JP3728310B2 - Encoder - Google Patents
Encoder Download PDFInfo
- Publication number
- JP3728310B2 JP3728310B2 JP2003350873A JP2003350873A JP3728310B2 JP 3728310 B2 JP3728310 B2 JP 3728310B2 JP 2003350873 A JP2003350873 A JP 2003350873A JP 2003350873 A JP2003350873 A JP 2003350873A JP 3728310 B2 JP3728310 B2 JP 3728310B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- measured
- diffraction grating
- diffraction
- grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Transform (AREA)
Description
本発明はエンコーダに関する。本発明は特に移動物体(スケール)に取り付けた回折格子等の微細格子列にレーザ光等の可干渉性光束を入射させ、該回折格子からの所定次数の回折光を互いに干渉させて干渉縞を形成し、該干渉縞の明暗の縞を計数することによって回折格子の移動情報、例えば移動量、移動方向、加速度、そして角加速度等を測定するロータリーエンコーダやリニアエンコーダ等のエンコーダに良好に適用できる。 The present invention relates to an encoder. In particular, the present invention makes a coherent light beam such as a laser beam incident on a fine grating array such as a diffraction grating attached to a moving object (scale), and interferes with a predetermined order of diffracted light from the diffraction grating to form interference fringes. By forming and counting the bright and dark fringes of the interference fringes, it can be favorably applied to encoders such as rotary encoders and linear encoders that measure movement information of the diffraction grating, such as movement amount, movement direction, acceleration, and angular acceleration. .
従来よりNC工作機械等における回転物体の回転量や回転方向等の回転情報を高精度に、例えばサブミクロンの単位で測定することのできる測定器としてロータリーエンコーダがあり、各方面で使用されている。 Conventionally, there is a rotary encoder as a measuring instrument that can measure rotation information such as the rotation amount and rotation direction of a rotating object in an NC machine tool or the like with high accuracy, for example, in submicron units, and is used in various directions. .
特に高精度でかつ高分解能のロータリーエンコーダとして、レーザ等の可干渉性光束を移動物体に設けた回折格子に入射させ、該回折格子から生ずる所定次数の回折光を互いに干渉させ、該干渉縞の明暗を計数することにより、該移動物体の移動量や移動方向等の移動状態を求めた回折光干渉方式のロータリーエンコーダが良く知られている。 In particular, as a high-precision and high-resolution rotary encoder, a coherent light beam such as a laser is made incident on a diffraction grating provided on a moving object, and diffracted lights of a predetermined order generated from the diffraction grating are caused to interfere with each other. 2. Description of the Related Art A diffracted light interference type rotary encoder that obtains a moving state such as a moving amount and a moving direction of a moving object by counting light and dark is well known.
又、弾性体の弾性変形を測定することによって加速度を検出する加速度計が知られている(例えば特許文献1)。特に高精度な加速度の検出を目的とした加速度計として、回折光干渉方式のエンコーダを利用した加速度検出器が提案されている。又、角加速度を検出する角加速度計として圧電振動子式、光ファイバ式のジャイロスコープ等の角加速度計が提案されている。 In addition, an accelerometer that detects acceleration by measuring elastic deformation of an elastic body is known (for example, Patent Document 1). In particular, an acceleration detector using a diffracted light interference type encoder has been proposed as an accelerometer for the purpose of highly accurate acceleration detection. Further, as an angular accelerometer for detecting angular acceleration, an angular accelerometer such as a piezoelectric vibrator type or an optical fiber type gyroscope has been proposed.
図9は従来の回折光干渉方式のロータリーエンコーダの一部分の要部概略図である。 FIG. 9 is a schematic view of a main part of a part of a conventional rotary encoder using a diffracted light interference method.
同図においては光源101から射出した単色の光束をスケール(ディスク)105a上の回折格子等から成る格子ピッチP(回折格子列の1周の本数がN)の微細格子列105に入射させて複数個の回折光を発生させている。このとき直進する光束の次数を0として、その両脇に±1,±2,±3・・・のような次数の回折光を定義し、更にスケール105aの回転方向を+、逆方向を−の符号を付けて区別することにする。そうするとn次の回折光の波面の位相は0次光の波面に対してスケール105aの回転角度をθ(deg)とすると
2π・n・N・θ/360
だけずれるという性質がある。
In the figure, a monochromatic light beam emitted from a light source 101 is incident on a fine grating array 105 having a grating pitch P (the number of diffraction grating arrays is N) consisting of diffraction gratings on a scale (disc) 105a. Diffracted light beams are generated. At this time, the order of the light beam traveling straight is set to 0, and diffracted lights of orders such as ± 1, ± 2, ± 3,... Are defined on both sides thereof, and the rotation direction of the scale 105a is + and the reverse direction is −. It distinguishes by attaching | subjecting the code | symbol. Then, the phase of the wavefront of the nth-order diffracted light is 2π · n · N · θ / 360 when the rotation angle of the scale 105a is θ (deg) with respect to the wavefront of the 0th-order light.
It has the property of shifting.
そこで異なる次数の回折光同士は互いに波面の位相がずれているから適当な光学系によって2つの回折光の光路を重ね合わせて干渉させると、明暗信号が得られる。 Accordingly, the diffracted lights of different orders are out of phase with each other, so that when the optical paths of the two diffracted lights are overlapped and interfered with each other by an appropriate optical system, a bright / dark signal is obtained.
例えば+1次回折光と−1次回折光とをミラー109a、109bとビームスプリッタ103を用いて重ね合わせて干渉させるとスケール105aが微細格子の1ピッチ分(360/N度)だけ回転する間に互いの位相が4πだけずれていくから2周期の明暗の光量変化が生じる。従ってこのときの明暗の光量変化を検出すればスケール105aの回転量を求めることができる。 For example, if the + 1st order diffracted light and the −1st order diffracted light are overlapped and interfered with each other using the mirrors 109a and 109b and the beam splitter 103, the scale 105a rotates with one pitch (360 / N degrees) of each other while rotating. Since the phase is shifted by 4π, the light quantity change of light and dark in two periods occurs. Therefore, the amount of rotation of the scale 105a can be obtained by detecting a change in light intensity between dark and dark at this time.
図10はスケール105aの回転量だけではなく回転方向も検出するようにした従来の回折光干渉方式のロータリーエンコーダの一部分の要部概略図である。 FIG. 10 is a schematic view of a part of a conventional diffracted light interference type rotary encoder that detects not only the rotation amount of the scale 105a but also the rotation direction.
