JPH11325842A - Method and apparatus for measuring shape of long material - Google Patents

Method and apparatus for measuring shape of long material

Info

Publication number
JPH11325842A
JPH11325842A JP13293798A JP13293798A JPH11325842A JP H11325842 A JPH11325842 A JP H11325842A JP 13293798 A JP13293798 A JP 13293798A JP 13293798 A JP13293798 A JP 13293798A JP H11325842 A JPH11325842 A JP H11325842A
Authority
JP
Japan
Prior art keywords
measured
long object
laser
measuring device
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13293798A
Other languages
Japanese (ja)
Inventor
Yasuo Oiwa
康夫 大岩
Masaru Tateyama
勝 館山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13293798A priority Critical patent/JPH11325842A/en
Publication of JPH11325842A publication Critical patent/JPH11325842A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure an arbitrary outside diameter of a long material and the bent state of the whole shape together. SOLUTION: A beam section 3 fixes both ends of a pipe to be measured 100 detachably. A sensor 8 outputs measured information for calculating its shape, by providing at least two sets of laser measuring apparatuses composed of laser beam projectors and laser beam detectors which move in the longitudinal direction of the pipe 100. A sensor position measuring section measures the position of the sensor 8 and outputs position information. A calculating section calculates and outputs the shape of the pipe on the basis of the position information and the measured information obtained by the sensor 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、長尺物の外径及び
曲がり状態等の長尺物の形状を求める長尺物形状測定方
法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the shape of a long object which determines the shape of the long object such as the outer diameter and the bent state of the long object.

【0002】[0002]

【従来の技術】従来、長尺物の形状である外径の測定方
法は、特開平2−62901号公報に開示されているよ
うに、長尺物の両端に測定子を押し当て、リニアスケー
ルによりその二つの測定子の位置関係を読み取ることに
より、外径を測定していた。この場合、測定子を押し当
てる力により長尺物が変形してしまい実際の外径と違う
値になってしまう問題点があった。
2. Description of the Related Art Conventionally, a method for measuring the outer diameter of a long object is disclosed in Japanese Patent Application Laid-Open No. 2-62901. The outer diameter was measured by reading the positional relationship between the two tracing styluses. In this case, there is a problem that the long object is deformed by the force of pressing the probe, and the value becomes different from the actual outer diameter.

【0003】また、長尺物の形状である外径を長さ方向
に連続的に長尺物の外径を測定する場合、測定子を押し
当てながら長尺物を移動させるか、または、その都度測
定子をはなし、測定位置を変えて測定子を再度押し付け
る必要があり、長尺物を傷つける恐れがあり、測定に手
間を要していた。
[0003] When the outer diameter of a long object is continuously measured in the longitudinal direction, the long object is moved while pressing a probe, or It is necessary to remove the measuring element each time, change the measuring position and press the measuring element again, and there is a risk of damaging a long object, and the measurement is troublesome.

【0004】また、非接触の方式では、特開平4−34
8208号公報に開示されているように、長尺物の両側
にレーザセンサの投光器を配置し、長尺物に遮られない
レーザ光量から外径を算出していたが、この方法ではレ
ーザセンサの測定幅以下の外径の長尺物しか測定でき
ず、測定幅の広いレーザセンサを使用する場合は、装置
が高価になってしまう等の問題点があった。
In the non-contact method, Japanese Patent Laid-Open No. 4-34
As disclosed in Japanese Patent Application Laid-Open No. 8208, a laser sensor projector is arranged on both sides of a long object, and the outer diameter is calculated from the amount of laser light unobstructed by the long object. In the case of using a laser sensor having a wide measurement width, which can measure only a long object having an outer diameter smaller than the measurement width, there has been a problem that the apparatus becomes expensive.

【0005】長尺物の曲がりの測定については、重力の
影響による長尺物の撓みを発生させないようにするため
に長尺物を縦にして測定していたが装置への取付けが容
易でなかった。また、長尺物の複数の円周方向の角度で
の曲がりを測定する場合、測定を要する角度の数だけセ
ンサを取付けなければならなかった。
In the measurement of the bending of a long object, the long object is measured vertically in order to prevent the bending of the long object due to the influence of gravity, but it is not easy to mount the apparatus on a device. Was. Further, when measuring the bending of a long object at a plurality of angles in the circumferential direction, it is necessary to mount the sensors by the number of angles that need to be measured.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来技術に
おいて、長尺物の外径を容易に測定できるものは長尺物
の太さが制限されていた。また、装置への長尺物の取付
けが大変だった。また、長尺物の曲がりの測定に関して
は、複数の円周方向の角度での長尺物の曲がりを測定す
る場合、測定を要する角度に応じた数のセンサを取付け
なければならなかったので装置が複雑で高価になってい
た。また、従来装置では長尺物の外径と曲がりを同時に
測定することは困難であった。
By the way, in the prior art, the thickness of the long object is limited in the case where the outer diameter of the long object can be easily measured. Also, it was difficult to attach a long object to the device. Also, regarding the measurement of the bending of a long object, when measuring the bending of a long object at a plurality of circumferential angles, the number of sensors according to the angle required for measurement had to be attached, so the apparatus was required. Was complicated and expensive. Further, it has been difficult to measure the outer diameter and the bending of a long object at the same time with the conventional apparatus.

【0007】そこで、本発明は、任意の太さの長尺物の
外径と曲がりを一緒に、かつ、容易に、測定することが
できる長尺物形状測定方法及びその装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention provides a method and apparatus for measuring the shape of a long object, which can easily and easily measure the outer diameter and the bending of a long object having an arbitrary thickness. Aim.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、長尺
物の外径及び曲がり等の形状を測定する長尺物形状測定
装置において、被測定長尺物の両端を着脱可能に固定す
る固定部と、レーザ投光器とレーザ受光器とからなるレ
ーザ測定器を少なくとも2組設け、一方のレーザ測定器
が被測定長尺物の軸方向と直交する外周壁の一端側に対
して一方のレーザ光路が形成されるように位置調整する
一方、他方のレーザ測定器が被測定長尺物の外周壁の一
端側に対向する他端側に他方のレーザ光路が形成される
ように位置調整し、各位置調整された一方のレーザ測定
器と他方のレーザ測定器の位置関係と一方のレーザ受光
器の受光量と他方のレーザ受光器の受光量とから形状を
算出するための測定情報を出力するセンサ部と、固定部
に設ける案内レール上に架設されるセンサ部を被測定長
尺物の長手方向へ移動させる駆動部と、センサ部の位置
を測定して位置情報を出力するセンサ位置測定部と、こ
のセンサ位置測定部により出力される位置情報とセンサ
部により得られた測定情報とに基づき被測定長尺物の形
状を演算出力する演算部とを設けるようにしたものであ
る。この手段によれば、任意の被測定長尺物の両端が固
定部に固定され、被測定長尺物の長手方向に沿ってセン
サ部が任意の位置へ移動され、その位置が位置情報とし
て出力される。そして、センサ部によって被測定長尺物
の長手方向の各位置において、レーザ測定器によって外
径を測定するための測定情報が求められる。得られた測
定情報と位置情報とは演算部によって演算され外径、あ
るいは、曲がり状態として出力される。これにより、必
要により被測定長尺物の任意の外径、あるいは、全体の
形状の曲がり状態を一緒に測定することができる。
According to a first aspect of the present invention, there is provided a long object shape measuring apparatus for measuring the shape of a long object such as an outer diameter and a bend. And at least two sets of laser measuring devices including a laser projector and a laser light receiving device are provided, and one of the laser measuring devices is provided on one side of an outer peripheral wall orthogonal to the axial direction of the long object to be measured. While the position is adjusted so that the laser beam path is formed, the other laser measuring device is adjusted so that the other laser beam path is formed on the other end side opposite to one end side of the outer peripheral wall of the long object to be measured. Outputs measurement information for calculating the shape from the positional relationship between the one laser measuring device and the other laser measuring device adjusted for each position, the received light amount of one laser receiving device, and the received light amount of the other laser receiving device. And a guide rail provided on the fixed part A driving unit that moves the sensor unit installed on the object in the longitudinal direction of the long object to be measured, a sensor position measurement unit that measures the position of the sensor unit and outputs position information, and a sensor unit that is output by the sensor position measurement unit. And a calculating unit for calculating and outputting the shape of the long object to be measured based on the positional information and the measurement information obtained by the sensor unit. According to this means, both ends of the long object to be measured are fixed to the fixed portion, the sensor unit is moved to an arbitrary position along the longitudinal direction of the long object to be measured, and the position is output as position information. Is done. Then, at each position in the longitudinal direction of the long object to be measured by the sensor unit, measurement information for measuring the outer diameter by the laser measuring device is obtained. The obtained measurement information and position information are calculated by the calculation unit and output as an outer diameter or a bent state. This makes it possible to simultaneously measure the arbitrary outer diameter of the long object to be measured or the bending state of the entire shape as necessary.

