JPH11325863A - Straightness measurement method using diffraction grating and device therefor - Google Patents

Straightness measurement method using diffraction grating and device therefor

Info

Publication number
JPH11325863A
JPH11325863A JP13797298A JP13797298A JPH11325863A JP H11325863 A JPH11325863 A JP H11325863A JP 13797298 A JP13797298 A JP 13797298A JP 13797298 A JP13797298 A JP 13797298A JP H11325863 A JPH11325863 A JP H11325863A
Authority
JP
Japan
Prior art keywords
light
diffracted light
order diffracted
diffraction grating
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13797298A
Other languages
Japanese (ja)
Inventor
Kimiyuki Mitsui
公之 三井
Shin Asano
伸 浅野
Takayuki Goto
崇之 後藤
Osamu Hasegawa
修 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13797298A priority Critical patent/JPH11325863A/en
Publication of JPH11325863A publication Critical patent/JPH11325863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a straightness measurement method and the device for improving the signal-to-noise ratio of observation signals, being hardly affected of peripheral disturbance light, and facilitating optical axis adjustment and the assembly of an optical system. SOLUTION: In this measurement method for matching the moving direction of a linear moving mechanism 8 and the normal line of the working surface of a diffraction grating 6 installed on the mechanism, making coherent light emitted from a light source 1 be incident parallelly to the normal line, making +1st order and -1st order diffracted light from the diffraction grating into parallel light in a paralleling optical system 10, then obtaining interference signals by overlapping both of the diffracted light on a photodetector 18 by an interference optical system, and detecting the straightness of the moving mechanism by the phase change of the interference signals, the difference of the number of times of reflection by a mirror or the like until both of the diffracted light after being made into the parallel light reach the photodetector 18 is turned to the odd-number of times. Of the condition is satisfied, regardless of the number of the mirrors inserted in the middle, even when the linear moving mechanism 8 is moved, the optical axes of both of the diffracted light 9a and 9b are shifted in the same direction without separating from each other while keeping a matched state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、直線移動機構の真
直度測定方法及びその装置に関する。詳しくは、半導体
製造装置、各種工作機械、測定器等の直線移動機構を有
する装置全般に関わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring straightness of a linear moving mechanism. More specifically, the present invention relates to all devices having a linear moving mechanism, such as a semiconductor manufacturing device, various machine tools, and a measuring instrument.

【0002】[0002]

【従来の技術】回折格子を用いて直線移動機構の真直度
を測定する方法としては、従来、本発明者らによる公知
例がある(特願平6−239894号)。以下、図3を
用いて従来の技術について説明する。
2. Description of the Related Art As a method for measuring the straightness of a linear moving mechanism using a diffraction grating, there is a known example by the present inventors (Japanese Patent Application No. 6-239894). Hereinafter, a conventional technique will be described with reference to FIG.

【0003】図3に示すように、光源1から、直交する
偏光面、p偏光及びs偏光を有し、かつ、前記p偏光
(周波数f1)とs偏光(周波数f2)の周波数がわず
かに異なった光29を出射し、ビームスプリッタ3によ
って光29a及び光29bに2分割し、そのうちの光2
9aを、偏光軸が適当に調整された偏光子4に通すこと
により、前記p及びs両偏光成分の偏光面を一致させ
る。
As shown in FIG. 3, a light source 1 has orthogonal polarization planes, p-polarized light and s-polarized light, and the frequencies of the p-polarized light (frequency f1) and the s-polarized light (frequency f2) are slightly different. The light 29 is emitted and split into two by a beam splitter 3 into a light 29a and a light 29b.
By passing 9a through the polarizer 4 whose polarization axis is appropriately adjusted, the polarization planes of both the p and s polarization components are matched.

【0004】これにより、光検出器5では、干渉ビート
信号(周波数|f1−f2|)が発生し、これを参照信
号とする。直線移動機構8の移動方向と回折格子6の回
折格子加工面の法線方向とが一致するように、図4に示
すように、前記直線移動機構8のテーブル7上に前記回
折格子6を設置し、また、前記光29bを、その光軸が
前記回折格子6の回折格子加工面の法線方向と一致する
ように前記回折格子6に入射させる。
As a result, the photodetector 5 generates an interference beat signal (frequency | f1-f2 |), which is used as a reference signal. As shown in FIG. 4, the diffraction grating 6 is set on the table 7 of the linear moving mechanism 8 so that the moving direction of the linear moving mechanism 8 matches the normal direction of the diffraction grating processing surface of the diffraction grating 6. Then, the light 29b is made incident on the diffraction grating 6 such that its optical axis coincides with the normal direction of the diffraction grating processing surface of the diffraction grating 6.