同図では図9のロータリーエンコーダに比べて、スケール105aの回転に伴う2つの回折光より得られる明暗信号を少なくとも2種類用意して、それらの互いの明暗のタイミングをずらしてスケール105aの回転方向を検出している。 In the figure, compared to the rotary encoder of FIG. 9, at least two types of light / dark signals obtained from two diffracted lights accompanying the rotation of the scale 105a are prepared, and the rotation direction of the scale 105a is shifted by shifting the light / dark timing of each other. Is detected.
即ち、同図では微細格子列105から生ずるn次回折光とm次回折光とを重ね合わせる前に偏光板108a、108b等を利用して両光束の偏光面が互いに直交する直線偏光の光束にしている。そしてミラー109a、109bとビームスプリッタ103aを介して光路を重ね合わせてから1/4波長板107aを透過させて2光束間の位相差で偏光面の方位が決まる直線偏光に変換している。 That is, in the same figure, before superimposing the n-th order diffracted light and the m-th order diffracted light generated from the fine grating array 105, the polarizing plates 108a, 108b, etc. are used to form linearly polarized light beams whose polarization planes are orthogonal to each other. . Then, the optical paths are overlapped via the mirrors 109a and 109b and the beam splitter 103a, then transmitted through the quarter-wave plate 107a, and converted into linearly polarized light whose orientation of the plane of polarization is determined by the phase difference between the two light beams.
更にそれを非偏光ビームスプリッタ103bで2つの光束に分割して、それぞれの光束を互いに検波方位(透過できる直線偏光の方位)がずれるように配置した偏光板(アナライザ)108c、108dを透過させ、2つの光束の干渉による明暗のタイミングのずれた2種類の明暗信号を検出器110a、110bで検出している。 Further, the light beam is split into two light beams by the non-polarizing beam splitter 103b, and the light beams are transmitted through polarizing plates (analyzers) 108c and 108d arranged so that detection directions (directions of linearly polarized light that can be transmitted) are shifted from each other. The detectors 110a and 110b detect two types of light and dark signals with different light and dark timing due to interference between two light beams.
例えばこの2つの偏光板の検波方位を互いに45°ずらせば明暗のタイミングは位相で表すと90°(π/2)ずれる。同図のロータリーエンコーダはこのときの2つの検出器110a、110bからの信号を用いてスケール105aの回転方向を含めた回転情報を検出している。
従来のエンコーダにおいて被測定物体に関して複数の移動情報、例えば回転情報と直線移動情報とを検出しようとすると、2つの検出系を各々設けなければならないために装置全体が大型化及び複雑化する傾向があった。 In a conventional encoder, if a plurality of movement information, for example, rotation information and linear movement information, are detected with respect to an object to be measured, two detection systems must be provided respectively, so that the entire apparatus tends to be large and complicated. there were.
本発明は被測定物体の複数の移動情報、例えば1方向の移動情報と1軸回りの回転情報を同時に独立して高精度に検出することができるエンコーダの提供を第1の目的とする。発明は、更にこれを利用して1方向の加速度と1方向の角加速度も同様に高精度に検出することができるエンコーダの提供を他の目的とする。本発明の更に他の目的は、後述する説明の中で明らかになるであろう。 A first object of the present invention is to provide an encoder capable of simultaneously and independently detecting a plurality of movement information of an object to be measured, for example, movement information in one direction and rotation information about one axis at the same time. Another object of the present invention is to provide an encoder that can detect the acceleration in one direction and the angular acceleration in one direction with high accuracy using this. Still other objects of the present invention will become apparent in the following description.
請求項1の発明は、第1の回折格子と第2の回折格子を設けた被測定物体に、光源手段から互いに可干渉性のある第1及び第2の光束を前記第1及び第2の回折格子に入射し、
回折させた複数の回折光のうち、被測定物体が直線運動したときに相対的に位相がずれる2光束を干渉させ、検出系により該被測定物体の直線運動を検出する第1の光学系及び第1の検出系と、
被測定物体が回転運動するときに相対的に位相がずれる2光束を干渉させ、検出系により該被測定物体の回転運動を検出する第2の光学系及び第2の検出系の2つの移動情報検出系をもつことを特徴としている。
According to the first aspect of the present invention, the first and second light beams having coherence from the light source means to the object to be measured provided with the first diffraction grating and the second diffraction grating. Incident on the diffraction grating,
A first optical system configured to cause interference between two light beams that are relatively out of phase when the object to be measured linearly moves among a plurality of diffracted light beams diffracted, and to detect the linear motion of the object to be measured by a detection system; A first detection system;
Two movement information of the second optical system and the second detection system, in which two light fluxes that are relatively out of phase are caused to interfere when the measured object rotates, and the detection system detects the rotational movement of the measured object. It is characterized by having a detection system.
請求項2の発明は、請求項1の発明において、前記被測定物体は回転物体より成り、前記第1及び第2の回折格子は該回転物体の回転軸を中心とする放射格子より成っていることを特徴としている。 According to a second aspect of the present invention, in the first aspect of the invention, the object to be measured is composed of a rotating object, and the first and second diffraction gratings are composed of a radiation grating centered on the rotational axis of the rotating object. It is characterized by that.
請求項3の発明は、請求項1又は2の発明において、前記被測定物体は回転物体より成り、前記第1及び第2の回折格子はスケール面内にあって該回転物体の回転軸に直交する直線に平行の直線格子であることを特徴としている。 According to a third aspect of the present invention, in the first or second aspect of the present invention, the object to be measured is a rotating object, and the first and second diffraction gratings are in a scale plane and orthogonal to the rotation axis of the rotating object. It is characterized by a linear grid parallel to the straight line.
請求項4の発明は、請求項1、2又は3の発明において、前記被測定物体は筐体内に設けた弾性体と筐体とからなり、前記第1の検出系と第2の検出系は該弾性体の筐体に対する変動を検出して、該筐体に加わる加速度及び角加速度を検出していることを特徴としている。 According to a fourth aspect of the present invention, in the first, second, or third aspect of the invention, the object to be measured includes an elastic body and a casing provided in the casing, and the first detection system and the second detection system are A variation of the elastic body with respect to the housing is detected, and acceleration and angular acceleration applied to the housing are detected.