【0009】請求項2の発明は、請求項1記載の長尺物
形状測定装置において、センサ部は、第1レーザ投光器
と対向する第1レーザ受光器からなる第1レーザ測定器
により形成される第1光路を被測定長尺物の軸方向と直
交し、かつ、被測定長尺物の第1外周壁端側へ形成され
るように各位置関係を調整すると共に、第2レーザ投光
器と対向する第2レーザ受光器からなる第2レーザ測定
器により形成される第2光路を第1光路と平行し、か
つ、被測定長尺物の第1外周壁端側に対向する第2外周
壁端側へ形成されるように各位置関係を調整するセンサ
距離調整部と、位置調整後の第1レーザ受光器からの第
1レーザ光量と位置調整後の第2レーザ受光器からの第
2レーザ光量と、センサ距離調整部によって得られる第
1レーザ測定器と第2レーザ測定器間の距離情報を出力
するようにしたものである。この手段によれば、第1レ
ーザ測定器と第2レーザ測定器との位置関係が調整機構
によって任意に調整でき、第1光路と第2光路とが被測
定長尺物の外径に応じて変えられるので、任意の外径の
被測定長尺物に適用することができ、また、レーザ測定
器を用いるので非接触で外径を測定することができる。
According to a second aspect of the present invention, in the long object shape measuring apparatus according to the first aspect, the sensor portion is formed by a first laser measuring device including a first laser light receiving device facing the first laser light emitting device. Each positional relationship is adjusted so that the first optical path is formed perpendicular to the axial direction of the long object to be measured and toward the end of the first outer peripheral wall of the long object to be measured, and the first optical path faces the second laser projector. A second optical path formed by a second laser measuring device composed of a second laser light receiver that is parallel to the first optical path and facing the first outer peripheral wall end side of the long object to be measured. A sensor distance adjusting unit for adjusting each positional relationship so as to be formed on the side, a first laser light amount from the first laser light receiver after the position adjustment, and a second laser light amount from the second laser light receiver after the position adjustment And a first laser measuring device obtained by the sensor distance adjustment unit and a second Is obtained so as to output the distance information between the laser measuring instrument. According to this means, the positional relationship between the first laser measuring device and the second laser measuring device can be arbitrarily adjusted by the adjusting mechanism, and the first optical path and the second optical path are adjusted according to the outer diameter of the long object to be measured. Since it can be changed, it can be applied to a long object to be measured having an arbitrary outer diameter, and the outer diameter can be measured in a non-contact manner by using a laser measuring device.

【0010】請求項3の発明は、請求項1記載の長尺物
形状測定装置において、固定部は、被測定長尺物を固定
した状態で、センサ部に対して被測定長尺物の軸を中心
に回動可能とする機構を設けるようにしたものである。
この手段によれば、固定されるセンサ部に対して被測定
長尺物を軸中心として任意の角度へ回動できるので、少
ないセンサによって被測定長尺物の任意の回りの形状を
測定でき、被測定長尺物の長手方向の各位置について、
円周回りの外径を含む形状を測定できる。これによっ
て、従来のように、多数のセンサを円周回りに配置する
必要がなくなった。
According to a third aspect of the present invention, in the long object shape measuring apparatus according to the first aspect, the fixing portion fixes the axis of the long object to be measured with respect to the sensor portion in a state where the long object to be measured is fixed. Is provided with a mechanism capable of rotating around the center.
According to this means, since the object to be measured can be rotated to an arbitrary angle with respect to the fixed sensor unit around the axis of the object to be measured, an arbitrary shape of the object to be measured can be measured with a small number of sensors, For each position in the longitudinal direction of the long object to be measured,
The shape including the outer diameter around the circumference can be measured. As a result, it is no longer necessary to arrange a large number of sensors around the circumference as in the related art.

【0011】請求項4の発明は、請求項1記載の長尺物
形状測定装置において、固定部は、被測定長尺物の長手
方向の全長の略中央を中心にして回動自在として任意の
回動位置へ被測定長尺物を傾けて被測定長尺物の形状を
測定可能とするようにしたものである。この手段によれ
ば、被測定長尺物を固定する固定部が任意の回動位置と
され、被測定長尺物を任意に傾けることができるので、
任意の傾きのときの被測定長尺物の撓みを測定でき、固
定部を水平方向にすれば、被測定長尺物の取付けが容易
にできる。
According to a fourth aspect of the present invention, in the long object shape measuring apparatus according to the first aspect, the fixing portion is freely rotatable about a substantially center of the entire length in the longitudinal direction of the long object to be measured. The long object to be measured is tilted to the rotating position so that the shape of the long object to be measured can be measured. According to this means, since the fixing portion for fixing the long object to be measured is at an arbitrary rotation position, and the long object to be measured can be arbitrarily tilted,
The deflection of the long object to be measured at an arbitrary inclination can be measured, and the mounting of the long object to be measured can be facilitated by setting the fixing portion in the horizontal direction.

【0012】請求項5の発明は、請求項1記載の長尺物
形状測定装置において、駆動部の案内レールによって被
測定長尺物の軸方向へセンサ部を移動させる場合の案内
レールの歪みから生じる走行経路の曲がりを測定する走
行経路補正治具を設け、得られる走行経路の曲がりによ
ってセンサ部で得られる測定情報を補正し、外径、ある
いは、曲がりを補正するようにしたものである。この手
段によれば、センサ部が被測定長尺物の長手方向に沿っ
て移動し、各位置で形状を測定する際に用いる案内レー
ルの径から生じる走行経路の曲がりが測定され、センサ
部から得られる測定情報が補正される。これにより、案
内レールの歪みに影響されない正確な測定情報が得られ
被測定長尺物の曲がり状態がより正確で信頼性のあるも
のとなる。
According to a fifth aspect of the present invention, there is provided the long object shape measuring apparatus according to the first aspect, wherein the guide rail of the drive unit moves the sensor unit in the axial direction of the long object to be measured. A traveling path correction jig for measuring the resulting bending of the traveling path is provided, and the measurement information obtained by the sensor unit is corrected by the obtained bending of the traveling path to correct the outer diameter or the bending. According to this means, the sensor section moves along the longitudinal direction of the long object to be measured, and the bending of the traveling path resulting from the diameter of the guide rail used when measuring the shape at each position is measured, and from the sensor section The obtained measurement information is corrected. As a result, accurate measurement information that is not affected by the distortion of the guide rail is obtained, and the bending state of the long object to be measured becomes more accurate and reliable.

【0013】請求項6の発明は、長尺物の形状を測定す
る長尺物形状測定方法において、一方のレーザ投光器と
対向するレーザ受光器とからなる一方のレーザ測定器に
よって形成される一方の光路を被測定長尺物の軸方向と
直交し、かつ、被測定長尺物の一方の外周壁端側へ形成
させるように各位置関係を調整し、他方のレーザ投光器
と対向する他方のレーザ受光器とからなる他方のレーザ
測定器によって形成される他方の光路を被測定長尺物の
軸方向と直交し、かつ、被測定長尺物の一方の外周壁端
側と対向する他方の外周壁端側へ形成させるように各位
置関係を調整し、各位置関係調整後に一方のレーザ測定
器と他方のレーザ測定器と被測定長尺物との位置関係と
一方のレーザ受光器の受光量と他方のレーザ受光器の受
光量による他方のレーザ受光器とによって被測定長尺物
の外径を測定するようにしたものである。この手段によ
れば、一方のレーザ測定器と他方のレーザ測定器との任
意関係を任意に変更できるので、被測定長尺物の任意の
外径を測定できる。
According to a sixth aspect of the present invention, in the long object shape measuring method for measuring the shape of a long object, one of the laser measuring devices formed by one of the laser projector and the opposite laser light receiver is formed. Adjust each positional relationship so that the optical path is formed perpendicular to the axial direction of the long object to be measured and on one end of the outer peripheral wall of the long object to be measured, and the other laser facing the other laser projector The other optical path formed by the other laser measuring device composed of the photodetector is orthogonal to the axial direction of the long object to be measured, and the other outer periphery facing one outer peripheral wall end side of the long object to be measured. Adjust each positional relationship so that it is formed on the wall end side, and after adjusting each positional relationship, the positional relationship between one laser measuring device, the other laser measuring device, and the long object to be measured, and the amount of light received by one laser receiver And the other laser receiver By the over The light receiver is obtained so as to measure the outer diameter of the measured long product. According to this means, the arbitrary relationship between the one laser measuring device and the other laser measuring device can be arbitrarily changed, so that an arbitrary outer diameter of the long object to be measured can be measured.

