JPH11325911A - Angular speed sensor - Google Patents

Angular speed sensor

Info

Publication number
JPH11325911A
JPH11325911A JP10135020A JP13502098A JPH11325911A JP H11325911 A JPH11325911 A JP H11325911A JP 10135020 A JP10135020 A JP 10135020A JP 13502098 A JP13502098 A JP 13502098A JP H11325911 A JPH11325911 A JP H11325911A
Authority
JP
Japan
Prior art keywords
branch
axis direction
parallel
plane
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10135020A
Other languages
Japanese (ja)
Other versions
JP3734955B2 (en
Inventor
Motoyasu Hanji
元康 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP13502098A priority Critical patent/JP3734955B2/en
Publication of JPH11325911A publication Critical patent/JPH11325911A/en
Application granted granted Critical
Publication of JP3734955B2 publication Critical patent/JP3734955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a short angular speed sensor for detecting rotational angle speed with high precision by reducing leakage of vibration and zero-point drift due to temperature fluctuation. SOLUTION: An excitation electrode is formed on a branch surface of a branch part A2. A detection electrode is formed on branch surface of branch parts A3 and A4. The formation position of the branch parts A3 and A4 is the antinode position of the branch part A1 at bending vibration in a tertiary mode. The excitation electrode is applied with AC voltage E for stretching vibration of the branch part A2 with amplitude in Y-axis direction. With the stretching vibration, the branch part A1 is brought to bending vibration, with amplitude in Y-axis direction, parallel to X-Y plane and the branch parts A3 and A4 is forced reciprocating movement in Y-axis direction parallel to the X-Y plane. When a vibrator element A rotates around a Z-axis, Coriolis force makes the branch parts A3 and A4 bending-vibrate with X-axis direction component, with a voltage signal es corresponding to the Coriolis force obtained from the detection electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、所定方向に沿っ
て振動している振動子、例えば直交座標のX−Y平面に
おいてY軸に平行に振動している振動子素子の伸縮振動
を屈曲振動に変換して回転角速度を検出する角速度セン
サに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to flexural vibration of a vibrator vibrating along a predetermined direction, for example, a vibrator element vibrating parallel to the Y-axis on an XY plane of orthogonal coordinates. The present invention relates to an angular velocity sensor that detects a rotational angular velocity by converting the angular velocity into a rotational angular velocity.

【0002】[0002]

【従来の技術】所定方向に沿って振動している振動子、
例えば直交座標軸平面(X−Y平面)におけるX軸に沿
って振動している振動子がY軸の回りに回転すると、振
動子の(X−Y平面と直交する)Z軸方向にコリオリの
力が生じる。このコリオリの力は角速度の大きさに比例
して定まることから、コリオリの力を振動子の撓み変位
量として間接的に、圧電素子の圧電効果、容量変化など
で直接的に測定すれば、振動子のY軸の回りに作用した
回転角速度の大きさを求めることができる。このため、
振動する振動子を角速度検出素子として車両や航空機等
に搭載し、その走行或いは飛行軌跡を記録したり旋回時
に発生するヨーレイトを検出することが行われている。
また、この角速度検出素子をロボットに搭載して、その
姿勢制御等にも応用されている。
2. Description of the Related Art A vibrator vibrating along a predetermined direction,
For example, when the vibrator vibrating along the X axis in the orthogonal coordinate axis plane (XY plane) rotates around the Y axis, the Coriolis force of the vibrator in the Z axis direction (perpendicular to the XY plane) Occurs. Since this Coriolis force is determined in proportion to the magnitude of the angular velocity, if the Coriolis force is directly measured as the amount of deflection displacement of the vibrator, directly by the piezoelectric effect of the piezoelectric element, capacitance change, etc. The magnitude of the rotational angular velocity acting around the Y axis of the child can be obtained. For this reason,
2. Description of the Related Art A vibrating vibrator is mounted on a vehicle, an aircraft, or the like as an angular velocity detecting element, and its running or flight trajectory is recorded, and yaw rate generated at the time of turning is detected.
Further, the angular velocity detecting element is mounted on a robot, and is applied to attitude control and the like.

【0003】図9は水晶を用いた従来の角速度センサの
要部を示す図である。図9において、(a)は平面図、
(b)は図9(a)をE方向から見た図である。同図に
おいて、1は音叉型の振動子素子(水晶板)、2−1〜
2−4は励振用の電極板、3−1〜3−4は角速度検出
用の電極板であり、励振用の電極板2−1〜2−4を励
振電極2の構成要素とし、角速度検出用の電極板3−1
〜3−4を検出電極3の構成要素としている。励振用の
電極板2−1〜2−4は振動子素子1の一方の脚部1−
1の表裏および左右の面に、検出用の電極板3−1〜3
−4は振動子素子1の他方の脚部1−2の左右の面に形
成されている。脚部1−1および1−2は、この脚部1
−1および1−2に対して平行な軸線Lを有する主軸1
−3から分岐されており、脚部1−1,1−2と主軸1
−3とは共通の平面に位置している。
FIG. 9 is a diagram showing a main part of a conventional angular velocity sensor using quartz. 9A is a plan view, FIG.
FIG. 9B is a diagram of FIG. 9A viewed from the E direction. In the figure, reference numeral 1 denotes a tuning-fork type vibrator element (quartz plate);
2-4 is an electrode plate for excitation, 3-1 to 3-4 are electrode plates for detecting angular velocity, and the electrode plates 2-1 to 2-4 for excitation are used as components of the excitation electrode 2 to detect angular velocity. Electrode plate 3-1
3−3-4 are constituent elements of the detection electrode 3. The excitation electrode plates 2-1 to 2-4 are connected to one leg 1-
1, electrode plates 3-1 to 3-3 for detection
-4 are formed on the left and right surfaces of the other leg portion 1-2 of the vibrator element 1. The legs 1-1 and 1-2 are connected to the legs 1
Spindle 1 having axis L parallel to -1 and 1-2
-3, the legs 1-1 and 1-2 and the main shaft 1
-3 is located on a common plane.

【0004】この角速度センサにおいては、図9(b)
に示されるように、励振用の電極板2−1と2−3とが
端子P1に共通に接続され、励振用の電極板2−2と2
−4とが端子P2に共通に接続され、この端子P1とP
2との間に交流電圧(励振振動信号)eが印加される。
このため、ある時は図9(b)中脚部1−1に矢印で示
す如く電界が発生し、次には逆方向の電界が発生するこ
とにより、逆圧電効果により振動子素子1の一方の脚部
1−1が、更に他方の脚部1−2も連動して、左右に振
動(屈曲振動)する。
[0004] In this angular velocity sensor, FIG.
As shown in FIG. 2, the excitation electrode plates 2-1 and 2-3 are commonly connected to the terminal P1, and the excitation electrode plates 2-2 and 2 are connected.
-4 are commonly connected to a terminal P2.
2, an AC voltage (excitation vibration signal) e is applied.
For this reason, at one time, an electric field is generated in the middle leg 1-1 as shown by an arrow in FIG. 9B, and then an electric field in the opposite direction is generated. The leg 1-1 vibrates left and right (flexural vibration) in conjunction with the other leg 1-2.

【0005】ここで、脚部1−1,1−2の振動方向を
X軸方向、このX軸方向と直交する紙面内の方向、すな
わち主軸1−3の軸線Lの方向をY軸方向、このX−Y
平面と直交する方向(振動子素子1の板面に垂直な方
向)をZ軸方向とした場合、Y軸の回りに回転角速度が
作用すると、すなわち振動子素子1がY軸の回りに回転
すると、コリオリの力によりZ軸方向の振動成分が生
じ、振動子素子1がZ軸方向成分をもって紙面に対し斜
めに振動(屈曲振動)する。このZ軸方向の振動成分の
大きさはコリオリの力に比例しているので、振動子素子
1の他方の脚部1−2には圧電効果により、角速度に比
例した大きさで振動の方向に応じた極の電荷が発生す
る。
Here, the vibration direction of the legs 1-1 and 1-2 is the X-axis direction, and the direction in the plane of the drawing perpendicular to the X-axis direction, that is, the direction of the axis L of the main shaft 1-3 is the Y-axis direction. This XY
When the direction orthogonal to the plane (the direction perpendicular to the plate surface of the transducer element 1) is the Z-axis direction, when the rotational angular velocity acts around the Y axis, that is, when the transducer element 1 rotates about the Y axis, Then, a vibration component in the Z-axis direction is generated by the Coriolis force, and the vibrator element 1 vibrates obliquely (bending vibration) with respect to the paper surface with the Z-axis direction component. Since the magnitude of the vibration component in the Z-axis direction is proportional to the Coriolis force, the other leg 1-2 of the vibrator element 1 has a magnitude proportional to the angular velocity in the direction of vibration due to the piezoelectric effect. The corresponding pole charge is generated.

【0006】これにより、検出用の電極板3−1と3−
4とを共通に接続した端子P3と、検出用の電極板3−
2と3−3とを共通に接続した端子P4との間に電荷が
発生し、コリオリの力に応じた電圧信号esが得られ
る。この電圧信号esの大きさによって、Y軸の回りに
作用する回転角速度の大きさを知ることができる。ま
た、この電圧信号esは基本的にサインカーブとして得
られ、この電圧信号esの波形は回転の方向に応じて位
相が変化するので、電圧信号esの波形と励振振動信号
eの波形(励振波形)とを位相比較することにより、そ
の位相の進み遅れで回転角速度の方向を知ることができ
る。
As a result, the detection electrode plates 3-1 and 3-
4 is connected to a terminal P3 which is connected in common with an electrode plate 3 for detection.
An electric charge is generated between the terminal P4 connecting the terminals 2 and 3-3 in common, and a voltage signal es corresponding to the Coriolis force is obtained. From the magnitude of the voltage signal es, the magnitude of the rotational angular velocity acting around the Y axis can be known. The voltage signal es is basically obtained as a sine curve, and since the phase of the waveform of the voltage signal es changes according to the direction of rotation, the waveform of the voltage signal es and the waveform of the excitation vibration signal e (excitation waveform ), The direction of the rotational angular velocity can be known based on the lead and lag of the phase.

【0007】なお、端子P1とP2との間に印加される
励振振動信号eの振幅は、図示せぬ温度補償回路によっ
て、温度変化により素子の諸定数、振動姿態が変化して
も、一定の振幅に保たれる。また、端子P1とP2との
間に印加される励振振動信号eに対して、端子P3とP
4との間に得られる電圧信号esは桁違いに小さい。
The amplitude of the excitation vibration signal e applied between the terminals P1 and P2 is kept constant by a temperature compensating circuit (not shown) even if the various constants and the vibration mode of the element change due to a temperature change. The amplitude is kept. Further, in response to the excitation vibration signal e applied between the terminals P1 and P2, the terminals P3 and P
4 is extremely small.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、X−Y
平面に平行かつX軸方向に励振振動が発生するのが望ま
しいが、このような従来の角速度センサでは、製造技術
上、素子構造が非対称になったり、励振用の電極板2−
1〜2−4の配置が振動面に対して非対称とならざるを
得ず、その結果、励振電極2,検出電極3を含む振動子
素子1(以下、総称して振動子と言う)がX軸方向に対
し、傾いて振動する現象が発生する。
However, X-Y
It is desirable that an excitation vibration is generated in a direction parallel to the plane and in the X-axis direction. However, in such a conventional angular velocity sensor, the element structure becomes asymmetric or the excitation electrode plate 2-
The arrangement of the elements 1 to 2-4 must be asymmetrical with respect to the vibration plane. As a result, the vibrator element 1 including the excitation electrode 2 and the detection electrode 3 (hereinafter, collectively referred to as a vibrator) is A phenomenon of tilting and vibrating with respect to the axial direction occurs.