本発明によれば、被測定物体の移動情報、例えば1方向の移動情報と1軸周りの回転情報を独立して高精度に検出することができる。 According to the present invention, movement information of an object to be measured, for example, movement information in one direction and rotation information about one axis can be independently detected with high accuracy.
図1は本発明の実施例1の要部概略図である。本実施例は被測定物体(剛体、スケールともいう。)5に2つの反射型の回折格子を設け、該被測定物体の移動情報及び回転情報を検出する場合を示している。 FIG. 1 is a schematic view of the essential portions of Embodiment 1 of the present invention. This embodiment shows a case where two reflection type diffraction gratings are provided on an object to be measured (also referred to as a rigid body or a scale) 5 to detect movement information and rotation information of the object to be measured.
図1において、1はP偏光とS偏光の両方の可干渉光束を放射する光源(例えば偏光面を45度傾けた半導体レーザ)である。光源1からの光束をコリメータレンズ2によって整形した後、偏光面を光軸に対して45度の角度で配置した第1の偏光ビームスプリッタ3aによって、S偏光LSとP偏光LPに分離している。ここで偏光ビームスプリッタ3aはP偏光を透過し、S偏光を反射するようにしている。 In FIG. 1, reference numeral 1 denotes a light source that emits coherent light beams of both P-polarized light and S-polarized light (for example, a semiconductor laser whose polarization plane is inclined 45 degrees). After the light beam from the light source 1 is shaped by the collimator lens 2, it is separated into S-polarized light LS and P-polarized light LP by the first polarizing beam splitter 3a in which the polarization plane is arranged at an angle of 45 degrees with respect to the optical axis. . Here, the polarization beam splitter 3a transmits P-polarized light and reflects S-polarized light.
このうちP偏光LPはミラー4bで反射させ、回折格子(第1の回折格子)5aの領域5aPに入射させている。又S偏光LSはミラー4aで反射させ、回折格子5aの領域5aPに入射させている。このときに回折格子5aに入射させる2つの光の入射角を1次回折角と同一になるように、同一点に2方向から斜入射している。そしてS偏光の+1次回折光S+とP偏光の−1次回折光P−が回折格子5aの面に対して垂直な同一方向に反射回折するようにしている。 Among these, the P-polarized light LP is reflected by the mirror 4b and is incident on the region 5aP of the diffraction grating (first diffraction grating) 5a. The S-polarized light LS is reflected by the mirror 4a and is incident on the region 5aP of the diffraction grating 5a. At this time, the two light beams incident on the diffraction grating 5a are obliquely incident on the same point from two directions so that the incident angle is the same as the first-order diffraction angle. The S-polarized + 1st-order diffracted light S + and the P-polarized -1st-order diffracted light P- are reflected and diffracted in the same direction perpendicular to the surface of the diffraction grating 5a.
そして1次回折光S+と−1次回折光P−をミラー等の偏向手段6a、6bにより、被測定物体(弾性体)の捩れの回転軸(軸)10について第1の回折格子5aと対称な位置に設けた回折格子(第2の回折格子)5bに垂直入射させている。 Then, the first-order diffracted light S + and the −1st-order diffracted light P− are symmetric with respect to the first diffraction grating 5a with respect to the rotational axis (axis) 10 of the torsion of the measured object (elastic body) by the deflecting means 6a and 6b such as mirrors. Is incident perpendicularly to a diffraction grating (second diffraction grating) 5b.
図2はこのときスケール5がA方向に移動したときの概略図、図4は図2の各要素におけるブロック説明図である。 FIG. 2 is a schematic view when the scale 5 is moved in the A direction at this time, and FIG. 4 is a block explanatory diagram of each element of FIG.
図2、図4において、第2の回折格子5bで−1次回折したP偏光P−−とS偏光S+−をミラー7bで反射させて偏光ビームスプリッター3bに導光している。又、回折格子5bで+1次回折したP偏光P−+とS偏光S++をミラー7aで反射させて偏光ビームスプリッター3bに導光して、該偏光ビームスプリッター3bでこれらの各偏光を重ね合わせている。 2 and 4, the P-polarized light P-- and the S-polarized light S +--1st order diffracted by the second diffraction grating 5b are reflected by the mirror 7b and guided to the polarizing beam splitter 3b. Further, P-polarized light P-++ and S-polarized light S ++ + 1st order diffracted by the diffraction grating 5b are reflected by the mirror 7a and guided to the polarizing beam splitter 3b, and these polarized lights are superposed by the polarizing beam splitter 3b. Yes.
そしてこれらの光束のうち相対的な位相差が8πあるS偏光S++とP偏光P−−を偏光板13aに導光して第1の光検出器9aで検出し、相対的な位相差が0のS偏光S+1、P偏光P−+を偏光板13bに導光して第2の光検出器9bで検出している。このとき光検出器9aでは移動情報が検出されるが、光検出器9bでは移動情報が検出されない。 Of these luminous fluxes, S-polarized light S ++ and P-polarized light P-- having a relative phase difference of 8π are guided to the polarizing plate 13a and detected by the first photodetector 9a, and the relative phase difference is 0. S-polarized light S + 1 and P-polarized light P- + are guided to the polarizing plate 13b and detected by the second photodetector 9b. At this time, the movement information is detected by the photodetector 9a, but the movement information is not detected by the photodetector 9b.
図3は図1においてスケール5がB方向に移動したときの概略図、図5は図2の各要素におけるブロック説明図である。 3 is a schematic diagram when the scale 5 is moved in the B direction in FIG. 1, and FIG. 5 is a block explanatory diagram of each element of FIG.
図3、図5において、回折格子5bで−1次回折したP偏光P−−とS偏光S+−1をミラー7aで反射させて偏光ビームスプリッター3bに導光している。又、回折格子5bで+1次回折したP偏光P−+とS偏光S++をミラー7bで反射させて偏光ビームスプリッター3bに導光している。そして該偏光ビームスプリッター3bでこれらの各偏光を重ね合わせている。 3 and 5, the P-polarized light P-- and the S-polarized light S + -1 -1st order diffracted by the diffraction grating 5b are reflected by the mirror 7a and guided to the polarizing beam splitter 3b. Further, the P-polarized light P-++ and the S-polarized light S ++ + 1st order diffracted by the diffraction grating 5b are reflected by the mirror 7b and guided to the polarizing beam splitter 3b. Then, the polarization beamsplitter 3b superimposes these polarized lights.