【0005】これによって回折格子6からは+1次回折
光9a及び−1次回折光9bが発生するが、両回折光9
a,9bをバイプリズム10によって平行化する。平行
化された後の+1次回折光9a及び−1次回折光9bの
うち、−1次回折光9bは、全反射ミラ−11bで反射
された後、偏光子12bを通過することでs偏光成分の
みが選択される。一方、+1次回折光9aは、全反射ミ
ラー11aで反射された後、偏光子12aを通過するこ
とでp偏光成分のみが選択される。
As a result, a + 1st-order diffracted light 9a and a -1st-order diffracted light 9b are generated from the diffraction grating 6.
a, 9 b are parallelized by the biprism 10. Of the + 1st-order diffracted light 9a and the -1st-order diffracted light 9b after being collimated, the -1st-order diffracted light 9b is reflected by the total reflection mirror 11b and then passes through the polarizer 12b so that only the s-polarized light component is emitted. Selected. On the other hand, after the + 1st-order diffracted light 9a is reflected by the total reflection mirror 11a and passes through the polarizer 12a, only the p-polarized light component is selected.

【0006】さらに、前記p偏光成分は、1/2波長板
13を通過することで、その偏光軸が前述のs偏光成分
と同一の方向となるように調整され、その後、全反射ミ
ラー14で反射されてハーフミラー15に達する。以上
から、ハーフミラー15に達した+1次回折光9a及び
−1次回折光9bは、偏光軸が一致した光線束となって
いるが、両者の光軸は直線移動機構8の移動に伴って互
いに離れる方向にずれていくため、このままでは、両回
折光9a,9bが重なり合った状態、すなわち干渉状態
を維持することができない。
Further, the p-polarized component passes through a half-wave plate 13 so that its polarization axis is adjusted to be in the same direction as the above-mentioned s-polarized component. The light is reflected and reaches the half mirror 15. From the above, the + 1st-order diffracted light 9a and the -1st-order diffracted light 9b that have reached the half mirror 15 are light beams having the same polarization axis, but both optical axes move away from each other as the linear movement mechanism 8 moves. Therefore, the state where the two diffracted lights 9a and 9b overlap each other, that is, the interference state cannot be maintained.

【0007】そこで、ハーフミラー15の後段には集光
レンズ16を配し、直線移動機構8が移動しても、両回
折光9a,9bが常に集光レンズ16の焦点位置で重な
るようにし、直線移動機構8が移動しても両回折光9
a,9bが干渉できるようにしている。ここで、両回折
光9a,9bの光軸は、集光レンズ16の焦点位置で、
ある角度を持って重なり合うため、干渉光は焦点面上に
おいて位相分布を持つことになる。
Therefore, a condenser lens 16 is disposed downstream of the half mirror 15 so that the two diffracted lights 9a and 9b always overlap at the focal position of the condenser lens 16 even when the linear moving mechanism 8 moves. Even if the linear movement mechanism 8 moves, both the diffracted light 9
a and 9b can interfere with each other. Here, the optical axis of the two diffracted lights 9a and 9b is the focal position of the condenser lens 16,
Since they overlap at a certain angle, the interference light has a phase distribution on the focal plane.

【0008】これを光検出器18で受けた場合、上述し
た位相分布によって干渉信号が打ち消し合い、干渉信号
を検出することができなくなる。このため、光検出器1
8の前段には空間フィルタ17を配し、光検出器18に
入射する干渉光の位相分布に対し、空間的な制限を与
え、干渉信号が光検出器18で測定できるようにしてい
る。このようにして光検出器18で得られた両回折光9
a,9bの干渉信号を観測信号とする。前記参照信号に
対する前記観測信号の位相変化φは、前記回折格子6の
格子間隔dならびに面内変位量δyとの間に次式に示す
関係が成り立つ。
When this is received by the photodetector 18, the interference signals cancel each other out due to the phase distribution described above, and it becomes impossible to detect the interference signals. Therefore, the photodetector 1
A spatial filter 17 is arranged at the front stage of 8 to spatially limit the phase distribution of the interference light incident on the photodetector 18 so that the interference signal can be measured by the photodetector 18. The two diffracted lights 9 thus obtained by the photodetector 18
Let the interference signals a and 9b be observation signals. The following equation holds between the phase change φ of the observation signal and the reference signal with respect to the grating interval d of the diffraction grating 6 and the in-plane displacement δy.

【0009】φ=2×2π(δy/d)格子間隔dは既
知の量であるため、位相変化φを演算回路19で求める
ことによって、回折格子の面内変位量δy、すなわち直
線移動機構8の移動方向とは直交した変位量である真直
度が、上述した装置構成によって求めることができる。
Φ = 2 × 2π (δy / d) Since the lattice spacing d is a known quantity, the in-plane displacement δy of the diffraction grating, that is, the linear moving mechanism 8 Can be obtained by the above-described apparatus configuration.

【0010】[0010]

【発明が解決しようとする課題】従来例における装置構
成では、上述したように、直線移動機構8の移動に伴
い、+1次回折光9a、−1次回折光9bが互いに離れ
る方向に移動するため、両回折光の光軸が一致しなくな
り、観測信号が得られなくなるため、集光レンズ16に
よって両回折光9a,9bを集光レンズ16の焦点位置
で干渉させるようにしている。
In the conventional device configuration, as described above, the + 1st-order diffracted light 9a and the -1st-order diffracted light 9b move in the direction away from each other with the movement of the linear moving mechanism 8, so that both Since the optical axes of the diffracted light do not coincide with each other and an observation signal cannot be obtained, the condensing lens 16 causes the two diffracted lights 9a and 9b to interfere at the focal position of the condensing lens 16.

【0011】しかし、従来の方法(特願平6−2398
94号)を用いた場合、直線移動機構8の移動量を大き
くすると、図3に示すように、前記両回折光9a,9b
の交差角度が大きくなる結果、空間的な位相分布が大き
くなり、光検出器18で検出される観測信号のコントラ
ストが低下する。このため、観測信号の信号対雑音比が
悪くなり、真直度を測定できる直線移動機構8の移動量
に限界が生じるという問題があった。
However, the conventional method (Japanese Patent Application No. Hei 6-2398)
No. 94), when the moving amount of the linear moving mechanism 8 is increased, as shown in FIG. 3, the two diffracted lights 9a and 9b
As a result, the spatial phase distribution increases, and the contrast of the observation signal detected by the photodetector 18 decreases. For this reason, the signal-to-noise ratio of the observation signal is deteriorated, and there is a problem that the movement amount of the linear movement mechanism 8 that can measure the straightness is limited.

【0012】さらに、従来例では、空間フィルタ17を
光検出器18の前段に用いているため、光検出器18に
入射する観測信号の強度も非常に微弱となり、周辺外乱
光の影響を受けやすいという問題があった。このため、
光検出器18の周辺には、外乱光を遮蔽するための遮蔽
板を設置しなければならず、光軸調整及び光学系の組立
てが非常に困難であるという問題があった。
Further, in the conventional example, since the spatial filter 17 is used in the preceding stage of the photodetector 18, the intensity of the observation signal incident on the photodetector 18 becomes very weak, and is susceptible to ambient disturbance light. There was a problem. For this reason,
A shielding plate for shielding disturbance light must be provided around the photodetector 18, and there is a problem that it is very difficult to adjust the optical axis and assemble the optical system.

【0013】[0013]

【課題を解決するための手段】上述した問題点を解決す
る本発明の請求項1に係る真直度測定方法は、直線移動
機構の移動方向が、回折格子の加工面法線と一致するよ
うに、前記直線移動機構上に前記回折格子を設置し、可
干渉性を有する光を発する光源から出射した光を、前記
回折格子の法線に対して平行となるように入射させた
後、前記回折格子から発生した+1次回折光及び−1次
回折光を平行化光学系によって平行化し、さらに、平行
化された後の+1次回折光及び−1次回折光を干渉光学
系によって光検出器上で重ね合わせ干渉信号を取得する
ことで、前記直線移動機構の移動方向とは直交する方向
の変位量(真直度)を、前記回折格子の面内方向変位に
変換し、これにより発生する前記干渉信号の位相変化に
よって前記真直度を検出する真直度測定方法ならびに装
置において、前記平行化光学系に入射した前記+1次回
折光及び−1次回折光が前記光検出器に至るまでの、ミ
ラー等による反射回数の差が奇数回となるようにしたこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a straightness measuring method for solving the above-mentioned problems, in which a moving direction of a linear moving mechanism coincides with a normal to a processing surface of a diffraction grating. Installing the diffraction grating on the linear movement mechanism, and causing light emitted from a light source that emits coherent light to be incident so as to be parallel to the normal to the diffraction grating, and then diffracting the light. The + 1st order diffracted light and the -1st order diffracted light generated from the grating are collimated by a collimating optical system, and the + 1st order diffracted light and the -1st order diffracted light after being collimated are overlapped on a photodetector by an interference optical system. By acquiring the signal, the amount of displacement (straightness) in the direction orthogonal to the moving direction of the linear moving mechanism is converted into the in-plane displacement of the diffraction grating, and the phase change of the interference signal generated thereby The straightness In the straightness measuring method and apparatus to be output, the difference in the number of times of reflection by a mirror or the like until the + 1st-order diffracted light and the -1st-order diffracted light incident on the collimating optical system reach the photodetector is an odd number. It is characterized by the following.

【0014】また、上述した問題点を解決する本発明の
請求項2に係る真直度測定装置は、直線移動機構の移動
方向が、回折格子加工面の法線と一致するように、前記
直線移動機構上に前記回折格子を設置し、可干渉性を有
する光を発する光源から出射した光を、前記回折格子の
法線に対して平行となるように入射させた後、前記回折
格子から発生した+1次回折光及び−1次回折光を平行
化光学系によって平行化し、さらに、平行化された後の
+1次回折光及び−1次回折光を干渉光学系によって光
検出器上で重ね合わせ干渉信号を取得することで、前記
直線移動機構の移動方向とは直交する方向の変位量を、
前記回折格子の面内方向変位に変換し、これにより発生
した前記干渉信号の位相変化によって前記真直度を検出
する真直度測定装置において、前記平行化光学系を通過
後の前記+1次回折光及び1次回折光が前記光検出器に
至るまでの反射回数の差が奇数回とする光学系を設けた
ことを特徴とする。
According to a second aspect of the present invention, there is provided a straightness measuring device for solving the above-mentioned problems, wherein the linear movement mechanism is arranged such that a moving direction of the linear movement mechanism coincides with a normal line of a diffraction grating processing surface. The diffraction grating is installed on a mechanism, and light emitted from a light source that emits light having coherence is incident on the mechanism so as to be parallel to a normal line of the diffraction grating, and then generated from the diffraction grating. The + 1st-order diffracted light and the -1st-order diffracted light are collimated by a collimating optical system, and the + 1st-order diffracted light and the -1st-order diffracted light that have been collimated are superimposed on a photodetector by an interference optical system to obtain an interference signal. By doing so, the displacement amount in the direction orthogonal to the moving direction of the linear moving mechanism,
In a straightness measuring device that converts the diffraction grating into an in-plane direction displacement and detects the straightness based on a phase change of the interference signal generated thereby, the + 1st-order diffracted light and 1 after passing through the parallelizing optical system. An optical system is provided in which the difference in the number of reflections until the next-order diffracted light reaches the photodetector is an odd number.

【0015】〔作用〕本発明による真直度測定方法及び
装置を用いれば、直線移動機構が移動しても、+1次回
折光及び1次回折光の光軸は離れることなく、常に光軸
を一致させたまま同一方向に移動していく。このため、
従来例では必要不可欠であった集光レンズや空間フィル
タを使うことなく、両回折光の光軸を光検出器の光電面
の法線に一致させるだけで、容易に観測信号を得ること
が可能となる。
[Operation] By using the straightness measuring method and apparatus according to the present invention, even if the linear movement mechanism moves, the optical axes of the + 1st-order diffracted light and the 1st-order diffracted light do not separate, and the optical axes always coincide. It moves in the same direction as it is. For this reason,
Observation signals can be easily obtained by simply aligning the optical axes of both diffracted lights with the normal to the photocathode's photocathode without using a condensing lens or spatial filter, which was indispensable in the conventional example. Becomes

【0016】これより、本発明による方法及び装置構成
を用いると、以下に示す効果を生じる。 ・両回折光の光軸が、直線移動機構が移動しても常に一
致しているため、原理的には直線移動機構がどれだけ移
動しても観測信号の信号対雑音比を劣化させることがな
い。 ・空間フィルタを用いることなく、観測信号が得られる
ため、観測信号の強度の向上が図れると共に、光検出器
周辺に設置していた遮蔽板等が不必要となる。 ・空間フィルタを使用しないため、光学系の調整、組立
てが容易になる。
Thus, using the method and apparatus configuration according to the present invention produces the following effects.・ Because the optical axes of both diffracted lights are always the same even if the linear movement mechanism moves, in principle, the signal-to-noise ratio of the observed signal can be degraded no matter how much the linear movement mechanism moves. Absent. -Observation signals can be obtained without using a spatial filter, so that the intensity of the observation signals can be improved, and a shield plate or the like installed around the photodetector is unnecessary. -Since no spatial filter is used, adjustment and assembly of the optical system are facilitated.

【0017】[0017]

【発明の実施の形態】以下、本発明による真直度測定装
置について、図面に示す実施例を参照して詳細に説明す
る。本発明の一実施例に係る真直度測定装置を図1に示
す。図1において、従来例と同一構成要素については、
同一符号を付して重複する説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a straightness measuring apparatus according to the present invention will be described in detail with reference to the embodiments shown in the drawings. FIG. 1 shows a straightness measuring apparatus according to an embodiment of the present invention. In FIG. 1, the same components as those in the conventional example are
The same reference numerals are given and duplicate descriptions are omitted.

【0018】詳しくは、参照信号の検出方法については
従来例と同一であり、また、観測信号の検出方法につい
ては、+1次回折光9aが全反射ミラー14に入射する
まで、また、−1次回折光9bが偏光子12bを通過す
るまでは、従来例と何ら変わるところはない。
More specifically, the method of detecting the reference signal is the same as that of the conventional example, and the method of detecting the observation signal is the same as that of the first-order diffracted light 9a until the + 1st-order diffracted light 9a enters the total reflection mirror 14. Until 9b passes through polarizer 12b, there is no difference from the conventional example.

【0019】本実施例では、全反射ミラー14に入射
し、ここで反射された+1次回折光9aは、ハーフミラ
ー31を通過した後、全反射ミラー32で反射され、再
びハーフミラー31に戻る。ハーフミラー31に戻って
きた+1次回折光9aは、ここで反射されて光検出器1
8に向かう。一方、偏光子12bを通過した−1次回折
光9bはハーフミラー31をそのまま通過し、光検出器
18に向かう。
In this embodiment, the + 1st-order diffracted light 9a incident on the total reflection mirror 14 and reflected there is reflected by the total reflection mirror 32 after passing through the half mirror 31, and returns to the half mirror 31 again. The + 1st-order diffracted light 9a that has returned to the half mirror 31 is reflected here and is
Go to 8. On the other hand, the -1st-order diffracted light 9b that has passed through the polarizer 12b passes through the half mirror 31 as it is, and travels toward the photodetector 18.

【0020】このとき、ハーフミラー31で反射あるい
は通過した+1次回折光9aと−1次回折光9bの光軸
は一致するように調整されている。また、バイプリズム
10を通過後、光検出器18に至るまでの+1次回折光
9aのミラー等による反射回数は、全反射ミラー11a
→全反射ミラー14→全反射ミラー32→ハーフミラー
31の4回であるのに対し、−1次回折光9bの反射回
数は、全反射ミラー11bによる1回だけであり、両回
折光9a,9bの反射回数の差は奇数回となっている。
At this time, the optical axes of the + 1st-order diffracted light 9a and the -1st-order diffracted light 9b reflected or passed by the half mirror 31 are adjusted to coincide. The number of times of reflection of the + 1st-order diffracted light 9a by the mirror or the like after passing through the biprism 10 and reaching the photodetector 18 is the total reflection mirror 11a.
While the total reflection mirror 14 → the total reflection mirror 32 → the half mirror 31 is four times, the number of times of reflection of the −1st-order diffracted light 9b is only one time by the total reflection mirror 11b, and both the diffracted lights 9a and 9b The difference in the number of reflections is odd.

【0021】上述の条件が満足された場合には、途中に
挿入されたミラーの枚数に関わらず、直線移動機構8が
移動しても、両回折光9a,9bの光軸は一致した状態
を維持したまま、互いに離れることなく同一方向にずれ
ていく。ハーフミラー31を反射あるいは通過した両回
折光9a,9bは、その後、集光レンズ33を通り、集
光レンズ33の焦点面に光電面を一致させて配置された
光検出器18上で干渉し、観測信号が得られる。
When the above condition is satisfied, the optical axes of the two diffracted lights 9a and 9b are aligned even if the linear moving mechanism 8 moves, regardless of the number of mirrors inserted in the middle. While maintaining, they shift in the same direction without separating from each other. The two diffracted lights 9a and 9b reflected or passed through the half mirror 31 then pass through the condenser lens 33 and interfere on the photodetector 18 arranged with the photoelectric surface coincident with the focal plane of the condenser lens 33. , An observation signal is obtained.

【0022】光検出器8の前段に集光レンズ33を配置
する目的は、直線移動機構8の移動によって、両回折光
9a,9bの光軸は一致した状態を維持するものの、同
一方向にずれていくため、いずれは光検出器18の光電
面から両回折光9a,9bが外れてしまうことを防ぐこ
とにある。従って、大面積の光電面を有する光検出器を
用いる場合には、前記集光レンズ33は不要となる。つ
まり、前記集光レンズ33は、本発明における本質的な
構成要素とはならない。
The purpose of arranging the condenser lens 33 in front of the photodetector 8 is to move the linear movement mechanism 8 so that the optical axes of the two diffracted lights 9a and 9b are kept coincident, but are shifted in the same direction. Therefore, the purpose is to prevent the two diffracted lights 9a and 9b from deviating from the photocathode of the photodetector 18. Therefore, when a photodetector having a large-area photocathode is used, the condenser lens 33 becomes unnecessary. That is, the condenser lens 33 is not an essential component in the present invention.

【0023】以上のようにして得られた観測信号の強度
は、従来例において0.5mVと非常に微弱であったの
に対し、80mVにまで向上させることができ、信号対
雑音比を飛躍的に改善することができると同時に、光学
系の調整・組立てが非常に容易になった。また、従来例
では、直線移動機構8が30mm移動すると、集光レン
ズ16による両回折光9a,9bの交差角が大きくな
り、干渉光の位相分布が広がるため、観測信号のコント
ラストが低下する。
The intensity of the observation signal obtained as described above is very weak, 0.5 mV in the conventional example, but can be increased to 80 mV, and the signal-to-noise ratio is dramatically increased. At the same time, the adjustment and assembly of the optical system became very easy. Further, in the conventional example, when the linear movement mechanism 8 moves by 30 mm, the intersection angle between the two diffracted lights 9a and 9b by the condenser lens 16 increases, and the phase distribution of the interference light broadens, so that the contrast of the observation signal decreases.

【0024】このため、従来例では、真直度が測定可能
な直線移動機構8の移動量に限界があったが、本発明に
よれば、以上のような観測信号のコントラストの低下は
認められず、原理的には直線移動機構8の移動量に制約
を与えることなく、真直度が測定できることが明らかに
なった。図2に、演算回路19により参照信号と観測信
号の位相差から評価した直線移動機構8の真直度を示
す。
For this reason, in the conventional example, there was a limit to the amount of movement of the linear movement mechanism 8 capable of measuring straightness. However, according to the present invention, such a decrease in the contrast of the observation signal as described above was not recognized. It has been found that straightness can be measured without restricting the amount of movement of the linear movement mechanism 8 in principle. FIG. 2 shows the straightness of the linear moving mechanism 8 evaluated by the arithmetic circuit 19 from the phase difference between the reference signal and the observation signal.

【0025】また、比較のため、直線移動機構8上に基
準ミラーを載置し、直線移動機構8の移動方向とは直交
する方向から、レーザ測長器(ZYGO社 AXIOM
2/20)によって前記基準ミラーの位置を計測した結
果を併せて示す。本結果をみると、本発明によって評価
した真直度は、レーザ測長器によって評価した結果と良
く一致しており、本発明の有効性が確認できた。
For comparison, a reference mirror is mounted on the linear moving mechanism 8 and a laser length measuring device (AXIOM manufactured by ZYGO) is set in a direction perpendicular to the moving direction of the linear moving mechanism 8.
2/20) also shows the result of measuring the position of the reference mirror. Looking at the results, the straightness evaluated by the present invention was in good agreement with the result evaluated by the laser length measuring device, and the effectiveness of the present invention was confirmed.

【0026】[0026]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明の請求項1に係る真直度測定方法は、
直線移動機構の移動方向が、回折格子の加工面法線と一
致するように、前記直線移動機構上に前記回折格子を設
置し、可干渉性を有する光を発する光源から出射した光
を、前記回折格子の法線に対して平行となるように入射
させた後、前記回折格子から発生した+1次回折光及び
−1次回折光を平行化光学系によって平行化し、さら
に、平行化された後の+1次回折光及び−1次回折光を
干渉光学系によって光検出器上で重ね合わせ干渉信号を
取得することで、前記直線移動機構の移動方向とは直交
する方向の変位量を、前記回折格子の面内方向変位に変
換し、これにより発生する前記干渉信号の位相変化によ
って前記真直度を検出する真直度測定方法ならびに装置
において、前記平行化光学系に入射した前記+1次回折
光及び−1次回折光が前記光検出器に至るまでの、ミラ
ー等による反射回数の差が奇数回となるようにしたた
め、両回折光の光軸が、直線移動機構が移動しても常に
一致しているため、原理的には直線移動機構がどれだけ
移動しても観測信号の信号対雑音比を劣化させることが
ない。
As described above in detail with reference to the embodiments, the straightness measuring method according to the first aspect of the present invention includes:
The direction of movement of the linear movement mechanism is such that the diffraction grating is installed on the linear movement mechanism so as to coincide with the normal to the processing surface of the diffraction grating, and light emitted from a light source that emits light having coherence, After being incident so as to be parallel to the normal of the diffraction grating, the + 1st-order diffraction light and the -1st-order diffraction light generated from the diffraction grating are collimated by a collimating optical system, and further, the + 1st-order diffracted light is collimated. By superimposing the first-order diffracted light and the minus first-order diffracted light on the photodetector by the interference optical system and obtaining an interference signal, the displacement amount in the direction orthogonal to the moving direction of the linear moving mechanism can be changed within the plane of the diffraction grating. In the straightness measuring method and the straightness measuring method for converting the directional displacement into a directional displacement and detecting the straightness based on a phase change of the interference signal generated thereby, the + 1st-order diffracted light and the -1st-order diffracted light incident on the parallelizing optical system. Since the difference in the number of reflections by a mirror or the like until reaching the photodetector is set to an odd number, the optical axes of both diffracted lights always coincide with each other even if the linear movement mechanism moves. No matter how much the linear movement mechanism moves, the signal-to-noise ratio of the observation signal does not deteriorate.

【0027】また、本発明の請求項2に係る真直度測定
装置は、直線移動機構の移動方向が、回折格子加工面の
法線と一致するように、前記直線移動機構上に前記回折
格子を設置し、可干渉性を有する光を発する光源から出
射した光を、前記回折格子の法線に対して平行となるよ
うに入射させた後、前記回折格子から発生した+1次回
折光及び−1次回折光を平行化光学系によって平行化
し、さらに、平行化された後の+1次回折光及び−1次
回折光を干渉光学系によって光検出器上で重ね合わせ干
渉信号を取得することで、前記直線移動機構の移動方向
とは直交する方向の変位量を、前記回折格子の面内方向
変位に変換し、これにより発生した前記干渉信号の位相
変化によって前記真直度を検出する真直度測定装置にお
いて、前記平行化光学系を通過後の前記+1次回折光及
び1次回折光が前記光検出器に至るまでの反射回数の差
が奇数回とする光学系を設けたため、空間フィルタを用
いることなく、観測信号が得られるため、観測信号の強
度の向上が図れると共に、光検出器周辺に設置していた
遮蔽板等が不必要となり、更に、空間フィルタを使用し
ないため、光学系の調整、組立てが容易になる。
Further, in the straightness measuring device according to a second aspect of the present invention, the diffraction grating is placed on the linear moving mechanism such that a moving direction of the linear moving mechanism coincides with a normal to a diffraction grating processing surface. Installed, the light emitted from the light source that emits coherent light, and incident so as to be parallel to the normal of the diffraction grating, then + 1st-order diffracted light and -1st-order light generated from the diffraction grating The collimated light is collimated by a collimating optical system, and the collimated + 1st-order diffracted light and -1st-order diffracted light are superimposed on a photodetector by an interference optical system to obtain an interference signal. In the straightness measuring device, which converts a displacement amount in a direction orthogonal to the moving direction into an in-plane displacement of the diffraction grating and detects the straightness by a phase change of the interference signal generated thereby, Chemical light Because an optical system is provided in which the difference in the number of reflections until the + 1st-order diffracted light and the first-order diffracted light reach the photodetector after passing through the system is an odd number, an observation signal can be obtained without using a spatial filter. In addition, the intensity of the observation signal can be improved, and a shield plate or the like installed around the photodetector is not required. Further, since a spatial filter is not used, adjustment and assembly of the optical system become easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における真直度測定装置の構
成図である。
FIG. 1 is a configuration diagram of a straightness measuring device according to an embodiment of the present invention.

【図2】本発明による真直度測定装置によって直線移動
機構の真直度を評価した結果を示すグラフである。
FIG. 2 is a graph showing a result of evaluating the straightness of a linear moving mechanism by a straightness measuring device according to the present invention.

【図3】従来例における真直度測定装置の構成図であ
る。
FIG. 3 is a configuration diagram of a straightness measuring device in a conventional example.

【図4】直線移動機構のテーブル及び回折格子の説明図
である。
FIG. 4 is an explanatory diagram of a table and a diffraction grating of the linear movement mechanism.

【符号の説明】[Explanation of symbols]

1 光源 3 ハーフミラー 4 偏光子 5 光検出器 6 回折格子 7 テーブル 8 直線移動機構 9 1次回折光 10 バイプリズム 11 全反射ミラー 12 偏光子 13 1/2波長板 14 全反射ミラー 15 ハーフミラー 16 集光レンズ 17 空間フィルタ 18 光検出器 19 演算回路 29 光 31 ハーフミラー 32 全反射ミラー 33 集光レンズ Reference Signs List 1 light source 3 half mirror 4 polarizer 5 photodetector 6 diffraction grating 7 table 8 linear movement mechanism 9 first-order diffracted light 10 biprism 11 total reflection mirror 12 polarizer 13 1/2 wavelength plate 14 total reflection mirror 15 half mirror 16 collection Optical lens 17 Spatial filter 18 Photodetector 19 Operation circuit 29 Light 31 Half mirror 32 Total reflection mirror 33 Condensing lens

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 崇之 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 長谷川 修 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takayuki Goto 1-8-1 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture Inside the Research Center for Mitsubishi Heavy Industries, Ltd. 8-1 Inside Mitsubishi Heavy Industries, Ltd. Basic Technology Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直線移動機構の移動方向が、回折格子加
工面の法線と一致するように、前記直線移動機構上に前
記回折格子を設置し、可干渉性を有する光を発する光源
から出射した光を、前記回折格子の法線に対して平行と
なるように入射させた後、前記回折格子から発生した+
1次回折光及び−1次回折光を平行化光学系によって平
行化し、さらに、平行化された後の+1次回折光及び−
1次回折光を干渉光学系によって光検出器上で重ね合わ
せ干渉信号を取得することで、前記直線移動機構の移動
方向とは直交する方向の変位量を、前記回折格子の面内
方向変位に変換し、これにより発生した前記干渉信号の
位相変化によって前記真直度を検出する真直度測定方法
において、前記平行化光学系を通過後の前記+1次回折
光及び−1次回折光が前記光検出器に至るまでの、ミラ
ー等による反射回数の差が奇数回になるようにしたこと
を特徴とする真直度測定方法。
1. A diffraction grating is provided on the linear moving mechanism so that a moving direction of the linear moving mechanism coincides with a normal line of a processing surface of the diffraction grating, and the light is emitted from a light source that emits coherent light. The incident light so as to be parallel to the normal line of the diffraction grating, and then +
The first-order diffracted light and the -1st-order diffracted light are collimated by the collimating optical system, and the + 1st-order diffracted light and-
The first-order diffracted light is superimposed on a photodetector by an interference optical system to obtain an interference signal, thereby converting a displacement amount in a direction orthogonal to a moving direction of the linear moving mechanism into an in-plane displacement of the diffraction grating. In the straightness measuring method for detecting the straightness based on a phase change of the interference signal generated thereby, the + 1st-order diffracted light and the -1st-order diffracted light after passing through the parallelizing optical system reach the photodetector. The straightness measuring method is characterized in that the difference in the number of reflections by a mirror or the like is odd.
【請求項2】 直線移動機構の移動方向が、回折格子加
工面の法線と一致するように、前記直線移動機構上に前
記回折格子を設置し、可干渉性を有する光を発する光源
から出射した光を、前記回折格子の法線に対して平行と
なるように入射させた後、前記回折格子から発生した+
1次回折光及び−1次回折光を平行化光学系によって平
行化し、さらに、平行化された後の+1次回折光及び−
1次回折光を干渉光学系によって光検出器上で重ね合わ
せ干渉信号を取得することで、前記直線移動機構の移動
方向とは直交する方向の変位量を、前記回折格子の面内
方向変位に変換し、これにより発生した前記干渉信号の
位相変化によって前記真直度を検出する真直度測定装置
において、前記平行化光学系を通過後の前記+1次回折
光及び1次回折光が前記光検出器に至るまでの反射回数
の差が奇数回とする光学系を設けたことを特徴とする真
直度測定装置。
2. The diffraction grating is installed on the linear movement mechanism so that the direction of movement of the linear movement mechanism coincides with the normal to the processing surface of the diffraction grating, and the light is emitted from a light source that emits coherent light. The incident light so as to be parallel to the normal line of the diffraction grating, and then +
The first-order diffracted light and the -1st-order diffracted light are collimated by the collimating optical system, and the + 1st-order diffracted light and-
The first-order diffracted light is superimposed on a photodetector by an interference optical system to obtain an interference signal, thereby converting a displacement amount in a direction orthogonal to a moving direction of the linear moving mechanism into an in-plane displacement of the diffraction grating. Then, in a straightness measuring device that detects the straightness by a phase change of the interference signal generated thereby, the + 1st-order diffracted light and the first-order diffracted light after passing through the parallelizing optical system reach the photodetector. A straightness measuring device provided with an optical system in which the difference in the number of reflections is odd.
JP13797298A 1998-05-20 1998-05-20 Straightness measurement method using diffraction grating and device therefor Pending JPH11325863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13797298A JPH11325863A (en) 1998-05-20 1998-05-20 Straightness measurement method using diffraction grating and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13797298A JPH11325863A (en) 1998-05-20 1998-05-20 Straightness measurement method using diffraction grating and device therefor

Publications (1)

Publication Number Publication Date
JPH11325863A true JPH11325863A (en) 1999-11-26

Family

ID=15211055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13797298A Pending JPH11325863A (en) 1998-05-20 1998-05-20 Straightness measurement method using diffraction grating and device therefor

Country Status (1)

Country Link
JP (1) JPH11325863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487440B1 (en) * 2013-06-05 2015-01-28 한국기계연구원 Straightness measuring apparatus for line pattern on roll and Straightness measuring method for using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487440B1 (en) * 2013-06-05 2015-01-28 한국기계연구원 Straightness measuring apparatus for line pattern on roll and Straightness measuring method for using the same

Similar Documents

Publication Publication Date Title
KR101876816B1 (en) Displacement detecting device
US8988690B2 (en) Interferometric encoder systems
US5369486A (en) Position detector for detecting the position of an object using a diffraction grating positioned at an angle
EP0689030B1 (en) Displacement measuring method and apparatus
JP4846909B2 (en) Optical encoder and diffraction grating displacement measuring method
US6937343B2 (en) Laser scanner with amplitude and phase detection
US5717488A (en) Apparatus for measuring displacement using first and second detecting means for measuring linear and rotary motion
JPH06137830A (en) Interference measuring method and its device
JP3109900B2 (en) measuring device
JPS58191907A (en) Method for measuring extent of movement
JPH06177013A (en) Position detecting device
JPH02206745A (en) Highly stable interferometer for measuring refractive index
JPH11325863A (en) Straightness measurement method using diffraction grating and device therefor
JP2000002510A (en) Displacement information measuring device
JP2773779B2 (en) Displacement measuring method and displacement measuring device using diffraction grating
JPH05126603A (en) Grating interference measuring device
JP2003035570A (en) Diffraction interference type linear scale
JP3411691B2 (en) Straightness measurement method
JP3728310B2 (en) Encoder
JPH0799325B2 (en) Minute displacement measuring method and minute displacement measuring device
JP2023136314A (en) Straightness measurement device and method
JPH0587530A (en) Interference measurement device
JPH08321452A (en) Method for evaluating alignment result and alignment equipment using the method
JPH0590125A (en) Position alignment equipment
JP2775000B2 (en) Moving amount measuring method and moving amount measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050518

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20050518

Free format text: JAPANESE INTERMEDIATE CODE: A7426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050518

A977 Report on retrieval

Effective date: 20070115

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070605

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080115

Free format text: JAPANESE INTERMEDIATE CODE: A02