JPH11325822A - Crack monitoring equipment - Google Patents

Crack monitoring equipment

Info

Publication number
JPH11325822A
JPH11325822A JP35767798A JP35767798A JPH11325822A JP H11325822 A JPH11325822 A JP H11325822A JP 35767798 A JP35767798 A JP 35767798A JP 35767798 A JP35767798 A JP 35767798A JP H11325822 A JPH11325822 A JP H11325822A
Authority
JP
Japan
Prior art keywords
optical fiber
crack
loop
fiber
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35767798A
Other languages
Japanese (ja)
Inventor
Tokio Kai
登喜雄 開
Tsuyotoshi Yamaura
剛俊 山浦
Yoshiaki Inoue
好章 井上
Tadashi Sugimura
忠士 杉村
Masazumi Tsukano
正純 塚野
Shingo Fukae
真吾 深江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP35767798A priority Critical patent/JPH11325822A/en
Publication of JPH11325822A publication Critical patent/JPH11325822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To always enable crack inspection with high objectivity with simple optical fiber laying work by laying one or more lines of optical fiber in a loop type across a crack part of an object to be monitored, sticking both ends of the loop on an inner wall, and measuring a backward scattering light of the optical fiber. SOLUTION: In order to detect progress of a crack part of lining, an optical fiber 2 is laid on the inner wall of a tunnel 1 along the length wise direction. When the fiber 2 is laid, loops of the fiber are formed in crack parts 3, and both ends of loop parts 21 are stuck on the inner wall. A strain distribution measuring instrument 4 is connected with one end of the fiber 2, and a loop for terminal processing is installed in the other end. When cracks in the crack parts 3 progress, both ends of the loop parts 21 of the fiber 2 are pulled outward by bonding parts 5, and tensile strain is developed. By measuring elongation of the optical fiber 2 with the strain distribution measuring instrument 4, crack positions and the state can be monitored.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トンネルの内壁面
等のひび割れ監視を行なうひび割れ監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crack monitoring device for monitoring a crack on an inner wall surface of a tunnel or the like.

【0002】[0002]

【従来の技術】従来、経年劣化しているトンネルの検査
については、全般的に目視検査と破壊検査に大きく依存
している。道路トンネルのひび割れ調査は、作業者がト
ンネル内を徒歩または高所作業車にて移動し、目視観察
による調査を中心に行なっている。また、覆行背面の空
洞探査、覆行厚の測定は、コアボーリングを行ない、内
視鏡などを用いて調査している。
2. Description of the Related Art Conventionally, inspection of aged tunnels generally relies heavily on visual inspection and destructive inspection. Investigations for cracks in road tunnels are conducted mainly by visual inspection, with workers walking in the tunnel or using aerial work vehicles. In addition, core boring is performed for the cavity exploration on the back surface of the lining and measurement of the lining thickness, and the survey is performed using an endoscope or the like.

【0003】また鉄道トンネルでは、トンネルの新旧、
構造物種別に関わりなく、2年を超えない期間に1回の
周期で検査いわゆる全般検査を実施している。この全般
検査は、主に徒歩による目視で行ない、覆行表面のひび
割れの発生、レンガ、コンクリートブロックなど覆行材
料の目地切れ及び漏水など、変状の発生及び進行の箇所
を探し出すことを目的として行なわれている。
[0003] In railway tunnels, new and old tunnels,
Regardless of the type of structure, inspections, so-called general inspections, are performed once every two years or less. This general inspection is carried out mainly by visual inspection on foot, with the purpose of finding cracks on the lining surface, breaks in the lining material such as bricks and concrete blocks, and leaks and leaks, etc. Is being done.

【0004】上記全般検査で変状などの異常が発見され
た箇所については、変状の原因を究明し適切な処置をと
る必要から、さらに詳細な検査いわゆる個別検査を実施
するという2段階の検査方式がとられている。
[0004] In the places where abnormalities such as abnormalities are found in the above-mentioned general inspection, it is necessary to investigate the cause of the abnormalities and take appropriate measures. The system has been adopted.

【0005】一方、公営の地下鉄事業者は、各事業者に
よって周期は若干異なるものの、基本的には2年を超え
ない期間に1回の周期で、目視による徒歩検査を実施
し、漏水・ひび割れ・剥離などの発生及びその進行を発
見することを目的として全般検査を行なっている。この
検査により、トンネルの健全度に大きく影響を及ぼすと
思われる異常が発見された場合、その区域を重点的に各
種非破壊検査機器を利用して検査を行ない原因を究明
し、適切な対策を実施するよう努めている。
[0005] On the other hand, public subway operators, although having slightly different cycles depending on each operator, basically carry out a visual inspection on foot once every two years or less, to check for leaks and cracks.・ General inspections are conducted to detect the occurrence and progress of peeling. If any abnormalities that are thought to have a significant effect on the soundness of the tunnel are discovered by this inspection, the cause will be investigated using various non-destructive inspection equipment focusing on the area, and the cause will be investigated, and appropriate measures will be taken. We strive to do so.