そして、これらの光束のうち相対的な位相差が0のP偏光P−+とS偏光S+−を、偏光板13aを介して第1の光検出器9aで検出し、相対的な位相差が8πあるP偏光P−−とS偏光S++を偏光板13bを介して第2の光検出器9bで検出ている。このとき光検出器9bでは移動情報が検出されるが、光検出器9aでは移動情報が検出されない。 Then, P-polarized light P− + and S-polarized light S + − having a relative phase difference of 0 among these light beams are detected by the first photodetector 9a through the polarizing plate 13a, and the relative phase difference is detected. 8π P-polarized light P-- and S-polarized light S ++ are detected by the second photodetector 9b through the polarizing plate 13b. At this time, the movement information is detected by the photodetector 9b, but the movement information is not detected by the photodetector 9a.
本実施例では光検出器9a、9bからの信号を用いて不図示の信号処理系で移動物体の移動情報を検出しているが、次に本実施例における移動物体の移動情報の検出原理について、図4、図5を参照して説明する。尚、図4、図5ではm次回折光の次数mをm=1としている。 In this embodiment, the movement information of the moving object is detected by a signal processing system (not shown) using signals from the photodetectors 9a and 9b. Next, the detection principle of the moving information of the moving object in this embodiment will be described. This will be described with reference to FIGS. In FIGS. 4 and 5, the order m of the m-th order diffracted light is set to m = 1.
図6は格子の移動方向と回折次数との関係を示す説明図である。図6に示すように、一定のピッチPのスリットを形成した回折格子51に波長λの可干渉光を入射すると、角度θの方向に、
Psinθ=mλ(m=0,±1,・・・・)
の回折光が発生する。
FIG. 6 is an explanatory diagram showing the relationship between the grating moving direction and the diffraction order. As shown in FIG. 6, when coherent light having a wavelength λ is incident on the diffraction grating 51 in which slits having a constant pitch P are formed, in the direction of the angle θ,
Psin θ = mλ (m = 0, ± 1,...)
Diffracted light is generated.
ここで格子の移動方向に回折するm次回折光を+m次回折光と、逆方向に回折するm次回折光を−m次回折光と定義する。回折格子51がX移動すると、移動前後でm次回折光の位相は、 Here, m-order diffracted light diffracted in the moving direction of the grating is defined as + m-order diffracted light, and m-order diffracted light diffracted in the opposite direction is defined as -m-order diffracted light. When the diffraction grating 51 moves X, the phase of the m-th order diffracted light before and after the movement is
だけ変化する。従って、1次回折光(m=1)では回折格子が1ピッチ移動すると、位相が2π変化する。 Only changes. Therefore, in the first-order diffracted light (m = 1), when the diffraction grating moves by one pitch, the phase changes by 2π.
回折光干渉方式のエンコーダでは、スケールに設けた回折格子において、+1次回折を2回した光と−1次回折を2回した光を重ね合わせ、相対的に格子1ピッチについて8π位相がずれるように構成されている。従って、格子1ピッチのスケール移動につき、4周期の位相変化が発生する。 In a diffracted light interference type encoder, in a diffraction grating provided on a scale, light that has been subjected to + 1st order diffraction twice and light that has been subjected to -1st order diffraction are overlapped so that the phase shifts by 8π relative to one pitch of the grating. It is configured. Therefore, a phase change of four periods occurs with respect to the scale movement of one pitch of the grating.
本実施例において、回折格子より回折される+m次回折光はm次回折光のうち回折格子の移動方向に回折する光であり、−m次回折光はm次回折光のうち回折格子の移動方向と逆方向に回折する光である。 In this embodiment, + m-order diffracted light diffracted from the diffraction grating is light diffracted in the moving direction of the diffraction grating out of m-th order diffracted light, and -m-order diffracted light is opposite to the moving direction of the diffraction grating in m-th order diffracted light. Is diffracted light.
例えば、回折光干渉方式のロータリーエンコーダでは、放射状の回折格子によるスケールの回転によって、+m次回折を2回した光と−m次回折を2回した光との相対的な位相が回折格子の1ピッチに相当する角度変化に対して8mπ変化する。本実施例では、このときの両者の干渉光を検出することによって、回転物体(回折格子)の回転情報を検出している。 For example, in a diffracted light interference type rotary encoder, the relative phase of light that has been subjected to + m-order diffraction twice and light that has been subjected to -m-order diffraction twice is 1 of the diffraction grating due to the rotation of the scale by a radial diffraction grating. It changes by 8 mπ with respect to the angle change corresponding to the pitch. In this embodiment, the rotation information of the rotating object (diffraction grating) is detected by detecting the interference light of both at this time.
又スケール上の互いに平行な2ヶ所の回折格子が共に格子と垂直な方向に同じ量だけ移動している状態において、m次回折光に注目し、第1の回折格子に可干渉の光源からの光線を入射し、その+m次回折光Lmと−m次回折光L−mをレンズ、プリズム、ミラー、光ファイバ等の光伝送手段で伝送し、第2の回折格子に入射させる。このとき第2の回折格子によって、+m次回折光の+m次回折光Lm、m、+m次回折光の−m次回折光Lm、−m、−m次回折光の+m次回折光L−m、m、−m次回折光の−m次回折光L−m、−m、以上4通りのm次回折光が得られる。 Also, in the state where two parallel diffraction gratings on the scale are both moved by the same amount in the direction perpendicular to the grating, attention is paid to the m-th order diffracted light, and the light beam from the light source coherent to the first diffraction grating. The + m-order diffracted light Lm and the -m-order diffracted light L-m are transmitted by an optical transmission means such as a lens, a prism, a mirror, or an optical fiber, and are incident on the second diffraction grating. At this time, the + m-order diffracted light Lm, m, + m-order diffracted light -m-order diffracted light Lm, -m, -m-order diffracted light + m-order diffracted light L-m, m, -m Folded -m-order diffracted light Lm, -m, and above four kinds of m-order diffracted light are obtained.