【0009】すなわち、素子構造がバランスがよく励振
用電極板2−1〜2−4が図9のように対称に配置され
ていれば問題はないが、実際には配線引き回しの関係で
相互に直交する面を通過せざるを得ず、そのため電界が
非対称となり、振動子の振動方向は図10に示すように
X軸方向に対してθ゜ずれることになる。また、この振
動方向のずれ(励振位相の回転)は、検出電極3のある
脚部1−2にも伝達され、また温度変化によっても変動
することが知られている。この現象により、静止状態で
あってもZ軸方向成分の電荷が検出側電極に発生するこ
とを「振動のもれ」と呼ぶ。この「振動のもれ」により
発生する電荷は温度変化など外部要因で変動するため、
振動子のZ軸方向に生じる電荷量がコリオリの力と無関
係に変化し、検出される回転角速度に誤差が生じる。
That is, there is no problem as long as the element structures are well-balanced and the excitation electrode plates 2-1 to 2-4 are symmetrically arranged as shown in FIG. As a result, the electric field becomes asymmetric, and the vibrating direction of the vibrator is shifted by θ ° with respect to the X-axis direction as shown in FIG. Also, it is known that this deviation in the vibration direction (rotation of the excitation phase) is transmitted to the leg 1-2 where the detection electrode 3 is located, and also fluctuates due to a temperature change. The occurrence of a charge in the Z-axis direction component on the detection side electrode due to this phenomenon even in the stationary state is called “vibration leakage”. The charge generated by this "leak of vibration" fluctuates due to external factors such as temperature changes.
The amount of charge generated in the Z-axis direction of the vibrator changes regardless of the Coriolis force, and an error occurs in the detected rotational angular velocity.

【0010】この回転角速度に誤差が生じる状況を図1
1を用いて説明する。今、理想的な状態として、振動子
がX軸方向へ振動しているものとする(図11(a)参
照)。この場合、振動子は、その振幅をW1として、X
軸方向(θ=0゜)へ振動している。この時、振動子の
Y軸の右回りに回転角速度ω1が作用すると、その回転
角速度ω1により振動子のZ軸方向にコリオリの力F1
が生じる。そのため、振動子はX軸からθ1だけ位相を
変化させて振動することになり、検出用電極にはこのF
1に比例した電圧es1が発生し、回転角速度ω1として
検出することができる。
FIG. 1 shows a situation where an error occurs in the rotational angular velocity.
1 will be described. Now, as an ideal state, it is assumed that the vibrator is vibrating in the X-axis direction (see FIG. 11A). In this case, the vibrator sets its amplitude to W1 and X
Vibrating in the axial direction (θ = 0 °). At this time, when the rotational angular velocity ω1 acts clockwise on the Y-axis of the vibrator, the Coriolis force F1 in the Z-axis direction of the vibrator is generated by the rotational angular velocity ω1.
Occurs. Therefore, the vibrator vibrates while changing the phase from the X axis by θ1.
A voltage e s1 proportional to 1 is generated and can be detected as the rotational angular velocity ω1.

【0011】これに対し、図11(b)に示すように、
励振位相がすでにθ゜回転していると、振動もれのため
(すなわち振動子がその振幅をW1としてX軸方向に対
してθ゜ずれて振動していると)、検出電極3には、す
でにヌル電圧esNが発生しており、さらに振動子のY軸
の回りに上記同様右回りの回転角速度ω1が作用すれ
ば、コリオリの力F1に比例した電圧es2(=es1co
s(θ1))が加算され、あたかも、より大きな角速度
が発生したかのようにみえる。また、振動もれの量は、
構造体の弾性率,寸法などが温度変化により変化するた
め、その振動姿態が変化するため、温度依存性があり、
その結果esNが定まらないので、検出電圧が不安定にな
り、正確な計測ができない。
On the other hand, as shown in FIG.
If the excitation phase has already been rotated by θ °, due to vibration leakage (ie, if the vibrator is vibrating at θ1 with respect to the X-axis direction with its amplitude being W1), the detection electrode 3 If the null voltage e sN has already been generated and the clockwise rotation angular velocity ω1 acts on the vibrator around the Y axis as described above, the voltage e s2 (= e s1 co is proportional to the Coriolis force F1)
s (θ1)) is added, and it looks as if a larger angular velocity has occurred. Also, the amount of vibration leakage
Since the modulus of elasticity and dimensions of the structure change due to temperature changes, its vibration mode changes, and it has temperature dependence.
As a result, esN is not determined, so that the detection voltage becomes unstable and accurate measurement cannot be performed.

【0012】従来の角速度センサでは、振動モードとコ
リオリ力発生メカニズムから、Y軸を高さ方向とし、Y
軸の回りに作用する回転角速度を検出している。すなわ
ち、従来の角速度センサでは、コリオリの力を検出する
ために、Y軸方向を立てて使用する必要があり、高さ方
向に大きくなり小型化(薄型化)することができない。
In the conventional angular velocity sensor, the Y axis is set in the height direction based on the vibration mode and the Coriolis force generation mechanism.
The rotational angular velocity acting around the axis is detected. That is, in order to detect the Coriolis force, the conventional angular velocity sensor needs to be used while standing in the Y-axis direction, and becomes large in the height direction, and cannot be miniaturized (thinned).

【0013】その上、従来の角速度センサでは、励振側
と検出側の周波数温度特性(温特)が異なるため、それ
ぞれの温度での励振側周波数fXTと検出側周波数fZT
周波数差は温度により変動するので、結合度が変動し、
その結果Q値が変化するため、検出電荷量変化(感度変
化)が発生し、これが零点ドリフトを発生させる一因と
なっている。すなわち、角速度センサの静止状態におい
て、零点ドリフトがなければ、表示される測定位は所定
の基準値となる(図12参照)。すなわち、この基準値
を起点として、例えば右回転では表示値が上昇し、左回
転では表示値が下降する。この基準値を零点と呼ぶ。零
点ドリフトとは、静止状態にも拘わらず、温度変化など
外部擾乱(外因による乱れ)により零点位の電圧が変動
する現象をいう。図13は圧電振動式角速度センサ(以
下、PVGと呼ぶ)の等価回路である。PVGはその感
度を良くするため、励振側周波数fxと検出側周波数f
zとが一致することが望ましい。しかし、fxをfzに
近づけて行くと、振動モードの縮退現象が発生し、本来
(原理上)の計測ができなくなる。
In addition, in the conventional angular velocity sensor, since the frequency temperature characteristics (temperature characteristics) of the excitation side and the detection side are different, the frequency difference between the excitation side frequency f XT and the detection side frequency f ZT at each temperature is the temperature. , The degree of coupling fluctuates,
As a result, the Q value changes, so that a change in the detected charge amount (a change in sensitivity) occurs, which is one of the causes of the zero point drift. That is, when the angular velocity sensor is stationary and there is no zero point drift, the displayed measurement position has a predetermined reference value (see FIG. 12). That is, with the reference value as a starting point, for example, the display value increases in a right rotation, and decreases in a left rotation. This reference value is called a zero point. Zero point drift refers to a phenomenon in which the voltage at the zero point fluctuates due to external disturbance (disturbance due to an external factor) such as a temperature change despite the stationary state. FIG. 13 is an equivalent circuit of a piezoelectric vibration type angular velocity sensor (hereinafter, referred to as PVG). In order to improve the sensitivity of PVG, the excitation side frequency fx and the detection side frequency f
It is desirable that z be equal. However, as fx approaches fz, a degeneration phenomenon of the vibration mode occurs, and the original (in principle) measurement becomes impossible.

【0014】そこで、縮退現象の影響がない程度まで2
つの周波数を隔離して、2つのモードを分離するように
設定する。したがって、2つのモード間には周波数差
(ΔF=|fx−fz|)を持って設定される。ところ
で、ΔFの大きさは2つのモードの結合具合を左右する
ものであり、これによりQ値が変化し、感度を変化させ
ることが知られている。このΔFの値は特定の温度(例
えば、常温)で調整された値であるが、このΔFの変動
は温度変化によっても発生することを2つの振動モード
の温特の違いから説明する。
Therefore, to the extent that there is no influence of the degeneration phenomenon,
It is set to isolate two frequencies and separate the two modes. Therefore, the two modes are set with a frequency difference (ΔF = | fx−fz |). By the way, it is known that the magnitude of ΔF affects the degree of coupling between the two modes, and this changes the Q value and changes the sensitivity. Although the value of ΔF is a value adjusted at a specific temperature (for example, normal temperature), the fact that the fluctuation of ΔF also occurs due to a temperature change will be described based on the difference in temperature between the two vibration modes.

【0015】図9に示した従来の角速度センサ(屈曲x
励振−屈曲z検出)では、双方共に振動モードは屈曲振
動であるが、材料の性質からその温特は異なる。図14
にその一例を示す。同図において、Txは励振側の温
特、Tzは検出側の温特であり、2つのモードは室温
(RT)においてΔF0 だけ隔離して設定されている。
この場合、2つのモードの温特の頂点温度T0t(T0x
0z)が一致していないため、2つのモードは温度変動
と共にΔFの値が変動する。したがって、温度変動によ
るΔFの変動により、回転角速度が作用していないにも
拘わらず、出力の変動が発生し、あたかも回転角速度が
作用しているかのような状態となる。この温度変動によ
る零点ドリフトによって、検出電圧が不安定になり、正
確な計測ができなくなる。
A conventional angular velocity sensor (bend x) shown in FIG.
In both the excitation and the bending z detection, the vibration mode is bending vibration, but the temperature characteristics are different due to the properties of the material. FIG.
An example is shown below. In the figure, Tx is the temperature characteristic on the excitation side, Tz is the temperature characteristic on the detection side, and the two modes are set to be separated by ΔF 0 at room temperature (RT).
In this case, the peak temperature T 0t (T 0x ,
Since T 0z ) does not match, the value of ΔF fluctuates with temperature fluctuation in the two modes. Therefore, the change in ΔF due to the temperature change causes the output to fluctuate despite the fact that the rotational angular velocity is not acting, and it is as if the rotational angular velocity is acting. Due to the zero point drift due to the temperature fluctuation, the detection voltage becomes unstable, and accurate measurement cannot be performed.

【0016】本発明はこのような課題を解決するために
なされたもので、その目的とするところは、振動のもれ
(励振位相の回転)が小さく、また温度変動による零点
ドリフトが小さく、回転角速度を高精度で検出すること
の可能な高さ方向へ薄い角速度センサを提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and it is an object of the present invention to reduce the leakage of vibration (rotation of the excitation phase), the zero point drift due to temperature fluctuation, and the rotation. An object of the present invention is to provide a thin angular velocity sensor in a height direction capable of detecting an angular velocity with high accuracy.

【0017】[0017]

【課題を解決するための手段】このような目的を達成す
るために、第1発明(請求項1に係る発明)は、その両
端が支持固定された第1の枝部と、この第1の枝部のほ
ゞ中央部の枝面からこの枝面と直交する方向に延びその
先端が支持固定された第2の枝部と、第1の枝部の一方
の端部と中央部との間および他方の端部と中央部との間
の枝面から第2の枝部の長手方向と平行する方向に延び
た第3の枝部および第4の枝部とを備え、第1の枝部の
長手方向に平行な方向をX軸方向、第2の枝部の長手方
向に平行な方向をY軸方向、X−Y平面と直交する方向
と平行な方向をZ軸方向とする振動子素子と、第2の枝
部の枝面に形成された励振電極により、交流電圧の印加
を受けて第2の枝部をY軸方向へ伸縮振動させ、この励
振された伸縮振動によって第1の枝部をX−Y平面に平
行にY軸方向へ振幅をもって屈曲振動させ、この屈曲振
動によって更に第3の枝部および第4の枝部をX−Y平
面に平行にY軸方向へ反復移動させる励振構造と、第3
の枝部および第4の枝部の枝面に形成された検出電極に
より、この第3の枝部および第4の枝部がX−Y平面に
平行にY軸方向へ反復移動しているとき、振動子素子が
Z軸の回りに回転した場合、この第3の枝部および第4
の枝部が慣性により生じるX軸方向成分による屈曲振動
によって生ずる電荷を取り出す検出構造とを設けたもの
である。この発明によれば、励振電極に交流電圧を印加
すると、第2の枝部がY軸方向へ伸縮振動し、この伸縮
振動によって第1の枝部がX−Y平面に平行にY軸方向
へ振幅をもって屈曲振動し、この屈曲振動によって第3
の枝部および第4の枝部がX−Y平面に平行にY軸方向
へ反復移動する。この状態で、Z軸の回りに回転角速度
が作用すると、コリオリの力がY軸と直交するX軸方向
に働き、その結果、第3の枝部および第4の枝部がX軸
方向成分をもって屈曲振動する。そして、この屈曲振動
によって生ずる電荷が検出電極より取り出され、この取
り出された電荷量に基づいてZ軸の回りに作用する回転
角速度の大きさが検出される。
In order to achieve such an object, a first invention (an invention according to claim 1) comprises a first branch portion whose both ends are supported and fixed, and a first branch portion. A second branch extending from a branch surface at a substantially central portion of the branch in a direction perpendicular to the branch surface and having its tip supported and fixed; and between one end of the first branch and the center. And a third branch and a fourth branch extending from a branch surface between the other end and the center in a direction parallel to the longitudinal direction of the second branch. A transducer element having a direction parallel to the longitudinal direction of the X-axis direction, a direction parallel to the longitudinal direction of the second branch portion as a Y-axis direction, and a direction parallel to a direction orthogonal to the XY plane as a Z-axis direction. And an excitation electrode formed on a branch surface of the second branch portion, the second branch portion is subjected to expansion and contraction vibration in the Y-axis direction by receiving an AC voltage, and the excited expansion and contraction vibration is generated. Therefore, the first branch portion is bent and vibrated with an amplitude in the Y-axis direction in parallel with the XY plane, and the third and fourth branch portions are further bent by the bending vibration in the Y-axis direction in parallel with the XY plane. An excitation structure that repeatedly moves in the direction
When the third branch and the fourth branch are repeatedly moved in the Y-axis direction parallel to the XY plane by the detection electrodes formed on the branch surfaces of the branch and the fourth branch. When the transducer element rotates around the Z axis, the third branch and the fourth
And a detection structure for taking out charges generated by bending vibration caused by an X-axis direction component caused by inertia. According to the present invention, when an AC voltage is applied to the excitation electrode, the second branch portion expands and contracts in the Y-axis direction, and the first branch portion moves in the Y-axis direction parallel to the XY plane due to the expansion and contraction vibration. Bending vibration occurs with an amplitude.
And the fourth branch portion repeatedly move in the Y-axis direction in parallel with the XY plane. In this state, when a rotational angular velocity acts about the Z axis, Coriolis force acts in the X axis direction orthogonal to the Y axis, and as a result, the third branch and the fourth branch have components in the X axis direction. It bends and vibrates. Then, the electric charge generated by the bending vibration is extracted from the detection electrode, and the magnitude of the rotational angular velocity acting around the Z axis is detected based on the amount of the extracted electric charge.