【0014】請求項7の発明は、長尺物の形状を測定す
る長尺物形状側測定方法において、一方のレーザ投光器
と対向するレーザ受光器とからなる一方のレーザ測定器
によって形成される一方の光路を被測定長尺物の軸方向
と直交し、かつ、被測定長尺物の一方の外周壁端側へ形
成させるように各位置関係を調整し、他方のレーザ投光
器と対向する他方のレーザ受光器とからなる他方のレー
ザ測定器によって形成される他方の光路を被測定長尺物
の軸方向と直交し、かつ、被測定長尺物の一方の外周壁
端側と対向する他方の外周壁端側へ形成させるように各
位置関係を調整し、各位置関係調整後に一方のレーザ測
定器と他方のレーザ測定器と被測定物との位置関係と一
方のレーザ受光器の受光量と他方のレーザ受光器の受光
量による測定データを収集し、これらの測定データの収
集を被測定長尺物の軸方向の各位置について実行し、収
集された被測定長尺物の軸方向の各位置における各測定
データから得られる被測定長尺物の外観形状と被測定長
尺物の基準形状とを比較して被測定長尺物の軸方向の各
位置の変位量を求めて被測定長尺物の曲がり状態を測定
するようにしたものである。この手段によれば、被測定
長尺物の長手方向の任意の位置の外径と被測定長尺物の
長手方向の曲がり状態が一緒に測定することができ効率
的である。
According to a seventh aspect of the present invention, in the long object shape side measuring method for measuring the shape of a long object, one of the laser measuring devices formed by one of the laser projector and the opposing laser light receiver is used. The optical path is orthogonal to the axial direction of the long object to be measured, and the respective positional relationships are adjusted so as to be formed on one end of the outer peripheral wall of the long object to be measured, and the other is opposed to the other laser projector. The other optical path formed by the other laser measuring device composed of the laser light receiver and the other optical path orthogonal to the axial direction of the long object to be measured, and facing the outer peripheral wall end side of one of the long objects to be measured. Adjust each positional relationship so that it is formed on the outer peripheral wall end side, and after adjusting each positional relationship, the positional relationship between one laser measuring device, the other laser measuring device, and the object to be measured, and the amount of light received by one laser light receiving device. Measurement data based on the amount of light received by the other laser receiver Are collected for each position in the axial direction of the long object to be measured, and the measured length obtained from each measurement data at each position in the axial direction of the long object to be measured is collected. By comparing the external shape of the long object and the reference shape of the long object to be measured, the amount of displacement at each position in the axial direction of the long object to be measured is obtained, and the bending state of the long object to be measured is measured. Things. According to this means, the outer diameter at an arbitrary position in the longitudinal direction of the long object to be measured and the bent state in the longitudinal direction of the long object to be measured can be measured together, which is efficient.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は、本発明の第1実施の形態を示す長
尺物形状測定装置の概略外観図、図2は長尺物形状測定
装置の概要図である。
FIG. 1 is a schematic external view of a long object shape measuring device according to a first embodiment of the present invention, and FIG. 2 is a schematic diagram of the long object shape measuring device.

【0017】図において、長尺物形状測定装置は、架台
となる箱状のフレーム1の底面1aを地上A上に設置
し、対向する上面1bに、さらに、固定される箱状のフ
レーム2を有し、このフレーム2の前面2aから前方へ
延びて設けるビーム回転軸14の先端に上下方向に長い
形状のビーム部3が取付けられている。
In the figure, a long object shape measuring apparatus has a box-shaped frame 1 serving as a mount, a bottom surface 1a of which is set on the ground A, and a box-shaped frame 2 which is fixed on an opposing upper surface 1b. A beam portion 3 having a vertically long shape is attached to a distal end of a beam rotating shaft 14 provided to extend forward from a front surface 2 a of the frame 2.

【0018】ビーム部3は、前面3aの上側に、移動端
4と下端に固定端5とを設けて、被測定管100を上下
で固定するように構成されている。そして、被測定管1
00に対して平行となるようにして全長をカバーする2
本の案内用のレール7が被測定管100の左右上下方向
に設置され、これらのレール7に被測定管100の外径
を測定するセンサ8が被測定管100の管軸方向に移動
可能に架設されている。
The beam section 3 is configured such that a moving end 4 is provided above a front surface 3a and a fixed end 5 is provided at a lower end to fix the tube to be measured 100 up and down. Then, the measured pipe 1
2 to cover the entire length so as to be parallel to 00
Rails 7 for guiding the books are installed in the left, right, up and down directions of the pipe 100 to be measured, and a sensor 8 for measuring the outer diameter of the pipe 100 to be measured can be moved on these rails 7 in the pipe axis direction of the pipe 100 to be measured. It is erected.

【0019】すなわち、センサ8は、ビーム部3上の一
方のレール7に平行に設けるベルト10が、上下に設け
るプーリ11によって架けられ、下方に設けるセンサ移
動モータ9の回転に伴い、ベルト10が上下に移動し、
センサ8が対応して被測定管100の管軸方向へ移動可
能としている。
That is, the sensor 8 includes a belt 10 provided in parallel with one of the rails 7 on the beam section 3, which is hung by pulleys 11 provided vertically, and the belt 10 is rotated by a sensor moving motor 9 provided below. Move up and down,
The sensor 8 is correspondingly movable in the tube axis direction of the measured tube 100.

【0020】ビーム部3の後方の前述したフレーム2の
側面2bには、ビーム部3全体を任意に回転可能とする
ビーム部回転モータ6が取付けられ、このビーム部回転
モータ6の回転がフレーム2内に設ける図示しないウォ
ームギヤーを経てビーム回転軸14へ伝達されて、ビー
ム回転軸14の回動によってビーム部3を図2のE点を
軸にしてF矢印方向または逆方向へ回転させるように構
成され、これにより、被測定管100の任意の傾斜状態
での曲がりを測定でき、また、ビーム部3を水平にすれ
ば、被測定管100の取付けを容易にしている。センサ
8の出力とセンサ移動モータ9の出力とは、演算部12
へ接続され表示部13へ接続されている。
A beam section rotation motor 6 is mounted on the side surface 2b of the frame 2 behind the beam section 3 so that the entire beam section 3 can be arbitrarily rotated. The beam portion 3 is transmitted to a beam rotating shaft 14 via a worm gear (not shown) provided therein, and the beam portion 3 is rotated in the direction of the arrow F or in the opposite direction about the point E in FIG. With this configuration, it is possible to measure the bending of the measured tube 100 in an arbitrary inclined state, and if the beam unit 3 is horizontal, the mounting of the measured tube 100 is facilitated. The output of the sensor 8 and the output of the sensor moving motor 9 are calculated by
To the display unit 13.

【0021】移動端4は、図2の前面から見た図3に示
すように、ビーム部3に設置されたレール7に移動端固
定具15が懸架されており、被測定管100の長さ方向
に移動可能となっている。移動端固定具15には、固定
レバー16と管固定子17が取り付けられ、被測定管1
00の片端に管固定子17に押し当てることによって被
測定管100を取付けるようになっている。
As shown in FIG. 3 as viewed from the front in FIG. 2, the moving end 4 has a moving end fixing member 15 suspended on a rail 7 installed on the beam portion 3. It can be moved in any direction. A fixed lever 16 and a tube stator 17 are attached to the moving end fixture 15, and
The tube to be measured 100 is attached by pressing the tube stator 17 against one end of the tube 100.

【0022】固定レバー16は、図3のB方向から見た
図4のようにねじになっており、固定レバー16を回
し、ビーム部3に押し当てて移動端4を固定するように
なっている。この構成により、移動端4を移動させて任
意の長さの被測定管100を長尺物形状測定装置に取付
けることができる。
The fixing lever 16 is formed as a screw as shown in FIG. 4 as viewed from the direction B in FIG. 3, and the fixing lever 16 is turned and pressed against the beam portion 3 to fix the moving end 4. I have. With this configuration, it is possible to move the moving end 4 and attach the measured pipe 100 having an arbitrary length to the long object shape measuring device.

【0023】また、移動端4の内部は、図4のC−C方
向から見た図5のように、移動端固定具15の筒状部1
5aに対してプッシュ固定具19によって内側にプッシ
ュ18が嵌め込まれ、このプッシュ18の内側に管固定
子17の軸部17bを嵌合させ、ばね20を介して固定
軸21を取付けている。
Further, as shown in FIG. 5 as viewed from the direction C--C in FIG. 4, the inside of the movable end 4 has a cylindrical portion 1 of the movable end fixture 15.
The push 18 is fitted into the inside of the pusher 5 a by the push fixture 19, the shaft portion 17 b of the tube stator 17 is fitted inside the push 18, and the fixed shaft 21 is attached via the spring 20.

【0024】この構成により、管固定子17は矢印I方
向(上下方向)に移動可能となり、さらに、プッシュ1
8によって回動可能となり、被測定管100を取付けた
とき、ばね20に付勢される管固定子17の下方への押
圧により、被測定管100の管端が管固定子17の頭部
17aにより装着される。
With this configuration, the pipe stator 17 can be moved in the direction of the arrow I (up and down direction).
8, when the tube 100 to be measured is mounted, the tube end of the tube 100 to be measured is pressed by the spring 20 downwardly to push the tube end of the tube stator 17 to the head 17a of the tube stator 17. Mounted by

【0025】一方、固定端5は、図2のD−D方向から
見た図6のように、ビーム部3から前方へ突出するよう
に取付けられる支持部24aを有する固定具24に形成
される凹状の受部24bに対応してベアリング25を介
して管回転子23の凸状の下部23aを嵌め込み、管回
転モータ22が下部に、さらに、固定具24の軸穴24
cに管回転モータ22の軸22aを貫通させ、軸22a
が管回転子23の下部23aに固定されている。そし
て、管回転子23の頭部23bの周縁23cが被測定管
100の管端を支持するようになっている。
On the other hand, the fixed end 5 is formed on a fixture 24 having a support portion 24a attached so as to protrude forward from the beam portion 3, as shown in FIG. A convex lower portion 23a of the tube rotor 23 is fitted through the bearing 25 in correspondence with the concave receiving portion 24b.
c, the shaft 22a of the tube rotation motor 22
Is fixed to the lower portion 23a of the tube rotor 23. The peripheral edge 23c of the head 23b of the tube rotor 23 supports the tube end of the measured tube 100.

【0026】この構成により、管回転モータ22を駆動
させることによって、管回転子23と一緒に、被測定管
100を被測定管100の中心軸を中心として回転させ
ることができる。また、管回転モータ22はパルスモー
タであり、任意の円周方向の角度での被測定管100の
外径が測定できる。
With this configuration, the tube to be measured 100 can be rotated about the central axis of the tube to be measured 100 together with the tube rotator 23 by driving the tube rotation motor 22. The tube rotation motor 22 is a pulse motor, and can measure the outer diameter of the measured tube 100 at an arbitrary circumferential angle.

【0027】図7は、図2のG方向から見たセンサ8の
側部周辺を示す図、図8は、センサ8に対して上から見
たセンサ8の内部構造を示す図である。
FIG. 7 is a diagram showing the vicinity of the side of the sensor 8 as viewed from the direction G in FIG. 2, and FIG. 8 is a diagram showing the internal structure of the sensor 8 as viewed from above the sensor 8.

【0028】図において、センサ固定部28がビーム部
3に取付けられる2本のレール7の一部に前方へ突出す
るように架設され、センサ固定部28の上面側にギヤー
26とこのギヤー26と歯合するようにセンサ8の側面
に形成される歯38aが対向して、ギヤー26の軸がセ
ンサ固定部28の下面側に設けるセンサ回転モータ27
と連絡するようにセンサ回転モータ27が取付けられて
いる。
In the figure, a sensor fixing portion 28 is installed so as to protrude forward from a part of two rails 7 attached to the beam portion 3, and a gear 26 and the gear 26 are provided on the upper surface side of the sensor fixing portion 28. A tooth 38a formed on the side surface of the sensor 8 so as to mesh with the sensor 38, and the shaft of the gear 26 is provided on the lower surface side of the sensor fixing portion 28.
The sensor rotation motor 27 is mounted so as to communicate with the sensor.

【0029】これにより、センサ回転モータ27の駆動
によりセンサ8は被測定管100の中心軸を中心に回転
し、任意の円周方向の角度で被測定管100の外径を測
定することができる。
Thus, the sensor 8 rotates around the central axis of the measured tube 100 by driving the sensor rotating motor 27, and can measure the outer diameter of the measured tube 100 at an arbitrary angle in the circumferential direction. .

【0030】センサ8は、図8に示すように、円盤状の
ベース38の外周壁に歯38aを形成し、中央に被測定
管100が貫通する貫通穴38bを形成すると共に、ベ
ース38の上面に後述する距離調整機構39を装備して
いる。
As shown in FIG. 8, the sensor 8 has teeth 38a formed on the outer peripheral wall of a disk-shaped base 38, a through hole 38b through which a tube to be measured 100 passes, and a top surface of the base 38. Is equipped with a distance adjusting mechanism 39 described later.

【0031】すなわち、距離調整機構39は、ベース3
8上に蛇行し、被測定管100を包囲するように架けら
れるベルト35を動かすように支持するプーリ34a〜
34gが立設され、ベルト35の一端に距離調整つまみ
36が設けられ、この距離調整つまみ36を回転させる
と図示するベルト35が自在に動くように構成されてい
る。そして、上記ベルト35の固定部35aと距離測定
器37aのサポート30dが固定され、距離測定器37
aのサポート31dと固定部35bとが固定されて、距
離測定器37aの投光器30bと投光器31bとがベル
ト35の動きに応じて間隙Sを任意に調整可能としてい
る。
That is, the distance adjusting mechanism 39 is
8, pulleys 34a-34 supporting the belt 35, which is hung around the tube to be measured 100, so as to be moved.
34g, a distance adjusting knob 36 is provided at one end of the belt 35, and when the distance adjusting knob 36 is rotated, the belt 35 illustrated is freely movable. Then, the fixing portion 35a of the belt 35 and the support 30d of the distance measuring device 37a are fixed, and the distance measuring device 37a is fixed.
The support 31d and the fixing part 35b are fixed so that the light projector 30b and the light projector 31b of the distance measuring device 37a can arbitrarily adjust the gap S according to the movement of the belt 35.

【0032】同様に、距離測定器37bのサポート32
dがベルト35の固定部35cで固定され、サポート3
3dがベルト35の固定部35dで固定され、ベルト3
5の動きに応じて投光器32bと投光器33bとの間隙
Sを任意に調整可能としている。
Similarly, the support 32 of the distance measuring device 37b
d is fixed by the fixing portion 35c of the belt 35,
3d is fixed by the fixing portion 35d of the belt 35, and the belt 3
5, the gap S between the light projector 32b and the light projector 33b can be arbitrarily adjusted.

【0033】さらに、図示左側の投光器30bと投光器
31bとに対向する位置のベルト35の固定部35eに
受光器30aを有するサポート30cが固定され、固定
部35fに受光器31aを有するサポート31cが固定
され、図示下側の距離測定器37bの投光器32bと投
光器33bとに対向する位置のベルト35の固定部35
gに受光器32aを有するサポート32cが固定され、
固定部35hに受光器33aを有するサポート33cが
固定されている。
Further, a support 30c having a light receiver 30a is fixed to a fixing portion 35e of the belt 35 at a position facing the light projector 30b and the light projector 31b on the left side in the figure, and a support 31c having the light receiver 31a is fixed to the fixing portion 35f. The fixing portion 35 of the belt 35 at a position facing the light projector 32b and the light projector 33b of the lower distance measuring device 37b in the figure.
g, a support 32c having a light receiver 32a is fixed,
A support 33c having a light receiver 33a is fixed to the fixing portion 35h.

【0034】このセンサ距離調整機構39により、距離
調整つまみ36を回転させると、ベルト35の動きによ
って、各投光器と各受光器がずれずに動き、組となるレ
ーザセンサの間隔が変わり、任意の間隔が取れる。組と
なるレーザセンサは、被測定管100の外径にレーザ光
量がおよそ半分遮断されるように配置する。これによ
り、距離調整つまみ36の回転だけで被測定管100の
外径の違いに対応できる。
When the distance adjusting knob 36 is rotated by the sensor distance adjusting mechanism 39, each light emitter and each light receiver are moved without displacement by the movement of the belt 35, and the interval between the laser sensors forming a pair is changed. Can be spaced. The paired laser sensors are arranged on the outer diameter of the tube to be measured 100 such that the amount of laser light is blocked by about half. Thus, it is possible to cope with a difference in the outer diameter of the measured tube 100 only by rotating the distance adjustment knob 36.

【0035】以上の構成による図8において、センサ距
離調整機構39によって距離調整つまみ36を回すと、
一組の投光器30bと投光器31bと一組の投光器32
bと投光器33b各組の間隔が変わる。そして、図8の
ように投光器30bからのレーザ光量の半分が対向する
受光器30aで受光されるようにする。また、投光器3
1bからのレーザ光量の半分が対向する受光器31aで
受光するようにする。さらに、投光器33bからのレー
ザ光量の半分が対向する受光器33aで受光するように
し、投光器32bからのレーザ光量の半分が対向する受
光器32aで受光するように各間隔を調整する。
In FIG. 8 having the above configuration, when the distance adjustment knob 36 is turned by the sensor distance adjustment mechanism 39,
One set of projector 30b, one set of projector 31b and one set of projector 32
The distance between b and each set of the light projector 33b changes. Then, as shown in FIG. 8, half of the amount of laser light from the light projector 30b is received by the opposing light receiver 30a. In addition, floodlight 3
Half of the amount of laser light from 1b is received by the opposing light receiver 31a. Further, each interval is adjusted such that half of the laser light amount from the light projector 33b is received by the opposing light receiver 33a, and half of the laser light amount from the light emitter 32b is received by the opposing light receiver 32a.

【0036】この結果、距離測定器37aから一組の投
光器30bと投光器31bの間の距離Lが測定され、受
光器30aと受光器31aとの各レーザ光受量によって
演算部12によって一方の外径が次の式(1)によって
算出される。
As a result, the distance L between one set of the light projector 30b and the light projector 31b is measured from the distance measuring device 37a, and the calculation unit 12 calculates the distance L between the light receiver 30a and the light receiver 31a based on the amount of laser light received. The diameter is calculated by the following equation (1).

【0037】 外径(D)=L−LZ −LZ …(1) ここで、 L:投光器30bと投光器31bの間の距
離 LZ :受光器30aの受光幅 LZ :受光器31aの受光幅
Outer diameter (D) = L−LZ 1 −LZ 2 (1) where L: distance between light emitter 30 b and light emitter 31 b LZ 1 : light receiving width of light receiver 30 a LZ 2 : light receiving width of light receiver 31 a Light receiving width

【0038】同様にして、投光器32bと投光器33b
の間の距離と受光器32aと受光器33aとによる受光
量から演算部12によって外径が求められる。
Similarly, the light projector 32b and the light projector 33b
The outer diameter is determined by the calculation unit 12 from the distance between the two and the light reception amounts of the light receivers 32a and 33a.

【0039】次に、前述するセンサ8を被測定管100
の管軸方向に沿って移動させるセンサ移動モータ9は、
図2の1−1方向から見た図9に示すようにモータ固定
具40によりビーム部3に固定され、センサ移動モータ
9の動作はギヤー41からギヤー42へ伝わり、エンコ
ーダ43とプーリ44に伝わる。プーリ44の回転によ
り、ベルト10に取り付けられたセンサ8が被測定管1
00の長さ方向に移動し、その動きがエンコーダ43に
より検出され位置情報として演算部12に出力される。
Next, the sensor 8 described above is connected to the pipe 100 to be measured.
The sensor movement motor 9 for moving along the tube axis direction of
As shown in FIG. 9 as viewed from the direction 1-1 in FIG. 2, the beam is fixed to the beam unit 3 by the motor fixture 40, and the operation of the sensor moving motor 9 is transmitted from the gear 41 to the gear 42 and transmitted to the encoder 43 and the pulley 44. . By the rotation of the pulley 44, the sensor 8 attached to the belt 10 causes the pipe 1 to be measured.
00, and the movement is detected by the encoder 43 and output to the calculation unit 12 as position information.

【0040】次に、本発明の第2実施の形態について図
10乃至図13を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS.

【0041】第2実施の形態は、第1実施の形態の長尺
物形状測定装置において、センサ8の走行レール7の蛇
行による曲がり測定値のずれを補正する走行経路補正治
具50を有し、レールの歪みに影響されない正確な長尺
物の曲がりを計算する特徴を有している。
The second embodiment is different from the long object shape measuring apparatus of the first embodiment in that there is provided a travel path correcting jig 50 for correcting a deviation of a measured value of a bending caused by meandering of the traveling rail 7 of the sensor 8. It has the feature of accurately calculating the bending of a long object that is not affected by rail distortion.

【0042】図10は、走行経路補正治具の側面図、図
11は外観図、図12は図10のA−A断面である。
FIG. 10 is a side view of the traveling route correction jig, FIG. 11 is an external view, and FIG. 12 is a sectional view taken along line AA of FIG.

【0043】走行経路補正治具50は、環状の下部固定
部50bの上にワイヤ51を中央に上下方向へ所定張力
で架設され断面L字状の案内部50cと案内部50dと
がワイヤ51を囲むように設けて、ワイヤ51と案内部
50cと案内部50dとが上端で上部固定部50aに取
付けられ、下部固定部50bにはワイヤ51の下端が貫
通するねじ54を介在したガイド53を設け、ガイド5
3のガイド穴に設けるねじ55によってガイド53の外
からねじ55をナット52で締め付けるようにしてい
る。
The traveling route correcting jig 50 is provided with a predetermined tension in the vertical direction centering on the wire 51 on the annular lower fixing portion 50b. The guide portion 50c and the guide portion 50d each having an L-shaped cross section support the wire 51. The wire 51, the guide portion 50c, and the guide portion 50d are attached to the upper fixing portion 50a at the upper end, and the lower fixing portion 50b is provided with the guide 53 interposed with the screw 54 through which the lower end of the wire 51 passes. , Guide 5
The screw 55 provided in the third guide hole is used to tighten the screw 55 from the outside of the guide 53 with the nut 52.

【0044】まず、一定の張力でワイヤ51を張り、セ
ンサ8の走行経路の直線の基準を作る。ワイヤ51に張
力を掛けるには、ナット52を回し内側によせる。ガイ
ド53も同時に内側によるが、ねじ54により反発力が
生じ、ナット52と一緒にねじ55が外側に押され、ね
じ55に取り付けてあるワイヤ51も同時に外側に押さ
れ、張力が生じる。
First, the wire 51 is stretched with a constant tension, and a straight line reference for the traveling route of the sensor 8 is created. To apply tension to the wire 51, the nut 52 is turned inside. Although the guide 53 is also on the inside at the same time, a repulsive force is generated by the screw 54, the screw 55 is pushed outward together with the nut 52, and the wire 51 attached to the screw 55 is also pushed outward at the same time, generating tension.

【0045】次に、図8で説明したと同様のセンサ8の
ベース38に形成する円形の貫通穴38bに前述する走
行経路補正治具50を挿入して上下で走行経路補正治具
50を固定する。そして、図13に示すようにベルト3
5の固定部35bに投光器31bを固定する一方、対向
して受光器31aをベルト35の固定部35fへ固定
し、ベルト35の固定部35dに投光器33bを固定
し、対向して受光器33aを固定部35hへ固定する。
準備が完了すると、距離調整つまみ36を回して一方の
投光器31bからレーザ光の中心がワイヤ51のほぼ中
心となるようにする。これによって、レーザ光が受光器
31aで受光されるようにし、これに対して他方の投光
器33bからのレーザ光の中心がワイヤ51のほぼ中心
となるように調整する。この状態でセンサ8をワイヤ5
1の端部から端部の全長に沿って上下に移動させ、受光
器33aと受光器31aとによって各受光される各レー
ザ光量を測定して保存する。
Next, the traveling path correcting jig 50 described above is inserted into a circular through hole 38b formed in the base 38 of the sensor 8 as described with reference to FIG. I do. Then, as shown in FIG.
5, the light emitter 31b is fixed to the fixing part 35b of the belt 35, and the light receiver 31a is fixed to the fixing part 35f of the belt 35, and the light emitter 33b is fixed to the fixing part 35d of the belt 35. It is fixed to the fixing part 35h.
When the preparation is completed, the distance adjustment knob 36 is turned so that the center of the laser beam from one of the projectors 31b becomes substantially the center of the wire 51. Thus, the laser beam is received by the light receiver 31a, and the center of the laser beam from the other projector 33b is adjusted so as to be substantially the center of the wire 51. In this state, the sensor 8 is connected to the wire 5
The laser light is moved up and down along the entire length of the end from one end, and the amount of each laser beam received by the light receiver 33a and the light receiver 31a is measured and stored.

【0046】このようにレーザセンサの位置をレーザ光
の中心がワイヤ51のほぼ中心となるように調整し、組
となるレーザセンサの一方だけのレーザ光がワイヤ51
に当たるようにする。そして、走行経路補正治具50の
ワイヤ51の端から端までの遮断されたレーザ光量の変
化を調べ、その値の変化をレール7の歪みとし、被測定
管100の曲がり測定時の補正値とする。これにより、
レール7の歪みの影響を受けず、正確に被測定管100
の曲がりを計算することができる。
As described above, the position of the laser sensor is adjusted so that the center of the laser beam is substantially at the center of the wire 51, and only one laser beam of the paired laser sensors is
So that Then, a change in the amount of laser light cut off from end to end of the wire 51 of the travel path correction jig 50 is checked, and the change in the value is regarded as a distortion of the rail 7, and the correction value at the time of measuring the bending of the pipe 100 to be measured is used I do. This allows
The pipe under test 100 is accurately measured without being affected by the distortion of the rail 7.
Can be calculated.

【0047】次に、本発明の第3実施の形態における被
測定管の曲がりを測定する方法について説明する。
Next, a description will be given of a method for measuring the bending of the measured pipe according to the third embodiment of the present invention.

【0048】図14では、図8に対応するように投光器
30bと投光器31bとから受光器30aと受光器31
aへ投光されて、前述した調整で得られた測定値が被測
定管100の管軸方向の0〜n(横軸)に対して直角方
向(縦軸)に被測定管100の管軸と垂直方向の状態を
示している。
In FIG. 14, as shown in FIG. 8, the light receiver 30a and the light receiver 31b are composed of the light projector 30b and the light projector 31b.
a, and the measured value obtained by the above-described adjustment is adjusted in a direction (vertical axis) perpendicular to 0 to n (horizontal axis) in the direction of the tube axis of the tube 100 to be measured. And the state in the vertical direction.

【0049】まず、図14のように被測定管100の両
端で前記式(1)で得られた外径の中心を結ぶ仮想中心
線を作成する。具体的には、図示管左端を中心位置VRL
が式(2)により算出される。
First, as shown in FIG. 14, virtual center lines connecting the centers of the outer diameters obtained by the above equation (1) are created at both ends of the pipe 100 to be measured. Specifically, the left end of the illustrated tube is positioned at the center position V RL
Is calculated by equation (2).

【0050】 VRL={L−(LZ10+LZ20)}/2+LZ20 …(2) ここで、 L:センサ距離 LZ10:0の位置の受光器30aの受光量幅 LZ20:0の位置の受光器31aの受光量幅V RL = {L− (LZ 10 + LZ 20 )} / 2 + LZ 20 (2) where L: sensor distance LZ 10 : 0 The light receiving amount width of the light receiver 30a at the position of LZ 20 : 0 Light receiving width of the light receiver 31a

【0051】また、図示管右端を中心位置VRRが式
(3)により算出される。
The center position V RR at the right end of the illustrated tube is calculated by equation (3).

【0052】 VRR={L−(LZ1n+LZ2n)}/2+LZ1n …(3) ここで、 L:センサ距離 LZ1n:nの位置の受光器30aの受光量幅 LZ2n:nの位置の受光器31aの受光量幅V RR = {L− (LZ 1n + LZ 2n )} / 2 + LZ 1n (3) where L: sensor distance LZ 1n : light receiving amount width of light receiver 30a at position n LZ 2n : position n Light receiving width of the light receiver 31a

【0053】得られた管左端を中心位置VRLと管右端を
中心位VRRとを直線で結び仮想中心線とする。
The obtained pipe left end is connected to a center position V RL and the pipe right end to a center position V RR by a straight line to form a virtual center line.

【0054】続いて、予め定められた基準の被測定管1
00の円筒の半径D0 /2を仮想中心線を中心として描
いて筒状の基準管を作成する。次に、X軸に対するx点
における傾斜補正量εx は、次の式(4)で算出する。
Subsequently, the pipe 1 to be measured with a predetermined reference
00 of radius D 0/2 of the cylinder drawn around the imaginary center line to create a cylindrical reference tube. Next, the inclination correction amount epsilon x at point x for the X-axis is calculated by the following equation (4).

【0055】 εx ={(VRR−VRL)/n}・x …(4)Ε x = {(V RR −V RL ) / n} · x (4)

【0056】さらに、投光器30bによるx点の変位量
σ1xは、次の式(5)で算出する。
Further, the displacement σ 1x of the x point by the light projector 30b is calculated by the following equation (5).

【0057】 σ1x=VRL−LZ1x−D0 /2−εx …(5)Σ 1x = V RL −LZ 1x −D 0 / 2−ε x (5)

【0058】同様に、投光器31bによるx点の変位量
σ1xは、次の式(6)で算出する。
Similarly, the displacement σ 1x of the x point by the light projector 31b is calculated by the following equation (6).

【0059】 σ2x=(L−VRL)−LZ2x−D0 /2+εx …(6)[0059] σ 2x = (L-V RL ) -LZ 2x -D 0/2 + ε x ... (6)

【0060】また、x軸上のy点の外径Dy は式(7)
で求められる。
The outer diameter D y at the point y on the x axis is given by the following equation (7).
Is required.

【0061】Dy =L−LZ1y−LZ2y …(7)D y = L−LZ 1y −LZ 2y (7)

【0062】これによって、各点の変位量を求めれば、
被測定管100の両端の直径の中心間を中心軸とした曲
がり曲線が得られる。また、この方法によれば、被測定
管100が傾き、センサ8の走行レール7と平行でなく
ても曲がりを測定することが可能である。さらに、測定
角度毎の曲がりを求めることにより被測定管100全体
の形状を得ることができる。
Thus, if the displacement of each point is obtained,
A bending curve with the center axis between the centers of the diameters at both ends of the measured tube 100 is obtained. Further, according to this method, it is possible to measure the bend even if the pipe to be measured 100 is inclined and not parallel to the traveling rail 7 of the sensor 8. Further, the shape of the entirety of the measured pipe 100 can be obtained by obtaining the bending at each measurement angle.

【0063】[0063]

【発明の効果】以上説明したように、請求項1の発明に
よれば、任意の被測定長尺物の両端を固定し、被測定長
尺物の長手方向に沿ってセンサ部を任意の位置へ移動
し、その位置が位置情報として出力し、センサ部によっ
て被測定長尺物の長手方向の各位置において、レーザ測
定器によって外径を測定するための測定情報を求め、得
られた測定情報と位置情報とによって演算され外径、あ
るいは、曲がり状態として出力する。これにより、必要
により被測定長尺物の任意の外径、あるいは、全体の形
状の曲がり状態を一緒に測定することができる。
As described above, according to the first aspect of the present invention, both ends of an arbitrary long object to be measured are fixed, and the sensor section is located at an arbitrary position along the longitudinal direction of the long object to be measured. The position is output as position information, and at each position in the longitudinal direction of the long object to be measured by the sensor unit, measurement information for measuring the outer diameter by the laser measuring device is obtained, and the obtained measurement information is obtained. And the position information is output as an outer diameter or a bent state. This makes it possible to simultaneously measure the arbitrary outer diameter of the long object to be measured or the bending state of the entire shape as necessary.

【0064】また、請求項2の発明によれば、第1レー
ザ測定器と第2レーザ測定器との位置関係が調整機構に
よって任意調整でき、第1光路と第2光路とが被測定長
尺物の外径に応じて変えられるので、任意の外径の被測
定長尺物に適用することができ、また、レーザ測定器を
用いるので非接触で外径を測定することができる。
Further, according to the second aspect of the invention, the positional relationship between the first laser measuring device and the second laser measuring device can be arbitrarily adjusted by the adjusting mechanism, and the first optical path and the second optical path can be measured in a long length. Since it can be changed according to the outer diameter of the object, it can be applied to a long object to be measured having an arbitrary outer diameter, and the outer diameter can be measured in a non-contact manner by using a laser measuring device.

【0065】また、請求項3の発明によれば、固定され
るセンサ部に対して被測定長尺物を軸中心として任意の
角度へ回動できるので、少ないセンサによって被測定長
尺物の任意の回りの形状を測定でき、被測定長尺物の長
手方向の各位置について、円周回りの外径を含む形状を
測定でき、従来のように、多数のセンサを円周回りに配
置する必要がなくなった。
According to the third aspect of the present invention, since the object to be measured can be rotated at an arbitrary angle with respect to the fixed sensor portion around the object to be measured, the sensor can be freely adjusted with a small number of sensors. The shape around the circumference of the long object to be measured can be measured, and the shape including the outer diameter around the circumference can be measured at each position in the longitudinal direction of the long object to be measured. Is gone.

【0066】また、請求項4の発明によれば、被測定長
尺物を固定する固定部を任意に回動させ、被測定長尺物
を任意に傾けることができるので、任意の傾きのときの
被測定長尺物の撓みを測定でき、固定部を水平方向にす
れば、被測定長尺物の取付けが容易にできる。
According to the fourth aspect of the present invention, since the fixing portion for fixing the long object to be measured can be arbitrarily rotated and the long object to be measured can be arbitrarily tilted. The bending of the long object to be measured can be measured, and the mounting of the long object to be measured can be facilitated by setting the fixing portion in the horizontal direction.

【0067】また、請求項5の発明によれば、センサ部
が被測定長尺物の長手方向に沿って移動し、各位置で形
状を測定する際に用いるレールの径から生じる走行経路
の曲がりを測定して、センサ部から得られる測定情報を
補正するので、レールの歪みに影響されない正確な測定
情報が得られ被測定長尺物の曲がり状態がより正確で信
頼性のあるものとなる。
According to the fifth aspect of the present invention, the sensor section moves along the longitudinal direction of the long object to be measured, and the bending of the traveling path caused by the diameter of the rail used when measuring the shape at each position. Is measured to correct the measurement information obtained from the sensor section, accurate measurement information not affected by the distortion of the rail is obtained, and the bending state of the long object to be measured becomes more accurate and reliable.

【0068】また、請求項6の発明によれば、一方のレ
ーザ測定器と他方のレーザ測定器との任意関係を任意に
変更できるので、被測定長尺物の任意の外径を測定でき
る。
According to the sixth aspect of the present invention, the arbitrary relationship between one laser measuring device and the other laser measuring device can be arbitrarily changed, so that an arbitrary outer diameter of a long object to be measured can be measured.

【0069】また、請求項7の発明によれば、被測定長
尺物の長手方向任意の位置の外径と被測定長尺物の長手
方向曲がり状態が一緒に測定することができ効率的であ
る。
According to the seventh aspect of the present invention, the outer diameter of the long object to be measured at an arbitrary position in the longitudinal direction and the bent state of the long object to be measured in the longitudinal direction can be measured together. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施の形態を示す長尺物形状測定
装置の概略外観図である。
FIG. 1 is a schematic external view of a long object shape measuring apparatus according to a first embodiment of the present invention.

【図2】図1の長尺物形状測定装置の正面概略図であ
る。
FIG. 2 is a schematic front view of the long object shape measuring device of FIG. 1;

【図3】図2の長尺物形状測定装置に備える移動端の正
面図である。
3 is a front view of a moving end provided in the long object shape measuring device of FIG. 2;

【図4】図3のB矢印方向から見た移動端を示す図であ
る。
FIG. 4 is a diagram showing a moving end as viewed from the direction of arrow B in FIG. 3;

【図5】図4のC−C方向断面図である。FIG. 5 is a sectional view taken along the line CC in FIG. 4;

【図6】図2のD−D方向断面図である。FIG. 6 is a sectional view taken along the line DD in FIG. 2;

【図7】図2のG方向から見た側面図である。FIG. 7 is a side view as viewed from a direction G in FIG. 2;

【図8】図7のセンサ部の構造図である。FIG. 8 is a structural diagram of a sensor unit of FIG. 7;

【図9】図2の長尺物形状測定装置に備えるセンサ移動
モータ等を示す図である。
9 is a view showing a sensor moving motor and the like provided in the long object shape measuring device in FIG. 2;

【図10】本発明の第2実施の形態の状態を示す走行経
路補正治具の側面図である。
FIG. 10 is a side view of a traveling route correction jig showing a state of a second embodiment of the present invention.

【図11】本発明の第2実施の形態の状態を示す走行経
路補正治具の部分外観図である。
FIG. 11 is a partial external view of a traveling route correction jig showing a state of a second embodiment of the present invention.

【図12】図10のA−Aの断面図である。FIG. 12 is a sectional view taken along line AA of FIG. 10;

【図13】本発明の第2実施の形態の状態を示す走行経
路補正治具の作用図である。
FIG. 13 is an operation diagram of a traveling route correction jig showing a state of a second embodiment of the present invention.

【図14】本発明の第3実施の形態を示す測定データか
ら曲がりを測定するための説明図である。
FIG. 14 is an explanatory diagram for measuring a bend from measurement data according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2 フレーム 3 ビーム部 4 移動端 5 固定端 6 ビーム部回転モータ 7 レール 8 センサ 9 センサ移動モータ 10,35 ベルト 11 プーリ 12 演算部 13 表示部 14 ビーム回転軸 15 移動端固定具 16 固定レバー 17 管固定子 18 プッシュ 19 プッシュ固定具 20 ばね 21 固定軸 22 管回転モータ 23 管回転子 24 固定具 25 ベアリング 26 ギヤー 27 センサ回転モータ 28 センサ固定部 36 距離調整つまみ 37 距離測定器 38 ベース 39 距離調整機構 40 モータ固定具 43 エンコーダ 50 走行経路補正治具 51 ワイヤ 52 ナット 53 ガイド 55 ねじ 100 被測定管 1, 2 Frame 3 Beam section 4 Moving end 5 Fixed end 6 Beam section rotating motor 7 Rail 8 Sensor 9 Sensor moving motor 10, 35 Belt 11 Pulley 12 Calculation section 13 Display section 14 Beam rotation axis 15 Moving end fixing tool 16 Fixed lever 17 Pipe Stator 18 Push 19 Push Fixture 20 Spring 21 Fixed Shaft 22 Pipe Rotation Motor 23 Tube Rotator 24 Fixture 25 Bearing 26 Gear 27 Sensor Rotation Motor 28 Sensor Fixing Section 36 Distance Adjusting Knob 37 Distance Measuring Instrument 38 Base 39 Distance Adjustment mechanism 40 Motor fixture 43 Encoder 50 Travel path correction jig 51 Wire 52 Nut 53 Guide 55 Screw 100 Tube to be measured

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 長尺物の外径及び曲がり等の形状を測定
する長尺物形状測定装置において、 被測定長尺物の両端を着脱可能に固定する固定部と、 レーザ投光器とレーザ受光器とからなるレーザ測定器を
少なくとも2組設け、一方のレーザ測定器が前記被測定
長尺物の軸方向と直交する外周壁の一端側に対して一方
のレーザ光路が形成されるように位置調整する一方、他
方のレーザ測定器が前記被測定長尺物の前記外周壁の前
記一端側に対向する他端側に他方のレーザ光路が形成さ
れるように位置調整し、前記各位置調整された一方のレ
ーザ測定器と他方のレーザ測定器の位置関係と一方のレ
ーザ受光器の受光量と他方のレーザ受光器の受光量とか
ら形状を算出するための測定情報を出力するセンサ部
と、前記固定部に設ける案内レール上に架設される前記
センサ部を前記被測定長尺物の長手方向へ移動させる駆
動部と、 前記センサ部の位置を測定して位置情報を出力するセン
サ位置測定部と、 このセンサ位置測定部により出力される位置情報と前記
センサ部により得られた測定情報とに基づき前記被測定
長尺物の形状を演算出力する演算部とを備えることを特
徴とする長尺物形状測定装置。
1. A long object shape measuring device for measuring the shape of a long object such as an outer diameter and a bend, comprising: a fixing portion for detachably fixing both ends of a long object to be measured; a laser projector and a laser receiver; At least two sets of laser measuring devices are provided, and one of the laser measuring devices is positioned so that one laser light path is formed at one end of an outer peripheral wall orthogonal to the axial direction of the long object to be measured. On the other hand, the position of the other laser measuring device is adjusted such that the other laser light path is formed on the other end side of the outer peripheral wall of the long object to be measured opposite to the one end side, and the respective position adjustments are performed. A sensor unit that outputs measurement information for calculating a shape from a positional relationship between one laser measuring device and the other laser measuring device, a light receiving amount of one laser light receiving device, and a light receiving amount of the other laser light receiving device, On the guide rail provided on the fixed part A driving unit that moves the sensor unit in the longitudinal direction of the long object to be measured, a sensor position measurement unit that measures the position of the sensor unit and outputs position information, and a sensor unit that is output by the sensor position measurement unit. A long object shape measuring device, comprising: a calculating unit that calculates and outputs the shape of the long object to be measured based on positional information obtained by the sensor unit and measurement information obtained by the sensor unit.
【請求項2】 前記センサ部は、第1レーザ投光器と対
向する第1レーザ受光器からなる第1レーザ測定器によ
り形成される第1光路を前記被測定長尺物の軸方向と直
交し、かつ、前記被測定長尺物の第1外周壁端側へ形成
されるように各位置関係を調整すると共に、第2レーザ
投光器と対向する第2レーザ受光器からなる第2レーザ
測定器により形成される第2光路を前記第1光路と平行
し、かつ、前記被測定長尺物の前記第1外周壁端側に対
向する第2外周壁端側へ形成されるように各位置関係を
調整するセンサ距離調整部と、 前記位置調整後の第1レーザ受光器からの第1レーザ光
量と前記位置調整後の第2レーザ受光器からの第2レー
ザ光量と、前記センサ距離調整部によって得られる第1
レーザ測定器と第2レーザ測定器間の距離情報を出力す
ることを特徴とする請求項1記載の長尺物形状測定装
置。
2. The sensor section is configured so that a first optical path formed by a first laser measuring device including a first laser light receiver facing a first laser projector is orthogonal to an axial direction of the long object to be measured. In addition, the positional relationship is adjusted so as to be formed on the first outer peripheral wall end side of the long object to be measured, and the second laser measuring device including the second laser light receiving device facing the second laser light emitting device is used. The respective positional relations are adjusted so that the second optical path to be formed is formed on the second outer peripheral wall end side opposite to the first outer peripheral wall end side of the long object to be measured, in parallel with the first optical path. A sensor distance adjusting unit, a first laser light amount from the first laser light receiver after the position adjustment, a second laser light amount from the second laser light receiver after the position adjustment, and the sensor distance adjusting unit. First
The long object shape measuring device according to claim 1, wherein distance information between the laser measuring device and the second laser measuring device is output.
【請求項3】 前記固定部は、前記被測定長尺物を固定
した状態で、前記センサ部に対して前記被測定長尺物の
軸を中心に回動可能とする機構を備えることを特徴とす
る請求項1記載の長尺物形状測定装置。
3. The fixed section includes a mechanism that is rotatable about the axis of the long object to be measured with respect to the sensor section in a state where the long object to be measured is fixed. The long object shape measuring device according to claim 1.
【請求項4】 前記固定部は、前記被測定長尺物の長手
方向の全長の略中央を中心にして回動自在として任意の
回動位置へ前記被測定長尺物を傾けて被測定長尺物の形
状を測定可能とすることを特徴とする請求項1記載の長
尺物形状測定装置。
4. The fixed portion is configured to be rotatable about a substantially central portion of the entire length of the long object to be measured in the longitudinal direction, and to incline the long object to be measured to an arbitrary rotating position to thereby measure the length of the long object to be measured. The long object shape measuring device according to claim 1, wherein the shape of the object can be measured.
【請求項5】 前記駆動部の案内レールによって被測定
長尺物の軸方向へセンサ部を移動させる場合の前記案内
レールの歪みから生じる走行経路の曲がりを測定する走
行経路補正治具を設け、得られる走行経路の曲がりによ
って前記センサ部で得られる測定情報を補正し、外径、
あるいは、曲がりを補正することを特徴とする請求項1
記載の長尺物形状測定装置。
5. A traveling path correcting jig for measuring a bending of a traveling path caused by distortion of the guide rail when the sensor section is moved in the axial direction of the long object to be measured by the guide rail of the driving section, The measurement information obtained by the sensor unit is corrected by the bending of the obtained traveling route, and the outer diameter,
Alternatively, the bending is corrected.
The long object shape measuring device described in the above.
【請求項6】 長尺物の形状を測定する長尺物形状測定
方法において、 一方のレーザ投光器と対向するレーザ受光器とからなる
一方のレーザ測定器によって形成される一方の光路を被
測定長尺物の軸方向と直交し、かつ、前記被測定長尺物
の一方の外周壁端側へ形成させるように各位置関係を調
整し、 他方のレーザ投光器と対向する他方のレーザ受光器とか
らなる他方のレーザ測定器によって形成される他方の光
路を前記被測定長尺物の軸方向と直交し、かつ、前記被
測定長尺物の前記一方の外周壁端側と対向する他方の外
周壁端側へ形成させるように各位置関係を調整し、 前記各位置関係調整後に一方のレーザ測定器と他方のレ
ーザ測定器と前記被測定長尺物との位置関係と一方のレ
ーザ受光器の受光量と他方のレーザ受光器の受光量によ
る他方のレーザ受光器とによって被測定長尺物の外径を
測定することを特徴とする長尺物形状測定方法。
6. A long object shape measuring method for measuring the shape of a long object, wherein one optical path formed by one laser measuring device comprising one laser projector and an opposing laser light receiver is measured by a length to be measured. The respective positional relationships are adjusted to be perpendicular to the axial direction of the measuring object and to be formed on one end of the outer peripheral wall of the measuring object, and the other laser light emitting device and the other laser light receiving device facing each other are adjusted. The other optical path formed by the other laser measuring device is perpendicular to the axial direction of the long object to be measured, and the other outer peripheral wall facing the one outer peripheral wall end side of the long object to be measured. Adjust each positional relationship so that it is formed on the end side, and after adjusting each positional relationship, the positional relationship between one laser measuring device, the other laser measuring device, and the long object to be measured, and the light reception of one laser light receiving device Amount and the amount of light received by the other laser receiver. And measuring the outer diameter of the long object to be measured with the other laser receiver.
【請求項7】 長尺物の形状を測定する長尺物形状側測
定方法において、 一方のレーザ投光器と対向するレーザ受光器とからなる
一方のレーザ測定器によって形成される一方の光路を前
記被測定長尺物の軸方向と直交し、かつ、前記被測定長
尺物の一方の外周壁端側へ形成させるように各位置関係
を調整し、 他方のレーザ投光器と対向する他方のレーザ受光器とか
らなる他方のレーザ測定器によって形成される他方の光
路を前記被測定長尺物の軸方向と直交し、かつ、前記被
測定長尺物の前記一方の外周壁端側と対向する他方の外
周壁端側へ形成させるように各位置関係を調整し、 前記各位置関係調整後に一方のレーザ測定器と他方のレ
ーザ測定器と前記被測定物との位置関係と一方のレーザ
受光器の受光量と他方のレーザ受光器の受光量による測
定データを収集し、これらの測定データの収集を前記被
測定長尺物の軸方向の各位置について実行し、収集され
た被測定長尺物の軸方向の各位置における各測定データ
から得られる前記被測定長尺物の外観形状と前記被測定
長尺物の基準形状とを比較して前記被測定長尺物の軸方
向の各位置の変位量を求めて前記被測定長尺物の曲がり
状態を測定することを特徴とする長尺物形状測定方法。
7. A long object shape side measuring method for measuring the shape of a long object, wherein one optical path formed by one laser measuring device comprising one laser projector and an opposite laser light receiving device is connected to the optical path. The other laser receiver opposite to the other laser projector is adjusted so as to be perpendicular to the axial direction of the long object to be measured and to be formed on one end of the outer peripheral wall of the long object to be measured. The other optical path formed by the other laser measuring device consisting of: the other optical path that is orthogonal to the axial direction of the long object to be measured, and that faces the outer peripheral wall end side of the one long object to be measured. After adjusting the positional relationship, the positional relationship between one of the laser measuring devices, the other laser measuring device, and the object to be measured, and the light receiving of one of the laser light receiving devices is adjusted after the positional relationship adjustment. Amount and the amount of light received by the other laser receiver The measurement data is collected at each position in the axial direction of the long object to be measured, and the measurement data is collected from each measurement data at each position in the axial direction of the long object to be measured. The external shape of the long object to be measured is compared with the reference shape of the long object to be measured to determine the amount of displacement at each position in the axial direction of the long object to be measured. A method for measuring the shape of a long object, comprising measuring a bent state.
JP13293798A 1998-05-15 1998-05-15 Method and apparatus for measuring shape of long material Pending JPH11325842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13293798A JPH11325842A (en) 1998-05-15 1998-05-15 Method and apparatus for measuring shape of long material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13293798A JPH11325842A (en) 1998-05-15 1998-05-15 Method and apparatus for measuring shape of long material

Publications (1)

Publication Number Publication Date
JPH11325842A true JPH11325842A (en) 1999-11-26

Family

ID=15092996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13293798A Pending JPH11325842A (en) 1998-05-15 1998-05-15 Method and apparatus for measuring shape of long material

Country Status (1)

Country Link
JP (1) JPH11325842A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263895A (en) * 2006-03-29 2007-10-11 Furukawa Electric Co Ltd:The Method and device for measuring deflection of tubular body
JP2010160014A (en) * 2009-01-07 2010-07-22 Hitachi Ltd Measuring device and measuring method
JP2013134160A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Squareness measuring apparatus of pipe end of steel pipe
IT201600099673A1 (en) * 2016-10-05 2018-04-05 Regg Inspection S R L CONTROL DEVICE FOR AXIAL BENDING OF EXTENDED PIECES
CN110631491A (en) * 2019-09-12 2019-12-31 广州海狮软件科技有限公司 Pipe measuring and calibrating method
JP2020003420A (en) * 2018-06-29 2020-01-09 住重アテックス株式会社 Measurement method and measurement system
WO2022012809A1 (en) * 2020-07-17 2022-01-20 Data M Sheet Metal Solutions Gmbh Measuring device for measuring long strand profiles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263895A (en) * 2006-03-29 2007-10-11 Furukawa Electric Co Ltd:The Method and device for measuring deflection of tubular body
JP2010160014A (en) * 2009-01-07 2010-07-22 Hitachi Ltd Measuring device and measuring method
JP2013134160A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Squareness measuring apparatus of pipe end of steel pipe
IT201600099673A1 (en) * 2016-10-05 2018-04-05 Regg Inspection S R L CONTROL DEVICE FOR AXIAL BENDING OF EXTENDED PIECES
JP2020003420A (en) * 2018-06-29 2020-01-09 住重アテックス株式会社 Measurement method and measurement system
CN110631491A (en) * 2019-09-12 2019-12-31 广州海狮软件科技有限公司 Pipe measuring and calibrating method
WO2022012809A1 (en) * 2020-07-17 2022-01-20 Data M Sheet Metal Solutions Gmbh Measuring device for measuring long strand profiles

Similar Documents

Publication Publication Date Title
US9518817B2 (en) Inner diameter measuring device
JP6644146B2 (en) Method for inspecting and / or calibrating the vertical axis of a rotating laser
KR101023997B1 (en) Simultaneous double-side grinding of semiconductor wafers
US9429409B2 (en) Inner diameter measuring device
US4516328A (en) Shaft alignment device
KR101297001B1 (en) Device for measuring parts by triangulation sensors and an evaluation unit for determining
CN105865714B (en) A kind of rotor unbalance measurement apparatus based on grating scale feedback signal
JP6657552B2 (en) Flatness measurement method
JPH11325842A (en) Method and apparatus for measuring shape of long material
JP2018179588A (en) Laser scanner
JP2005077371A (en) Measuring method of tire shape and its device
JP6000696B2 (en) X-ray stress measuring apparatus and X-ray stress measuring method
US20210116241A1 (en) Tilt Detecting Device And Surveying Instrument
KR20050037086A (en) X-ray diffractometer and calibrating method of measuring position of the same
JP4453985B2 (en) X-ray analyzer
JP5601699B2 (en) Calibration device
JP3654744B2 (en) Roundness measuring machine
JP5310336B2 (en) measuring device
KR930010452B1 (en) Method and device for inspecting duct
JPH07270159A (en) Inclination measuring apparatus for vertical rotating shaft
JP2869477B2 (en) Transfer capacity measuring device
JPH11108793A (en) Lens eccentricity measuring method and lens eccentricity measuring device
JP2735106B2 (en) Aspherical lens eccentricity measuring device
JP6401618B2 (en) Measuring method and measuring device
JP2574720Y2 (en) Position adjustment device for scratch inspection optical device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050323