スケール5がA方向に移動しているときは、図2、図4(参照)に示すように+m次回折光の+m次回折光Lm、と−m次回折光の−m次回折光L−m、−mとを干渉させる。これらの間の位相は、回折格子の1ピッチ分の移動につき相対的に8mπずれるため、干渉光をフォトダイオードやCCDのようなデバイス(光検出器)を有する第1の検出系によって検出して、回折格子の移動情報を検出している。 When the scale 5 moves in the A direction, as shown in FIG. 2 and FIG. 4 (reference), the + m-order diffracted light Lm of the + m-order diffracted light, and the −m-order diffracted light L-m, −m of the −m-order diffracted light. To interfere with. Since the phase between them is relatively shifted by 8 mπ per movement of one pitch of the diffraction grating, the interference light is detected by a first detection system having a device (photodetector) such as a photodiode or CCD. The movement information of the diffraction grating is detected.
又、+m次回折光の−m次回折光Lm,−mと−m次回折光の+m次回折光L−m、mについても、第1の検出系と同様な第2の検出系によって検出する。2つの回折格子が共に格子と垂直な方向に移動しているとき、第2の検出系に達する2つの2回回折光Lm、−m、L−m、mは、同位相であるため干渉信号は変化しない。このため移動情報は得られない。 Further, the -m-order diffracted light Lm, -m of + m-order diffracted light and the + m-order diffracted light L-m, m of -m-order diffracted light are also detected by the second detection system similar to the first detection system. When the two diffraction gratings are both moving in the direction perpendicular to the grating, the two two-time diffracted beams Lm, -m, Lm, and m that reach the second detection system are in phase, so that the interference signal Does not change. For this reason, movement information cannot be obtained.
次に、スケール5がB方向に変動しているとき、即ち2つの回折格子が格子と垂直な方向で一方の回折格子は上記と同方向、他方の回折格子が上記の方向とは逆方向に移動する場合(格子と垂直方向に互いに逆方向に移動する場合)を考える(図3、図5参照)。 Next, when the scale 5 changes in the B direction, that is, the two diffraction gratings are perpendicular to the grating, one diffraction grating is in the same direction as the above, and the other diffraction grating is in the opposite direction to the above direction. Consider the case of moving (in the case of moving in directions opposite to each other perpendicular to the lattice) (see FIGS. 3 and 5).
これはスケールが面内で回転する状態に相当する。このとき前述の第1の検出系に達する2つの回折光Lm、−m、L−m、mの間には位相差が生じない。しかしながら第2の検出系に達する2つの回折光Lm、m、L−m、−mは、前述の格子が同方向に移動している場合と同様に、第1の回折格子と第2の回折格子において、回折格子の移動量の差が2ピッチ分のとき相対的に8mπの位相差をもつ。 This corresponds to a state in which the scale rotates in the plane. At this time, there is no phase difference between the two diffracted lights Lm, -m, Lm, and m that reach the first detection system. However, the two diffracted lights Lm, m, Lm, and -m that reach the second detection system are the same as the first diffraction grating and the second diffraction, as in the case where the above-described grating is moving in the same direction. The grating has a relative phase difference of 8 mπ when the difference in the amount of movement of the diffraction grating is two pitches.
例えば、2つの回折格子が同一の剛体(被測定物)上に2ヶ所の照射点を結ぶ方向に平行に設けられていれば、第1の検出系の信号は2か所の回折格子の照射点の中点の回折格子面上で、格子と垂直な方向の移動に対する信号となる。又、上記剛体が回折格子を含む面内で回転する場合を考える。回転角が微小であれば、それぞれの回折格子は反対方向に直線移動していると見做すことができ、第2の検出系において2つの格子を含む面内の回転角を検出することができる。 For example, if two diffraction gratings are provided in parallel to the direction connecting two irradiation points on the same rigid body (object to be measured), the signal of the first detection system is irradiated by two diffraction gratings. This is a signal for movement in the direction perpendicular to the grating on the diffraction grating plane at the midpoint of the point. Also, consider the case where the rigid body rotates in a plane including the diffraction grating. If the rotation angle is small, each diffraction grating can be regarded as linearly moving in the opposite direction, and the second detection system can detect an in-plane rotation angle including two gratings. it can.
又、2ヶ所の回折格子を従来の回折光干渉方式のロータリーエンコーダと同様、放射状回折格子とすることにより、回転方向の検出範囲を広げることができる。このとき直線移動に伴い格子の方向が変化するため、直線変位の検出範囲は平行な回折格子よりも小さくなる。 In addition, the detection range in the rotational direction can be expanded by using two diffractive gratings as radial diffractive gratings as in the conventional diffracted light interference type rotary encoder. At this time, since the direction of the grating changes with the linear movement, the detection range of the linear displacement becomes smaller than that of the parallel diffraction grating.
本実施例では以上の検出原理を利用して移動物体の移動情報を求めている。次に、本実施例の具体的な検出方法について説明する。 In this embodiment, the movement information of the moving object is obtained using the above detection principle. Next, a specific detection method of this embodiment will be described.
まず、図2に示すように、2つの回折格子が共に矢印Aの方向に変位する場合(回折格子スケールが格子と直交する方向に直線移動する状態)。 First, as shown in FIG. 2, when the two diffraction gratings are both displaced in the direction of arrow A (the diffraction grating scale moves linearly in the direction perpendicular to the grating).
このとき偏光ビームスプリッター3bを通過し、偏光板13aを介し、光検出器9a(第1の検出系)に到達する光は−1次回折を2回したP偏光P−−と+1次回折を2回したS偏光S++であり、それぞれの相対的な位相は格子1ピッチの変位につき8πとなる。これらの光は偏光軸をそれぞれの直線偏光に対し45度に設定した偏光板(不図示)を通過することにより、偏光軸で規定された直線偏光となり、光検出器9aにおいて格子の移動に伴なう干渉縞の移動として検出している。そして光検出器9aからの信号を用いて演算手段(不図示)により、格子の移動情報、即ち弾性体の捩じれの軸10の移動情報を求めている。 At this time, the light that passes through the polarizing beam splitter 3b and reaches the photodetector 9a (first detection system) through the polarizing plate 13a undergoes + 1st order diffraction with P polarized light P-- that has been subjected to -1st order diffraction twice. The S-polarized light S ++ is rotated twice, and the relative phase of each is 8π per displacement of one pitch of the grating. These lights pass through a polarizing plate (not shown) whose polarization axis is set to 45 degrees with respect to each linearly polarized light, thereby becoming linearly polarized light defined by the polarization axis, and accompanying the movement of the grating in the photodetector 9a. This is detected as the movement of interference fringes. Then, the movement information of the lattice, that is, the movement information of the torsion shaft 10 of the elastic body is obtained by calculation means (not shown) using the signal from the photodetector 9a.