【0006】また下水道トンネルでは、経年管梁を中心
に人力による目視あるいはTVカメラなどによる調査を
実施している。発電用水路トンネルでは、原則的に2年
に1回の周期で抜水して、トンネル内面のひび割れの幅
や長さ、変形、湧水量、覆行背面空洞の状況を把握する
ため、点検、調査を行なっている。点検により異常が発
見された場合は、ボーリングなどによる調査を行ない原
因を究明するとともに、必要な対策工事を実施してい
る。
[0006] In the sewer tunnels, investigations are being carried out with human eyes or TV cameras, mainly on aging pipes. In the power generation tunnel, water is drained once every two years in principle, and inspections and surveys are conducted to understand the width and length of cracks inside the tunnel, deformation, water seepage, and the condition of the back cavity. Are doing. If any abnormalities are found during the inspection, drilling and other investigations are conducted to determine the cause and necessary countermeasures are being implemented.

【0007】一方従来より、光ファイバの損失分布測定
や破断点検出が可能な光ファイバ損失分布測定器(OT
DR:Optical Time Domain Reflectometry )が広く使
用されている。また近年では、光ファイバの散乱光を分
析することにより、光ファイバにかかる歪量を計測する
歪分布測定器(BOTDR:Brillouin Optical Time D
omain Reflectometry )が開発されている。
On the other hand, conventionally, an optical fiber loss distribution measuring instrument (OT) capable of measuring a loss distribution of an optical fiber and detecting a break point is known.
DR: Optical Time Domain Reflectometry) is widely used. In recent years, a strain distribution measuring instrument (BOTDR: Brillouin Optical Time D) that measures the amount of strain applied to an optical fiber by analyzing the scattered light of the optical fiber.
omain Reflectometry) has been developed.

【0008】この方法では、後方ブリルアン散乱光の周
波数シフト、すなわち入射光の光周波数からブリルアン
散乱光スペクトルの中心周波数を引いた値が光ファイバ
に加わった引っ張り応力、すなわちそれと等価な引っ張
り応力による相対伸びである光ファイバの伸び歪ととも
に変化することに着目し、ブリルアン周波数シフトの変
化量から、光ファイバ(あるいは光ケーブル)の歪分布
を測定し、その測定結果が光ファイバの破断予知などに
用いられている。
In this method, the frequency shift of the backward Brillouin scattered light, that is, the value obtained by subtracting the center frequency of the Brillouin scattered light spectrum from the optical frequency of the incident light, is the tensile stress applied to the optical fiber, ie, the relative stress due to the equivalent tensile stress. Focusing on the fact that it changes with the elongation strain of the optical fiber, the strain distribution of the optical fiber (or optical cable) is measured from the change in the Brillouin frequency shift, and the measurement results are used for predicting the breakage of the optical fiber. ing.

【0009】この歪分布測定器(BOTDR)では、光
ファイバの片端からパルス光を入射し、該光ファイバ内
で生じるブリルアン散乱光及びレーリー散乱光の後方散
乱光をコヒーレント検波方法により高感度に検出する。
このとき、散乱光の光波と光ファイバ中の音波との相互
作用により入射したパルス光の光周波数に対して上方及
び下方にシフトしたブリルアン散乱光が検出されること
を利用し、ブリルアン散乱光の周波数シフト分布から光
ファイバの歪み分布を測定する。
In this strain distribution measuring device (BOTDR), pulse light is incident from one end of an optical fiber, and Brillouin scattered light and backscattered light of Rayleigh scattered light generated in the optical fiber are detected with high sensitivity by a coherent detection method. I do.
At this time, by utilizing the fact that Brillouin scattered light shifted upward and downward with respect to the optical frequency of the incident pulse light due to the interaction between the light wave of the scattered light and the sound wave in the optical fiber is detected, the Brillouin scattered light is used. The strain distribution of the optical fiber is measured from the frequency shift distribution.

【0010】図6は、上記歪分布測定器(BOTDR)
の基本構成を示す図である。光源61から発光した光周
波数νのCW光は、光周波数シフタ62によりΔνの周
波数シフトを受け、光周波数ν+Δνのパルス光として
被測定光ファイバ63の片端から入射される。すると、
パルス光の入射により光ファイバ63内で散乱光が発生
する。この散乱光のうち、後方散乱光が光周波数νのC
W光(ローカル光)と合波され、検波器64へ入射され
る。
FIG. 6 shows the strain distribution measuring device (BOTDR).
FIG. 2 is a diagram showing a basic configuration of FIG. The CW light of the optical frequency ν emitted from the light source 61 undergoes a frequency shift of Δν by the optical frequency shifter 62, and is incident from one end of the optical fiber 63 to be measured as pulse light of the optical frequency ν + Δν. Then
Scattered light is generated in the optical fiber 63 by the incidence of the pulsed light. Of the scattered light, the back scattered light is C
The light is multiplexed with the W light (local light) and is incident on the detector 64.

【0011】ブリルアン散乱光の周波数は、入射パルス
光に対してブリルアン周波数シフトνB だけシフトする
ため、光周波数シフタ62の周波数シフト量ΔνをνB
にすることにより、後方散乱光に含まれるブリルアン後
方散乱光のみを検出することができる。
Since the frequency of the Brillouin scattered light is shifted by the Brillouin frequency shift νB with respect to the incident pulse light, the frequency shift amount Δν of the optical frequency shifter 62 is set to νB
By doing so, only Brillouin backscattered light included in the backscattered light can be detected.

【0012】光周波数シフタ62の周波数シフト量を変
化させながら繰り返し測定を行なうことにより、光ファ
イバの長手方向の各位置におけるブリルアンスペクト
ル、すなわちブリルアン周波数シフトνB の分布を測定
することができる。ブリルアン周波数シフトνB は、光
ファイバに生じた歪に比例して変化する。その関係を次
式(1)に示す。
By repeatedly performing the measurement while changing the frequency shift amount of the optical frequency shifter 62, the Brillouin spectrum, that is, the distribution of the Brillouin frequency shift νB at each position in the longitudinal direction of the optical fiber can be measured. The Brillouin frequency shift νB changes in proportion to the strain generated in the optical fiber. The relationship is shown in the following equation (1).

【0013】 ν(ε)=νB (0)×(1+K×ε) …(1) ν(ε):実測のブリルアンスペクトルの最大レベルの
周波数 νB (0):光ファイバの固有ブリルアン周波数シフト (ゼロ歪の周波数) K:歪係数 ε:歪量(%) なお、我々の実験では、本歪分布測定器は光ファイバ2
m長で0.2mm以下の伸び量は検知できなかった。
Ν (ε) = νB (0) × (1 + K × ε) (1) ν (ε): frequency of the maximum level of the measured Brillouin spectrum νB (0): intrinsic Brillouin frequency shift of the optical fiber (zero K: strain coefficient ε: strain amount (%) In our experiments, the strain distribution measuring device was an optical fiber 2
An elongation of 0.2 mm or less in m length could not be detected.

【0014】[0014]

【発明が解決しようとする課題】上述した従来の道路ト
ンネルのひび割れ検査には、以下のような問題点があ
る。 (1) 車線規制を伴う長時間の調査は、渋滞の原因となる
とともに作業環境が非常に悪くなる。 (2) ひび割れ調査を行なう場合、トンネル内が暗いた
め、煤煙が付着したトンネル壁面を目視する方法では変
状を見逃す確率が高く、アーチ部などの高所の変状を把
握し難い。 (3) また、得られる検査結果に個人誤差などがあり、客
観性に乏しい。 (4) 覆工背面の空洞探査や覆工厚の測定は、調査に多大
な時間と費用を要する。 (5) 調査に時間がかかるため車線規制を行なう必要があ
り、広範囲の調査が難しい。
The above-described conventional inspection of a road tunnel for cracks has the following problems. (1) A long survey with lane regulation causes traffic congestion and the working environment becomes very bad. (2) When conducting a crack investigation, because the inside of the tunnel is dark, there is a high probability that the deformation will be missed by visual inspection of the soaked tunnel wall surface, making it difficult to grasp the deformation of high places such as arches. (3) In addition, there are individual errors in the obtained test results, and the objectivity is poor. (4) Exploring the cavities on the back of the lining and measuring the thickness of the lining requires a great deal of time and money for the investigation. (5) Since the survey takes time, it is necessary to regulate lanes, making it difficult to conduct a wide range of surveys.

【0015】本発明の目的は、簡易な光ファイバの敷設
工事により、客観性の高いひび割れ検査を常時行なうこ
とが可能なひび割れ監視装置を提供することにある。
An object of the present invention is to provide a crack monitoring device capable of constantly performing a highly objective crack inspection by laying a simple optical fiber.

【0016】[0016]

【課題を解決するための手段】上記課題を解決し目的を
達成するために、本発明のひび割れ監視装置は以下の如
く構成されている。
Means for Solving the Problems To solve the above problems and achieve the object, a crack monitoring device of the present invention is configured as follows.

【0017】(1)本発明のひび割れ監視装置は、監視
対象のひび割れ部分をまたぐように、少なくとも一ライ
ン以上の光ファイバをループ状に敷設し、光ファイバに
少なくとも一つのループ部を形成し、ループの両端を内
壁に貼付けるとともに、前記光ファイバの後方散乱光を
計測することで前記ひび割れ部におけるひび割れの状況
を計測する計測手段を備えた。
(1) A crack monitoring device according to the present invention comprises: laying at least one line of an optical fiber in a loop so as to straddle a crack portion to be monitored; and forming at least one loop portion in the optical fiber. A measuring means is provided for affixing both ends of the loop to the inner wall and measuring the state of the crack in the cracked portion by measuring the backscattered light of the optical fiber.

【0018】(2)本発明のひび割れ監視装置は上記
(1)に記載の装置であり、かつ前記光ファイバに、任
意間隔毎に弛ませたあそび部を設けた。
(2) The crack monitoring device according to the present invention is the device described in (1) above, and the optical fiber is provided with slack portions slackened at arbitrary intervals.

【0019】(3)本発明のひび割れ監視装置は上記
(1)または(2)に記載の装置であり、かつ前記ひび
割れ部を保護する保護部材を設けた。
(3) A crack monitoring device according to the present invention is the device described in (1) or (2) above, and further includes a protection member for protecting the cracked portion.

【0020】[0020]

【発明の実施の形態】(第1の実施の形態)図1は、本
発明の第1の実施の形態に係るひび割れ監視装置の構成
を示す図である。図1では、トンネル覆工のひび割れ部
分の進行を検知するために、トンネル1の長手方向に沿
ってその内壁に光ファイバ2を敷設している。光ファイ
バ2を敷設する際に、ひび割れ部分3にて光ファイバ2
をループ状にし、そのループ部21の両端を内壁に貼り
付ける。光ファイバ2の一方の末端には図6にて説明し
た原理による歪分布測定器(BOTDR)4が接続され
ている。光ファイバ2の他方の末端には図示しない光フ
ァイバの終端処理用ループを設けている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 is a diagram showing a configuration of a crack monitoring device according to a first embodiment of the present invention. In FIG. 1, an optical fiber 2 is laid on the inner wall of the tunnel 1 along the longitudinal direction to detect the progress of the cracked portion of the tunnel lining. When the optical fiber 2 is laid, the optical fiber 2
Is looped, and both ends of the loop portion 21 are attached to the inner wall. One end of the optical fiber 2 is connected to a strain distribution measuring device (BOTDR) 4 based on the principle described with reference to FIG. At the other end of the optical fiber 2, a not-shown optical fiber termination loop is provided.

【0021】図2は、光ファイバ2の敷設状況を示す図
である。図2において図1と同一な部分には同一符号を
付してある。図2に示すように、光ファイバ2のループ
部21はトンネル覆工(内壁)のひび割れ部3をまたい
でおり、ループ部21の両端が接着剤などによる接着部
5によりトンネル覆工に貼付けられている。
FIG. 2 is a diagram showing the laying state of the optical fiber 2. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals. As shown in FIG. 2, the loop portion 21 of the optical fiber 2 straddles the cracked portion 3 of the tunnel lining (inner wall), and both ends of the loop portion 21 are attached to the tunnel lining by the bonding portion 5 made of an adhesive or the like. ing.

【0022】そして、ひび割れ部分3のひび割れが進行
し拡大すると、光ファイバ2のループ部21の両端が接
着部5,5により各々外側へ引っ張られ、引っ張り歪が
発生する。仮に接着部5,5間の長さを40cm、光フ
ァイバ2のループを2.5巻(5本)とすると、接着部
5,5間の光ファイバ総長は約2mであり、単純に光フ
ァイバを1本敷設した場合の5倍、約0.2mm/5
(ほぼ0.05mm)の伸び量となり、歪分布測定器
(BOTDR)4を用いて、ひび割れの位置と状況を監
視することが可能となる。また、ひび割れの進行に関係
なくトンネル1全体の変形によりループ部21の径が変
化することがないよう、光ファイバ2を敷設する際に任
意間隔毎に弛ませたあそび部22を設けている。
When the cracks in the cracked portion 3 progress and expand, both ends of the loop portion 21 of the optical fiber 2 are pulled outward by the bonding portions 5 and 5, respectively, and tensile strain is generated. Assuming that the length between the bonding parts 5 and 5 is 40 cm and the loop of the optical fiber 2 is 2.5 turns (five), the total length of the optical fiber between the bonding parts 5 and 5 is about 2 m. 5 times that of laying one, about 0.2mm / 5
(Approximately 0.05 mm), and it becomes possible to monitor the position and situation of the crack using the strain distribution measuring device (BOTDR) 4. Also, in order to prevent the diameter of the loop portion 21 from changing due to the deformation of the entire tunnel 1 irrespective of the progress of the crack, the play portion 22 is provided at an arbitrary interval when the optical fiber 2 is laid.

【0023】図3は、光ファイバ2のループ部21の貼
り付けの変形例を示す図である。図3において、図1,
図2と同一な部分には同一符号を付してある。保護部材
7はループ部21を上方から接触しないよう覆う平面部
71と、平面部71を保持する二つの脚部72,72か
らなる。脚部72,72の底面は接着剤などによる接着
部73,73をなし、接着部73,73にてループ部2
1の両端をトンネル覆工に貼付ける。また、平面部71
はひび割れの進行に伴い全体が伸びる弾力性を有する部
材(ゴム、スポンジ等)からなる。
FIG. 3 is a view showing a modification of the attachment of the loop portion 21 of the optical fiber 2. In FIG. 3, FIG.
2 are given the same reference numerals. The protection member 7 includes a flat portion 71 that covers the loop portion 21 so as not to contact from above, and two legs 72, 72 that hold the flat portion 71. The bottom surfaces of the legs 72, 72 form bonding portions 73, 73 made of an adhesive or the like, and the bonding portions 73, 73 form loop portions 2.
Attach both ends of 1 to the tunnel lining. Also, the flat portion 71
Is made of a resilient member (rubber, sponge, etc.) that extends as the crack progresses.

【0024】この保護部材7を設けることで、ループ部
21の貼り付けを簡易に行なうことができる。そして、
上述したと同様にひび割れ部分3のひび割れが進行し拡
大すると、光ファイバ2のループ部21の両端が接着部
73,73により外側へ引っ張られる。また、ループ部
21の上方に平面部71を設けることで、ループ部21
を常に保護することができる。
By providing the protection member 7, the loop portion 21 can be easily attached. And
As described above, when the crack in the cracked portion 3 progresses and expands, both ends of the loop portion 21 of the optical fiber 2 are pulled outward by the bonding portions 73 and 73. Further, by providing the flat portion 71 above the loop portion 21, the loop portion 21 is provided.
Can always be protected.

【0025】図4は、トンネルひび割れによる伸び量と
光ファイバ歪検知特性の関係を示す図であり、図4の
(a)はトンネルひび割れ部3に光ファイバ2を単純敷
設した例と本発明のループ状(輪部)に2.5回(5
本)の光ファイバ3を敷設した例を示した図で、l1
(2m),l2 (40cm×5=2m)の関係にある例
を示している。図4の(b)は、トンネルひび割れ伸び
量と前記l1 ,l2の検知特性を示したもので、本発明
のループ式は約5倍の歪検知感度を持つことがわかる。
FIG. 4 is a diagram showing the relationship between the amount of elongation due to cracks in the tunnel and the optical fiber strain detection characteristics. FIG. 4A shows an example in which the optical fiber 2 is simply laid in the tunnel crack 3 and the present invention. 2.5 times (5
FIG. 1 shows an example in which the optical fiber 3 is laid,
(2 m), l2 (40 cm × 5 = 2 m). FIG. 4B shows the tunnel crack elongation amount and the detection characteristics of l1 and l2. It can be seen that the loop type of the present invention has a strain detection sensitivity of about 5 times.

【0026】(第2の実施の形態)図5は、本発明の第
2の実施の形態に係るひび割れ監視装置の光ファイバの
敷設状況を示す図である。図5において図1,図2と同
一な部分には同一符号を付してある。図5において図2
と異なる点は、ループ部の形状にある。図5のループ部
21は円状としている。よって、光ファイバ2を敷設す
る際のループ部の形成を、より一層簡易に行なうことが
できる。また、ループ部23に図3に示した保護部材7
を設けることもできる。
(Second Embodiment) FIG. 5 is a diagram showing an optical fiber laying state of a crack monitoring device according to a second embodiment of the present invention. 5, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals. In FIG. 5, FIG.
The difference from the present embodiment lies in the shape of the loop portion. The loop part 21 in FIG. 5 is circular. Therefore, the formation of the loop portion when laying the optical fiber 2 can be performed more easily. Further, the protection member 7 shown in FIG.
Can also be provided.

【0027】なお、本発明は上記各実施の形態のみに限
定されず、要旨を変更しない範囲で適時変形して実施で
きる。
The present invention is not limited to the above embodiments, but can be implemented with appropriate modifications without departing from the scope of the invention.

【0028】(実施の形態のまとめ)実施の形態に示さ
れた構成及び作用効果をまとめると次の通りである。
(Summary of Embodiment) The configuration, operation and effect shown in the embodiment are summarized as follows.

【0029】[1]実施の形態に示されたひび割れ監視
装置は、監視対象(1)のひび割れ部3に少なくとも1
ライン以上の光ファイバをループ状(21,23)に敷
設し、両端を貼付けるとともに、前記光ファイバ2の後
方ブリルアン散乱光を計測することで前記ひび割れ部3
におけるひび割れの状況を高感度で計測する計測手段
(4)を備えた。
[1] The crack monitoring device described in the embodiment has at least one crack in the crack 3 of the monitoring target (1).
An optical fiber having a length equal to or greater than the line is laid in a loop (21, 23), the both ends are attached, and the back Brillouin scattered light of the optical fiber 2 is measured, so that the cracked portion 3 is formed.
And measuring means (4) for measuring the state of cracks with high sensitivity.

【0030】したがって上記ひび割れ監視装置によれ
ば、光ファイバ2をループ状(21,23)に監視対象
(1)のひび割れ部3に貼付ける簡易な敷設工事を行な
い、前記光ファイバ2の後方散乱光を計測することで、
ひび割れの状況を常時監視することができ、検査結果に
個人誤差のない客観性の高いひび割れ検査を、安価にか
つ短時間で行なうことが可能になる。
Therefore, according to the above-mentioned crack monitoring device, a simple laying work for attaching the optical fiber 2 to the crack 3 of the monitoring target (1) in a loop (21, 23) is performed, and the backscatter of the optical fiber 2 is performed. By measuring light,
The condition of the crack can be constantly monitored, and a highly objective crack inspection with no individual error in the inspection result can be performed inexpensively and in a short time.

【0031】監視対象(1)を道路トンネルとした場
合、車線規制をすることなく長時間に亘るひび割れ監視
を広範囲で行なうことができ、目視による検査を行なう
必要がないため、ひび割れの変状を見逃すことがなくな
る。また、光ファイバ2をトンネルのアーチ部などに敷
設することで、高所の変状を把握することができる。
When the object to be monitored (1) is a road tunnel, cracks can be monitored over a wide area for a long time without restricting lanes, and visual inspection is not required. You will not miss it. In addition, by laying the optical fiber 2 in an arch part of a tunnel or the like, it is possible to grasp a deformation in a high place.

【0032】[2]実施の形態に示されたひび割れ監視
装置は上記[1]に記載の装置であり、かつ前記光ファ
イバ2に、任意間隔毎に弛ませたあそび部22を設け
た。
[2] The crack monitoring device described in the embodiment is the device described in [1] above, and the optical fiber 2 is provided with slack portions 22 slackened at arbitrary intervals.

【0033】したがって上記ひび割れ監視装置によれ
ば、前記光ファイバ2に、任意間隔毎に弛ませたあそび
部2を設けることで、ひび割れの進行に関係なくループ
部(21,23)長が変化することがなくなる。
Therefore, according to the above-described crack monitoring device, the length of the loop portion (21, 23) changes regardless of the progress of the crack by providing the play portion 2 slackened at an arbitrary interval in the optical fiber 2. Disappears.

【0034】[3]実施の形態に示されたひび割れ監視
装置は上記[1]または[2]に記載の装置であり、か
つ前記ひび割れ部3を保護する保護部材7を設けた。
[3] The crack monitoring device described in the embodiment is the device described in the above [1] or [2], and further includes a protection member 7 for protecting the cracked portion 3.

【0035】したがって上記ひび割れ監視装置によれ
ば、前記ひび割れ部3を保護する保護部材7を設けたの
で、前記ループ部(21,23)の貼り付けを簡易に行
なうことができるとともに、前記ループ部(21,2
3)を常に保護することができる。
Therefore, according to the crack monitoring device, since the protection member 7 for protecting the cracked portion 3 is provided, the loop portions (21, 23) can be easily attached and the loop portion (21, 23) can be easily attached. (21, 2
3) can always be protected.

【0036】[0036]

【発明の効果】本発明のひび割れ監視装置によれば、光
ファイバの輪部を監視対象のひび割れ部に貼付ける簡易
な敷設工事を行ない、前記光ファイバの後方ブリルアン
散乱光を計測することで、ひび割れの状況を監視するこ
とができ、客観性の高いひび割れ検査を常時行なうこと
が可能になる。
According to the crack monitoring device of the present invention, a simple laying work for attaching the loop of the optical fiber to the crack to be monitored is performed, and the rear Brillouin scattered light of the optical fiber is measured. The condition of the crack can be monitored, and a highly objective crack inspection can always be performed.

【0037】本発明のひび割れ監視装置によれば、前記
光ファイバに、任意間隔毎に弛ませたあそび部を設ける
ことで、ひび割れの進行に関係なくループ部長が変化す
ることがなくなる。
According to the crack monitoring device of the present invention, by providing the optical fiber with the slack portion slackened at an arbitrary interval, the loop portion length does not change regardless of the progress of the crack.

【0038】本発明のひび割れ監視装置によれば、前記
ひび割れ部を保護する保護部材を設けたので、ループ部
の貼り付けを簡易に行なうことができるとともに、前記
ループ部を常に保護することができる。
According to the crack monitoring device of the present invention, since the protection member for protecting the crack portion is provided, the loop portion can be easily attached and the loop portion can be always protected. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係るひび割れ監視
装置の構成を示す図。
FIG. 1 is a diagram showing a configuration of a crack monitoring device according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態に係る光ファイバの
敷設状況を示す図。
FIG. 2 is a diagram showing an optical fiber laying state according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態に係る光ファイバの
ループ部の貼り付けの変形例を示す図。
FIG. 3 is a view showing a modified example of attaching the loop portion of the optical fiber according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態に係る図であり、
(a)は光ファイバの敷設例を示す図、(b)はループ
数による歪検出感度の関係を示す図。
FIG. 4 is a diagram according to the first embodiment of the present invention,
(A) is a figure which shows the example of installation of an optical fiber, (b) is a figure which shows the relationship of the distortion detection sensitivity by the number of loops.

【図5】本発明の第2の実施の形態に係るひび割れ監視
装置の光ファイバの敷設状況を示す図。
FIG. 5 is a diagram showing an optical fiber laying state of a crack monitoring device according to a second embodiment of the present invention.

【図6】従来例に係る歪分布測定器(BOTDR)の基
本構成を示す図。
FIG. 6 is a diagram showing a basic configuration of a distortion distribution measuring device (BOTDR) according to a conventional example.

【符号の説明】[Explanation of symbols]

1…トンネル 2…光ファイバ 21…ループ部 22…あそび部 23…ループ部 3…ひび割れ部分 4…歪分布測定器(BOTDR) 5…接着部 7…保護部材 71…平面部 72…脚部 73…接着部 DESCRIPTION OF SYMBOLS 1 ... Tunnel 2 ... Optical fiber 21 ... Loop part 22 ... Play part 23 ... Loop part 3 ... Cracked part 4 ... Strain distribution measuring instrument (BOTDR) 5 ... Adhesive part 7 ... Protective member 71 ... Flat part 72 ... Leg 73 ... Bonded part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉村 忠士 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 塚野 正純 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 深江 真吾 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadashi Sugimura 5-717-1 Fukabori-cho, Nagasaki-shi, Nagasaki Sanishi Heavy Industries Co., Ltd. Nagasaki Research Institute (72) Inventor Masazumi Tsukano 1-1-1, Akunoura-cho, Nagasaki-shi, Nagasaki No.Mitsubishi Heavy Industries, Ltd., Nagasaki Shipyard (72) Inventor Shingo Fukae 1-1, Akunoura-cho, Nagasaki, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光ファイバに少なくとも一つの輪部を形成
し、前記各輪部を監視対象のひび割れ部に貼付けるとと
もに、 前記光ファイバの後方散乱光を計測することで前記ひび
割れ部におけるひび割れの状況を計測する計測手段を備
えたことを特徴とするひび割れ監視装置。
At least one limb is formed on an optical fiber, each limb is attached to a crack to be monitored, and the backscattered light of the optical fiber is measured to reduce cracks at the crack. A crack monitoring device comprising a measuring means for measuring a situation.
【請求項2】前記光ファイバに、任意間隔毎に弛ませた
あそび部を設けたことを特徴とする請求項1に記載のひ
び割れ監視装置。
2. The crack monitoring device according to claim 1, wherein said optical fiber has slack portions slackened at arbitrary intervals.
【請求項3】前記ひび割れ部を保護する保護部材を設け
たことを特徴とする請求項1または2に記載のひび割れ
監視装置。
3. The crack monitoring device according to claim 1, further comprising a protection member for protecting the crack portion.
JP35767798A 1998-03-20 1998-12-16 Crack monitoring equipment Pending JPH11325822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35767798A JPH11325822A (en) 1998-03-20 1998-12-16 Crack monitoring equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7233698 1998-03-20
JP10-72336 1998-03-20
JP35767798A JPH11325822A (en) 1998-03-20 1998-12-16 Crack monitoring equipment

Publications (1)

Publication Number Publication Date
JPH11325822A true JPH11325822A (en) 1999-11-26

Family

ID=26413470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35767798A Pending JPH11325822A (en) 1998-03-20 1998-12-16 Crack monitoring equipment

Country Status (1)

Country Link
JP (1) JPH11325822A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010088253A (en) * 2000-03-11 2001-09-26 유승룡 Crack Gauge
JP2002340529A (en) * 2001-05-16 2002-11-27 Nippon Koei Power Systems Co Ltd Method for measuring crack displacement of structure using digital camera
JP2006112525A (en) * 2004-10-14 2006-04-27 Jfe Koken Corp Repairing method of pipeline
KR200449473Y1 (en) 2009-01-14 2010-07-13 (주)한국해외기술공사 Safety check-up apparatus in tunnel is easing measurement and confirmation of crack position
JP2011052974A (en) * 2009-08-31 2011-03-17 Tokyo Electric Power Services Co Ltd Lining work monitoring device
CN103852111A (en) * 2014-03-03 2014-06-11 天津大学 Intelligent tunnel monitoring and alarm system based on optical fiber sensing network
CN106290377A (en) * 2016-07-29 2017-01-04 长安大学 A kind of Bridge Crack Monitoring early warning system and method for early warning
CN108303498A (en) * 2018-01-30 2018-07-20 山东大学 The linear monitoring system and method that water channel destroys

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010088253A (en) * 2000-03-11 2001-09-26 유승룡 Crack Gauge
JP2002340529A (en) * 2001-05-16 2002-11-27 Nippon Koei Power Systems Co Ltd Method for measuring crack displacement of structure using digital camera
JP4683516B2 (en) * 2001-05-16 2011-05-18 日本工営株式会社 Crack displacement measurement method for structures using a digital camera
JP2006112525A (en) * 2004-10-14 2006-04-27 Jfe Koken Corp Repairing method of pipeline
KR200449473Y1 (en) 2009-01-14 2010-07-13 (주)한국해외기술공사 Safety check-up apparatus in tunnel is easing measurement and confirmation of crack position
JP2011052974A (en) * 2009-08-31 2011-03-17 Tokyo Electric Power Services Co Ltd Lining work monitoring device
CN103852111A (en) * 2014-03-03 2014-06-11 天津大学 Intelligent tunnel monitoring and alarm system based on optical fiber sensing network
CN106290377A (en) * 2016-07-29 2017-01-04 长安大学 A kind of Bridge Crack Monitoring early warning system and method for early warning
CN108303498A (en) * 2018-01-30 2018-07-20 山东大学 The linear monitoring system and method that water channel destroys

Similar Documents

Publication Publication Date Title
KR100803377B1 (en) Water pipe leak and breakdown inspection system use of optical fiber sensor
CN101788352B (en) Composite fiber detection module and device
JP2001194109A (en) Displacement measuring apparatus using rayleigh scattering
JPH11325822A (en) Crack monitoring equipment
CN104596576A (en) Optical fiber temperature sensing and vibration sensing collineation fusion system and monitoring method
JP3457894B2 (en) Optical fiber laying method and strain detecting device using optical fiber
JP3758905B2 (en) Optical fiber laying method and strain detection apparatus using optical fiber
JP2001066117A (en) Method and device for detecting cracking and peeling of reinforcing material tunnel in
JP2017078617A (en) Monitoring system and monitoring method
JP2001221664A (en) Underground optical fiber sensor and optical fiber sensor system thereof
Biondi et al. Smart textile embedded with distributed fiber optic sensors for railway bridge long term monitoring
JP2012251391A (en) Breakpoint detection method for pc cable in pc structure
JP2001304822A (en) Optical fiber sensor and monitoring system
JP3759144B2 (en) Tunnel reinforcing material peeling detection method and apparatus
JP3553374B2 (en) Structural deformation measuring device
JP3586611B2 (en) Strain detection method and strain detection system using optical fiber
CN100397034C (en) Monitor device for anchorage cable long term working state and its method
WO2022176047A1 (en) Utility pole position specification method and aerial fiber optic cable state estimation method
JP4587535B2 (en) Method and apparatus for detecting peeling of composite structure
JP3514690B2 (en) Evaluation method of grout filling condition of concrete structure
JPH076883B2 (en) Subsidence control method for buried piping
JP4632228B2 (en) Tunnel with tarpaulin with monitoring function
JP2008309565A (en) Mortar concrete exfoliation detection sensor
JPH01267428A (en) Optical fiber type sensor for temperature distribution
TWM536269U (en) Optical fiber monitoring system for tunnel

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041215

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Effective date: 20051205

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Effective date: 20060928

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403