【0018】第2発明(請求項2に係る発明)は、その
両端が支持固定された第1の枝部と、この第1の枝部の
ほゞ中央部の枝面からこの枝面と直交する一方向および
他方向に延びその先端が支持固定された第2および第3
の枝部と、第1の枝部の一方の端部と中央部との間およ
び他方の端部と中央部との間の枝面から第2,第3の枝
部の長手方向と平行する方向に延びた第4の枝部および
第5の枝部とを備え、第1の枝部の長手方向に平行な方
向をX軸方向、第2,第3の枝部の長手方向に平行な方
向をY軸方向、X−Y平面と直交する方向と平行な方向
をZ軸方向とする振動子素子と、第2の枝部および第3
の枝部の枝面に形成された励振電極により、交流電圧の
印加を受けて第2の枝部および第3の枝部をY軸方向へ
伸縮振動させ、この励振された伸縮振動によって第1の
枝部をX−Y平面に平行にY軸方向へ振幅をもって屈曲
振動させ、この屈曲振動によって更に第4の枝部および
第5の枝部をX−Y平面に平行にY軸方向へ反復移動さ
せる励振構造と、第4の枝部および第5の枝部の枝面に
形成された検出電極により、この第4の枝部および第5
の枝部がX−Y平面に平行にY軸方向へ振幅をもって振
動しているとき、振動子素子がZ軸の回りに回転した場
合、この第4の枝部および第5の枝部が慣性により生じ
るX軸方向成分による屈曲振動によって生ずる電荷を取
り出す検出構造とを設けたものである。この発明によれ
ば、励振電極に交流電圧を印加すると、第2および第3
の枝部がY軸方向へ伸縮振動し、この伸縮振動によって
第1の枝部がX−Y平面に平行にY軸方向へ振幅をもっ
て屈曲振動し、この屈曲振動によって第4の枝部および
第5の枝部がX−Y平面に平行にY軸方向へ反復移動す
る。この状態で、Z軸の回りに回転角速度が作用する
と、コリオリの力がY軸と直交するX軸方向に働き、そ
の結果、第4の枝部および第5の枝部がX軸方向成分を
もって屈曲振動する。そして、この屈曲振動によって生
ずる電荷が検出電極より取り出され、この取り出された
電荷量に基づいてZ軸の回りに作用する回転角速度の大
きさが検出される。
According to the second invention (the invention according to claim 2), the first branch portion whose both ends are supported and fixed, and the branch surface substantially at the center of the first branch portion are orthogonal to the branch surface. Second and third extending in one direction and the other direction and having their tips supported and fixed.
And a branch surface between one end and the center of the first branch and a branch surface between the other end and the center of the first branch are parallel to the longitudinal direction of the second and third branches. A fourth branch and a fifth branch extending in the direction, the direction parallel to the longitudinal direction of the first branch is defined as the X-axis direction, and the direction parallel to the longitudinal direction of the second and third branches. A vibrator element having a direction parallel to the Y-axis direction and a direction parallel to the direction orthogonal to the XY plane, the second branch portion and the third branch portion;
The second branch and the third branch are stretched and vibrated in the Y-axis direction by the application of an AC voltage by the excitation electrode formed on the branch surface of the branch. Is vibrated with amplitude in the Y-axis direction parallel to the XY plane, and the fourth vibration and the fifth branch are further repeated in the Y-axis direction parallel to the XY plane by the bending vibration. The fourth branch portion and the fifth branch portion are formed by the excitation structure to be moved and the detection electrodes formed on the branch surfaces of the fourth branch portion and the fifth branch portion.
When the vibrator element is rotated around the Z-axis while the vibrating element vibrates with an amplitude in the Y-axis direction parallel to the XY plane, the fourth and fifth bifurcations have inertia. And a detection structure for taking out charges generated by the bending vibration caused by the X-axis direction component caused by the above. According to this invention, when an AC voltage is applied to the excitation electrode, the second and third
Vibrates in the Y-axis direction, and the first vibrator bends and vibrates with amplitude in the Y-axis direction in parallel with the XY plane by the vibrating vibration. The branch portion 5 repeatedly moves in the Y-axis direction parallel to the XY plane. In this state, when a rotational angular velocity acts around the Z-axis, Coriolis force acts in the X-axis direction orthogonal to the Y-axis. As a result, the fourth branch and the fifth branch have an X-axis component. It bends and vibrates. Then, the electric charge generated by the bending vibration is extracted from the detection electrode, and the magnitude of the rotational angular velocity acting around the Z axis is detected based on the amount of the extracted electric charge.

【0019】第3発明(請求項3に係る発明)は、その
両端が支持固定された第1の枝部と、この第1の枝部の
ほゞ中央部の枝面からこの枝面と直交する一方向および
他方向に延びその先端が支持固定された第2および第3
の枝部と、第1の枝部の一方の端部と中央部との間の枝
面から第2,第3の枝部の長手方向と平行する一方向お
よび他方向に延びた第4の枝部および第5の枝部と、第
1の枝部の他方の端部と中央部との間の枝面から第2,
第3の枝部の長手方向と平行する一方向および他方向に
延びた第6の枝部および第7の枝部とを備え、第1の枝
部の長手方向に平行な方向をX軸方向、第2,第3の枝
部の長手方向に平行な方向をY軸方向、X−Y平面と直
交する方向と平行な方向をZ軸方向とする振動子素子
と、第2の枝部および第3の枝部の枝面に形成された励
振電極により、交流電圧の印加を受けて第2の枝部およ
び第3の枝部をY軸方向へ伸縮振動させ、この励振した
伸縮振動によって第1の枝部をX−Y平面に平行にY軸
方向へ振幅をもって屈曲振動させ、この屈曲振動によっ
て更に第4の枝部,第5の枝部,第6の枝部および第7
の枝部をX−Y平面に平行にY軸方向へ反復移動させる
励振構造と、第4の枝部,第5の枝部,第6の枝部およ
び第7の枝部の枝面に形成された検出電極により、この
第4の枝部,第5の枝部,第6の枝部および第7の枝部
がX−Y平面に平行にY軸方向へ反復移動していると
き、振動子素子がZ軸の回りに回転した場合、この第4
の枝部,第5の枝部,第6の枝部および第7の枝部が慣
性により生じるX軸方向成分による屈曲振動によって生
ずる電荷を取り出す検出構造とを設けたものである。こ
の発明によれば、励振電極に交流電圧を印加すると、第
2および第3の枝部がY軸方向へ伸縮振動し、この伸縮
振動によって第1の枝部がX−Y平面に平行にY軸方向
へ振幅をもって屈曲振動し、この屈曲振動によって第4
の枝部,第5の枝部,第6の枝部および第7の枝部がX
−Y平面に平行にY軸方向へ反復移動する。この状態
で、Z軸の回りに回転角速度が作用すると、コリオリの
力がY軸と直交するX軸方向に働き、その結果、第4の
枝部,第5の枝部,第6の枝部および第7の枝部がX軸
方向成分をもって屈曲振動する。そして、この屈曲振動
によって生ずる電荷が検出電極より取り出され、この取
り出された電荷量に基づいてZ軸の回りに作用する回転
角速度の大きさが検出される。
The third invention (the invention according to claim 3) is characterized in that the first branch portion whose both ends are supported and fixed, and the branch surface substantially at the center of the first branch portion are orthogonal to the branch surface. Second and third extending in one direction and the other direction and having their tips supported and fixed.
A fourth branch extending in one direction and the other direction parallel to the longitudinal direction of the second and third branches from a branch surface between one end and the center of the first branch. A second branch from the branch surface between the branch and the fifth branch and the other end and the center of the first branch;
A sixth branch and a seventh branch extending in one direction and the other direction parallel to the longitudinal direction of the third branch, wherein the direction parallel to the longitudinal direction of the first branch is the X-axis direction. A vibrator element having a direction parallel to the longitudinal direction of the second and third branch portions as the Y-axis direction and a direction parallel to the direction orthogonal to the XY plane as the Z-axis direction; An AC voltage is applied to the second branch and the third branch in the Y-axis direction by the excitation electrode formed on the branch surface of the third branch, and the second branch and the third branch are stretched and vibrated in the Y-axis direction. The first branch is bent and vibrated with an amplitude in the Y-axis direction in parallel to the XY plane, and the fourth vibration, the fifth branch, the sixth branch, and the seventh branch are further caused by the bending vibration.
And an excitation structure for repetitively moving the branches in the Y-axis direction parallel to the XY plane, and formed on the branch surfaces of the fourth, fifth, sixth, and seventh branches. When the fourth branch, the fifth branch, the sixth branch, and the seventh branch are repeatedly moved in the Y-axis direction in parallel with the XY plane by the detected detection electrode, When the slave element rotates around the Z axis, the fourth
, A fifth branch, a sixth branch, and a seventh branch are provided with a detection structure for extracting electric charge generated by bending vibration due to an X-axis direction component generated by inertia. According to this invention, when an AC voltage is applied to the excitation electrode, the second and third branches vibrate and contract in the Y-axis direction. Bending vibration occurs with amplitude in the axial direction.
X, the fifth branch, the sixth branch and the seventh branch are X
-Repeatedly move in the Y axis direction parallel to the Y plane. In this state, when a rotational angular velocity acts around the Z axis, Coriolis force acts in the X axis direction orthogonal to the Y axis, and as a result, the fourth, fifth, and sixth branches are formed. And the seventh branch portion bends and vibrates with the component in the X-axis direction. Then, the electric charge generated by the bending vibration is extracted from the detection electrode, and the magnitude of the rotational angular velocity acting around the Z axis is detected based on the amount of the extracted electric charge.