一方、偏光ビームスプリッター3bで反射し、偏光板13bを介し光検出器9b(第2の検出系)に到達する光は、−1次回折と+1次回折をしたP偏光P−+と+1次回折と−1次回折をしたS偏光S+−である。このとき格子の移動による位相差は生じない。このため光検出器9bでは干渉状態の変化はなく、信号は得られない。 On the other hand, the light that is reflected by the polarization beam splitter 3b and reaches the photodetector 9b (second detection system) through the polarizing plate 13b is P-polarized P- + that has undergone -1st order diffraction and + 1st order diffraction, and + 1st order. This is S-polarized S + − that has been subjected to −1st order diffraction. At this time, there is no phase difference due to the movement of the grating. For this reason, the photodetector 9b does not change the interference state, and a signal cannot be obtained.
図3に示すように、2つの回折格子が矢印Bの方向に回転する場合(格子を設けたスケールが回転する状態)。 As shown in FIG. 3, when two diffraction gratings rotate in the direction of arrow B (a state in which a scale provided with a grating rotates).
即ち、被測定物体が回転軸10を中心に回転している場合、このとき偏光ビームスプリッター3bを通過し、偏光板13aを介し光検出器9aに到達する光は、−1次回折と+1次回折をしたP偏光P−+と+1次回折と−1次回折をしたS偏光S+−であり、格子の回転による位相差は生じない。このため回転情報を得ることができない。 That is, when the object to be measured is rotating around the rotation axis 10, the light passing through the polarizing beam splitter 3b and reaching the photodetector 9a through the polarizing plate 13a at this time is −1st order diffraction and + 1st order. Folded P-polarized light P- + and + 1st-order and -1st-order diffracted S-polarized light S +-, and no phase difference is caused by the rotation of the grating. For this reason, rotation information cannot be obtained.
又、偏光ビームスプリッター3bで反射し、偏光板13bを介し光検出器9bに到達する光は、−1次回折を2回したP偏光P−−と+1次回折を2回したS偏光S++であり、格子を含む面内の1ピッチ分の回転により相対的な位相差は8πとなる。このP、S偏光をP、S偏光に対し45度に偏光軸を傾けた偏光板(不図示)により偏光軸で規定された直線偏光となり光検出器9bによって干渉縞の移動を検出し、これにより格子の面内の回転情報を検出している。 The light reflected by the polarizing beam splitter 3b and reaching the photodetector 9b via the polarizing plate 13b is P-polarized light P-- that has been subjected to -1st order diffraction twice and S-polarized light S ++ that has been subjected to + 1st order diffraction twice. There is a relative phase difference of 8π due to one pitch rotation in the plane including the grating. The P and S polarizations become linearly polarized light defined by the polarization axis by a polarizing plate (not shown) whose polarization axis is inclined by 45 degrees with respect to the P and S polarizations, and the movement of the interference fringes is detected by the photodetector 9b. Is used to detect the rotation information in the plane of the lattice.
本実施例においては、図2の光検出器9aでは格子のA方向のずれに対応する信号を得ており、図3の光検出器9bでは格子の面内回転に対応する信号を得ている。特に光検出器9a、9bからの検出信号により、回折格子を設けた梁(転)10のたわみ、捩れを同時に検出することにより、梁10に加わる加速度や角加速度を検出している。変位や角変位から加速度や角加速度を検出する方法は周知なので説明を省略する。 In this embodiment, the photodetector 9a in FIG. 2 obtains a signal corresponding to the deviation in the A direction of the grating, and the photodetector 9b in FIG. 3 obtains a signal corresponding to the in-plane rotation of the grating. . In particular, the acceleration and angular acceleration applied to the beam 10 are detected by simultaneously detecting the deflection and torsion of the beam (roller) 10 provided with the diffraction grating by the detection signals from the photodetectors 9a and 9b. Since the method of detecting the acceleration and angular acceleration from the displacement and angular displacement is well known, the description thereof is omitted.
図1の構成においては、面内回転に伴い格子の傾きがずれ、偏光方向がずれるため、回転角度は微小量に限られるが、本構成によれば回転の中心は光の2つの入射点に限定されずにスケールの回転角度を測定することができる。 In the configuration of FIG. 1, the tilt of the grating is shifted with the in-plane rotation, and the polarization direction is shifted. Therefore, the rotation angle is limited to a very small amount, but according to this configuration, the center of rotation is at two incident points of light. Without being limited, the rotation angle of the scale can be measured.
尚、本実施例では光の偏向及び伝送手段としてミラーを使用しているが、これは光の進行方向を偏向する手段であれば、例えば屈折を利用したプリズム、光ファイバ、光導波路等でも同様の構成が可能である。又、本実施例では第1の回折格子5aと第2の回折格子5bとの間のS偏光とP偏光との光路を同一にするために、第1の回折格子5aへの入射角をそれより生じる1次回折角と同一にしているが、他の角度で入射して別の光路で伝送する構成も可能である。 In this embodiment, a mirror is used as a means for deflecting and transmitting light. However, if this is a means for deflecting the traveling direction of light, for example, a prism, an optical fiber, an optical waveguide, etc. using refraction are the same. Is possible. Further, in this embodiment, in order to make the optical paths of the S-polarized light and the P-polarized light between the first diffraction grating 5a and the second diffraction grating 5b the same, the incident angle to the first diffraction grating 5a is changed. Although it is the same as the first-order diffraction angle generated, it is possible to adopt a configuration in which the light is incident at another angle and transmitted through another optical path.
更に、運動の方向を検出する場合には、干渉縞の移動方向を検出する必要がある。このとき回折光干渉方式のエンコーダで実現されている方法として、干渉光の光束内の干渉縞を0本に近づける。このとき干渉光はスケールの移動に伴なう明暗の繰り返しパターンとなるが、図7に示すような光学系を図1のλ/4板8a(8b)と光検出器9a(9b)と交換しても良い。 Furthermore, when detecting the direction of movement, it is necessary to detect the moving direction of the interference fringes. At this time, as a method realized by a diffracted light interference type encoder, interference fringes in the light beam of interference light are brought close to zero. At this time, the interference light becomes a light / dark repetitive pattern accompanying the movement of the scale, but the optical system as shown in FIG. 7 is replaced with the λ / 4 plate 8a (8b) and the photodetector 9a (9b) in FIG. You may do it.
図7において、8cはP偏光とS偏光に対して45度に進相軸を設定したλ/4波長板であり、P偏光とS偏光を互いに回転方向の対向する円偏光としている。そして、その干渉光はスケールの移動に伴い、回転する直線偏光となっている。これを非偏光ビームスプリッタ12で2つに分割し、それぞれの回転する直線偏光を互いに45度偏光方向が異なる偏光板13a及び13bによって、光検出器9c及び9dで互いに90度位相の異なる正弦波状の光の明暗として検出している。 In FIG. 7, reference numeral 8c denotes a λ / 4 wavelength plate having a fast axis set at 45 degrees with respect to the P-polarized light and the S-polarized light. The P-polarized light and the S-polarized light are circularly polarized light that are opposed to each other in the rotational direction. The interference light becomes linearly polarized light that rotates as the scale moves. This is divided into two by a non-polarizing beam splitter 12, and each rotating linearly polarized light is sine wave having a phase difference of 90 degrees by photodetectors 9c and 9d by polarizing plates 13a and 13b having different polarization directions by 45 degrees. The light is detected as light and dark.
そして光検出器9c、9dで互いに90度位相のずれた2相の光の明暗を検出して、これより被測定物の移動方向の情報を求めている。尚、被測定物が、例えば図1において、矢印A方向と矢印B方向の双方の変位を同時にすれば光検出器9a、9bから各々移動情報が得られる。 Then, the light detectors 9c and 9d detect the light and darkness of the two-phase light that is 90 degrees out of phase with each other, thereby obtaining information on the moving direction of the object to be measured. For example, if the object to be measured is displaced in both the directions of the arrow A and the arrow B in FIG. 1, movement information can be obtained from the photodetectors 9a and 9b, respectively.
図8は本発明の実施例2の要部概略図である。本実施例は図1の実施例1に比べて反射型の回折格子の代わりに透過型の回折格子を用いていること、光源1からの光束を第1の回折格子に垂直入射させており、また所定次数の回折光を第2の回折格子に斜入射させていること等が異なっており、その他の構成は同じである。 FIG. 8 is a schematic view of the essential portions of Embodiment 2 of the present invention. In this embodiment, a transmission type diffraction grating is used instead of the reflection type diffraction grating as compared with the first embodiment shown in FIG. 1, and the light beam from the light source 1 is incident perpendicularly on the first diffraction grating. Further, the difference is that the diffracted light of a predetermined order is obliquely incident on the second diffraction grating, and the other configurations are the same.
図8において、光源1を出射しコリメーターレンズ2で整形された光束を第1の回折格子5aに垂直入射させている。そして回折格子5aで回折した+1次回折光と−1次回折光をミラー6a、6bとミラー6c、6dを介して第2の回折格子5bに1次回折角と同一の角度で入射させている。そして回折格子5bで回折した1次回折光と−1次回折光を重ね合わせて、光検出器9a及びミラー7a、7b、ハーフミラー11を介して光検出器9bで各々検出している。 In FIG. 8, a light beam emitted from the light source 1 and shaped by the collimator lens 2 is vertically incident on the first diffraction grating 5a. Then, the + 1st order diffracted light and the −1st order diffracted light diffracted by the diffraction grating 5a are made incident on the second diffraction grating 5b through the mirrors 6a and 6b and the mirrors 6c and 6d at the same angle as the first order diffraction angle. The first-order diffracted light and the −1st-order diffracted light diffracted by the diffraction grating 5 b are superimposed and detected by the photodetector 9 b via the photodetector 9 a, mirrors 7 a and 7 b, and the half mirror 11.
2つの回折格子が共に図8の矢印Aの方向に移動する場合。 The two diffraction gratings both move in the direction of arrow A in FIG.
このとき図2と同様に、光検出器9aには+1次回折を2回した光と−1次回折を2回した光とが重なった状態で入射する。この結果、上記実施例1と同様に回折格子が1ピッチ分の移動をすると、それぞれの回折光の位相が相対的に8πずれる。 At this time, similarly to FIG. 2, the light having been subjected to the + 1st order diffraction twice and the light having been subjected to the −1st order diffraction are incident on the photodetector 9a in an overlapping state. As a result, when the diffraction grating moves by one pitch as in the first embodiment, the phase of each diffracted light is relatively shifted by 8π.
本実施例では、このずれに基づく干渉縞を計数することによって回折格子の変位情報を検出している。又、光検出器9bで検出される光には回折格子の移動による位相差は生じないために、光検出器9bで得られる信号には干渉状態の変化はなく、このため移動信号は得られない。 In this embodiment, the displacement information of the diffraction grating is detected by counting the interference fringes based on this deviation. In addition, since the phase difference due to the movement of the diffraction grating does not occur in the light detected by the photodetector 9b, there is no change in the interference state in the signal obtained by the photodetector 9b, so that a movement signal is obtained. Absent.
2つの回折格子が図8の矢印Bの方向に回転する場合。 When two diffraction gratings rotate in the direction of arrow B in FIG.
即ち、図3と同様に2つの回折格子が回転軸(不図示)を中心に回転する場合、このとき回折格子5bで回折し、ミラー7a、7bで反射し、ビームスプリッタ11によって重ね合わされ、光検出器9bには+1次回折を2回した光と−1次回折を2回した光との干渉光となり、このとき光検出器9bで得られる信号より2つの光の重ね合わせに基づく干渉縞を計数することにより、回折格子の回転情報を検出している。 That is, when two diffraction gratings rotate about a rotation axis (not shown) as in FIG. 3, at this time, they are diffracted by the diffraction grating 5b, reflected by the mirrors 7a and 7b, superimposed by the beam splitter 11, and light The detector 9b becomes interference light between the light that has been subjected to the + 1st order diffraction twice and the light that has been subjected to the −1st order diffraction twice. At this time, interference fringes based on the superposition of the two lights from the signal obtained by the photodetector 9b. The rotation information of the diffraction grating is detected by counting.
このとき光検出器9aで検出される光は位相差が生じないために、光検出器9aでは回転情報に関する信号は得られない。 At this time, since the phase difference does not occur in the light detected by the photodetector 9a, a signal relating to the rotation information cannot be obtained by the photodetector 9a.
尚、本発明の2方向の移動情報を検出可能なエンコーダを、例えば筐体と弾性体の一部に設けた回折格子に対して適用し、弾性体の角加速度による捻じれをスケールの回転として検出すれば角加速度を検出することが可能である。同時に、弾性体のたわみをスケールの平行移動として検出すれば、加速度を検出することが可能である。これにより加速度と角加速度を同一の光学系で同時に測定することができるようになる。 In addition, the encoder capable of detecting movement information in two directions according to the present invention is applied to, for example, a diffraction grating provided in a part of the casing and the elastic body, and the twist due to the angular acceleration of the elastic body is used as the rotation of the scale. If detected, angular acceleration can be detected. At the same time, if the deflection of the elastic body is detected as the parallel movement of the scale, the acceleration can be detected. As a result, acceleration and angular acceleration can be simultaneously measured with the same optical system.
図11は本発明の変形実施例の要部概略図である。既述の実施例では、1光束をまず片方の格子に入射していたが、本変形例では2光束をそれぞれの格子に独立して入射、回折させて、図で点線により示された光伝送手段により合波しても同様の検出が可能である。図中、LGは光伝送手段、HMは光分割手段を示す。尚、添字は回折次数の正負を示す。又、 FIG. 11 is a schematic view of the main part of a modified embodiment of the present invention. In the embodiment described above, one light beam is first incident on one grating, but in this modification, two light beams are incident and diffracted independently on each grating, and the optical transmission indicated by the dotted line in the figure. The same detection is possible even if they are combined by means. In the figure, LG indicates an optical transmission means, and HM indicates an optical splitting means. The subscript indicates the sign of the diffraction order. or,
のうちXはL2の入射する格子がL1の入射する格子と同方向に動く場合(直線運動)、Yは逆方向に動く場合(回転運動)である。 X is when the L 2 incident grating moves in the same direction as the L 1 incident grating (linear motion), and Y moves in the opposite direction (rotational motion).
互いに可干渉性をもつ2光束L1,L2を測定対象上に設けた格子の2箇所に入射し、それぞれの+m次回折光と−m次回折光を得る。この4光束を図のように2光束ずつ重ね合わせ、それぞれについて既述実施例のように干渉信号の検出系を構成すれば、格子を設けた剛体の回転運動と直線運動を独立に検出することができる。 Two light beams L1 and L2 having coherence are incident on two places of the grating provided on the object to be measured, and respective + m-order diffracted light and -m-order diffracted light are obtained. If these four beams are overlapped by two as shown in the figure, and an interference signal detection system is configured for each of them as in the embodiment described above, the rotational motion and linear motion of a rigid body provided with a grating can be detected independently. Can do.
1 光源
2 コリメーターレンズ
3a,3b,11 偏光ビームスプリッター
4a,4b,6a,6b,6c,6d,7a,7b ミラー
5a,5b 回折格子
8a,8b λ/4
9a,9b 光検出器
10 回転軸
DESCRIPTION OF SYMBOLS 1 Light source 2 Collimator lens 3a, 3b, 11 Polarization beam splitter 4a, 4b, 6a, 6b, 6c, 6d, 7a, 7b Mirror 5a, 5b Diffraction grating 8a, 8b (lambda) / 4
9a, 9b photodetector 10 rotation axis
Claims (4)
回折させた複数の回折光のうち、被測定物体が直線運動したときに相対的に位相がずれる2光束を干渉させ、検出系により該被測定物体の直線運動を検出する第1の光学系及び第1の検出系と、
被測定物体が回転運動するときに相対的に位相がずれる2光束を干渉させ、検出系により該被測定物体の回転運動を検出する第2の光学系及び第2の検出系の2つの移動情報検出系をもつことを特徴とするエンコーダ。 First and second light beams having coherence from the light source means are incident on the first and second diffraction gratings on the object to be measured provided with the first diffraction grating and the second diffraction grating,
A first optical system that interferes with two light beams that are relatively out of phase when the object to be measured linearly moves among the plurality of diffracted light beams diffracted, and detects the linear motion of the object to be measured by a detection system; A first detection system;
Two movement information of the second optical system and the second detection system, in which two light fluxes that are relatively out of phase are caused to interfere when the measured object rotates, and the detection system detects the rotational movement of the measured object. An encoder characterized by having a detection system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003350873A JP3728310B2 (en) | 2003-10-09 | 2003-10-09 | Encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003350873A JP3728310B2 (en) | 2003-10-09 | 2003-10-09 | Encoder |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12452794A Division JP3495783B2 (en) | 1994-05-13 | 1994-05-13 | Encoder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004069717A JP2004069717A (en) | 2004-03-04 |
JP3728310B2 true JP3728310B2 (en) | 2005-12-21 |
Family
ID=32025880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003350873A Expired - Fee Related JP3728310B2 (en) | 2003-10-09 | 2003-10-09 | Encoder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3728310B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011050030B4 (en) | 2011-05-02 | 2013-03-28 | Scanlab Ag | Position detector and light deflection device with position detector |
-
2003
- 2003-10-09 JP JP2003350873A patent/JP3728310B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004069717A (en) | 2004-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4979826A (en) | Displacement measuring apparatus | |
KR101876816B1 (en) | Displacement detecting device | |
JP2586120B2 (en) | encoder | |
EP1435510A1 (en) | Grating interference type optical encoder | |
JP3495783B2 (en) | Encoder | |
JPH056853B2 (en) | ||
JP5882673B2 (en) | Optical position measuring device | |
JPH074993A (en) | Encoder apparatus | |
US20030193017A1 (en) | Displacement information detector | |
JP4023923B2 (en) | Optical displacement measuring device | |
JP2683117B2 (en) | encoder | |
JP2586122B2 (en) | Rotary encoder | |
EP0545405A2 (en) | Rotary detector | |
JP3728310B2 (en) | Encoder | |
JP3185373B2 (en) | Encoder | |
JP3247791B2 (en) | Encoder device | |
JP4023917B2 (en) | Optical displacement measuring device | |
JP2650645B2 (en) | Optical device | |
US20190265077A1 (en) | Contamination and defect resistant rotary optical encoder configuration for providing displacement signals | |
JP2003097975A (en) | Origin detecting device for rotary encoder and measurement device for rotation information | |
JP2683098B2 (en) | encoder | |
JP2020051782A (en) | Optical angle sensor | |
JPH07117426B2 (en) | Optical encoder | |
JP2600888B2 (en) | Encoder | |
JPH0285717A (en) | Encoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050628 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050927 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050930 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091007 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091007 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101007 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101007 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111007 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111007 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121007 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131007 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |