JP2001116763A - Flow velocity-measuring device - Google Patents

Flow velocity-measuring device

Info

Publication number
JP2001116763A
JP2001116763A JP29918299A JP29918299A JP2001116763A JP 2001116763 A JP2001116763 A JP 2001116763A JP 29918299 A JP29918299 A JP 29918299A JP 29918299 A JP29918299 A JP 29918299A JP 2001116763 A JP2001116763 A JP 2001116763A
Authority
JP
Japan
Prior art keywords
flow velocity
dimensional
measuring
velocity
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29918299A
Other languages
Japanese (ja)
Inventor
Hiroshi Mukai
寛 向井
Seiji Sakagami
誠二 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29918299A priority Critical patent/JP2001116763A/en
Publication of JP2001116763A publication Critical patent/JP2001116763A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve a problem where it is necessary to secure a measurement window in a different direction for measuring three-dimensional internal flow and further a complex processing for compositing three-dimensionally is required. SOLUTION: The measuring device is provided with a first operation- processing means for calculating a spatial speed gradient according to speed information obtained at a plurality of measurement positions and a second operation-processing means for calculating a three-dimensional speed component according to the speed gradient and continuous conditions as compared with a conventional two-dimensional flow velocity measurement means, thus obtaining the three-dimensional components (ui, vi, wi) of flow velocity by relatively simple processing while a measurement window is in one direction only.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は被測定流体の流速と
流れの方向を計測する流速測定装置にかかり、さらに詳
しくは、流速測定手段より直接得られる1次元もしくは
2次元の流速情報より3次元の流速を得るように工夫さ
れた流速測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow velocity measuring device for measuring a flow velocity and a direction of a flow of a fluid to be measured. The present invention relates to a flow velocity measuring device devised so as to obtain a flow velocity.

【0002】[0002]

【従来の技術】現在用いられている流速の測定手段は、
熱線やピトー管の様に計測手段を流体中に直接挿入し流
速を得るものと、流体中に混在する粒子の移動速度を画
像処理等の光学的手法により求め、流速を推定するもの
とに分類される。特に後者は流れ場を乱すことなく流体
の挙動を計測できる利点から画像等のデータ処理技術の
進歩に伴い近年急激に実用化が進んできたものである。
LDV(Laser DopplerVelocimetry),PIV(Partic
le Image Velocimetry )は代表的な光学的手法であ
る。
2. Description of the Related Art Currently used flow rate measuring means is:
It is classified into two types: a method that directly inserts measuring means into the fluid, such as a hot wire or a pitot tube, to obtain the flow velocity, and a method that estimates the flow velocity by calculating the moving velocity of particles mixed in the fluid by image processing or other methods. Is done. In particular, the latter has been rapidly commercialized in recent years with the advance of data processing technology such as images because of the advantage that the behavior of the fluid can be measured without disturbing the flow field.
LDV (Laser Doppler Velocimetry), PIV (Partic
le Image Velocimetry) is a typical optical method.

【0003】LDVの原理は2本のレーザ光を測定位置
で交わる様に流体中に照射して干渉縞を形成し、流体中
の粒子が干渉縞を横切る時に、発する散乱光の周波数を
計測する事で干渉縞に垂直な成分の流速を得る。また、
PIVの原理は流体中の粒子の挙動を1ないし複数台の
撮影装置により撮影し、軌跡等の画像情報より流速を求
めるものである。両者とも測定用の透明な窓を設けれ
ば、密閉された管路内の流れなど内部流れの計測も可能
である。
The principle of LDV is to irradiate two laser beams into a fluid so that they intersect at a measurement position to form interference fringes, and measure the frequency of scattered light emitted when particles in the fluid cross the interference fringes. In this way, the flow velocity of the component perpendicular to the interference fringes is obtained. Also,
The principle of PIV is to photograph the behavior of particles in a fluid by one or a plurality of photographing devices, and to calculate the flow velocity from image information such as a trajectory. In both cases, if a transparent window for measurement is provided, it is possible to measure the internal flow such as the flow in a closed pipeline.

【0004】なお、LDVに関する特許として「特開平
8−54408号公報」、PIVに関する特許として「特開平
8−201413 号公報」などが挙げられる。
A patent relating to LDV is disclosed in Japanese Unexamined Patent Publication No.
No. 8-54408 "and a patent on PIV as disclosed in
No. 8-201413 ".

【0005】[0005]

【発明が解決しようとする課題】上記LDV,PIVは
3次元の流れ、特に3次元の内部流れを測定する場合以
下の問題が生ずる。LDVを例に挙げると、LDVで用
いる干渉縞は、2本のレーザ光の交差面に平行に生ず
る。通常、レーザ光は「特開平8−54408号公報」に示さ
れているように2本一組で扱い、測定用窓から流体中に
照射する。上記のように、一組で干渉縞に垂直な速度成
分が得られるため、x,y,zの3次元成分の流速を求
めるためには、3組(6本)のレーザ光を用いる必要が
ある。
The above-described LDV and PIV have the following problems when measuring a three-dimensional flow, particularly a three-dimensional internal flow. Taking an LDV as an example, the interference fringes used in the LDV are generated in parallel to the intersection plane of the two laser beams. Normally, laser light is handled as a pair as shown in Japanese Patent Application Laid-Open No. 8-54408, and is irradiated into the fluid from a measurement window. As described above, since a set of velocity components perpendicular to the interference fringes can be obtained, it is necessary to use three sets (six) of laser beams in order to obtain the flow rates of the three-dimensional components x, y, and z. is there.

【0006】また、上記内部流れの計測の場合、例えば
x方向、y方向の2成分の速度については1個の窓で計
測できるが、z方向成分を計測するためには更に異なる
方向に窓を追加する必要が有る。この問題は、PIVに
より流れを測定する場合も同様に現れる。1台のカメラ
により撮影された2次元画像からは速度の2次元成分の
み得られるため、3次元計測を行うためには最低でも2
方向からの撮影が必要になる。
In the measurement of the internal flow, for example, the velocity of two components in the x direction and the y direction can be measured with one window, but in order to measure the component in the z direction, the windows must be opened in different directions. It needs to be added. This problem also appears when measuring the flow by PIV. Since only a two-dimensional component of speed can be obtained from a two-dimensional image taken by one camera, at least two components are required to perform three-dimensional measurement.
Shooting from a direction is required.

【0007】以上のように、3次元の内部流れを計測す
るためには、計測用窓を異なる方向に確保する必要が有
り、更に3次元に合成するために複雑な処理を必要とし
た。
As described above, in order to measure a three-dimensional internal flow, it is necessary to secure measurement windows in different directions, and to perform three-dimensional synthesis, complicated processing is required.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の3次元流速測定装置は、測定対象空間内の
1ないし複数の測定位置において1次元ないし2次元の
流速を測定する流速計測手段と、前記測定位置を変更す
るための測定位置変更手段と、前記流速計測手段により
得られた計測結果を記憶する記憶手段と、前記流速計測
手段、測定位置変更手段、記憶手段を制御する演算処理
手段とを備えた流速測定装置において、前記演算処理手
段は、複数個所の測定位置で得られた速度情報より空間
的な速度勾配を算出する第1の演算処理手段と、前記速
度勾配と連続の条件とから3次元の速度成分を算出する
第2の演算処理手段を備えた事を特徴とするものであ
る。
In order to solve the above-mentioned problems, a three-dimensional flow velocity measuring apparatus according to the present invention measures a flow velocity for measuring a one-dimensional or two-dimensional flow velocity at one or a plurality of measurement positions in a measurement target space. A measuring unit, a measuring position changing unit for changing the measuring position, a storing unit for storing a measurement result obtained by the flow measuring unit, and controlling the flow measuring unit, the measuring position changing unit, and the storing unit. In a flow velocity measuring device provided with arithmetic processing means, the arithmetic processing means calculates a spatial velocity gradient from velocity information obtained at a plurality of measurement positions; A second arithmetic processing means for calculating a three-dimensional velocity component from continuous conditions is provided.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施例を図面に
基づいて説明する。図1は本発明にかかる流速測定装置
(LDV)の概略図である。図1において、1は被測定
配管である。被測定配管1の内部は測定対象の流体が流
れており本実施例ではこの流体の3次元速度分布を計測
するものである。2は測定窓であり、被測定配管1の壁
面に取り付けられた例えばガラス製の透明な窓である。
3はレーザプローブである。1組(2本)のレーザ光の
干渉縞を用いて1方向成分が計測可能であり、本実施例
では2組(4本)のレーザ光を測定窓2を通して流体中
に照射し、流速のX方向成分uと、流速のY方向成分v
を同時に計測するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a flow velocity measuring device (LDV) according to the present invention. In FIG. 1, reference numeral 1 denotes a pipe to be measured. A fluid to be measured flows inside the pipe 1 to be measured, and in this embodiment, a three-dimensional velocity distribution of the fluid is measured. Reference numeral 2 denotes a measurement window, which is a transparent window made of, for example, glass attached to the wall surface of the pipe 1 to be measured.
3 is a laser probe. One direction component can be measured using the interference fringes of one set (two) of laser beams. In this embodiment, two sets (four) of laser beams are irradiated into the fluid through the measurement window 2 to determine the flow velocity. X-direction component u and Y-direction component v of flow velocity
Are measured simultaneously.

【0010】4は駆動装置であり、レーザプローブ3を
空間内(x,y,z)任意の位置に移動、固定するもの
である。5は信号処理装置であり、例えば光学的なフィ
ルタと周波数分析装置で構成され、干渉縞を横切る粒子
が発する散乱光の周波数を求め、移動速度を算出するも
のである。6は演算処理装置であり、前記駆動装置4の
制御、演算処理装置6の処理結果より速度の3次元成分
を算出するものである。7は記憶装置であり、前記演算
処理装置6のプログラム及び測定結果を記録する。
Reference numeral 4 denotes a drive unit for moving and fixing the laser probe 3 to an arbitrary position (x, y, z) in the space. Reference numeral 5 denotes a signal processing device, which is composed of, for example, an optical filter and a frequency analysis device, and obtains a frequency of scattered light emitted by particles crossing the interference fringes, and calculates a moving speed. Numeral 6 denotes an arithmetic processing unit, which calculates the three-dimensional component of the speed based on the control of the drive unit 4 and the processing results of the arithmetic processing unit 6. Reference numeral 7 denotes a storage device that records the program of the arithmetic processing device 6 and measurement results.

【0011】図2は前記演算処理装置6の処理手順を示
した流れ図である。本発明の流速測定装置は、LDVに
より得られるx方向、y方向の速度勾配
FIG. 2 is a flowchart showing the processing procedure of the arithmetic processing unit 6. The flow velocity measuring device of the present invention uses the velocity gradient in the x direction and the y direction obtained by the LDV.

【0012】[0012]

【数1】∂u/∂x,∂v/∂y 連続の条件1u / ∂x, ∂v / ∂y Continuous condition

【0013】[0013]

【数2】∂u/∂x+∂v/∂y+∂w/∂z=0 壁面境界条件w=0より流速の3次元成分を求めるもの
である。以下図2に従い処理手順を示す。
2u / ∂x + ∂v / ∂y + ∂w / ∂z = 0 A three-dimensional component of the flow velocity is obtained from the wall boundary condition w = 0. The processing procedure will be described below with reference to FIG.

【0014】手順8はカウンタ変数iの初期化である。
手順9は0番目のz方向速度w0 の初期化であり、壁面
境界条件としてw0 =0とする。手順10はX方向速度
勾配∂u/∂xの計測手順を示したものであり、レーザ
プローブ3を操作し、測定位置をZ=Z(i),Y=Y
(i)に移動する。更にこの位置で測定位置をX(i)+δ
x,X(i)−δxの2個所に移動しそれぞれのx方向の
速度ui+,ui-の計測を実施する。計測されたx方向速
度よりui+,ui- x方向速度勾配
Step 8 is initialization of a counter variable i.
Step 9 is the initialization of the 0th z-direction velocity w 0 , where w 0 = 0 is set as the wall surface boundary condition. Procedure 10 shows a procedure for measuring the velocity gradient in the X direction ∂u / ∂x. The laser probe 3 is operated to set the measurement position to Z = Z (i) and Y = Y.
Go to (i). Further, at this position, the measurement position is defined as X (i) + δ
It moves to two places of x, X (i) -δx, and measures the respective speeds u i +, u i-in the x direction. U i +, u i -velocity gradient in x direction from measured velocity in x direction

【0015】[0015]

【数3】∂ui/∂x=(ui+−ui-)/2δx x方向流速Equation 3] ∂u i / ∂x = (u i + -u i -) / 2δx x -direction flow velocity

【0016】[0016]

【数4】ui=(ui++ui-)/2 が得られる。同様に手順11により y方向速度勾配## EQU4 ## u i = (u i + u i- ) / 2 is obtained. Similarly, in step 11, the velocity gradient in the y direction

【0017】[0017]

【数5】∂vi/∂y=(vi+−vi-)/2δy y方向流速Equation 5] ∂v i / ∂y = (v i + -v i -) / 2δy y -direction velocity

【0018】[0018]

【数6】vi=(vi++vi-)/2 手順12により、連続の条件からz方向速度勾配を求
め、z方向流速を算出する。即ち z方向速度勾配
[6] v i = (v i ++ v i -) / by 2 steps 12 determines the z-direction velocity gradient from a continuous condition, calculates the z-direction flow velocity. That is, the velocity gradient in the z direction

【0019】[0019]

【数7】∂wi/∂z=−∂ui/∂x−∂vi/∂y z方向速度[Equation 7] ∂w i / ∂z = -∂u i / ∂x-∂v i / ∂y z direction speed

【0020】[0020]

【数8】 wi=wi-1+(Z(i)−Z(i-1))*∂wi/∂z であり、以上の手順10〜12により、i番目の流速u
i,vi,wi が得られる。
[Equation 8] w i = w i-1 + (Z (i) -Z (i-1)) is a * ∂w i / ∂z, by the procedure 10 to 12 of more, i-th of the flow velocity u
i, v i, w i can be obtained.

【0021】手順13によりカウンタ変数iを1増加さ
せ、手順14にてn回反復したかを判定し、i≦nの間
は手順10〜13を繰り返す。
In step 13, the counter variable i is incremented by 1, and it is determined in step 14 whether or not it has been repeated n times. Steps 10 to 13 are repeated while i ≦ n.

【0022】図3は上記処理手順を図示したものであ
り、被測定配管1の内部より測定個所を観察した図であ
る。Z=Z(0)の位置は測定窓の壁面(配管内部側)で
あり、u0 =0,v0 =0,w0 =0である。図2の手
順10,11において、Z=Z(1)における流速u
1+,u1-,v1+,v1-、からx方向、y方向の速度勾配
を求め、前記の数式によりZ=Z(1)における流速u
1 ,v1 ,w1 を求める。図中○で示した点で流速を測
定し、その結果から黒丸で示した点での流速を測定す
る。以上の処理動作を壁面から順に逐次実施することに
より、Z=Z(0)、Z(1),Z(2)…Z(n)における流
速ui,vi,wi(i=1〜n)を得る事ができる。
FIG. 3 illustrates the above procedure, and is a view in which a measurement location is observed from inside the pipe 1 to be measured. The position of Z = Z (0) is the wall surface of the measurement window (the inside of the pipe), and u 0 = 0, v 0 = 0, w 0 = 0. In steps 10 and 11 of FIG. 2, the flow velocity u at Z = Z (1)
From 1 +, u 1- , v 1 +, v 1- , the velocity gradient in the x direction and the y direction is obtained, and the flow velocity u at Z = Z (1) is obtained from the above equation.
1 , v 1 and w 1 are obtained. In the figure, the flow velocity is measured at a point indicated by a circle, and the flow velocity is measured at the point indicated by a black circle from the result. By sequentially performed in this order from the wall surface of the above processing operations, Z = Z (0), Z (1), Z (2) ... Z velocity u i in (n), v i, w i (i = 1~ n) can be obtained.

【0023】図4は本発明にかかる流速測定装置(LD
V)の概略図である。15は被測定空間である。16は
撮影装置であり、例えばビデオカメラである。17は画
像処理装置であり撮影装置16により撮影された流体中
の粒子の軌跡画像よりx,y方向の2次元流速の分布を
求めるものである。18は光源であり例えば画像処理に
適したレーザ光源である。19はシート光を作成するた
めのプローブであり、例えばシリンドリカルレンズによ
りレーザ光をx方向に広げるものである。20はトラバ
ース装置であり、プローブ19をz方向にトラバースす
るものである。21はプローブ19より非測定空間内に
照射されるシート光である。
FIG. 4 shows a flow velocity measuring device (LD) according to the present invention.
It is a schematic diagram of V). Reference numeral 15 denotes a measured space. Reference numeral 16 denotes a photographing device, for example, a video camera. Reference numeral 17 denotes an image processing device for obtaining a two-dimensional flow velocity distribution in the x and y directions from a trajectory image of particles in a fluid captured by the imaging device 16. Reference numeral 18 denotes a light source, for example, a laser light source suitable for image processing. Reference numeral 19 denotes a probe for creating a sheet light, which expands the laser light in the x direction by, for example, a cylindrical lens. A traverse device 20 traverses the probe 19 in the z direction. Reference numeral 21 denotes a sheet light emitted from the probe 19 into the non-measurement space.

【0024】図4に示すようにPIVを使用した場合、
1枚の画像からx,y方向の流速ui ,vi と流速分布
∂ui/∂x,∂vi/∂yが同時に得られ、図2の処理
手順により第1の実施例同様に流速ui,vi,wi(i=
1〜n)を得る事ができる。
When the PIV is used as shown in FIG.
X from a single image, y direction of velocity u i, v i and the flow velocity distribution ∂u i / ∂x, ∂v i / ∂y are obtained simultaneously, the first embodiment similarly by the procedure of FIG. 2 The flow speeds u i , v i , w i (i =
1 to n) can be obtained.

【0025】[0025]

【発明の効果】本発明によれば、従来の3次元計測で不
可欠な複数個所からのレーザ光の照射や、複数個所から
の流れ場の撮影を行う事無く、流れの3次元計測が実施
できる。また、従来の2次元LDV,PIVと殆ど同一
のハードウェア構成で3次元計測が行える利点も有る。
According to the present invention, three-dimensional flow measurement can be performed without irradiating a laser beam from a plurality of places and photographing a flow field from a plurality of places, which are indispensable in conventional three-dimensional measurement. . There is also an advantage that three-dimensional measurement can be performed with almost the same hardware configuration as the conventional two-dimensional LDV and PIV.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる流速測定装置(LDV)の概略
図。
FIG. 1 is a schematic diagram of a flow velocity measuring device (LDV) according to the present invention.

【図2】演算処理装置6の処理手順を示した流れフロー
図。
FIG. 2 is a flowchart showing a processing procedure of a processing unit 6;

【図3】演算処理装置6の処理手順を示した図。FIG. 3 is a diagram showing a processing procedure of an arithmetic processing unit 6.

【図4】本発明にかかる流速測定装置(PIV)の概略
図。
FIG. 4 is a schematic diagram of a flow velocity measuring device (PIV) according to the present invention.

【符号の説明】[Explanation of symbols]

1…被測定配管、2…測定窓、3…レーザプローブ、4
…駆動装置、5…信号処理装置、6…演算処理装置、7
…記憶装置、15…被測定空間、16…撮影装置、17
…画像処理装置、18…光源、19…プローブ、20…
トラバース装置、21…シート光。
DESCRIPTION OF SYMBOLS 1 ... Pipe to be measured, 2 ... Measurement window, 3 ... Laser probe, 4
... Drive device, 5 ... Signal processing device, 6 ... Calculation processing device, 7
... Storage device, 15 ... Measured space, 16 ... Imaging device, 17
... image processing device, 18 ... light source, 19 ... probe, 20 ...
Traverse device, 21 ... sheet light.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定対象空間内の1ないし複数の測定位置
において、1次元ないし2次元の流速を測定する流速計
測手段と、前記測定位置を変更するための測定位置変更
手段と、前記流速計測手段により得られた計測結果を記
憶する記憶手段と、前記流速計測手段、測定位置変更手
段、記憶手段を制御する演算処理手段とを備えた流速測
定装置において、前記演算処理手段は、複数個所の測定
位置で得られた速度情報より空間的な速度勾配を算出す
る第1の演算処理手段と、前記速度勾配と連続の条件と
から3次元の速度成分を算出する第2の演算処理手段を
備えた事を特徴とする流速測定装置。
1. A flow velocity measuring means for measuring a one-dimensional or two-dimensional flow velocity at one or a plurality of measuring positions in a measurement target space; a measuring position changing means for changing the measuring position; Storage means for storing the measurement result obtained by the means, and the flow velocity measuring means, the measurement position changing means, a flow processing device comprising an arithmetic processing means for controlling the storage means, the arithmetic processing means, a plurality of locations A first arithmetic processing unit for calculating a spatial velocity gradient from the velocity information obtained at the measurement position; and a second arithmetic processing unit for calculating a three-dimensional velocity component from the velocity gradient and a continuous condition. A flow velocity measuring device characterized by the following.
JP29918299A 1999-10-21 1999-10-21 Flow velocity-measuring device Pending JP2001116763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29918299A JP2001116763A (en) 1999-10-21 1999-10-21 Flow velocity-measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29918299A JP2001116763A (en) 1999-10-21 1999-10-21 Flow velocity-measuring device

Publications (1)

Publication Number Publication Date
JP2001116763A true JP2001116763A (en) 2001-04-27

Family

ID=17869214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29918299A Pending JP2001116763A (en) 1999-10-21 1999-10-21 Flow velocity-measuring device

Country Status (1)

Country Link
JP (1) JP2001116763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059856A (en) * 2013-09-19 2015-03-30 独立行政法人国立高等専門学校機構 Laser doppler flow rate measuring method and apparatus
KR20150139552A (en) * 2013-03-28 2015-12-11 인스틸로 게엠베하 Apparatus and method for producing dispersions and solids
CN111693729A (en) * 2020-06-28 2020-09-22 中国科学院力学研究所 Particle image velocity measurement method and device based on global optimization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150139552A (en) * 2013-03-28 2015-12-11 인스틸로 게엠베하 Apparatus and method for producing dispersions and solids
KR102169429B1 (en) 2013-03-28 2020-10-23 인스틸로 게엠베하 Apparatus and method for producing dispersions and solids
JP2015059856A (en) * 2013-09-19 2015-03-30 独立行政法人国立高等専門学校機構 Laser doppler flow rate measuring method and apparatus
CN111693729A (en) * 2020-06-28 2020-09-22 中国科学院力学研究所 Particle image velocity measurement method and device based on global optimization

Similar Documents

Publication Publication Date Title
Forliti et al. Bias and precision errors of digital particle image velocimetry
JP2004020385A (en) System for measuring time-serial fluid velocity in plane and space
Lourenco et al. Particle image velocimetry
Oakley et al. A two-phase cinematic PIV method for bubbly flows
Barros et al. Measurement of the translation and rotation of a sphere in fluid flow
Sheu et al. A three-dimensional measurement technique for turbulent flows
JP2001116763A (en) Flow velocity-measuring device
Doh et al. Single-frame (two-field image) 3-D PTV for high speed flows
Bian et al. A dual-camera cinematographic PIV measurement system at kilohertz frame rate for high-speed, unsteady flows
CN110261642B (en) Three-dimensional particle image velocity measurement method suitable for gas-liquid interface
WO2011058899A1 (en) Device for measuring sound source distribution in three-dimensional space
Stolz et al. In-plane determination of 3D-velocity vectors using particle tracking anemometry (PTA)
Post et al. Two-color particle-imaging velocimetry using a single argon-ion laser
Skyner et al. A comparison of time-stepping numerical predictions with whole-field flow measurement in breaking waves
CN213336712U (en) Airflow visualization system based on bicolor pulse laser scanning
Merzkirch Particle image velocimetry
KR100866393B1 (en) In-plane scanning PIV method
KR19990068430A (en) 3-dimensional particle imaging velocimeter; 3D-PIV, so-called Thinker's EYE
Lourenco Some comments on particle image displacement velocimetry
JP2962119B2 (en) Liquid field visualization method for gas-liquid multiphase flow field
JPH0425772A (en) Method and device for measuring electrostatic charge amount of charged powder particle
Kim Three-dimensional particle tracking velocimetry for turbulence applications
RU2777451C1 (en) Method for determining the flow rate of a liquid or gas
Buchlin et al. Digital image processing in fluid dynamics
JPS63222238A (en) Apparatus for measuring one or more of measuring speed, size and density of several objects moving in space