【0020】[0020]

【発明の実施の形態】以下、本発明を実施の形態に基づ
き詳細に説明する。 〔基本原理:第1発明〕図1(a)はこの発明の基本原
理を説明する図である。同図において、Aは振動子素子
であり、その材料は金属、セラミックス、単結晶など、
どれを用いても構わないが、ここでは水晶板で説明す
る。振動子素子Aは第1の枝部A1と第2の枝部A2と
第3の枝部A3と第4の枝部A4とからなる。第1の枝
部A1はその両端が支持固定されている。第2の枝部A
2は第1の枝部A1のほゞ中央部の枝面からこの枝面と
直交する方向に延びその先端が支持固定されている。第
3の枝部A3は第1の枝部A1の一方の端部と中央部と
の間の枝面から第2の枝部A2の長手方向と平行する方
向に延びている。第4の枝部A4は第1の枝部A1の他
方の端部と中央部との間の枝面から第2の枝部A2の長
手方向と平行する方向に延びている。枝部A1〜A4は
共通の平面に位置している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. [Basic Principle: First Invention] FIG. 1A is a diagram for explaining the basic principle of the present invention. In the figure, A is a vibrator element, the material of which is metal, ceramics, single crystal, etc.
Any of them may be used, but here, the explanation will be made using a quartz plate. The vibrator element A includes a first branch A1, a second branch A2, a third branch A3, and a fourth branch A4. Both ends of the first branch A1 are supported and fixed. Second branch A
Numeral 2 extends from a branch surface at a substantially central portion of the first branch portion A1 in a direction orthogonal to the branch surface, and the tip thereof is supported and fixed. The third branch A3 extends in a direction parallel to the longitudinal direction of the second branch A2 from a branch surface between one end and the center of the first branch A1. The fourth branch A4 extends from a branch surface between the other end of the first branch A1 and the central portion in a direction parallel to the longitudinal direction of the second branch A2. The branches A1 to A4 are located on a common plane.

【0021】この振動子素子Aにおいて、第1の枝部A
1の長手方向に平行な方向をX軸方向、第2の枝部A2
の長手方向に平行な方向をY軸方向、X−Y平面と直交
する方向と平行な方向をZ軸方向とする。なお、図1
(a)では、第3の枝部A3および第4の枝部A4を第
2の枝部A2側に延ばしているが、図1(b)に示すよ
うに、第2の枝部A2とは反対の側に延ばした構成とし
てもよい。
In the vibrator element A, the first branch A
1 is the X-axis direction, the second branch portion A2
Is defined as a Y-axis direction, and a direction parallel to a direction orthogonal to the XY plane is defined as a Z-axis direction. FIG.
In FIG. 1A, the third branch A3 and the fourth branch A4 extend toward the second branch A2, but as shown in FIG. 1B, the second branch A2 is It may be configured to extend to the opposite side.

【0022】このように構成された振動子素子Aに対し
て、その第2の枝部A2の対向する枝面A21およびA
22に励振電極(図示せず)を形成する。また、第3の
枝部A3の対向する左右の枝面A31およびA32、表
裏の枝面A33およびA34、ならびに第4の枝部A4
の対向する左右の枝面A41およびA42、表裏の枝面
A43およびA44に検出電極(図示せず)を形成す
る。そして、第2の枝部A2に形成された励振電極へ交
流電圧(励振振動信号)eを印加し、第2の枝部A2を
Y軸方向へ伸縮振動させる。この励振された伸縮振動に
よって第1の枝部A1がX−Y平面に平行にY軸方向へ
振幅をもって3次モード(3次の屈曲姿態)で屈曲振動
する。
With respect to the vibrator element A thus configured, the opposing branch surfaces A21 and A2 of the second branch portion A2 are provided.
An excitation electrode (not shown) is formed on 22. The left and right branch surfaces A31 and A32, the front and back branch surfaces A33 and A34, and the fourth branch portion A4 of the third branch portion A3.
The detection electrodes (not shown) are formed on the left and right branch surfaces A41 and A42 and the front and back branch surfaces A43 and A44. Then, an AC voltage (excitation vibration signal) e is applied to the excitation electrode formed on the second branch portion A2 to cause the second branch portion A2 to expand and contract in the Y-axis direction. Due to the excited stretching vibration, the first branch portion A1 bends and vibrates in the third mode (third bending mode) with an amplitude in the Y-axis direction parallel to the XY plane.

【0023】この場合、第3の枝部A3および第4の枝
部A4の形成位置は、第1の枝部A1の3次モードでの
屈曲振動に際する腹位置としている。すなわち、第1の
枝部A1の3次モードでの屈曲振動に際する節をN1,
N2とした場合、第1の枝部A1の一方の端部と節N1
との中央位置を第1の腹位置H1とし、第1の枝部A1
の他方の端部と節N2との中央位置を第2の腹位置H2
とし、第1の腹位置H1に第3の枝部A3を、第2の腹
位置H2に第4の枝部A4を形成している。具体的に言
えば、枝部A1を3次モードで振動させた場合、第1の
枝部A1の長さを「1」とした時、第1の枝部A1の一
方の端部からほゞ「0.2」の位置に第3の枝部A3を
形成し、ほゞ「0.8」の位置に第4の枝部A4を形成
するとよい。また、A1が奇数モードで振動している
時、振動の「腹」の部分が同相で振動するので、この部
分にA3,A4を形成すればよいが、振幅が大きくとれ
るのは3次モードであり、以下では3次モードについて
記す。
In this case, the formation position of the third branch portion A3 and the fourth branch portion A4 is the antinode position in bending vibration of the first branch portion A1 in the third mode. That is, nodes at the time of bending vibration of the first branch A1 in the third mode are N1,
If N2, one end of the first branch A1 and the node N1
Is the first antinode position H1 and the first branch A1
The center position between the other end of the first and the node N2 is the second antinode position H2.
A third branch A3 is formed at the first antinode position H1, and a fourth branch A4 is formed at the second antinode position H2. Specifically, when the branch A1 is vibrated in the tertiary mode, when the length of the first branch A1 is set to “1”, almost one end of the first branch A1 is moved. The third branch A3 may be formed at the position of "0.2", and the fourth branch A4 may be formed at the position of approximately "0.8". Also, when A1 is vibrating in the odd mode, the "antinode" portion of the vibration vibrates in phase, so that A3 and A4 may be formed in this portion, but the large amplitude can be obtained in the tertiary mode. The third mode is described below.

【0024】第1の枝部A1がX−Y平面に平行にY軸
方向へ振幅をもって3次モードで屈曲振動すると、第3
の枝部A3および第4の枝部A4は、第1の枝部A1の
腹位置H1およびH2に形成されているので、X−Y平
面に平行にY軸方向へ反復移動する。
When the first branch portion A1 bends and vibrates in the third mode with an amplitude in the Y-axis direction parallel to the XY plane,
And the fourth branch A4 are formed at the antinode positions H1 and H2 of the first branch A1, and thus repeatedly move in the Y-axis direction parallel to the XY plane.

【0025】ここで、振動子素子AがZ軸の回りに回転
すると、コリオリの力により振動子素子AにX軸方向の
振動成分が生じ、第3の枝部A3および第4の枝部A4
がX軸方向成分をもって屈曲振動する。このX軸方向成
分による屈曲振動により、第3の枝部A3および第4の
枝部A4に回転角速度に比例した大きさで、かつ回転方
向により位相が変動した形で電荷が発生するために、検
出電極からコリオリの力に応じた電圧信号esが得られ
る。この電圧信号esの大きさによって、Z軸の回りに
作用する回転角速度の大きさを知ることができる。ま
た、この電圧信号esの波形と励振振動信号eの波形と
を位相比較することにより、その位相の進み遅れで回転
角速度の方向を知ることができる。
Here, when the vibrator element A rotates around the Z-axis, a vibration component in the X-axis direction is generated in the vibrator element A by Coriolis force, and the third branch A3 and the fourth branch A4
Undergoes bending vibration with an X-axis direction component. Due to the bending vibration caused by the X-axis direction component, charges are generated in the third branch portion A3 and the fourth branch portion A4 in a form proportional to the rotational angular velocity and in a form in which the phase varies depending on the rotation direction. A voltage signal es corresponding to the Coriolis force is obtained from the detection electrode. From the magnitude of the voltage signal es, the magnitude of the rotational angular velocity acting around the Z axis can be known. Further, by comparing the phase of the waveform of the voltage signal es with the phase of the waveform of the excitation vibration signal e, it is possible to know the direction of the rotational angular velocity based on the lead and lag of the phase.

【0026】この基本原理では、第2の枝部A2に励振
電極を設けて駆動することにより、すなわち第2の枝部
A2をY軸方向へ伸縮振動させることにより、第1の枝
部A1をX−Y平面に平行にY軸方向へ振幅をもって屈
曲振動させ、この第1の枝部A1の屈曲振動により第3
の枝部A3および第4の枝部A4のX−Y平面に平行な
Y軸方向への反復移動を誘動しているので、第3の枝部
A3および第4の枝部A4の振動方向は純粋にX−Y平
面に平行なY軸方向のみの成分をもった振動となり、図
9に示した脚部1−1に励振電極2を設けて直接駆動す
る従来の角速度センサと比較して振動のもれ(励振位相
の回転)を小さくすることができる。
According to this basic principle, the first branch portion A1 is driven by providing an excitation electrode on the second branch portion A2, that is, by causing the second branch portion A2 to expand and contract in the Y-axis direction. The bending vibration of the first branch portion A1 is caused by the bending vibration in the Y-axis direction in parallel with the XY plane.
Of the third branch A3 and the fourth branch A4 are induced in the Y-axis direction parallel to the XY plane of the third branch A3 and the fourth branch A4. Is a vibration having only a component in the Y-axis direction that is purely parallel to the XY plane. Compared with a conventional angular velocity sensor in which the excitation electrode 2 is provided on the leg 1-1 shown in FIG. Vibration leakage (rotation of the excitation phase) can be reduced.

【0027】また、この場合、図4に励振側の温特Ty
と検出側の温特Txを示すように、その2つのモードの
温特の頂点温度T0t(T0y,T0x)および2次曲線の2
次係数が一致しているため、温度変動があってもΔFは
一定であり、出力変動の発生がないことから、温度変動
による零点ドリフトが防止され、結果的に温特のよい
(温度変化に優れた)角速度センサを得ることができ
る。
In this case, FIG. 4 shows the temperature characteristic Ty on the excitation side.
And the temperature characteristic Tx on the detection side, the temperature characteristic apex temperature T 0t (T 0y , T 0x ) of the two modes and the two-dimensional curve 2
Since the order coefficients match, ΔF is constant even if there is a temperature fluctuation, and since there is no output fluctuation, zero point drift due to temperature fluctuation is prevented. Excellent) angular velocity sensor can be obtained.

【0028】また、この場合、振動子素子AのZ軸を高
さ方向とし、Z軸の回りに作用する回転角速度を検出す
る構成としているので、高さ方向の薄型化を促進するこ
とができる。
In this case, since the Z axis of the transducer element A is set in the height direction and the rotational angular velocity acting around the Z axis is detected, the thickness in the height direction can be reduced. .

【0029】〔応用例1:第2発明〕上述した基本原理
では駆動する枝部を1つとした。これに対して、応用例
1では、図2(a)に示すように、駆動する枝部を2つ
とする。すなわち、振動子素子Bとして、図1(a)の
枝部A1,A2,A3,A4に対応する枝部B1,B
2,B4,B5に加え、枝部B3を設ける。この場合、
枝部B2を枝部B1のほゞ中央部の板面からこの板面と
直交する一方向に延ばしてその先端を支持固定している
のに対し、枝部B3は枝部B1のほゞ中央部の板面から
この板面と直交する他方向に延ばしてその先端を支持固
定する。そして、この枝部B3にも枝部B2と同様にし
て励振電極を形成し、枝部B2およびB3をY軸方向へ
逆相(枝部B2が伸びたとき枝部B3が縮み、次にはそ
の逆になるように交互に)で伸縮振動させる。なお、図
2(a)では、枝部B4およびB5を枝部B2側に延ば
しているが、図2(b)に示すように枝部B3側に延ば
した構成としてもよい。
[Application Example 1: Second Invention] According to the basic principle described above, only one branch is driven. On the other hand, in the application example 1, as shown in FIG. 2A, two branches are driven. That is, as transducer element B, branches B1, B2 corresponding to branches A1, A2, A3, A4 in FIG.
Branch portions B3 are provided in addition to 2, B4 and B5. in this case,
The branch portion B2 extends from a plate surface at a substantially central portion of the branch portion B1 in one direction perpendicular to the plate surface, and its tip is supported and fixed, whereas the branch portion B3 is substantially at the center of the branch portion B1. The portion extends from the plate surface of the portion in the other direction perpendicular to the plate surface, and its tip is supported and fixed. An excitation electrode is also formed on the branch B3 in the same manner as the branch B2, and the branches B2 and B3 are reversed in the Y-axis direction (when the branch B2 expands, the branch B3 contracts. (Alternately so that the opposite occurs). In FIG. 2A, the branch portions B4 and B5 extend to the branch portion B2 side, but may have a configuration extending to the branch portion B3 side as shown in FIG. 2B.

【0030】〔応用例2:第3発明〕上述した応用例1
では検出用の枝部を2つとした。これに対し、応用例2
では、図3に示すように、検出用の枝部を4つとする。
すなわち、振動子素子Cとして、図2(a)の枝部B
1,B2,B3,B4,B5に対応する枝部C1,C
2,C4,C4,C6に加え、枝部C5およびC7を設
ける。この場合、枝部C4およびC6を枝部C2,C3
の長手方向と平行する一方向に延ばしているのに対し、
枝部C5およびC7は枝部C2,C3の長手方向と平行
する他方向に延ばす。そして、この枝部C5およびC7
にも枝部C4およびC6と同様にして検出電極を形成す
る。
[Application example 2: Third invention] Application example 1 described above
In this example, two branches were used for detection. On the other hand, application example 2
Then, as shown in FIG. 3, there are four detection branches.
That is, as the vibrator element C, the branch B in FIG.
Branches C1, C corresponding to 1, B2, B3, B4, B5
Branches C5 and C7 are provided in addition to 2, C4, C4 and C6. In this case, the branches C4 and C6 are connected to the branches C2 and C3.
While extending in one direction parallel to the longitudinal direction of
The branches C5 and C7 extend in the other direction parallel to the longitudinal direction of the branches C2 and C3. Then, the branch portions C5 and C7
Similarly, the detection electrodes are formed in the same manner as the branch portions C4 and C6.

【0031】〔実施の形態1〕図5は上述した基本原理
(図1(a))に基づいて作製した角速度センサの要部
を示す図であり、同図(a)は平面図、同図(b)は同
図(a)を裏面側から見た図である。
[Embodiment 1] FIG. 5 is a view showing a main part of an angular velocity sensor manufactured based on the above-described basic principle (FIG. 1A). FIG. 5A is a plan view and FIG. (B) is the figure which looked at the figure (a) from the back side.

【0032】図5において、4は振動子素子(水晶
板)、4−1は第1の枝部、4−2は第2の枝部、4−
3は第3の枝部、4−4は第4の枝部、4−5は外枠で
ある。第1の枝部4−1はその両端4−1a,4−1b
が外枠4−5につながっている。第2の枝部4−2は第
1の枝部4−1のほゞ中央部4−1cの枝面4−1dか
らこの枝面4−1dと直交する方向に延びその先端4−
2aが外枠4−5につながっている。
In FIG. 5, reference numeral 4 denotes a vibrator element (quartz plate), 4-1 denotes a first branch, 4-2 denotes a second branch, and 4-
3 is a third branch, 4-4 is a fourth branch, and 4-5 is an outer frame. The first branch 4-1 has both ends 4-1a, 4-1b.
Is connected to the outer frame 4-5. The second branch portion 4-2 extends from the branch surface 4-1d of the approximately central portion 4-1c of the first branch portion 4-1 in a direction orthogonal to the branch surface 4-1d.
2a is connected to the outer frame 4-5.

【0033】第3の枝部4−3は第1の枝部4−1の一
方の端部4−1aと中央部4−1cとの間の枝面4−1
dから第2の枝部4−2の長手方向と平行する方向に延
びている。第4の枝部4−4は第1の枝部4−1の他方
の端部4−1bと中央部4−1cとの間の枝面4−1d
から第2の枝部4−2の長手方向と平行する方向に延び
ている。この場合、第1の枝部4−1の長手方向に平行
な方向をX軸方向、第2の枝部4−2の長手方向に平行
な方向をY軸方向、X−Y平面と直交する方向と平行な
方向をZ軸方向とする。
The third branch 4-3 is a branch surface 4-1 between one end 4-1a and the center 4-1c of the first branch 4-1.
d extends in a direction parallel to the longitudinal direction of the second branch portion 4-2. The fourth branch 4-4 is a branch surface 4-1d between the other end 4-1b and the center 4-1c of the first branch 4-1.
Extends in a direction parallel to the longitudinal direction of the second branch portion 4-2. In this case, the direction parallel to the longitudinal direction of the first branch 4-1 is the X-axis direction, the direction parallel to the longitudinal direction of the second branch 4-2 is the Y-axis direction, and is orthogonal to the XY plane. A direction parallel to the direction is defined as a Z-axis direction.

【0034】このように構成された振動子素子4に対し
て、その第2の枝部4−2の対向する左右の枝面4−2
bおよび4−2cに励振電極5(5−1,5−2)を形
成している。すなわち、第2の枝部4−2の枝面4−2
bに励振用の電極板5−1を、この枝面4−2bに対向
する枝面4−2cに励振用の電極板5−2を形成してい
る。
With respect to the vibrator element 4 configured as described above, the left and right branch surfaces 4-2 of the second branch portion 4-2 facing each other.
Excitation electrodes 5 (5-1, 5-2) are formed on b and 4-2c. That is, the branch surface 4-2 of the second branch portion 4-2.
b, an excitation electrode plate 5-1 is formed on a branch surface 4-2c opposed to the branch surface 4-2b.

【0035】また、第3の枝部4−3の対向する左右の
枝面4−3aおよび4−3bに検出用の電極板6−1お
よび6−2を、表裏の枝面4−3cおよび4−3dに検
出用の電極板6−3および6−4を形成している。ま
た、第4の枝部4−4の対向する左右の枝面4−4aお
よび4−4bに検出用の電極板7−1および7−2を、
表裏の枝面4−4cおよび4−4dに検出用の電極板7
−3および7−4を形成している。
The electrode plates 6-1 and 6-2 for detection are provided on the left and right branch surfaces 4-3a and 4-3b facing the third branch portion 4-3, and the front and back branch surfaces 4-3c and 4-3c. The detection electrode plates 6-3 and 6-4 are formed in 4-3d. In addition, electrode plates 7-1 and 7-2 for detection are provided on the left and right branch surfaces 4-4a and 4-4b facing the fourth branch portion 4-4, respectively.
Electrode plates 7 for detection are provided on the front and back branch surfaces 4-4c and 4-4d.
-3 and 7-4.

【0036】図6は図5における各電極の接続関係を分
かり易いように示した結線図であり、図5(a)におけ
るI−I線断面図に各電極の接続関係を示した図であ
る。すなわち、この角速度センサにおいては、励振用の
電極板5−1が端子T1に接続され、励振用の電極板5
−2が端子T2に接続されている。また、検出用の電極
板6−1と6−2と7−1と7−2が端子T3に共通に
接続され、検出用の電極板6−3と6−4と7−3と7
−4が端子T4に共通に接続されている。
FIG. 6 is a connection diagram showing the connection relationship of each electrode in FIG. 5 for easy understanding, and is a diagram showing the connection relationship of each electrode in a sectional view taken along the line II in FIG. 5 (a). . That is, in this angular velocity sensor, the excitation electrode plate 5-1 is connected to the terminal T1, and the excitation electrode plate 5-1 is connected to the terminal T1.
-2 is connected to the terminal T2. The detection electrode plates 6-1 and 6-2, 7-1 and 7-2 are commonly connected to the terminal T3, and the detection electrode plates 6-3, 6-4, 7-3 and 7 are connected.
-4 is commonly connected to the terminal T4.

【0037】なお、図5では、振動子素子4でのリード
電極の引き回し状況を示すために電極パターンを厚くし
たが、実際にはスパッタや蒸着などによる薄膜形成が実
施されている。しかし、恒弾性金属(例えば、エリン
バ)などの材質を使用する場合は薄片に加工された圧電
セラミックス板を貼付することもある。
Although the thickness of the electrode pattern is increased in FIG. 5 in order to show how the lead electrodes are routed in the vibrator element 4, a thin film is actually formed by sputtering or vapor deposition. However, when a material such as a constant elastic metal (for example, Elinvar) is used, a piezoelectric ceramic plate processed into a thin piece may be attached.

【0038】また、第3の枝部4−3および第4の枝部
4−4の形成位置は、第1の枝部A1の3次モードでの
屈曲振動に際する腹位置としている。すなわち、3次モ
ードで振動させた場合、第1の枝部4−1の長さを
「1」とした時、第1の枝部4−1の一方の端部4−1
aからほゞ「0.2」の位置に第3の枝部4−3を形成
し、ほゞ「0.8」の位置に第4の枝部4−4を形成し
ている。
The formation positions of the third branch portion 4-3 and the fourth branch portion 4-4 are antinode positions for the first branch portion A1 in bending vibration in the third mode. That is, when vibrating in the third mode, when the length of the first branch 4-1 is set to “1”, one end 4-1 of the first branch 4-1 is set.
The third branch portion 4-3 is formed at a position approximately "0.2" from the position a, and the fourth branch portion 4-4 is formed at a position approximately "0.8".

【0039】〔検出動作〕端子T1とT2との間に交流
電圧(励振振動信号)eを印加する。これにより、励振
電極5の電極板5−1と5−2との間に、ある時は図6
中に矢印で示す如く電界が発生し、次には逆方向の電界
が発生することにより、第2の枝部4−2がY軸方向へ
伸縮振動する。この伸縮振動によって第1の枝部4−1
がX−Y平面に平行にY軸方向へ振幅をもって3次モー
ド(3次の屈曲姿態)で屈曲振動する。この3次モード
の屈曲振動によって、第3の枝部4−3および第4の枝
部4−4がX−Y平面に平行にY軸方向へ反復移動す
る。
[Detection Operation] An AC voltage (excitation vibration signal) e is applied between the terminals T1 and T2. 6 between the electrode plates 5-1 and 5-2 of the excitation electrode 5 when there is.
An electric field is generated as indicated by an arrow inside, and then an electric field in the opposite direction is generated, so that the second branch portion 4-2 expands and contracts in the Y-axis direction. The first branch portion 4-1 is generated by the stretching vibration.
Vibrates in the tertiary mode (third bending mode) with amplitude in the Y-axis direction parallel to the XY plane. The third branch portion 4-3 and the fourth branch portion 4-4 repeatedly move in the Y-axis direction in parallel with the XY plane by the bending vibration in the third mode.

【0040】ここで、振動子素子4がZ軸の回りに回転
すると、コリオリの力により振動子素子4にX軸方向の
振動成分が生じ、第3の枝部4−3および第4の枝部4
−4がX軸方向成分をもって屈曲振動する。このX軸方
向成分による屈曲振動により、第3の枝部4−3および
第4の枝部4−4に回転角速度に比例した大きさで回転
方向により位相が変動した形で、電極板(6−1),
(6−2)−(6−3),(6−4)、(7−1),
(7−2)−(7−3),(7−4)それぞぞの間に対
応した電荷が発生する。これにより、電極板6−1,6
−2,7−1,7−2を共通に接続した端子T3と電極
板6−3,6−4,7−3,7−4を共通に接続した端
子T4との間にコリオリの力に応じた電圧信号es が得
られる。
When the vibrator element 4 rotates around the Z axis, a vibrating component in the X-axis direction is generated in the vibrator element 4 by Coriolis force, and the third branch 4-3 and the fourth branch Part 4
-4 undergoes bending vibration with the X-axis direction component. Due to the bending vibration due to the X-axis direction component, the third branch portion 4-3 and the fourth branch portion 4-4 change the electrode plate (6) in such a manner that the phase varies in the direction of rotation with a magnitude proportional to the rotational angular velocity. -1),
(6-2)-(6-3), (6-4), (7-1),
A corresponding charge is generated between (7-2)-(7-3) and (7-4). Thereby, the electrode plates 6-1 and 6
−2, 7-1 and 7-2 are commonly connected to terminal T3 and electrode plates 6-3, 6-4, 7-3 and 7-4 are commonly connected to terminal T4. A corresponding voltage signal es is obtained.

【0041】この電圧信号es の大きさによって、Y軸
の回りに作用する回転角速度の大きさを知ることができ
る。また、この電圧信号es の波形と励振振動信号eの
波形とを位相比較することにより、その位相の進み遅れ
で回転角速度の方向を知ることができる。
From the magnitude of the voltage signal es, the magnitude of the rotational angular velocity acting around the Y axis can be known. Further, by comparing the phase of the waveform of the voltage signal es with the phase of the waveform of the excitation vibration signal e, it is possible to know the direction of the rotational angular velocity based on the lead and lag of the phase.

【0042】〔実施の形態2〕図7は上述した応用例2
(図3)に基づいて作製した角速度センサの要部を示す
図であり、同図(a)は平面図、同図(b)は同図
(a)を裏面側から見た図である。
[Embodiment 2] FIG. 7 shows an application example 2 described above.
4A and 4B are diagrams illustrating a main part of an angular velocity sensor manufactured based on (FIG. 3), wherein FIG. 3A is a plan view and FIG. 3B is a diagram of FIG.

【0043】図7において、8は振動子素子(水晶
板)、8−1は第1の枝部、8−2は第2の枝部、8−
3は第3の枝部、8−4は第4の枝部、8−5は第5の
枝部、8−6は第6の枝部、8−7は第7の枝部、8−
8は外枠である。第1の枝部8−1はその両端8−1
a,8−1bが外枠8−8につながっている。第2の枝
部8−2は第1の枝部8−1のほゞ中央部8−1cの枝
面8−1dからこの枝面8−1dと直交する一方向に延
びその先端8−2aが外枠8−8につながっている。第
3の枝部8−3は第1の枝部8−1のほゞ中央部8−1
cの枝面8−1eからこの枝面8−1eと直交する他方
向に延びその先端8−3aが外枠8−8につながってい
る。
In FIG. 7, 8 is a vibrator element (quartz plate), 8-1 is a first branch, 8-2 is a second branch, and 8-
3 is a third branch, 8-4 is a fourth branch, 8-5 is a fifth branch, 8-6 is a sixth branch, 8-7 is a seventh branch, 8-
8 is an outer frame. The first branch 8-1 has both ends 8-1.
a, 8-1b are connected to the outer frame 8-8. The second branch portion 8-2 extends from the branch surface 8-1d of the substantially central portion 8-1c of the first branch portion 8-1 in one direction perpendicular to the branch surface 8-1d, and has a tip 8-2a. Is connected to the outer frame 8-8. The third branch portion 8-3 is substantially the center portion 8-1 of the first branch portion 8-1.
c extends in the other direction perpendicular to the branch surface 8-1e from the branch surface 8-1e, and a tip 8-3a thereof is connected to the outer frame 8-8.

【0044】第4の枝部8−4は第1の枝部8−1の一
方の端部8−1aと中央部8−1cとの間の枝面8−1
dから第2の枝部8−2,第3の枝部8−3の長手方向
と平行する一方向に延びている。第6の枝部8−6は第
1の枝部8−1の他方の端部8−1bと中央部8−1c
との間の枝面8−1dから第2の枝部8−2,第3の枝
部8−3の長手方向と平行する一方向に延びている。
The fourth branch 8-4 is a branch surface 8-1 between one end 8-1a and the center 8-1c of the first branch 8-1.
d extends in one direction parallel to the longitudinal direction of the second branch portion 8-2 and the third branch portion 8-3. The sixth branch 8-6 includes the other end 8-1b and the center 8-1c of the first branch 8-1.
And extends in one direction parallel to the longitudinal direction of the second branch portion 8-2 and the third branch portion 8-3 from the branch surface 8-1d.

【0045】第5の枝部8−5は第1の枝部8−1の一
方の端部8−1aと中央部8−1cとの間の枝面8−1
eから第2の枝部8−2,第3の枝部8−3の長手方向
と平行する他方向に延びている。第7の枝部8−7は第
1の枝部8−1の他方の端部8−1bと中央部8−1c
との間の枝面8−1eから第2の枝部8−2,第3の枝
部8−3の長手方向と平行する他方向に延びている。こ
の場合、第1の枝部8−1の長手方向に平行な方向をX
軸方向、第2の枝部8−2,第3の枝部8−3の長手方
向に平行な方向をY軸方向、X−Y平面と直交する方向
と平行な方向をZ軸方向とする。
The fifth branch 8-5 is a branch surface 8-1 between one end 8-1a and the center 8-1c of the first branch 8-1.
e extends in the other direction parallel to the longitudinal direction of the second branch portion 8-2 and the third branch portion 8-3. The seventh branch 8-7 includes the other end 8-1b and the center 8-1c of the first branch 8-1.
And extends in the other direction parallel to the longitudinal direction of the second branch portion 8-2 and the third branch portion 8-3 from the branch surface 8-1e. In this case, the direction parallel to the longitudinal direction of the first branch portion 8-1 is X
An axial direction, a direction parallel to the longitudinal direction of the second branch portion 8-2 and the third branch portion 8-3 is a Y-axis direction, and a direction parallel to a direction orthogonal to the XY plane is a Z-axis direction. .

【0046】このように構成された振動子素子8に対し
て、その第2の枝部8−2の対向する左右の枝面8−2
bおよび8−2cに励振電極9(9−1,9−2)を形
成している。すなわち、第2の枝部8−2の枝面8−2
bに励振用の電極板9−1を、この枝面8−2bに対向
する枝面8−2cに励振用の電極板9−2を形成してい
る。また、第3の枝部8−3の対向する左右の枝面8−
3bおよび8−3cに励振電極10(10−1,10−
2)を形成している。すなわち、第3の枝部8−3の枝
面8−3bに励振用の電極板10−1を、この枝面8−
3bに対向する枝面8−3cに励振用の電極板10−2
を形成している。
With respect to the vibrator element 8 configured as described above, the left and right branch surfaces 8-2 of the second branch portion 8-2 facing each other.
Excitation electrodes 9 (9-1, 9-2) are formed on b and 8-2c. That is, the branch surface 8-2 of the second branch portion 8-2
An electrode plate 9-1 for excitation is formed at b, and an electrode plate 9-2 for excitation is formed at a branch surface 8-2c opposed to the branch surface 8-2b. Also, the left and right branch surfaces 8-
Excitation electrodes 10 (10-1, 10-
2) is formed. That is, the electrode plate 10-1 for excitation is provided on the branch surface 8-3b of the third branch portion 8-3.
Electrode plate 10-2 for excitation is provided on branch surface 8-3c facing 3b.
Is formed.

【0047】また、第4の枝部8−4の対向する左右の
枝面8−4aおよび8−4bに検出用の電極板11−1
および11−2を、表裏の枝面8−4cおよび8−4d
に検出用の電極板11−3および11−4を形成してい
る。また、第5の枝部8−5の対向する左右の枝面8−
5aおよび8−5bに検出用の電極板13−1および1
3−2を、表裏の枝面8−5cおよび8−4dに検出用
の電極板13−3および13−4を形成している。
The left and right branch surfaces 8-4a and 8-4b of the fourth branch portion 8-4 oppose each other.
And 11-2 are replaced with front and back branch surfaces 8-4c and 8-4d.
Are formed with detection electrode plates 11-3 and 11-4. Moreover, the left and right branch surfaces 8- of the fifth branch portion 8-5 facing each other.
5a and 8-5b have electrode plates 13-1 and 1 for detection.
3-2, the detection electrode plates 13-3 and 13-4 are formed on the front and back branch surfaces 8-5c and 8-4d.

【0048】また、第6の枝部8−6の対向する左右の
枝面8−6aおよび8−6bに検出用の電極板12−1
および12−2を、表裏の枝面8−6cおよび8−6d
に検出用の電極板12−3および12−4を形成してい
る。また、第7の枝部8−7の対向する左右の枝面8−
7aおよび8−7bに検出用の電極板14−1および1
4−2を、表裏の枝面8−7cおよび8−7dに検出用
の電極板14−3および14−4を形成している。
The left and right branch surfaces 8-6a and 8-6b of the sixth branch portion 8-6 oppose each other.
And 12-2 are replaced with front and back branch surfaces 8-6c and 8-6d.
Are formed with detection electrode plates 12-3 and 12-4. Further, the left and right branch surfaces 8- of the seventh branch portion 8-7 facing each other.
7a and 8-7b have electrode plates 14-1 and 1 for detection.
4-2, detection electrode plates 14-3 and 14-4 are formed on the front and back branch surfaces 8-7c and 8-7d.

【0049】図8は図6における各電極の接続関係を分
かり易いように示した結線図である。図8(a)は図7
(a)におけるII−II線断面図に各電極の接続関係を示
した図であり、図8(b)は図7(a)におけるIII −
III 線断面図に各電極の接続関係を示した図である。
FIG. 8 is a connection diagram showing the connection relationship of each electrode in FIG. 6 for easy understanding. FIG. 8A shows FIG.
FIG. 8A is a diagram showing a connection relationship of each electrode in a cross-sectional view taken along the line II-II in FIG. 8A, and FIG.
FIG. 3 is a diagram showing a connection relationship of each electrode in a sectional view taken along a line III.

【0050】すなわち、この角速度センサにおいては励
振用の電極板9−1が端子T1に、9−2がT2に、1
0−1がT3に、10−2がT4にそれぞれ接続されて
いる。ここでT1とT3、T2とT4は同一の極性であ
り、配線の関係で素子の外で接続して2端子としてい
る。
That is, in this angular velocity sensor, the excitation electrode plate 9-1 is connected to the terminal T1, 9-2 is connected to the terminal T2, and 1
0-1 is connected to T3 and 10-2 is connected to T4. Here, T1 and T3, and T2 and T4 have the same polarity, and are connected outside the element due to wiring to form two terminals.

【0051】また、検出用の電極板11−1、11−
2、12−1、12−2、13−3、13−4、14−
3、14−4は共通に接続され端子T5に、検出用の電
極板11−3、11−4、12−3、12−4、13−
1、13−2、14−1、14−2は共通に接続され端
子T6として2端子を形成している。
The detection electrode plates 11-1 and 11-
2, 12-1, 12-2, 13-3, 13-4, 14-
Reference numerals 3 and 14-4 are commonly connected to the terminal T5, and are connected to the detection electrode plates 11-3, 11-4, 12-3, 12-4 and 13-.
1, 13-2, 14-1, and 14-2 are commonly connected and form two terminals as a terminal T6.

【0052】なお、図7では、振動子素子8でのリード
電極の引き回し状況を示すために電極パターンを厚くし
たが、実際にはスパッタや蒸着などによる薄膜形成が実
施されている。しかし、恒弾性金属(例えば、エリン
バ)などの材質を使用する場合は薄片に加工された圧電
セラミックス板を貼付することもある。
In FIG. 7, the thickness of the electrode pattern is increased in order to show how the lead electrodes are routed in the vibrator element 8, but a thin film is actually formed by sputtering or vapor deposition. However, when a material such as a constant elastic metal (for example, Elinvar) is used, a piezoelectric ceramic plate processed into a thin piece may be attached.

【0053】また、第4の枝部8−4および第6の枝部
8−6の形成位置は、第1の枝部8−1の3次モードで
の屈曲振動に際する腹位置としている。すなわち、第1
の枝部8−1を3次モードで振動させた場合、第1の枝
部8−1の長さを「1」とした時、第1の枝部8−1の
一方の端部8−1aからほゞ「0.2」の位置に第4の
枝部8−4を形成し、ほゞ「0.8」の位置に第6の枝
部8−6を形成している。
The positions where the fourth branch portion 8-4 and the sixth branch portion 8-6 are formed are antinode positions at the time of bending vibration of the first branch portion 8-1 in the third mode. . That is, the first
When the length of the first branch 8-1 is set to "1" when the branch 8-1 is vibrated in the tertiary mode, one end 8-1 of the first branch 8-1 A fourth branch portion 8-4 is formed at a position approximately "0.2" from 1a, and a sixth branch portion 8-6 is formed at a position approximately "0.8".

【0054】また、第5の枝部8−5および第7の枝部
8−7の形成位置は、第1の枝部8−1の3次モードで
の屈曲振動に際する腹位置としている。すなわち、第1
の枝部8−1を3次モードで振動させた場合、第1の枝
部8−1の長さを「1」とした時、第1の枝部8−1の
一方の端部8−1aからほゞ「0.2」の位置に第5の
枝部8−5を形成し、ほゞ「0.8」の位置に第7の枝
部8−7を形成している。
The position where the fifth branch portion 8-5 and the seventh branch portion 8-7 are formed is the antinode position of the first branch portion 8-1 at the time of bending vibration in the third mode. . That is, the first
When the length of the first branch 8-1 is set to "1" when the branch 8-1 is vibrated in the tertiary mode, one end 8-1 of the first branch 8-1 is vibrated. A fifth branch portion 8-5 is formed at a position approximately "0.2" from 1a, and a seventh branch portion 8-7 is formed at a position approximately "0.8".

【0055】〔検出動作〕端子T1とT2との間および
端子T3とT4との間に交流電圧(励振振動信号)eを
印加する。これにより、励振電極9の電極板9−1と9
−2との間および励振電極10の電極板10−1と10
−2との間に、ある時は図8(a),(b)中に矢印で
示す如く電界が発生し、次には逆方向の電界が発生する
ことにより、第2の枝部8−2と第3の枝部8−3が逆
相(枝部8−2が伸びたとき枝部8−3が縮み、次には
その逆になるように交互に)でY軸方向へ伸縮振動す
る。この伸縮振動によって第1の枝部8−1がX−Y平
面に平行にY軸方向へ振幅をもって3次モード(3次の
屈曲姿態)で屈曲振動する。この3次モードの屈曲振動
によって、第4の枝部8−4,第5の枝部8−5,第6
の枝部8−6および第7の枝部8−7がX−Y平面に平
行にY軸方向へ反復移動する。
[Detection Operation] An AC voltage (excitation vibration signal) e is applied between the terminals T1 and T2 and between the terminals T3 and T4. Thereby, the electrode plates 9-1 and 9 of the excitation electrode 9 are formed.
-2 and the electrode plates 10-1 and 10 of the excitation electrode 10
In some cases, an electric field is generated as shown by the arrows in FIGS. 8A and 8B, and then an electric field in the opposite direction is generated. The second and third branches 8-3 are in the opposite phase (the branches 8-3 contract when the branches 8-2 expand, and then alternately so as to be in the opposite direction), and expand and contract in the Y-axis direction. I do. Due to the stretching vibration, the first branch portion 8-1 bends and vibrates in the tertiary mode (third bending mode) with an amplitude in the Y-axis direction parallel to the XY plane. The fourth branch portion 8-4, the fifth branch portion 8-5, and the sixth branch portion are caused by the bending vibration in the third mode.
The branch portion 8-6 and the seventh branch portion 8-7 repeatedly move in the Y-axis direction in parallel with the XY plane.

【0056】ここで、振動子素子8がZ軸の回りに回転
すると、コリオリの力により振動子素子8にX軸方向の
振動成分が生じ、第4の枝部8−4,第5の枝部8−
5,第6の枝部8−6および第7の枝部8−7がX軸方
向成分をもって屈曲振動する。このX軸方向成分をもつ
屈曲振動により、第4の枝部8−4,第5の枝部8−
5,第6の枝部8−6および第7の枝部8−7に回転角
速度に比例した大きさで回転方向により位相が変動した
形で、電極板(11−1),(11−2)と(11−
3),(11−4)、(12−1),(12−2)と
(12−3),(12−4)、(13−1),(13−
2)と(13−3),(13−4)、(14−1),
(14−2)と(14−3),(14−4)、それぞぞ
の間に対応した電荷が発生する。
Here, when the vibrator element 8 rotates around the Z-axis, a vibration component in the X-axis direction is generated in the vibrator element 8 by Coriolis force, and the fourth branch portion 8-4 and the fifth branch portion are formed. Part 8-
5, the sixth branch portion 8-6 and the seventh branch portion 8-7 vibrate flexibly with an X-axis direction component. Due to the bending vibration having the X-axis direction component, the fourth branch portion 8-4 and the fifth branch portion 8-
5, the electrode plates (11-1) and (11-2) are provided on the sixth branch portion 8-6 and the seventh branch portion 8-7 in such a manner that the phase varies depending on the rotation direction with a magnitude proportional to the rotational angular velocity. ) And (11-
3), (11-4), (12-1), (12-2) and (12-3), (12-4), (13-1), (13-
2) and (13-3), (13-4), (14-1),
A corresponding charge is generated between (14-2), (14-3), and (14-4).

【0057】これにより、電極板11−1、11−2、
12−1、12−2、13−3、13−4、14−3、
14−4を共通に接続した端子T5と電極板11−3、
11−4、12−3、12−4、13−1、13−2、
14−1、14−2を共通に接続した端子T6との間に
コリオリの力に応じた交流の電圧信号es が得られる。
Thus, the electrode plates 11-1, 11-2,
12-1, 12-2, 13-3, 13-4, 14-3,
14-4 and a terminal T5 commonly connected to the electrode plate 11-3;
11-4, 12-3, 12-4, 13-1, 13-2,
An AC voltage signal es corresponding to the Coriolis force is obtained between the terminal T6 and the terminal T6 to which the terminals 14-1 and 14-2 are commonly connected.

【0058】この電圧信号es の大きさによって、Z軸
の回りに作用する回転角速度の大きさを知ることができ
る。また、この電圧信号es の波形と励振振動信号eの
波形とを位相比較することにより、その位相の進み遅れ
で回転角速度の方向を知ることができる。
From the magnitude of the voltage signal es, the magnitude of the rotational angular velocity acting around the Z axis can be known. Further, by comparing the phase of the waveform of the voltage signal es with the phase of the waveform of the excitation vibration signal e, it is possible to know the direction of the rotational angular velocity based on the lead and lag of the phase.

【0059】[0059]

【発明の効果】以上説明したことから明らかなように本
発明によれば、第1発明に代表されるように、第2の枝
部をY軸方向へ伸縮振動させることより、第1の枝部を
X−Y平面に平行でY軸方向へ振幅をもって屈曲振動さ
せ、この第1の枝部の屈曲振動により第3の枝部および
第4の枝部のX−Y平面に平行なY軸方向への反復移動
を誘導しているので、第3の枝部および第4の枝部の誘
動振動のX軸方向成分がきわめて小さくなり、回転運動
が作用しない状態で検出側のヌル電圧を限りなく零にす
ることができ、すなわち振動のもれ(励振位相の回転)
を小さくして回転角速度を高精度で検出することができ
るようになる。また、この発明によれば、励振側の温特
と検出側の温特では、その2つの振動モードの頂点温度
温特のT0tおよび2次曲線の2次係数が一致しているた
め、温度変動があってもΔFは一定であり、出力変動の
発生がないことから、温度変動による零点ドリフトが防
止され、結果的に温特のよい(温度変化に優れた)角速
度センサを得ることができる。また、この発明によれ
ば、振動子素子のZ軸を高さ方向とし、Z軸の回りに作
用する回転角速度を検出する構成としているので、高さ
方向の薄型化を促進することができる。
As apparent from the above description, according to the present invention, as represented by the first invention, the first branch is expanded and contracted in the Y-axis direction to thereby provide the first branch. Part is vibrated with amplitude in the Y-axis direction parallel to the XY plane, and the bending vibration of the first branch part causes the Y-axis of the third branch part and the fourth branch part to be parallel to the XY plane. Since the repetitive movement in the direction is induced, the X-axis component of the induced vibration of the third branch and the fourth branch is extremely small, and the null voltage on the detection side is reduced in the state where the rotational movement does not act. Infinitely zero, that is, leakage of vibration (excitation phase rotation)
And the rotational angular velocity can be detected with high accuracy. Further, according to the present invention, the temperature characteristic on the excitation side and the temperature characteristic on the detection side have the same T 0t of the apex temperature characteristic of the two vibration modes and the quadratic coefficient of the quadratic curve. Even if there is a fluctuation, ΔF is constant, and there is no output fluctuation. Therefore, zero point drift due to temperature fluctuation is prevented, and as a result, an angular velocity sensor with excellent temperature characteristics (excellent in temperature change) can be obtained. . Further, according to the present invention, the Z-axis of the vibrator element is set to the height direction, and the rotational angular velocity acting around the Z-axis is detected, so that the thickness in the height direction can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の基本原理(第1発明)を説明する図
である。
FIG. 1 is a diagram illustrating a basic principle (first invention) of the present invention.

【図2】 本発明の応用例1(第2発明)を説明する図
である。
FIG. 2 is a diagram illustrating an application example 1 (second invention) of the present invention.

【図3】 本発明の応用例2(第3発明)を説明する図
である。
FIG. 3 is a diagram illustrating an application example 2 (third invention) of the present invention.

【図4】 本発明における励振側の温特Tyと検出側の
温特Txを示す図である。
FIG. 4 is a diagram showing a temperature characteristic Ty on an excitation side and a temperature characteristic Tx on a detection side in the present invention.

【図5】 基本原理に基づいて作製した角速度センサの
要部(実施の形態1)を示す図である。
FIG. 5 is a diagram showing a main part (Embodiment 1) of the angular velocity sensor manufactured based on the basic principle.

【図6】 図5における各電極の接続関係を分かり易い
ように示した結線図である。
FIG. 6 is a connection diagram showing a connection relationship of each electrode in FIG. 5 for easy understanding.

【図7】 応用例3に基づいて作製した角速度センサの
要部(実施の形態2)を示す図である。
FIG. 7 is a diagram illustrating a main part (Embodiment 2) of an angular velocity sensor manufactured based on Application Example 3.

【図8】 図7における各電極の接続関係を分かり易い
ように示した結線図である。
FIG. 8 is a connection diagram showing the connection relationship of each electrode in FIG. 7 for easy understanding.

【図9】 従来の角速度センサの要部を示す図である。FIG. 9 is a diagram showing a main part of a conventional angular velocity sensor.

【図10】 この角速度センサにおける励振位相の回転
を説明する図である。
FIG. 10 is a diagram illustrating rotation of an excitation phase in the angular velocity sensor.

【図11】 この角速度センサにおいて励振位相がθ゜
回転した場合に検出される回転角速度に誤差が生じる状
況を説明する図である。
FIG. 11 is a diagram illustrating a situation where an error occurs in a rotational angular velocity detected when the excitation phase rotates by θ ゜ in the angular velocity sensor.

【図12】 センサの出力を表示される測定値の一例を
説明する図である。
FIG. 12 is a diagram illustrating an example of a measured value indicating an output of a sensor.

【図13】 圧電振動式角速度センサの等価回路を示す
図である。
FIG. 13 is a diagram showing an equivalent circuit of a piezoelectric vibration type angular velocity sensor.

【図14】 従来の角速度センサの励振側の温特Txと
検出側の温特Tzを示す図である。
FIG. 14 is a diagram showing a temperature characteristic Tx on an excitation side and a temperature characteristic Tz on a detection side of a conventional angular velocity sensor.

【符号の説明】[Explanation of symbols]

A…振動子素子、A1…第1の枝部、A2…第2の枝
部、A3…第3の枝部、A4…第4の枝部、B…振動子
素子、B1…第1の枝部、B2…第2の枝部、B3…第
3の枝部、B4…第4の枝部、B5…第5の枝部、C…
振動子素子、C1…第1の枝部、C2…第2の枝部、C
3…第3の枝部、C4…第4の枝部、C5…第5の枝
部、C6…第6の枝部、C7…第7の枝部、4…振動子
素子(水晶板)、4−1…第1の枝部、4−2…第2の
枝部、4−3…第3の枝部、4−4…第4の枝部、5
(5−1,5−2)…励振電極、6(6−1〜6−
4),7(7−1〜7−4)…検出電極、8…振動子素
子(水晶板)、8−1…第1の枝部、8−2…第2の枝
部、8−3…第3の枝部、8−4…第4の枝部、8−5
…第5の枝部、8−6…第6の枝部、8−7…第7の枝
部、9(9−1,9−2),10(10−1,10−
2)…励振電極、11(11−1〜11−4),12
(12−1〜12−4),13(13−1〜13−
4),14(14−1〜14−4)…検出電極。
A: transducer element, A1: first branch, A2: second branch, A3: third branch, A4: fourth branch, B: transducer element, B1: first branch Part, B2: second branch, B3: third branch, B4: fourth branch, B5: fifth branch, C ...
Transducer element, C1 first branch, C2 second branch, C
Reference numeral 3 denotes a third branch, C4 denotes a fourth branch, C5 denotes a fifth branch, C6 denotes a sixth branch, C7 denotes a seventh branch, 4 denotes a vibrator element (quartz plate), 4-1 first branch, 4-2 second branch, 4-3 third branch, 4-4 fourth branch, 5
(5-1, 5-2) ... excitation electrode, 6 (6-1 to 6-)
4), 7 (7-1 to 7-4): detection electrode, 8: vibrator element (quartz plate), 8-1: first branch, 8-2: second branch, 8-3 ... 3rd branch, 8-4 ... 4th branch, 8-5
... the fifth branch, 8-6 ... the sixth branch, 8-7 ... the seventh branch, 9 (9-1, 9-2), 10 (10-1, 10-)
2) Excitation electrodes, 11 (11-1 to 11-4), 12
(12-1 to 12-4), 13 (13-1 to 13-
4), 14 (14-1 to 14-4) ... detection electrodes.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 その両端が支持固定された第1の枝部
と、この第1の枝部のほゞ中央部の枝面からこの枝面と
直交する方向に延びその先端が支持固定された第2の枝
部と、前記第1の枝部の一方の端部と中央部との間およ
び他方の端部と中央部との間の枝面から前記第2の枝部
の長手方向と平行する方向に延びた第3の枝部および第
4の枝部とを備え、前記第1の枝部の長手方向に平行な
方向をX軸方向、前記第2の枝部の長手方向に平行な方
向をY軸方向、X−Y平面と直交する方向と平行な方向
をZ軸方向とする振動子素子と、 前記第2の枝部の枝面に形成された励振電極により、交
流電圧の印加を受けて前記第2の枝部をY軸方向へ伸縮
振動させ、この励振された伸縮振動によって前記第1の
枝部をX−Y平面に平行にY軸方向へ振幅をもって屈曲
振動させ、この屈曲振動によって更に前記第3の枝部お
よび第4の枝部をX−Y平面に平行にY軸方向へ反復移
動させる励振構造と、 前記第3の枝部および第4の枝部の枝面に形成された検
出電極により、この第3の枝部および第4の枝部がX−
Y平面に平行にY軸方向へ反復移動しているとき、前記
振動子素子がZ軸の回りに回転した場合、この第3の枝
部および第4の枝部が慣性により生じるX軸方向成分に
よる屈曲振動によって生ずる電荷を取り出す検出構造と
を備えたことを特徴とする角速度センサ。
1. A first branch portion having both ends supported and fixed, and a first branch portion extending from a branch surface at a substantially central portion in a direction orthogonal to the branch surface, and a leading end fixedly supported. A second branch and a branch surface between one end and the center of the first branch and a branch between the other end and the center are parallel to the longitudinal direction of the second branch. A third branch and a fourth branch extending in a direction parallel to the X-axis direction and a direction parallel to the longitudinal direction of the first branch. An AC voltage is applied by a vibrator element having a direction parallel to the Y-axis direction and a Z-axis direction parallel to a direction orthogonal to the XY plane, and an excitation electrode formed on a branch surface of the second branch portion. In response, the second branch portion is caused to expand and contract in the Y-axis direction, and the excited expansion vibration causes the first branch portion to have an amplitude in the Y-axis direction parallel to the XY plane. An excitation structure that causes the third branch and the fourth branch to be repeatedly moved in the Y-axis direction in parallel with the XY plane by the bending vibration; The third branch portion and the fourth branch portion are formed by the detection electrodes formed on the branch surfaces of the branch portions X-.
When the vibrator element rotates around the Z-axis while repeatedly moving in the Y-axis direction in parallel with the Y-plane, the third and fourth branches are caused by inertia in the X-axis direction. A detection structure for taking out charges generated by bending vibration caused by the angular velocity sensor.
【請求項2】 その両端が支持固定された第1の枝部
と、この第1の枝部のほゞ中央部の枝面からこの枝面と
直交する一方向および他方向に延びその先端が支持固定
された第2および第3の枝部と、前記第1の枝部の一方
の端部と中央部との間および他方の端部と中央部との間
の枝面から前記第2,第3の枝部の長手方向と平行する
方向に延びた第4の枝部および第5の枝部とを備え、前
記第1の枝部の長手方向に平行な方向をX軸方向、前記
第2,第3の枝部の長手方向に平行な方向をY軸方向、
X−Y平面と直交する方向と平行な方向をZ軸方向とす
る振動子素子と、 前記第2の枝部および第3の枝部の枝面に形成された励
振電極により、交流電圧の印加を受けて前記第2の枝部
および第3の枝部をY軸方向へ伸縮振動させ、この励振
された伸縮振動によって前記第1の枝部をX−Y平面に
平行にY軸方向へ振幅をもって屈曲振動させ、この屈曲
振動によって更に前記第4の枝部および第5の枝部をX
−Y平面に平行にY軸方向へ反復移動させる励振構造
と、 前記第4の枝部および第5の枝部の枝面に形成された検
出電極により、この第4の枝部および第5の枝部がX−
Y平面に平行にY軸方向へ反復移動しているとき、前記
振動子素子がZ軸の回りに回転した場合、この第4の枝
部および第5の枝部が慣性により生じるX軸方向成分に
よる屈曲振動によって生ずる電荷を取り出す検出構造と
を備えたことを特徴とする角速度センサ。
2. A first branch portion whose both ends are supported and fixed, and a first branch portion extends from a branch surface at a substantially central portion in one direction and another direction orthogonal to the branch surface, and has a tip end. The second and third branches, which are supported and fixed, and the second and third branches from one end and the center of the first branch and from the branch between the other end and the center of the first branch. A fourth branch and a fifth branch extending in a direction parallel to the longitudinal direction of the third branch, wherein a direction parallel to the longitudinal direction of the first branch is an X-axis direction; 2, the direction parallel to the longitudinal direction of the third branch portion is the Y-axis direction,
An AC voltage is applied by a vibrator element having a Z-axis direction parallel to a direction orthogonal to the XY plane, and excitation electrodes formed on the branch surfaces of the second branch and the third branch. Then, the second branch and the third branch are caused to stretch and vibrate in the Y-axis direction, and the excited stretch vibration causes the first branch to swing in the Y-axis direction parallel to the XY plane. And the fourth branch portion and the fifth branch portion are further moved by X.
The fourth branch and the fifth branch are formed by an excitation structure that is repeatedly moved in the Y-axis direction in parallel with the Y plane, and a detection electrode formed on a branch surface of the fourth branch and the fifth branch. Branch is X-
When the vibrator element rotates around the Z-axis while repeatedly moving in the Y-axis direction in parallel with the Y-plane, the fourth and fifth branches have an X-axis component generated by inertia. A detection structure for taking out charges generated by bending vibration caused by the angular velocity sensor.
【請求項3】 その両端が支持固定された第1の枝部
と、この第1の枝部のほゞ中央部の枝面からこの枝面と
直交する一方向および他方向に延びその先端が支持固定
された第2および第3の枝部と、前記第1の枝部の一方
の端部と中央部との間の枝面から前記第2,第3の枝部
の長手方向と平行する一方向および他方向に延びた第4
の枝部および第5の枝部と、前記第1の枝部の他方の端
部と中央部との間の枝面から前記第2,第3の枝部の長
手方向と平行する一方向および他方向に延びた第6の枝
部および第7の枝部とを備え、前記第1の枝部の長手方
向に平行な方向をX軸方向、前記第2,第3の枝部の長
手方向に平行な方向をY軸方向、X−Y平面と直交する
方向と平行な方向をZ軸方向とする振動子素子と、 前記第2の枝部および第3の枝部の枝面に形成された励
振電極により、交流電圧の印加を受けて前記第2の枝部
および第3の枝部をY軸方向へ伸縮振動させ、この励振
した伸縮振動によって前記第1の枝部をX−Y平面に平
行にY軸方向へ振幅をもって屈曲振動させ、この屈曲振
動によって更に前記第4の枝部,第5の枝部,第6の枝
部および第7の枝部をX−Y平面に平行にY軸方向へ反
復移動させる励振構造と、 前記第4の枝部,第5の枝部,第6の枝部および第7の
枝部の枝面に形成された検出電極により、この第4の枝
部,第5の枝部,第6の枝部および第7の枝部がX−Y
平面に平行にY軸方向へ反復移動しているとき、前記振
動子素子がZ軸の回りに回転した場合、この第4の枝
部,第5の枝部,第6の枝部および第7の枝部が慣性に
より生じるX軸方向成分による屈曲振動によって生ずる
電荷を取り出す検出構造とを備えたことを特徴とする角
速度センサ。
3. A first branch portion whose both ends are supported and fixed, and a first branch portion extends from a branch surface at a substantially central portion in one direction and another direction orthogonal to the branch surface, and has a tip end. The second and third branches supported and fixed, and a branch surface between one end and the center of the first branch is parallel to the longitudinal direction of the second and third branches. Fourth extending in one direction and the other
And a fifth branch, and a direction parallel to the longitudinal direction of the second and third branches from a branch surface between the other end and the center of the first branch. A sixth branch and a seventh branch extending in the other direction, wherein a direction parallel to a longitudinal direction of the first branch is an X-axis direction, and a longitudinal direction of the second and third branches is A transducer element having a direction parallel to the Y-axis direction and a direction parallel to the direction orthogonal to the XY plane being a Z-axis direction; and a vibrator element formed on a branch surface of the second branch portion and the third branch portion. The second branch portion and the third branch portion are caused to expand and contract in the Y-axis direction by receiving an AC voltage from the excitation electrode, and the first branch portion is moved in the XY plane by the excited expansion and contraction vibration. And the fourth, fifth, sixth and seventh branches are further caused by the bending vibration with an amplitude in the Y-axis direction in parallel to An excitation structure for repeatedly moving in the Y-axis direction in parallel with the XY plane; and detection formed on the branch surfaces of the fourth, fifth, sixth, and seventh branches. The electrodes cause the fourth, fifth, sixth and seventh branches to be XY.
When the vibrator element rotates around the Z-axis while repeatedly moving in the Y-axis direction parallel to the plane, the fourth branch, the fifth branch, the sixth branch, and the seventh branch are rotated. A detection structure for taking out charges generated by bending vibration caused by an X-axis direction component caused by inertia.
JP13502098A 1998-05-18 1998-05-18 Angular velocity sensor Expired - Fee Related JP3734955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13502098A JP3734955B2 (en) 1998-05-18 1998-05-18 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13502098A JP3734955B2 (en) 1998-05-18 1998-05-18 Angular velocity sensor

Publications (2)

Publication Number Publication Date
JPH11325911A true JPH11325911A (en) 1999-11-26
JP3734955B2 JP3734955B2 (en) 2006-01-11

Family

ID=15142064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13502098A Expired - Fee Related JP3734955B2 (en) 1998-05-18 1998-05-18 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JP3734955B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050751A (en) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd Angular velocity sensor
JP2006125917A (en) * 2004-10-27 2006-05-18 Kyocera Kinseki Corp Angular velocity sensor
JP2008003017A (en) * 2006-06-26 2008-01-10 Nec Tokin Corp Piezo-electric single crystal vibrator and piezoelectric vibrating gyroscope

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992512B2 (en) 2007-03-30 2012-08-08 Tdk株式会社 Angular velocity sensor element and angular velocity sensor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050751A (en) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd Angular velocity sensor
JP2006125917A (en) * 2004-10-27 2006-05-18 Kyocera Kinseki Corp Angular velocity sensor
JP2008003017A (en) * 2006-06-26 2008-01-10 Nec Tokin Corp Piezo-electric single crystal vibrator and piezoelectric vibrating gyroscope

Also Published As

Publication number Publication date
JP3734955B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
JP3870895B2 (en) Angular velocity sensor
US6089089A (en) Multi-element micro gyro
US6230563B1 (en) Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability
JP5649972B2 (en) Yaw rate sensor
JP4719751B2 (en) Vibration micro-mechanical sensor for angular velocity
JP3029001B2 (en) Vibrator
JP3307906B2 (en) Micro gyroscope
JP2000009474A (en) Angular velocity sensor
JPH11337345A (en) Vibratory microgyrometer
JPH1054725A (en) Angular velocity detecting device
JPH0791958A (en) Angular velocity sensor
JP2000074673A (en) Compound movement sensor
JPH085382A (en) Angular-velocity sensor
JP2012149961A (en) Vibration gyro
JP3734955B2 (en) Angular velocity sensor
JP2002213962A (en) Angular velocity sensor and its manufacturing method
JP3756668B2 (en) Compound sensor
US5675083A (en) Vibrating gyroscope having divided detection elements
JP3561135B2 (en) Angular velocity sensor
JPH10267658A (en) Vibration-type angular velocity sensor
JP2003194543A (en) Angular velocity sensor
JP3419999B2 (en) Angular velocity sensor
Seok et al. Design, analysis, and experimental results of micromachined single-structure triaxis vibratory gyroscope with advanced coupling mechanism
JP2001241952A (en) Angular velocity sensor
JP2007178300A (en) Tuning-fork type vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees