方向から平行光線を導き透過させ、密度分
布の投影像としてのシュリーレン像を用いて画像処理す
ること、また、(10)複数の鏡を用いて、複数の平行
光線による像を、一つのカメラに撮影して、同時刻の画
像マトリックスを1画面に捉えること、また、(11)
濃度分布に複数の極大値がある場合に発生するゴースト
像を判別し取り除くこと、つまりk断面における極大値
の座標として(i1,j1),(i2,j2),(i
2,j1),(i1,j2)の組に着目し、投影方向の
2等分線方向に対称な分布をしている1組をゴースト像
と判別し取り除くこと、を特徴とする流体中の粉体など
の3次元空間分布の立体像および当該分布の3次元移動
速度分布の簡易再構築装置にある。The present invention has been made based on the above findings. The gist of the present invention is as follows: (1) An image is formed by transmitting parallel light beams from a plurality of directions using a photographing means. In a simple reconstruction device for the three-dimensional image of the powder distribution, which constitutes the instantaneous concentration distribution of the powder in the solid, the parallel light rays generated from two or more positions are visualized in which the powder of the object is located Projecting means for guiding and transmitting the projected image, projecting image processing means for photographing a projected image projected by the projecting means, and performing image processing on the projected image; A three-dimensional spatial distribution stereoscopic image constructing means for obtaining and reconstructing a powder concentration distribution at the coordinates as a function of a projected coordinate component by using a plurality of luminance numerical matrices at the same time obtained by the image processing means; And a powder moving velocity distribution constructing means, wherein the body image constructing means is performed at two consecutive times and each cross-correlation of the powder spatial distribution for the two times is represented by a vector value distribution. The apparatus is a simple reconstruction apparatus for a three-dimensional image of a three-dimensional spatial distribution of powder and a three-dimensional moving velocity distribution of the three-dimensional spatial distribution of the powder. A plurality of luminance value matrices A = (A (u, k)) and B = (B at the same time obtained by performing image processing on the image obtained by the image processing means
(V, k)), C = (C (w, k))..., The arbitrary coordinates (i, j,
k), the three-dimensional density distribution R (i, j, k) of the powder, etc.
Function R of (u, k), B (v, k), C (w, k) ...
(I, j, k) = f (A (u, k), B (v, k), C
(W, k) ...), where u = g (i, j), v = h
(I, j) and w = m (i, j) are obtained and reconstructed. (3) For all regions in the visualization region, 3 such as powder of certain coordinates (i, j, k) The three-dimensional image construction means described in (2) is applied to the three-dimensional moving velocity distribution V (i, j, k) at two consecutive times T1 and T1 + ΔT seconds,
A vector value L (i, j, k) = (L1,1) at which the cross-correlation of each part of the three-dimensional image of the three-dimensional spatial distribution for two times is maximized.
L2, L3), and the vector value V (i,
j, k) = (L1 / ΔT, L2 / ΔT, L3 / ΔT), and reconfigured. (4) The multiple directions in (1) are two directions rotated by 90 degrees. That is, R (i, j, k) = f (A (i, k), B
(5) The function of the coordinate component of the numerical value matrix is a weighted multiplication of the projective coordinate component of the numerical value matrix of luminance, that is, R (i, j, k). ) = (Constant) × A (i, j) × B (i,
k), and (6) the function of the coordinate component of the numerical value matrix is a power of a weighted multiplication of the projective coordinate component of the numerical value matrix of luminance.
(7) The parallel rays are X-rays or laser beams,
(8) using two sets of schlieren devices to guide and transmit parallel light rays from two directions to the same visualization area;
(9) guiding parallel light rays from two directions to the same visualization region using two sets of schlieren devices, transmitting the parallel rays, and performing image processing using a schlieren image as a projected image of the density distribution; and (10) Using a plurality of mirrors, taking an image of a plurality of parallel rays with one camera, and capturing an image matrix at the same time on one screen; and (11)
A ghost image generated when the density distribution has a plurality of local maxima is determined and removed, that is, (i1, j1), (i2, j2), (i)
Focusing on a set of (2, j1), (i1, j2), one set having a distribution symmetrical in the direction of the bisector of the projection direction is determined as a ghost image and removed. A simple reconstruction device for a three-dimensional image of a three-dimensional spatial distribution of a powder or the like and a three-dimensional moving speed distribution of the distribution.
【0009】[0009]
【発明の実施の形態】まず、粉体などの空間分布の立体
像の簡易再構築装置ないし流体中の粉体などの3次元移
動速度分布の簡易再構築装置における原理について従来
法と対比しながら図面を見ながら説明する。図1は本発
明の、粉体などの空間分布の立体像の簡易再構築装置な
いし流体中の粉体などの3次元移動速度分布の簡易再構
築装置を示した図である。図2は本発明の、粉体などの
空間分布の立体像の簡易再構築装置ないし流体中の粉体
などの3次元移動速度分布の簡易再構築装置の原理を示
した図である。図3は本発明の、粉体などの空間分布の
立体像の簡易再構築装置において、複数方向から平行光
線を可視化領域に導き透過させ、平行光線による投影像
としてCCDカメラ等により撮影した像を画像処理して得
られた複数の同時刻の輝度の数値マトリックスを用い
て、可視化領域内のすべての領域について,ある座標の
粉体等の濃度分布を、複数の同時刻の数値マトリックス
の当該射影座標成分の関数Rとして求め再構成した図で
ある。また図4は本発明の、流体中の粉体などの3次元
移動速度分布の簡易再構築装置において、図1の手法を
連続した2時刻T1秒とT1+ΔT秒で施し、2時刻分
の3次元空間分布の立体像の各部分の相互相関が最大と
なるベクトル値Lを求め、ΔTで除したベクトル値Vの
分布として求め再構成した図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the principle of a simple reconstruction apparatus for a three-dimensional image of a spatial distribution of a powder or the like or a simple reconstruction apparatus of a three-dimensional moving velocity distribution of a powder or the like in a fluid will be compared with a conventional method. This will be described with reference to the drawings. FIG. 1 is a view showing a simple reconstruction apparatus for a three-dimensional image of a spatial distribution of powder or the like or a simple reconstruction apparatus for three-dimensional moving velocity distribution of powder or the like in a fluid according to the present invention. FIG. 2 is a diagram showing the principle of a simple reconstruction apparatus for a three-dimensional image of a spatial distribution of powder or the like or a simple reconstruction apparatus for three-dimensional moving velocity distribution of powder or the like in a fluid according to the present invention. FIG. 3 is a simplified reconstruction apparatus for a three-dimensional image of a spatial distribution of powder or the like according to the present invention, in which parallel rays are guided to a visualization region from a plurality of directions and transmitted, and an image captured by a CCD camera or the like is projected as a parallel ray projection image. By using a plurality of numeric matrixes of luminance at the same time obtained by image processing, the density distribution of powder, etc. at a certain coordinate for all the regions in the visualization region is projected by a plurality of numeric matrices at the same time. FIG. 5 is a diagram obtained and reconstructed as a function R of a coordinate component. FIG. 4 shows a simple reconstruction apparatus for three-dimensional moving velocity distribution of powders in a fluid according to the present invention, in which the method of FIG. FIG. 11 is a diagram in which a vector value L at which a cross-correlation of each part of a three-dimensional image of a spatial distribution is maximized is obtained, and the vector value L is obtained as a distribution of a vector value V divided by ΔT and reconstructed.
【0010】本発明では、図1に示すように、複数方向
からの平行光線の透過光による像をCCDカメラ等の撮影
手段を用いて撮影し、流体中の粉体の瞬間的な濃度分布
を立体構成する粉体分布の立体像の簡易再構築装置にお
いて、二以上の位置よりそれぞれ発生させた平行光線を
被検出物の粉体が位置する可視化領域に導き透過させる
投影手段αと、投影手段により投影する投影像を撮影し
画像処理する投影像画像処理手段βと、可視化領域内の
すべての領域について,任意の座標の3次元粉体濃度分
布を、前記投影像画像処理手段βで得られた同時刻にお
ける複数の輝度の数値マトリックスを用いて、当該座標
の粉体濃度分布を投影座標成分の関数として求め再構築
する3次元空間分布の立体像構築手段γと、上記立体像
構築手段γを連続した2時刻で行い、2時刻分の粉体空
間分布の各相互相関をベクトル値の分布で表す、粉体移
動速度分布構築手段δとから構成した。In the present invention, as shown in FIG. 1, an image of transmitted light of parallel rays from a plurality of directions is photographed using photographing means such as a CCD camera, and the instantaneous concentration distribution of powder in a fluid is determined. In a simple reconstruction apparatus for a three-dimensional image of a three-dimensionally composed powder distribution, a projection means α for guiding parallel light rays respectively generated from two or more positions to a visualization region where the powder of the detection object is located and transmitting the light. And a three-dimensional powder concentration distribution at arbitrary coordinates with respect to all regions within the visualization region. A three-dimensional spatial distribution three-dimensional image construction means γ for obtaining and reconstructing a powder concentration distribution at the coordinates as a function of the projected coordinate component using a plurality of luminance numerical matrices at the same time; Two consecutive And a powder movement velocity distribution constructing means δ that represents each cross-correlation of the powder space distribution for two times by a vector value distribution.
【0011】このように構成することにより、同時刻の
流体中の粉体の濃度分布を2つ以上の位置からの平行光
線による投影手段αで透過し、この投影手段αで得たデ
ータを基に投影像画像処理手段βで画像処理をすること
で、2以上の位置から観察した同時刻の粉体の平面的な
濃度分布をそれぞれ把握できる。そして、この複数の平
面的な濃度分布を用いて立体像構築手段γで、輝度の数
値マトリックスを用いて、当該座標の粉体濃度分布を投
影座標成分の関数として求め再構築することで3次元空
間分布の立体像を構築する。With this configuration, the concentration distribution of the powder in the fluid at the same time is transmitted by the projecting means α using parallel rays from two or more positions, and the data obtained by the projecting means α is used as a basis. By performing image processing by the projected image image processing means β, it is possible to grasp the planar density distribution of the powder at the same time observed from two or more positions. Then, using the plurality of planar density distributions, the three-dimensional image constructing means γ determines and reconstructs the powder density distribution at the coordinates as a function of the projected coordinate components using a numerical value matrix of luminance. Construct a three-dimensional image of the spatial distribution.
【0012】次に、立体像構築手段γを連続した2時刻
で求め、粉体移動速度分布構築手段δで粉体空間分布の
各相互相関をベクトル値の分布で表すことにより、粉体
の移動速度分布を把握することが出来る。このように流
体中の粉体などの3次元空間分布の立体像、および当該
分布の3次元移動速度分布Vを簡易に再構築することが
出来ることより、安価で実現可能で、粉体の空間移動の
ように10ミリ秒程度の短時間の連続的な現象に追従す
るため、処理時間が短く対応可能で、また記録媒体も少
量とすることができる。また、可視化領域内の全ての領
域について、任意の座標の粉体等の3次元移動速度分布
Vを、安価で実現可能で、低精度ではあるものの、粉体
空間分布の各相互相関のベクトル値分布VaをΔTで除
したベクトル値の分布として3次元分布が再構成でき
る。さらに、従来は、スリット光を垂直方向から投影し
て見ていたため、粉体の陰の別の粉体は見えなかった
が、本発明では、透過光を用いているため粉体が存在し
ない部分では陰とならない。このため粉体等によって照
射光が多少弱まっても照射光に応じた投影像画像処理手
段βで対処でき、粉体分布を計測することができた。Next, the three-dimensional image construction means γ is obtained at two consecutive times, and the powder movement speed distribution construction means δ expresses each cross-correlation of the powder space distribution by a vector value distribution, thereby moving the powder. The speed distribution can be grasped. Since the three-dimensional image of the three-dimensional spatial distribution of the powder and the like in the fluid and the three-dimensional moving velocity distribution V of the distribution can be easily reconstructed in this way, the present invention can be realized at low cost and can realize the space of the powder. Since it follows a short continuous phenomenon of about 10 milliseconds like movement, the processing time can be reduced and the recording medium can be reduced. In addition, for all regions within the visualization region, a three-dimensional moving velocity distribution V of powder or the like at arbitrary coordinates can be realized at low cost, and although low in accuracy, the vector value of each cross-correlation of the powder spatial distribution is obtained. A three-dimensional distribution can be reconstructed as a distribution of vector values obtained by dividing the distribution Va by ΔT. Furthermore, conventionally, since the slit light was projected from the vertical direction, another powder behind the powder could not be seen, but in the present invention, the portion where the powder does not exist because the transmitted light is used. Then it is not a shadow. For this reason, even if the irradiation light is somewhat weakened by the powder or the like, the projection image image processing means β corresponding to the irradiation light can cope with the problem, and the powder distribution can be measured.
【0013】次に、図2に示すモデルの、数値シミュレ
ーションを行ってみると可視化対象である3次元濃度分
布11にj方向の平行光線12,及びi方向の平行光線
13を照射し、得られたi軸上の像Rx(i),とj軸
上の像Ry(j)を用いて、i,j平面上の再構成像R
(i,j)を数値マトリックスの当該座標成分の関数と
すること、つまり、輝度の数値マトリックスの当該射影
座標成分の重みつき掛け算とすること、例えばR(i,
j)=(係数)×Rx(i)×Ry(j),あるいは重み
つき掛け算のべき乗とすることで、当該座標に対応する
値のみを用いて演算して求め再構成することは、ジェッ
ト断面モデルの元画像モデルbについて、再生画像cが
得られるが、dに示すように元画像モデルと再生画像の
値を比較すると、ほぼ同じ値が得られ、確実に再現する
ことができた。Next, when a numerical simulation of the model shown in FIG. 2 is performed, a three-dimensional density distribution 11 to be visualized is obtained by irradiating a parallel ray 12 in the j direction and a parallel ray 13 in the i direction. Using the image Rx (i) on the i-axis and the image Ry (j) on the j-axis, a reconstructed image R on the i, j plane
Let (i, j) be a function of the coordinate component of the numerical value matrix, that is, a weighted multiplication of the projective coordinate component of the numerical value matrix of luminance, for example, R (i,
j) = (coefficient) × Rx (i) × Ry (j) or a power of a weighted multiplication to obtain and reconstruct by calculating using only the value corresponding to the coordinates, A reproduced image c was obtained for the original image model b of the model, but when the values of the original image model and the reproduced image were compared as shown in d, almost the same values were obtained and could be reproduced reliably.
【0014】また図3に示すように、投影手段αとして
複数方向から平行光線11,12,13を可視化領域1
4に導き透過させ、投影手段αにより投影する投影像と
してCCDカメラ等により撮影した像を画像処理する投影
像画像処理手段βで画像処理して得られた複数の同時刻
の輝度の数値マトリックス1 5,1 6,17を用い
て、可視化領域内のすべての領域について,ある座標の
粉体等の濃度分布を、複数の同時刻の数値マトリックス
の当該射影座標成分の関数Rとして求め再構成すること
により立体像を得ることが出来る。As shown in FIG. 3, parallel light rays 11, 12, and 13 are projected from a plurality of directions as a projection means α in the visualization area 1.
4 and a plurality of numerical matrixes of luminance at the same time obtained by performing image processing on an image taken by a CCD camera or the like as a projection image projected by the projection means α as an image projected by the projection means α. Using 5, 5, 6 and 17, the density distribution of powder or the like at a certain coordinate is obtained as a function R of the projective coordinate components of a plurality of numerical matrices at the same time and reconstructed for all the areas in the visualization area. Thus, a three-dimensional image can be obtained.
【0015】次に、図4に示すように、流体中の粉体な
どの3次元移動速度分布の簡易再構築の原理について述
べる。上記、図3の手法を連続した2時刻T1秒とT1
+ΔT秒で施し、2時刻分の3次元空間分布の立体像1
8,19の各部分20,21の相互相関が最大となるベ
クトル値Lを求め、ΔTで除したベクトル値Vの分布と
して求め再構成する。Next, as shown in FIG. 4, the principle of simple reconstruction of a three-dimensional moving velocity distribution of powders and the like in a fluid will be described. As described above, two times T1 seconds and T1
+ ΔT seconds, stereoscopic image 1 of three-dimensional spatial distribution for two times
The vector value L that maximizes the cross-correlation between the portions 20 and 21 of 8 and 19 is determined, and the vector value L is obtained as a distribution of the vector value V divided by ΔT and reconstructed.
【0016】つぎに、粉体などの空間分布の立体像の簡
易再構築装置ないし流体中の粉体などの3次元移動速度
分布の筒易再構築装置における、簡易化手法について図
面を見ながら説明する。図5は本発明の、粉体などの空
間分布の立体像の簡易再構築装置において、図3の複数
の透視方向を、90度回転した2方向とした図である。
図6は複数の鏡を用いて、複数の平行光線による像を、
一つのカメラに撮影して、同時刻の画像マトリックスを
1画面に捉える方法を示した図である。図7は本発明
の、粉体などの空間分布の立体像の簡易再構築装置にお
いて、2組のシュリーレン装置を用いて、同一可視化領
域に2方向から平行光線を導き透過させる方法を示した
図である。Next, a simplification method for a simple reconstruction apparatus for a three-dimensional image of a spatial distribution of a powder or the like or an apparatus for easily reconstructing a three-dimensional moving velocity distribution of a powder or the like in a fluid will be described with reference to the drawings. I do. FIG. 5 is a view showing a simple reconstruction apparatus for a three-dimensional image of a spatial distribution of powder or the like according to the present invention, in which a plurality of perspective directions in FIG.
FIG. 6 shows an image formed by a plurality of parallel rays using a plurality of mirrors.
FIG. 3 is a diagram illustrating a method of capturing images by one camera and capturing an image matrix at the same time on one screen. FIG. 7 is a diagram showing a method for guiding parallel light rays from two directions to the same visualization region using two sets of schlieren devices and transmitting the light beams using two sets of schlieren devices in the apparatus for easily reconstructing a three-dimensional image of a spatial distribution of powder or the like according to the present invention. It is.
【0017】ここで、図5は、図3の複数方向を、90
度回転した2方向としたもので、投影手段αである平行
光線25,26を可視化領域22に導き透過させ、平行
光線による投影像としてCCDカメラ等により撮影し、こ
の像を投影像画像処理手段βで画像処理して得られた2
つの同時刻の輝度の数値マトリックス23,24を用い
て、可視化領域内のすべての領域について,任意の座標
の粉体等の濃度分布を、複数の同時刻の数値マトリック
スの当該射影座標成分の関数Rとして求める立体像構築
手段γで再構成するものである。Here, FIG. 5 shows a plurality of directions of FIG.
The parallel rays 25 and 26, which are the projection means α, are guided to the visualization area 22 and transmitted therethrough, photographed as a projection image by the parallel rays using a CCD camera or the like, and this image is projected image processing means. 2 obtained by image processing with β
The density distributions of powder and the like at arbitrary coordinates are calculated for all regions in the visualization region using the numerical values matrices 23 and 24 of the luminance at the same time, and a function of the projected coordinate components of the plural numerical matrices at the same time. It is reconstructed by the stereoscopic image construction means γ obtained as R.
【0018】また、ここで、投影手段αとしての平行光
線の発生方法としては、図7のように、2組のシュリー
レン装置を用いて、同一可視化領域に2方向から平行光
線を導き透過させる方法が考えられる。すなわち、一組
のシュリーレン装置は、点光源28を凹面鏡29の焦点
距離に配置し、平行光線30を作り、可視化部27を通
過させ、凹面鏡31で反射させ焦点距離に配置したカメ
ラ32により撮影した像を画像処理して輝度の数値マト
リックスを1つ得、もう一組のシュリーレン装置とし
て、点光源33を凹面鏡34の焦点距離に配置し、平行
光線35を作り、可視化部27を通過させ、凹面鏡36
で反射させ焦点距離に配置したカメラ37により撮影し
た像を画像処理して輝度の数値マトリックスを1つ得る
ことができるが、図6のように平面鏡を合めた複数の鏡
を用いて、複数の平行光線による像を、一つのカメラに
撮影して、同時刻の画像マトリックスを1画面に捉える
方法を用いると、CCDカメラは1台で、凹面鏡は3枚
というように、1台ずつ節約できるし、画像処理して得
られる輝度の数値マトリックス2枚の同時刻性も保つこ
とが出来、取り扱い上有利である。Here, as a method for generating parallel rays as the projection means α, as shown in FIG. 7, a method of using two sets of schlieren devices to guide parallel rays from two directions to the same visualization region and transmit the same. Can be considered. That is, a set of schlieren devices arranged the point light source 28 at the focal length of the concave mirror 29, created a parallel light beam 30, passed through the visualization unit 27, reflected by the concave mirror 31, and photographed by the camera 32 arranged at the focal length. The image is subjected to image processing to obtain one luminance numerical matrix, and as another set of Schlieren devices, a point light source 33 is arranged at the focal length of the concave mirror 34, a parallel ray 35 is formed, and the parallel light 35 is passed through the visualizing unit 27, and the concave mirror 36
An image taken by the camera 37 which is reflected at the focal length and is arranged at the focal length can be image-processed to obtain one numerical value matrix of the luminance. However, as shown in FIG. Using a method that captures an image with parallel rays of light on one camera and captures the image matrix at the same time on one screen, one CCD camera and three concave mirrors can be saved one by one. In addition, it is possible to maintain the same time of two luminance value matrices obtained by image processing, which is advantageous in handling.
【0019】つぎに、本発明における、誤差低減手法に
ついて図面に基づき説明する。図8は濃度分布に複数の
極大値がある場合に発生するゴースト像を判別し取り除
く方法を示した図である。ここで、元画像(a)の濃度
分布に複数の極大値38,39がある場合に再生像
(b)の濃度分布には正しい像40,41の他にゴース
ト像42,43,44が発生する。そこでこの断面にお
ける極大値の座標として(i1,j1),(i2,j
2),(i2,j1),(i1,j2)の組に着目し、
投影方向の2等分線方向に対称な分布をしている1組4
2,43をゴースト像と判別し取り除くことにより誤差
が低減された像(c)を求めることが出来る。即ち、図
8で示す正しい像40,41の値は、粉体濃度分布に応
じた値となり、全く同じ値となることはない。従って、
正しい像40,41の値が異なることより、正しい像4
0,41に基づき形成されるゴースト像42,43は、
図8の例では、正しい2つの像40,41の平均が、ゴ
ースト像42,43の値となり、ゴースト像同士はいず
れも同じ数値となる。このため、正しい像40,41と
ゴースト像42,43の判別が可能となり、ゴースト像
42,43を除去することが出来る。Next, an error reduction method according to the present invention will be described with reference to the drawings. FIG. 8 is a diagram showing a method of determining and removing a ghost image generated when a plurality of local maxima are present in the density distribution. Here, when there are a plurality of local maxima 38 and 39 in the density distribution of the original image (a), ghost images 42, 43 and 44 occur in addition to the correct images 40 and 41 in the density distribution of the reproduced image (b). I do. Therefore, (i1, j1), (i2, j
2), focusing on a set of (i2, j1) and (i1, j2),
One set 4 having a distribution symmetric in the bisector direction of the projection direction
By discriminating 2, 43 as a ghost image and removing it, an image (c) with reduced errors can be obtained. That is, the values of the correct images 40 and 41 shown in FIG. 8 are values corresponding to the powder density distribution, and do not become exactly the same values. Therefore,
Since the values of the correct images 40 and 41 are different, the correct image 4
Ghost images 42 and 43 formed based on 0 and 41 are
In the example of FIG. 8, the average of the two correct images 40 and 41 is the value of the ghost images 42 and 43, and the ghost images have the same numerical value. For this reason, the correct images 40 and 41 and the ghost images 42 and 43 can be distinguished, and the ghost images 42 and 43 can be removed.
【0020】[0020]
【実施例】以下、図6と図9の図面を参照しながら、本
発明の実施例について具体的に説明する。図9は本発明
の実施例を示した図である。図6において、点光源1を
凹面鏡1の焦点距離である3mの位置に配置し、平行光
線を作り、平面鏡1で反射させ、可視化領域を通過さ
せ、凹面鏡2で反射させ、さらに平面鏡2で反射させ、
焦点距離に配置したカメラにより撮影した像と、点光源
2を凹面鏡1の焦点距離に配置し、平行光線を作り、平
面鏡3で反射させ、可視化領域を通過させ、凹面鏡3で
反射させ、さらに平面鏡4で反射させ、焦点距離である
3mの位置に配置したカメラにより撮影した像を同時に
カメラに取り込み、画像処理して図9(a)に示す2方
向の輝度の数値マトリックスA(i,j)およびB
(i,k)を得て、R(i,j,k)=A(i,j)×
B(i,k)/maxA(i,j)/maxB(i,
k)なる演算で図9(b)に示す4つの時刻の粉体の再
生像を容易に得た。このように複数の鏡を用いて、複数
の平行光線による像を、一つのカメラに撮影して、同時
刻の画像マトリックスを1画面に捉えることで、複数方
向からの平行光線の透過光による像をCCDカメラ等を用
いて撮影し、粉体等の瞬間的な濃度分布を簡易的に立体
構成する粉体分布の立体像を簡易的に再構築することが
できた。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIGS. FIG. 9 is a diagram showing an embodiment of the present invention. In FIG. 6, a point light source 1 is arranged at a position of 3 m which is the focal length of the concave mirror 1, and a parallel light beam is formed, reflected by the plane mirror 1, passed through the visualization area, reflected by the concave mirror 2, and further reflected by the plane mirror 2. Let
An image taken by a camera arranged at the focal length and a point light source 2 arranged at the focal length of the concave mirror 1 to form a parallel ray, reflected by the plane mirror 3, passed through the visualization area, reflected by the concave mirror 3, and further reflected by the plane mirror 4, images taken by a camera arranged at a position of 3 m which is the focal length are simultaneously taken into the camera, image-processed, and a numerical matrix A (i, j) of luminance in two directions shown in FIG. And B
(I, k), and R (i, j, k) = A (i, j) ×
B (i, k) / maxA (i, j) / maxB (i,
With the calculation k), the reproduced images of the powder at the four times shown in FIG. 9B were easily obtained. In this way, by using a plurality of mirrors, an image of a plurality of parallel rays is captured by one camera, and an image matrix at the same time is captured on one screen, so that an image of the transmitted light of the parallel rays from a plurality of directions is obtained. Was photographed using a CCD camera or the like, and a three-dimensional image of the powder distribution, in which the instantaneous concentration distribution of the powder and the like was easily formed in a three-dimensional manner, could be easily reconstructed.
【0021】[0021]
【発明の効果】この発明の粉体などの空間分布の立体像
の簡易再構築装置ないし3次元移動速度分布の簡易再構
築装置は、複数方向から平行光線を可視化領域に導き透
過させ、平行光線による投影像としてCCDカメラ等によ
り撮影した像を画像処理して得られた複数の同時刻の輝
度の数値マトリックスを用いて、可視化領域内のすべて
の領域について,ある座標の粉体等の濃度分布を、複数
の同時刻の数値マトリックスの当該射影座標成分の関数
Rとして求め再構成するため、安価に再現することが可
能で、また粉体の空間移動のように10ミリ秒程度の短
時間の連続的な現象を追従することが出来、処理時間が
短く対応可能であり、記録媒体も少量とすることができ
る。また、可視化領域内のすべての領域について,ある
座標の粉体等の3次元移動速度分布Vを、連続した2時
刻のデータで3次元空間分布の立体像の各部分の相互相
関を表すことが出来、粉体の移動速度分布を簡易に把握
することができ、粉体吹き込み方法に適用すれば、例え
ば粉体の拡散状況を把握でき制御等が簡易になった。ま
た、粉体移動速度分布の再構築が簡易に、かつ安価に実
現可能であり、さらに、透過光を用いる技術であること
より粉体等によって照射光が多少弱まっても計測するこ
とができることより、簡易的に粉体分布を再構築出来る
効果を有する等、本発明は優れた効果を有するものであ
る。According to the present invention, a simple reconstruction apparatus for a three-dimensional image of a spatial distribution of powder or the like or a simple reconstruction apparatus for a three-dimensional moving velocity distribution guides and transmits parallel light rays from a plurality of directions to a visualization area. Using a matrix of multiple brightness values at the same time obtained by image processing of an image taken by a CCD camera etc. as a projection image by the camera, the density distribution of powder, etc. at a certain coordinate in all areas within the visualization area Is obtained and reconstructed as a function R of the projective coordinate components of a plurality of numerical matrices at the same time, it is possible to reproduce inexpensively, and a short time of about 10 milliseconds as in the case of spatial movement of powder. A continuous phenomenon can be followed, the processing time can be shortened and the recording medium can be reduced. In addition, for all regions within the visualization region, the three-dimensional moving velocity distribution V of powder or the like at a certain coordinate may be represented by continuous two-time data to indicate the cross-correlation of each part of the three-dimensional spatial distribution three-dimensional image. As a result, the powder moving speed distribution can be easily grasped, and when applied to the powder blowing method, for example, the diffusion state of the powder can be grasped and the control and the like can be simplified. In addition, it is possible to easily and inexpensively reconstruct the powder moving speed distribution, and because it is a technique using transmitted light, it can measure even if the irradiation light is slightly weakened by powder or the like. The present invention has excellent effects such as an effect that the powder distribution can be easily reconstructed.
【図面の簡事な説明】[Brief description of drawings]
【図1】本発明の、粉体などの空間分布の立体像の簡易
再構築装置及び流体中の粉体の3次元移動速度分布の簡
易再構築装置を示した説明図である。FIG. 1 is an explanatory view showing a simple reconstruction apparatus for a three-dimensional image of a spatial distribution of a powder and the like and a simple reconstruction apparatus for a three-dimensional movement velocity distribution of a powder in a fluid according to the present invention.
【図2】本発明の、粉体などの空間分布の立体像の簡易
再構築装置ないし流体中の粉体などの3次元移動速度分
布の筒易再構築装置の原理を示した説明図である。FIG. 2 is an explanatory view showing the principle of a simple reconstruction device for a three-dimensional image of a spatial distribution of powder or the like or a device for easily reconstructing a three-dimensional moving velocity distribution of a powder or the like in a fluid according to the present invention. .
【図3】本発明における立体像構築手段で再構成する説
明図である。FIG. 3 is an explanatory diagram reconstructed by a stereoscopic image construction unit according to the present invention.
【図4】本発明における粉体移動速度分布構築手段で再
構成する説明図である。FIG. 4 is an explanatory diagram reconstructed by a powder moving velocity distribution constructing means in the present invention.
【図5】本発明における投影手段の投影方向を90度回
転した2方向とした立体像構築手段で再構成する説明図
である。FIG. 5 is an explanatory diagram of reconstructing by a three-dimensional image constructing unit in which the projection direction of the projecting unit in the present invention is set to two directions rotated by 90 degrees.
【図6】複数の鏡を用いて、複数の平行光線による像
を、一つのカメラに撮影して、同時刻の画像マトリック
スを1画面に捉える方法を示した説明図である。FIG. 6 is an explanatory diagram showing a method of capturing an image of a plurality of parallel rays with a single camera using a plurality of mirrors and capturing an image matrix at the same time on one screen.
【図7】本発明において投影手段に2組のシュリーレン
装置を用いた例の概略説明図である。FIG. 7 is a schematic explanatory view of an example in which two sets of schlieren devices are used as projection means in the present invention.
【図8】濃度分布に複数の極大値がある場台に発生する
ゴースト像を判別し収り除く方法を示した説明図であ
る。FIG. 8 is an explanatory diagram showing a method of determining and eliminating a ghost image generated on a platform having a plurality of local maxima in the density distribution.
【図9】本発明を具体的に適用した粉体の再生像を得た
実施例を示した説明図である。FIG. 9 is an explanatory diagram showing an example in which a reproduced image of a powder to which the present invention is specifically applied is obtained.
【図10】従来の立体像の再構築方法を示した図であ
る。FIG. 10 is a diagram showing a conventional stereoscopic image reconstruction method.
【符号の説明】 α 投影手段 β 投影像画像処理手段 γ 立体像構築手段 δ 粉体移動速度分布構築手段 1,28,33 数射状に光を発する点光源 2 センサーの列 3,14,22 可視化領域 4 走査スリット光 5 測定対象物 6 対象物上の基準光切断線 7,10,32,37 CCDカメラ 8 徴細粒子を混入した流体 9 レーザシート面 11,12,13 平行光線 15,16,17,23,24 輝度の数値マトリック
ス 18,19 立体像 20,21 立体像 18,19 の各部分 25,26,30,35 平行光線 29,31,34,36 関面鏡 27 可視化部 38,39 極大値 40,41 正しい像 42,43,44 ゴースト像[Description of Signs] α Projecting Means β Projected Image Image Processing Means γ Three-Dimensional Image Constructing Means δ Powder Moving Speed Distribution Constructing Means 1,28,33 Visualization area 4 Scanning slit light 5 Object to be measured 6 Reference light cutting line on object 7, 10, 32, 37 CCD camera 8 Fluid mixed with fine particles 9 Laser sheet surface 11, 12, 13 Parallel light 15, 16 , 17, 23, 24 Numerical matrix of luminance 18, 19 Stereoscopic image 20, 21 Each part of stereoscopic image 18, 19 25, 26, 30, 35 Parallel rays 29, 31, 34, 36 Surface mirror 27 Visualizer 38, 39 local maximum 40,41 correct image 42,43,44 ghost image
Claims (11)
を撮影手段を用いて撮影し、流体中の粉体の瞬間的な濃
度分布を立体構成する粉体分布の立体像の簡易再構築装
置において、 二以上の位置よりそれぞれ発生させた平行光線を被検出
物の粉体が位置する可視化領域に導き透過させる投影手
段と、 投影手段により投影する投影像を撮影し画像処理する投
影像画像処理手段と、 可視化領域内のすべての領域について,任意の座標の粉
体濃度分布を、前記投影像画像処理手段で得られた同時
刻における複数の輝度の数値マトリックスを用いて、当
該座標の粉体濃度分布を投影座標成分の関数として求め
再構築する3次元空間分布の立体像構築手段と、 上記立体像構築手段を連続した2時刻で行い、2時刻分
の粉体空間分布の各相互相関をベクトル値の分布で表
す、粉体移動速度分布構築手段と、からなることを特徴
とする流体中の粉体の3次元空間分布の立体像および当
該分布の3次元移動速度分布の簡易再構築装置。1. A simple reconstruction of a three-dimensional image of a powder distribution, in which an image is formed by means of a photographing means using transmitted light of parallel rays from a plurality of directions, and an instantaneous concentration distribution of the powder in the fluid is three-dimensionally constituted. A projection device for guiding parallel light rays respectively generated from two or more positions to a visualization region where the powder of the object is located and transmitting the same; and a projection image image for capturing and projecting a projection image projected by the projection device. Processing means, and a powder density distribution at an arbitrary coordinate for all the areas in the visualization area, using a plurality of brightness numerical matrices at the same time obtained by the projection image processing means at the powder at the coordinates. A three-dimensional spatial distribution stereoscopic image constructing means for obtaining and reconstructing a body density distribution as a function of the projected coordinate component, and the three-dimensional image constructing means at two consecutive times, each cross-correlation of the powder spatial distribution for two times The baek And a three-dimensional image of a three-dimensional spatial distribution of the powder in the fluid, and a simple reconstruction device for the three-dimensional moving velocity distribution of the distribution. .
築手段として、 投影像画像処理手段で得られた同時刻における複数の輝
度の数値マトリックスA=(A(u,k)),B=(B
(v,k)),C=(C(w,k))…を用いて、可視化
領域内のすべての領域について,ある座標(i,j,
k)の粉体の3次元濃度分布R(i,j,k)を、同時
刻における複数の数値マトリックスの当該射影座標成分
A(u,k),B(v,k),C(w,k)…の関数R
(i,j,k)=f(A(u,k),B(v,k),C
(w,k)…),ただし、u=g(i,j),v=h
(i,j),w=m(i,j)として求め再構成するこ
とを特徴とする流体中の粉体の3次元空間分布の立体像
および当該分布の3次元移動速度分布の簡易再構築装
置。2. A three-dimensional spatial distribution stereoscopic image constructing means according to claim 1, wherein a plurality of luminance value matrices A = (A (u, k)) at the same time obtained by a projection image processing means. B = (B
(V, k)), C = (C (w, k))..., Coordinates (i, j,
k), the projected coordinate components A (u, k), B (v, k), C (w, k) Function R
(I, j, k) = f (A (u, k), B (v, k), C
(W, k) ...), where u = g (i, j), v = h
A simple reconstruction of a three-dimensional image of a three-dimensional spatial distribution of powder in a fluid and a three-dimensional moving velocity distribution of the distribution, wherein (i, j) and w = m (i, j) are obtained and reconstructed. apparatus.
として、 可視化領域内のすべての領域について,ある座標(i,
j,k)の粉体の3次元移動速度分布V(i,j,k)
を、請求項2記載の立体像構築手段を連続した2時刻T
1秒とT1+ΔT秒で施し、2時刻分の3次元空間分布
の立体像の各部分の相互相関が最大となるベクトル値L
(i,j,k)=(L1,L2,L3)を求め、ΔTで
除したベクトル値V(i,j,k)=(L1/ΔT,L
2/ΔT,L3/ΔT)の分布として求め再構成するこ
とを特徴とする流体中の粉体の3次元空間分布の立体像
および当該分布の3次元移動速度分布の簡易再構築装
置。3. A powder moving velocity distribution constructing means according to claim 1, wherein a certain coordinate (i,
j, k) three-dimensional moving velocity distribution V (i, j, k) of powder
The two times T continuous with the three-dimensional image construction means according to claim 2
A vector value L that is applied in 1 second and T1 + ΔT seconds and has a maximum cross-correlation of each part of the stereoscopic image of the three-dimensional spatial distribution for two time points
(I, j, k) = (L1, L2, L3) is obtained, and a vector value V (i, j, k) = (L1 / ΔT, L) obtained by dividing by ΔT.
2. A three-dimensional image of a three-dimensional spatial distribution of a powder in a fluid and a three-dimensional moving speed distribution of the distribution are obtained and reconstructed as a distribution of 2 / ΔT, L3 / ΔT).
光線を90度回転した2方向であるR(i,j,k)=
f(A(i,k),B(j,k))とすることを特徴と
する請求項2または請求項3記載の流体中の粉体の3次
元空間分布の立体像および当該分布の3次元移動速度分
布の簡易再構築装置。4. R (i, j, k) = two directions obtained by rotating parallel rays generated from two or more positions by 90 degrees.
4. A three-dimensional image of a three-dimensional spatial distribution of powder in a fluid according to claim 2 or 3, wherein f (A (i, k), B (j, k)). Simple reconstruction device for 3D moving velocity distribution.
を、輝度の数値マトリックスの当該射影座標成分の重み
つき掛け算であるR(i,j,k)=(定数)×A
(i,j)×B(i,k)とすることを特徴とする請求
項4記載の流体中の粉体の3次元空間分布の立体像およ
び当該分布の3次元移動速度分布の簡易再構築装置。5. The function of the coordinate component of the numerical value matrix is multiplied by R (i, j, k) = (constant) × A, which is a weighted multiplication of the projective coordinate component of the numerical value matrix of luminance.
5. A simple reconstruction of a three-dimensional image of a three-dimensional spatial distribution of powder in a fluid and a three-dimensional moving velocity distribution of the distribution according to claim 4, wherein (i, j) × B (i, k). apparatus.
を、輝度の数値マトリックスの当該射影座標成分の重み
つき掛け算のべき乗とすることを特徴とする請求項4記
載の流体中の粉体の3次元空間分布の立体像および当該
分布の3次元移動速度分布の簡易再構築装置。6. The three-dimensional powder in a fluid according to claim 4, wherein the function of the coordinate component of the numerical value matrix is a power of a weighted multiplication of the projective coordinate component of the luminance value matrix. A simple reconstruction device for a three-dimensional image of a spatial distribution and a three-dimensional moving velocity distribution of the distribution.
ことを特徴とする請求項1ないし請求項6のいずれか1
項に記載の流体中の粉体の3次元空間分布の立体像およ
び当該分布の3次元移動速度分布の簡易再構築装置。7. The method according to claim 1, wherein the parallel rays are X-rays or laser beams.
Item 3. A simple reconstruction device for a three-dimensional image of a three-dimensional spatial distribution of powder in a fluid and a three-dimensional moving velocity distribution of the distribution.
視化領域に2方向から平行光線を導き透過させることを
特徴とする請求項1ないし請求項7のいずれか1項に記
載の流体中の粉体の3次元空間分布の立体像および当該
分布の3次元移動速度分布の簡易再構築装置。8. The fluid in a fluid according to claim 1, wherein two sets of schlieren devices are used to guide and transmit a parallel ray from two directions to the same visualization region. A simple reconstruction device for a three-dimensional image of a three-dimensional spatial distribution of powder and a three-dimensional moving velocity distribution of the distribution.
視化領域に2方向から平行光線を導き透過させ、密度分
布の投影像としてのシュリーレン像を用いて画像処理す
ることを特徴とする請求項1ないし請求項7のいずれか
1項に記載の流体中の粉体の3次元空間分布の立体像お
よび当該分布の3次元移動速度分布の簡易再構築装置。9. The method according to claim 1, wherein two sets of schlieren devices are used to guide parallel light rays from two directions to the same visualization area, transmit the parallel rays, and perform image processing using a schlieren image as a projected image of the density distribution. The simple reconstruction apparatus of a three-dimensional image of a three-dimensional spatial distribution of powder in a fluid and a three-dimensional moving velocity distribution of the distribution according to any one of claims 1 to 7.
る像を、一つのカメラに撮影して、同時刻の画像マトリ
ックスを1画面に捉えることを特徴とする請求項1ない
し請求項9のいずれか1項に記載の流体中の粉体の3次
元空間分布の立体像および当該分布の3次元移動速度分
布の簡易再構築装置。10. An apparatus according to claim 1, wherein a plurality of mirrors are used to capture an image of a plurality of parallel light beams by one camera, and an image matrix at the same time is captured on one screen. A simple reconstruction apparatus for a three-dimensional image of a three-dimensional spatial distribution of powder in a fluid and a three-dimensional moving velocity distribution of the distribution according to any one of the above.
生するゴースト像を判別し取り除く際に、k断面におけ
る極大値の座標として(i1,j1),(i2,j
2),(i2,j1),(i1,j2)の組に着目し、
投影方向の2等分線方向に対称な分布をしている1組を
ゴースト像と判別し取り除くことを特徴とする請求項1
ないし請求項10のいずれか1項に記載の流体中の粉体
の3次元空間分布の立体像および当該分布の3次元移動
速度分布の簡易再構築装置。11. When determining and removing a ghost image generated when a plurality of local maximums are present in the density distribution, coordinates (i1, j1), (i2, j) of local maximums in the k-th section are used.
2), focusing on a set of (i2, j1) and (i1, j2),
2. The method according to claim 1, wherein a set having a distribution symmetrical in a bisector direction of the projection direction is determined as a ghost image and removed.
A simple reconstruction apparatus for a three-dimensional image of a three-dimensional spatial distribution of powder in a fluid and a three-dimensional moving velocity distribution of the distribution according to any one of claims 10 to 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10153970A JPH11326008A (en) | 1998-05-19 | 1998-05-19 | Device for simply restructuring stereoscopic image and three-dimensional traveling speed distribution of three-dimensional space distribution of powder in fluid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10153970A JPH11326008A (en) | 1998-05-19 | 1998-05-19 | Device for simply restructuring stereoscopic image and three-dimensional traveling speed distribution of three-dimensional space distribution of powder in fluid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11326008A true JPH11326008A (en) | 1999-11-26 |
Family
ID=15574065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10153970A Withdrawn JPH11326008A (en) | 1998-05-19 | 1998-05-19 | Device for simply restructuring stereoscopic image and three-dimensional traveling speed distribution of three-dimensional space distribution of powder in fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11326008A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005515446A (en) * | 2002-01-07 | 2005-05-26 | サーントル ナスィヨナル ドゥ ラ ルシェルシュ スイヤンティフィック (セ エヌ エール エス) | Method and apparatus for local probe micronization of 3D objects |
JP2007080015A (en) * | 2005-09-15 | 2007-03-29 | Fuji Xerox Co Ltd | Information presentation device, information presentation method, and computer program |
WO2009139058A1 (en) * | 2008-05-15 | 2009-11-19 | 株式会社島津製作所 | Biological imaging device |
JP2012167945A (en) * | 2011-02-10 | 2012-09-06 | Seiko Instruments Inc | Particle counter |
JP2013504394A (en) * | 2009-09-16 | 2013-02-07 | モナシュ ユニバーシティ | Imaging method |
JP2016197130A (en) * | 2011-08-29 | 2016-11-24 | アムジェン インコーポレイテッド | Methods and apparatus for nondestructive detection of undissolved particles in fluid |
US10088660B2 (en) | 2017-02-10 | 2018-10-02 | Amgen Inc. | Imaging system for counting and sizing particles in fluid-filled vessels |
JP2019095403A (en) * | 2017-11-28 | 2019-06-20 | 株式会社デンソー | Fluid flow visualization device |
CN116027670A (en) * | 2023-02-14 | 2023-04-28 | 东北大学 | Multi-Agent cooperation powder energy material transmission control system, method and medium |
CN113848153B (en) * | 2021-09-15 | 2024-04-02 | 天津大学 | Three-dimensional reconstruction system of gas-liquid two-phase flow field based on laser scanning |
-
1998
- 1998-05-19 JP JP10153970A patent/JPH11326008A/en not_active Withdrawn
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005515446A (en) * | 2002-01-07 | 2005-05-26 | サーントル ナスィヨナル ドゥ ラ ルシェルシュ スイヤンティフィック (セ エヌ エール エス) | Method and apparatus for local probe micronization of 3D objects |
JP2007080015A (en) * | 2005-09-15 | 2007-03-29 | Fuji Xerox Co Ltd | Information presentation device, information presentation method, and computer program |
WO2009139058A1 (en) * | 2008-05-15 | 2009-11-19 | 株式会社島津製作所 | Biological imaging device |
JP4998618B2 (en) * | 2008-05-15 | 2012-08-15 | 株式会社島津製作所 | Biological imaging device |
US8345941B2 (en) | 2008-05-15 | 2013-01-01 | Shimadzu Corporation | Biological imaging device |
JP2013504394A (en) * | 2009-09-16 | 2013-02-07 | モナシュ ユニバーシティ | Imaging method |
JP2012167945A (en) * | 2011-02-10 | 2012-09-06 | Seiko Instruments Inc | Particle counter |
US9922429B2 (en) | 2011-08-29 | 2018-03-20 | Amgen Inc. | Methods and apparati for nondestructive detection of undissolved particles in a fluid |
US9842408B2 (en) | 2011-08-29 | 2017-12-12 | Amgen Inc. | Methods and apparati for nondestructive detection of undissolved particles in a fluid |
US9892523B2 (en) | 2011-08-29 | 2018-02-13 | Amgen Inc. | Methods and apparati for nondestructive detection of undissolved particles in a fluid |
JP2016197130A (en) * | 2011-08-29 | 2016-11-24 | アムジェン インコーポレイテッド | Methods and apparatus for nondestructive detection of undissolved particles in fluid |
US10832433B2 (en) | 2011-08-29 | 2020-11-10 | Amgen Inc. | Methods and apparati for nondestructive detection of undissolved particles in a fluid |
US11501458B2 (en) | 2011-08-29 | 2022-11-15 | Amgen Inc. | Methods and apparati for nondestructive detection of undissolved particles in a fluid |
US11803983B2 (en) | 2011-08-29 | 2023-10-31 | Amgen Inc. | Methods and apparati for nondestructive detection of undissolved particles in a fluid |
US10088660B2 (en) | 2017-02-10 | 2018-10-02 | Amgen Inc. | Imaging system for counting and sizing particles in fluid-filled vessels |
US10539773B2 (en) | 2017-02-10 | 2020-01-21 | Amgen Inc. | Imaging system for counting and sizing particles in fluid-filled vessels |
US10962756B2 (en) | 2017-02-10 | 2021-03-30 | Amgen Inc. | Imaging system for counting and sizing particles in fluid-filled vessels |
JP2019095403A (en) * | 2017-11-28 | 2019-06-20 | 株式会社デンソー | Fluid flow visualization device |
CN113848153B (en) * | 2021-09-15 | 2024-04-02 | 天津大学 | Three-dimensional reconstruction system of gas-liquid two-phase flow field based on laser scanning |
CN116027670A (en) * | 2023-02-14 | 2023-04-28 | 东北大学 | Multi-Agent cooperation powder energy material transmission control system, method and medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4331688B2 (en) | Method and apparatus for three-dimensional imaging in the Fourier domain | |
CA2322462C (en) | Method and system for creating three-dimensional images using tomosynthetic computed tomography | |
US5905568A (en) | Stereo imaging velocimetry | |
US8922636B1 (en) | Synthetic aperture imaging for fluid flows | |
CN107525945B (en) | 3D-3C particle image speed-measuring system and method based on integration imaging technology | |
RU2469298C2 (en) | Image reconstruction method using three-dimensional x-ray photography | |
JP4774517B2 (en) | Particle measuring apparatus and method | |
KR20210016382A (en) | How to determine the distribution of three-dimensional particles in a medium | |
JP2005140528A (en) | Fluid measurement device | |
JPH11326008A (en) | Device for simply restructuring stereoscopic image and three-dimensional traveling speed distribution of three-dimensional space distribution of powder in fluid | |
US7382900B2 (en) | Method of determining a three-dimensional velocity field in a volume | |
KR102109814B1 (en) | Apparatus and method for registering images | |
KR100855511B1 (en) | Method and device for flow analysis | |
JP2004177312A (en) | Three dimensional temperature/velocity simultaneous measuring method of fluid | |
JP2008014860A (en) | Fluid visualization measuring device and fluid visualization measurement method | |
Xing et al. | Single camera based dual-view light-field particle imaging velocimetry with isotropic resolution | |
JPH08305852A (en) | Three-dimensional measuring method for air bubble by image processing | |
JPH09500206A (en) | Method and apparatus for generating schematic real-time-direction information for a trajectory of a detected object | |
CN211148477U (en) | X-ray high resolution imaging detector | |
Economikos et al. | Toward full-field measurements of instantaneous visualizations of coherent structures in turbulent shear flows | |
JPWO2020209313A1 (en) | Image processing device and image processing method | |
JPWO2020209312A1 (en) | Inspection equipment and inspection method | |
Lourenco | Some comments on particle image displacement velocimetry | |
JPS5896238A (en) | Measuring, analysis and indication of particles | |
JP2001356130A (en) | Liquid flow or jet flow visualizing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050802 |