JPH11325793A - Member for heat exchanger - Google Patents

Member for heat exchanger

Info

Publication number
JPH11325793A
JPH11325793A JP13385598A JP13385598A JPH11325793A JP H11325793 A JPH11325793 A JP H11325793A JP 13385598 A JP13385598 A JP 13385598A JP 13385598 A JP13385598 A JP 13385598A JP H11325793 A JPH11325793 A JP H11325793A
Authority
JP
Japan
Prior art keywords
heat exchanger
copper
zinc
fin
average thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13385598A
Other languages
Japanese (ja)
Inventor
Kenichiro Ueda
健一郎 上田
Takeshi Isobe
剛 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13385598A priority Critical patent/JPH11325793A/en
Publication of JPH11325793A publication Critical patent/JPH11325793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a member for heat exchanger excellent in resistance against honey comb corrosion and in which cracking due to stress corrosion does not take place. SOLUTION: An underlying layer 1a of at least one kind selected from nickel, cobalt, chromium, silver or a group of alloys thereof having average thickness of 0.1-2 μm is formed on the surface of a member for heat exchanger composed of copper or copper alloy and a coating containing metal zinc powder or a zinc plating layer 1b having average thickness of 0.1-50 μm is formed on the underlying layer 1a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱交換器用部材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger member.

【0002】[0002]

【従来の技術】熱交換器は空調機器の室内機や室外機、
冷温水を利用した空調機器の室内機などに使用され、通
常はアルミニウムまたはアルミニウム合金から成るフィ
ンに、耐食性、熱伝導性、加工性などに優れる銅または
銅合金から成る伝熱管を拡管接合させたクロスフィンタ
イプが主流となっている。また、このような銅の特性に
着目して、銅製のフィンが使用される場合もある。
2. Description of the Related Art Heat exchangers are used for air conditioner indoor and outdoor units.
A heat transfer tube made of copper or copper alloy with excellent corrosion resistance, heat conductivity, workability, etc. is expanded and joined to fins usually made of aluminum or aluminum alloy, used for indoor units of air conditioning equipment using cold and hot water, etc. The cross fin type is the mainstream. Focusing on such copper properties, copper fins may be used in some cases.

【0003】このような熱交換器は、例えば、アルミニ
ウム板にプレス加工を行って伝熱管を通すカラー部(以
下「フィンカラー」という)を形成させてフィンとし、
このフィンの複数枚を各フィンカラーの位置を一致させ
て積層した後、フィンカラーに伝熱管を挿通し、さらに
伝熱管を拡管して両者を接合せしめて製造される。
In such a heat exchanger, for example, a fin is formed by pressing an aluminum plate to form a collar portion (hereinafter referred to as a “fin collar”) through which a heat transfer tube passes.
After laminating a plurality of the fins so that the positions of the fin collars are aligned with each other, the heat transfer tubes are inserted into the fin collars, and the heat transfer tubes are further expanded to join them.

【0004】ところで、熱交換器が冷房運転時の室内機
や暖房運転時の室外機のように、蒸発器として作用する
場合には、熱交換器のフィン表面温度が周囲の空気より
低下する。その結果、フィン表面の露点は低下し、雰囲
気中の水蒸気が結露水となってフィンに付着することに
なる。また、何らかの原因で水滴が付着することもあ
る。
[0004] When the heat exchanger acts as an evaporator, such as an indoor unit during a cooling operation or an outdoor unit during a heating operation, the fin surface temperature of the heat exchanger is lower than the surrounding air. As a result, the dew point on the fin surface decreases, and the water vapor in the atmosphere becomes dew water and adheres to the fin. Also, water droplets may adhere for some reason.

【0005】しかしながら、結露水や水滴(以下、「付
着水」という)はフィン間の隙間を塞いでブリッジを形
成し、通風抵抗や騒音を増大させ、冷暖房能力の低下を
引き起こす原因となる。
[0005] However, dew condensation and water droplets (hereinafter referred to as "adhered water") block the gaps between the fins to form bridges, increase ventilation resistance and noise, and cause a decrease in cooling and heating capacity.

【0006】上記した問題に対しては、フィン表面を親
水性皮膜で被覆することにより、付着水をフィンの親水
性皮膜に沿って流下させて、フィン間の隙間を塞がない
ようにする手段が採られている。このような働きをする
親水性皮膜の材料として、従来から水ガラスや極性基な
どを有する各種の物質が使用されている。これらの皮膜
は、極性基や解離基を含む原子団の親水基(−OH基、>C
=O基、−NH2基、−COOH基等)が露出した状態になって
いるため、付着水と皮膜表面との接触角が小さくなっ
て、付着水は前記したように表面を流下していくことが
容易になる。
[0006] In order to solve the above problem, the fin surface is coated with a hydrophilic film so that the adhered water flows down along the hydrophilic film of the fin so that the gap between the fins is not closed. Is adopted. Conventionally, various materials having a water glass, a polar group or the like have been used as a material of the hydrophilic film having such a function. These films are composed of hydrophilic groups (-OH groups,> C
= O group, -NH 2 group, -COOH group, etc.) are exposed, the contact angle between the adhered water and the film surface becomes smaller, and the adhered water flows down the surface as described above. It is easier to go.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
たようにフィン表面を親水性皮膜で被覆すると次のよう
な問題が生じやすくなる。即ち、フィンカラーと伝熱管
は拡管接合によっても完全に密着せず両者の間には隙間
ができるので、フィンや伝熱管表面を親水性皮膜で被覆
すると、かえって付着水が隙間に侵入しやすくなる。そ
して、この付着水が腐食媒を含む場合には、上記隙間部
分の伝熱管表面に局部的な蟻の巣状の腐食が発生する結
果となるのである。
However, when the fin surface is coated with the hydrophilic film as described above, the following problems are likely to occur. In other words, the fin collar and the heat transfer tube do not completely adhere to each other even by the expansion joint, and a gap is formed between the two. When the fin and the heat transfer tube surface are coated with the hydrophilic film, the attached water can easily enter the gap. . If the adhering water contains a corrosive medium, local ant-nest corrosion occurs on the surface of the heat transfer tube in the gap.

【0008】特に、最近は熱交換器の小型化を図るため
にフィンの間隔を狭める傾向にあり、伝熱管が、積層さ
れた各フィンカラーで完全に覆われて外部に露出しない
場合もあるので、伝熱管の表面は、フィンカラーと伝熱
管の隙間に滞留している付着水に長期間さらされること
になる。
In particular, recently, there has been a tendency to reduce the distance between the fins in order to reduce the size of the heat exchanger, and the heat transfer tubes may be completely covered by the laminated fin collars and may not be exposed to the outside. On the other hand, the surface of the heat transfer tube is exposed to the adhering water staying in the gap between the fin collar and the heat transfer tube for a long time.

【0009】ところで、蟻の巣状の腐食は、有機酸(蟻
酸や酢酸等のカルボン酸)に伝熱管の成分である銅が溶
解するために発生するものであるが、このカルボン酸は
室内の合板やクロス用の接着剤から発生するホルムアル
デヒドやアルコールが酸化しても生成するので、空調機
器の室内機は腐食媒を含む環境にさらされて使用される
場合が多くなる。
By the way, ant-nest-like corrosion is caused by the dissolution of copper as a component of a heat transfer tube in an organic acid (a carboxylic acid such as formic acid or acetic acid). Since formaldehyde and alcohol generated from the adhesive for plywood and cloth are generated even when oxidized, the indoor unit of the air conditioner is often used when exposed to an environment containing a corrosive medium.

【0010】このような銅管の腐食を防止する技術とし
て、銅管表面に銅−亜鉛合金を形成させる技術が提案さ
れている(特開昭62−1856号公報を参照)。
As a technique for preventing such corrosion of the copper tube, a technique of forming a copper-zinc alloy on the surface of the copper tube has been proposed (see JP-A-62-1856).

【0011】しかし、銅−亜鉛合金は、応力腐食割れ
(SCC)を生じたり、脆化層となって拡管接合時に管
を割れやすくさせる問題を引き起こし、銅管同士をろう
付け接合する際に不可避的に形成されるという問題があ
った。
[0011] However, the copper-zinc alloy causes stress corrosion cracking (SCC) and causes an embrittlement layer, which causes a problem that the pipe is easily broken at the time of pipe expansion joining, and is inevitable when brazing copper pipes to each other. There is a problem that it is formed in a uniform manner.

【0012】一方、前記蟻の巣状腐食の進行速度はきわ
めて大きく、短期間で伝熱管内部まで腐食し、冷媒の漏
洩を生じて空調機器の機能を失わしめるため、実用上極
めて大きな問題となっていた。このようなことから、蟻
の巣状腐食に対する耐食性に優れた熱交換器の開発が強
く望まれていた。
On the other hand, the ant-nest-like corrosion progresses at an extremely high speed, and corrodes inside the heat transfer tube in a short period of time, causing leakage of the refrigerant and losing the function of the air conditioner. I was For this reason, there has been a strong demand for the development of a heat exchanger having excellent corrosion resistance against ant-nest corrosion.

【0013】本発明は、熱交換器における上記した問題
を解決することができ、蟻の巣状腐食に対する耐食性に
優れ、かつ応力腐食割れの生じない熱交換器用部材の提
供を目的とする。
It is an object of the present invention to provide a heat exchanger member which can solve the above-mentioned problems in a heat exchanger, has excellent corrosion resistance against ant-nest corrosion, and does not cause stress corrosion cracking.

【0014】[0014]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、銅または銅合金から成る熱
交換器用部材の表面に、ニッケル、コバルト、クロムお
よび銀、又はこれらを主成分とする合金の群から選ばれ
る少なくとも一種から成る平均厚さ0.1〜2μmの下
地層が形成され、さらに前記下地層の上には、平均厚さ
0.1〜50μmの金属亜鉛粉末含有塗膜または亜鉛め
っき層が形成されていることを特徴とする熱交換器用部
材が提供される。
In order to achieve the above object, according to the present invention, nickel, cobalt, chromium and silver, or those containing these as main components, are provided on the surface of a heat exchanger member made of copper or a copper alloy. An underlayer having an average thickness of 0.1 to 2 μm, which is made of at least one selected from the group of alloys to be used, is further formed on the underlayer. A heat exchanger member provided with a membrane or a galvanized layer is provided.

【0015】[0015]

【発明の実施の形態】図1は本発明の熱交換器用部材で
ある銅製の管体1を用いた熱交換器の基本構成例を示す
断面図である。図において、積層されたフィン体2のフ
ィンカラー3を通して管体1を挿通し、フィン体2に管
体1を嵌合することによって熱交換器が構成される。管
体1の表面には、ニッケル、コバルト、クロムおよび
銀、又はこれらを主成分とする合金の群から選ばれる少
なくとも一種から成る下地層1aが、その上には金属亜
鉛粉末含有塗膜1bまたは亜鉛めっき層1b(以下、
「最表層」という)が形成されている。なお、フィン体
2の全面はあらかじめ親水性皮膜4で被覆されている。
FIG. 1 is a cross-sectional view showing a basic configuration example of a heat exchanger using a copper tube 1 which is a heat exchanger member of the present invention. In the figure, the heat exchanger is constituted by inserting the tube 1 through the fin collar 3 of the laminated fin 2 and fitting the tube 1 to the fin 2. On the surface of the tube 1, an underlayer 1a made of at least one selected from the group consisting of nickel, cobalt, chromium, and silver, or an alloy containing these as a main component, and a metal zinc powder-containing coating film 1b or Zinc plating layer 1b (hereinafter, referred to as
"The outermost layer" is formed. Note that the entire surface of the fin body 2 is previously coated with the hydrophilic film 4.

【0016】本発明の銅または銅合金から成る熱交換用
部材は、伝熱管とフィンのいずれに用いてもよいが、特
に伝熱管として用いるのが望ましい。
The heat exchange member made of copper or copper alloy according to the present invention may be used for either a heat transfer tube or a fin, but is particularly preferably used as a heat transfer tube.

【0017】そして伝熱管に使用する場合は、管のろう
付け時の水素脆化を防止するため、リン脱酸銅とするこ
とが望ましい。
When used for heat transfer tubes, it is desirable to use phosphorus deoxidized copper in order to prevent hydrogen embrittlement during brazing of the tubes.

【0018】次に、本発明の最表層について詳細に説明
する。
Next, the outermost layer of the present invention will be described in detail.

【0019】伝熱管の蟻の巣状腐食は、前記したよう
に、伝熱管等の成分に含まれる銅が有機酸を含んだ付着
水へ溶解することによって進行する。
Ant nest-like corrosion of a heat transfer tube proceeds as described above, as copper contained in components of the heat transfer tube and the like dissolves in attached water containing an organic acid.

【0020】そこで本発明は銅または銅合金から成る熱
交換用部材(伝熱管等)の最表面に、銅に比べてイオン
化傾向の大きい物質である金属亜鉛それ自体または金属
亜鉛粉末を含有した皮膜を形成させ、管体をフィンカラ
ーに拡管接合する際に生じる隙間に侵入した酸性付着水
に亜鉛を優先的に溶解させることによって、付着水をア
ルカリ側に変化させて無害化し、その結果として銅の溶
出を抑制して、伝熱管の蟻の巣状腐食を有効に防止する
ことを技術思想とするものである。ここで、付着水のア
ルカリ側への変化は、金属亜鉛の付着水への溶解に伴う
カソード反応によるものである。
Accordingly, the present invention provides a heat exchange member (heat transfer tube or the like) made of copper or a copper alloy, on the outermost surface, a film containing metal zinc itself or metal zinc powder which is a substance having a higher ionization tendency than copper. Is formed, zinc is preferentially dissolved in the acidic water adhering to the gap generated when the pipe body is joined to the fin collar, thereby changing the water adhering to the alkali side and rendering it harmless. It is a technical idea to suppress the elution of water and effectively prevent ant-nest corrosion of the heat transfer tube. Here, the change of the attached water to the alkaline side is due to the cathode reaction accompanying the dissolution of the metallic zinc in the attached water.

【0021】この最表層1bでは、金属亜鉛、特に金属
亜鉛粉末を下地の銅と合金化させず、反応性に富んだ金
属の状態のまま存在させることによって、付着水への亜
鉛の溶解、アルカリ化反応が促進され、隙間腐食である
蟻の巣状腐食が有効に防止される。
In the outermost layer 1b, zinc metal, particularly zinc metal powder, is not alloyed with the underlying copper, but remains in a highly reactive metal state, thereby dissolving zinc in adhering water, The formation reaction is promoted, and ant-nest corrosion, which is crevice corrosion, is effectively prevented.

【0022】最表層は、伝熱管に電気亜鉛めっきや溶融
亜鉛めっきを施して形成してもよいが、金属亜鉛粉末を
分散させた樹脂や塗料を塗着して形成してもよい。特
に、設備の簡便化や管体内部へのめっき液等の侵入を防
止する点で、後者の塗着を行う方が好ましい。また、塗
着を行う場合は対象物に親水性皮膜が被覆されていても
これを除去する必要がなく、さらに、反応性に富む金属
亜鉛粉末が適度に塗膜中に分散しているため、付着水へ
の亜鉛の溶解促進の点でも望ましい。このような樹脂や
塗料としては、例えば、いわゆるジンクリッチペイント
と呼ばれる金属亜鉛粉末を顔料とする塗料が使用できる
が、その他、金属亜鉛粉末をコロイダルシリカ系親水処
理剤に分散させた処理剤も好適に使用できる。
The outermost layer may be formed by electrogalvanizing or hot-dip galvanizing the heat transfer tube, or may be formed by applying a resin or paint in which zinc metal powder is dispersed. In particular, it is preferable to perform the latter coating in terms of simplifying the equipment and preventing the plating solution or the like from entering the inside of the tube. In addition, when performing the coating, even if the hydrophilic film is coated on the object, it is not necessary to remove the hydrophilic film.Moreover, since the highly reactive zinc metal powder is appropriately dispersed in the coating film, It is also desirable in terms of accelerating the dissolution of zinc in the attached water. As such a resin or paint, for example, a paint using metal zinc powder as a pigment, so-called zinc-rich paint, can be used. In addition, a treatment agent in which metal zinc powder is dispersed in a colloidal silica-based hydrophilic treatment agent is also preferable. Can be used for

【0023】最表層の平均厚さは0.1〜50μmの範
囲に設定される。0.1μm未満である場合は亜鉛の付
着水への溶解による前記した防食効果が短時間で消失す
るようになり、また50μmを超えても、塗膜やめっき
層の深部に存在する亜鉛は溶出できないので全体として
無駄となって不経済となり、コストアップを招くからで
ある。なお、平均厚さとは塗膜またはめっき層の厚みの
平均値を意味する。最表層の平均厚さの調整は、塗膜の
場合には塗装回数を変える他、樹脂や塗料の溶剤への配
合比率を変えて樹脂濃度を調整すればよく、また、めっ
き層の場合は電気めっきでは電解時間や電流密度を、溶
融めっきでは浸漬時間や浸漬回数を変えればよい。
The average thickness of the outermost layer is set in the range of 0.1 to 50 μm. When the thickness is less than 0.1 μm, the above-described anticorrosion effect due to dissolution of zinc in the attached water comes to disappear in a short time. This is because, as a whole, it is wasteful and uneconomical, which leads to an increase in cost. The average thickness means the average value of the thickness of the coating film or the plating layer. The average thickness of the outermost layer can be adjusted by changing the number of coatings in the case of a coating film, adjusting the resin concentration by changing the mixing ratio of the resin or paint to the solvent, and adjusting the electric concentration in the case of the plating layer. The electrolysis time and current density may be changed for plating, and the immersion time and immersion frequency may be changed for hot-dip plating.

【0024】さらに、塗膜中の金属亜鉛粉末含有率は、
塗膜の乾燥状態で60重量%以上とするのが好ましい。
金属亜鉛粉末の含有率が高いほど付着水への亜鉛の溶解
量が増大して、付着水のアルカリ化による防食効果が大
きくなるためである。従って成膜性に影響を与えない範
囲で金属亜鉛粉末の含有率を高くするのがよい。なお金
属亜鉛粉末の大きさは、溶解性や均一分散性のことを考
えるとあまり大きいことは避けるべきであり、通常は粒
径10μm以下に設定することが好ましい。
Further, the content of metallic zinc powder in the coating film is as follows:
It is preferably at least 60% by weight in a dried state of the coating film.
This is because the higher the content of the metal zinc powder, the greater the amount of zinc dissolved in the attached water, and the greater the anticorrosion effect due to the alkalinization of the attached water. Therefore, it is preferable to increase the content of the metallic zinc powder within a range that does not affect the film forming property. It should be noted that the size of the metallic zinc powder should not be too large in consideration of solubility and uniform dispersibility, and it is usually preferable to set the particle size to 10 μm or less.

【0025】次に本発明の下地層について説明する。Next, the underlayer of the present invention will be described.

【0026】伝熱管の表面に亜鉛が存在すると、伝熱管
同士をろう付け接合する際の加熱によって、表面の亜鉛
が拡散して伝熱管の成分である銅と銅−亜鉛合金を形成
して応力腐食割れや管の脆化を引き起こすことがある。
When zinc is present on the surface of the heat transfer tube, the heat at the time of brazing and joining the heat transfer tubes diffuses the zinc on the surface to form copper and a copper-zinc alloy, which are components of the heat transfer tube, resulting in stress. May cause corrosion cracking and tube embrittlement.

【0027】本発明の下地層は、前記した最表層1bに
おける亜鉛が伝熱管素地まで拡散するのを抑制して上記
の問題の発生を防止するという作用効果を発揮する。こ
の下地層はニッケル、コバルト、クロムおよび銀のいず
れか1種、またはそれらの合金で構成される。上記の金
属とした理由は、これらの金属の融点が比較的高く、亜
鉛に比べて銅への拡散が起こりにくいためである。
The underlayer according to the present invention exerts the effect of suppressing the diffusion of zinc in the outermost layer 1b to the heat transfer tube base, thereby preventing the above problem from occurring. The underlayer is made of any one of nickel, cobalt, chromium, and silver, or an alloy thereof. The reason for using these metals is that these metals have relatively high melting points and are less likely to diffuse into copper than zinc.

【0028】下地層の平均厚さは0.1〜2μmの範囲
に設定される。0.1μm未満である場合は銅素地への
亜鉛の拡散を抑制する効果が不十分であり、2μmを超
えても、もはや亜鉛の拡散防止効果は飽和し経済上も不
利となるからである。平均厚さの調整は、電解時間、電
流密度または浸漬時間を変えればよい。
The average thickness of the underlayer is set in the range of 0.1 to 2 μm. If the thickness is less than 0.1 μm, the effect of suppressing the diffusion of zinc into the copper base is insufficient, and if it exceeds 2 μm, the effect of preventing the diffusion of zinc is no longer saturated, and this is economically disadvantageous. The average thickness may be adjusted by changing the electrolysis time, the current density, or the immersion time.

【0029】[0029]

【実施例】実施例1〜6、比較例1〜4 1.下地層および最表層の形成 リン脱酸銅管(JIS規格H3300C1220、外径
9.5×肉厚0.3mm×長さ100、質別OL)の外
面に、無電解Niめっきをしてから、その上層に電気メ
ッキによりZn皮膜を形成し、表1に示すサンプルを作
成した。比較材として、同寸法の未処理のリン脱酸銅管
を用意した。各層の平均厚さは電解時間を調整して変化
させた。下地層および最表層の平均厚さは蛍光X線式試
験方法および電解式試験方法を用いて測定した。
EXAMPLES Examples 1 to 6 and Comparative Examples 1 to 4 Formation of base layer and outermost layer The outer surface of a phosphorous deoxidized copper tube (JIS standard H3300C1220, outer diameter 9.5 × wall thickness 0.3 mm × length 100, temper OL) is subjected to electroless Ni plating, A Zn film was formed on the upper layer by electroplating, and samples shown in Table 1 were prepared. As a comparative material, an untreated phosphor-deoxidized copper tube having the same dimensions was prepared. The average thickness of each layer was changed by adjusting the electrolysis time. The average thickness of the underlayer and the outermost layer was measured using a fluorescent X-ray test method and an electrolytic test method.

【0030】2.熱交換器の組立て シリカ系の親水性皮膜で被覆されているアルミニウム素
条(JIS−A1200,500×25×0.1mm)
をプレス加工して、2列×12個のフィンカラーを形成
させアルミフィン体とし、この所要枚数を、前記フィン
カラーを一致させて積層し、この積層体のフィンカラー
に前記下地層および最表層を形成させた管体を挿通し、
マンドレルによる拡管を行って両者を接合して熱交換器
(外寸500×25×250mm)を組立てた。
2. Assembly of heat exchanger Aluminum strip coated with a silica-based hydrophilic coating (JIS-A1200, 500 × 25 × 0.1 mm)
Is pressed to form 2 rows × 12 fin collars to form an aluminum fin body. The required number of the fin collars are made to coincide with each other and the fin collars are made to coincide with each other. Through the tube that formed the
The pipes were expanded with a mandrel and joined together to assemble a heat exchanger (external dimensions 500 × 25 × 250 mm).

【0031】3.熱交換器サンプルの評価 各熱交換器サンプルについて、以下の仕様で特性評価を
行った。
3. Evaluation of heat exchanger samples The characteristics of each heat exchanger sample were evaluated according to the following specifications.

【0032】(1)耐食性評価 内容量1Lの密閉容器に1体積%の蟻酸水溶液を100
mL入れ、液に直接接触しないように100mLビーカ
ーに熱交換器から切り出したサンプル(外寸100×5
0×25mm)を入れてから、これを上記密閉容器内に
設置した。次に容器内の雰囲気を酸素に置換し、40日
間室温に保持した。試験後、熱交換器サンプルから伝熱
管を引き離して切断し、断面の顕微鏡観察によりフィン
との嵌合部付近の切断面での伝熱管の最大腐食深さを測
定した。この値が小さいほど、耐食性に優れていること
を表す。
(1) Evaluation of Corrosion Resistance A 100% aqueous solution of 1% by volume formic acid was placed in a closed container having a capacity of 1 L.
into a 100 mL beaker so as not to come into direct contact with the liquid.
0 × 25 mm), and then placed in the closed container. Next, the atmosphere in the container was replaced with oxygen and kept at room temperature for 40 days. After the test, the heat transfer tube was separated from the heat exchanger sample and cut, and the maximum corrosion depth of the heat transfer tube at the cut surface near the fitting portion with the fin was measured by microscopic observation of the cross section. The smaller this value is, the more excellent the corrosion resistance is.

【0033】(2)応力腐食割れ評価 熱交換器に組み立てていない管体について、大気中33
0℃で1時間の加熱処理を行い、10%の内径拡管率で
マンドレル拡管した後、JISに規定する時期割れ試験
(JISH33005.12A)を行った。さらに拡管
前の管外径の50%までつぶした時の割れの有無を目視
で判定した。
(2) Evaluation of stress corrosion cracking
After performing a heat treatment at 0 ° C. for 1 hour and expanding the mandrel at an inner diameter expansion rate of 10%, a time crack test (JISH330005.12A) specified in JIS was performed. Furthermore, the presence or absence of cracks when crushed to 50% of the pipe outer diameter before pipe expansion was visually determined.

【0034】以上の結果を表1に示した。Table 1 shows the results.

【0035】[0035]

【表1】 表1から次のことが明らかである。[Table 1] The following is clear from Table 1.

【0036】(1)下地層および最表層を形成させた本発
明の熱交換器用伝熱管は、応力腐食割れが発生せず、耐
食性も良好である。
(1) The heat exchanger tube for a heat exchanger of the present invention in which the underlayer and the outermost layer are formed does not generate stress corrosion cracking and has good corrosion resistance.

【0037】(2)各実施例と比較例1および2とを対比
して明らかなように、下地層が薄い比較例1の場合は応
力腐食割れが発生し、最表層が薄い比較例2の場合は実
施例に比べて耐食性が大幅に劣化している。このような
ことから、下地層の平均厚さは0.1〜2μmに、最表
層の平均厚さは0.1〜50μmに設定すべきであるこ
とがわかる。
(2) As is clear from the comparison between each embodiment and Comparative Examples 1 and 2, in Comparative Example 1 where the underlayer was thin, stress corrosion cracking occurred, and in Comparative Example 2 where the outermost layer was thin. In the case, the corrosion resistance is significantly deteriorated as compared with the embodiment. From this, it is understood that the average thickness of the underlayer should be set to 0.1 to 2 μm and the average thickness of the outermost layer should be set to 0.1 to 50 μm.

【0038】(3)各実施例と比較例3を対比して明らか
なように、下地層を全く形成させなかった比較例3の場
合は、応力腐食割れが発生した。
(3) As is clear from the comparison between each example and Comparative Example 3, in the case of Comparative Example 3 in which no underlayer was formed, stress corrosion cracking occurred.

【0039】(4)また、各実施例と比較例4を対比して
明らかなように、下地層および最表層を全く形成させな
かった比較例4の場合は、実施例に比べて耐食性が大幅
に低下し、かつ蟻の巣状腐食による貫通孔が発生した。
(4) Further, as is clear from comparison between each example and comparative example 4, in the case of comparative example 4 in which the underlayer and the outermost layer were not formed at all, the corrosion resistance was significantly higher than in the examples. And a through-hole was formed due to ant-nest corrosion.

【0040】実施例7〜11 1.下地層および最表層の形成 リン脱酸銅管(JIS規格H3300C1220、外径
9.5×肉厚0.3mm×長さ100、質別OL)の外
面に、Agめっきを0.3μmの平均厚さで施した後、
コロイダルシリカ系親水処理剤に平均粒径10μmの金
属亜鉛粉末を配合したものを金属亜鉛粉末含有塗料とし
て塗布し、表2に示すサンプルを作成した。下地層の平
均厚さは電解時間を調整し、塗膜の平均厚さは樹脂と溶
剤の配合比率を調整して変化させた。下地層の平均厚さ
は蛍光X線式試験方法を用いて測定し、塗膜の平均厚さ
は渦電流式試験方法を用いて測定した。
Examples 7 to 11 Formation of underlayer and outermost layer The outer surface of a phosphor deoxidized copper tube (JIS standard H3300C1220, outer diameter 9.5 × wall thickness 0.3 mm × length 100, temper OL) is coated with Ag plating to an average thickness of 0.3 μm. After applying it,
A mixture of a colloidal silica-based hydrophilic treatment agent and a metal zinc powder having an average particle diameter of 10 μm was applied as a metal zinc powder-containing paint to prepare samples shown in Table 2. The average thickness of the underlayer was adjusted by adjusting the electrolysis time, and the average thickness of the coating film was changed by adjusting the mixing ratio of the resin and the solvent. The average thickness of the underlayer was measured using a fluorescent X-ray test method, and the average thickness of the coating film was measured using an eddy current test method.

【0041】2.熱交換器の組立て、熱交換器サンプル
の評価 実施例1〜6と同様にして行った。
2. Assembling of the heat exchanger and evaluation of the heat exchanger sample It was performed in the same manner as in Examples 1 to 6.

【0042】以上の結果を表2に示した。The results are shown in Table 2.

【0043】[0043]

【表2】 表2から次のことが明らかである。[Table 2] The following is clear from Table 2.

【0044】(1)下地層と金属亜鉛含有塗膜から成る最
表層を形成させた本発明の熱交換器用伝熱管は、応力腐
食割れが発生せず、耐食性も良好である。
(1) The heat exchanger tube for a heat exchanger of the present invention in which the outermost layer composed of the base layer and the metallic zinc-containing coating film is formed does not cause stress corrosion cracking and has good corrosion resistance.

【0045】(2)また、実施例7と実施例8〜11とを
対比して明らかなように、実施例7では、ごくわずかで
はあるが肌荒れ状腐食が発生した。このようなことか
ら、乾燥皮膜中の亜鉛含有率は60重量%以上とするこ
とが好ましい。
(2) Further, as is apparent from a comparison between Example 7 and Examples 8 to 11, in Example 7, although very slight, rough skin corrosion occurred. For this reason, the zinc content in the dried film is preferably set to 60% by weight or more.

【0046】[0046]

【発明の効果】以上の説明で明らかなように、この発明
によれば、銅または銅合金から成る熱交換器用部材の表
面に、ニッケル、コバルト、クロムおよび銀、又はこれ
らを主成分とする合金の群から選ばれる少なくとも一種
から成る平均厚さ0.1〜2μmの下地層が形成され、
さらに前記下地層の上には、平均厚さ0.1〜50μm
の金属亜鉛粉末含有塗膜または亜鉛めっき層が形成され
ているため、蟻の巣状腐食に対する耐食性に優れ、かつ
応力腐食割れの生じない熱交換器用部材を提供すること
ができる。
As is apparent from the above description, according to the present invention, nickel, cobalt, chromium and silver, or alloys containing these as a main component, are formed on the surface of the heat exchanger member made of copper or copper alloy. An underlayer having an average thickness of 0.1 to 2 μm, which is made of at least one selected from the group consisting of
Furthermore, on the underlayer, an average thickness of 0.1 to 50 μm
Since the metal zinc powder-containing coating film or the galvanized layer is formed, it is possible to provide a heat exchanger member that has excellent corrosion resistance against ant-nest corrosion and does not cause stress corrosion cracking.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱交換器用部材である管体をフィンに
嵌合した熱交換器の一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a heat exchanger in which a tube as a heat exchanger member of the present invention is fitted to a fin.

【符号の説明】[Explanation of symbols]

1管体 1a下地層 1b最表層 2フィン体 1フィンカラー 2親水性皮膜 1 tube 1a underlayer 1b outermost layer 2 fin body 1 fin color 2 hydrophilic film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 銅または銅合金から成る熱交換器用部材
の表面に、ニッケル、コバルト、クロムおよび銀、又は
これらを主成分とする合金の群から選ばれる少なくとも
一種から成る平均厚さ0.1〜2μmの下地層が形成さ
れ、さらに前記下地層の上には、平均厚さ0.1〜50
μmの金属亜鉛粉末含有塗膜または亜鉛めっき層が形成
されていることを特徴とする熱交換器用部材。
An average thickness of at least one selected from the group consisting of nickel, cobalt, chromium, and silver or an alloy containing these as a main component is formed on a surface of a heat exchanger member made of copper or a copper alloy. And a base layer having an average thickness of 0.1 to 50 μm.
A member for a heat exchanger, wherein a coating film containing zinc metal having a thickness of μm or a zinc plating layer is formed.
JP13385598A 1998-05-15 1998-05-15 Member for heat exchanger Pending JPH11325793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13385598A JPH11325793A (en) 1998-05-15 1998-05-15 Member for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13385598A JPH11325793A (en) 1998-05-15 1998-05-15 Member for heat exchanger

Publications (1)

Publication Number Publication Date
JPH11325793A true JPH11325793A (en) 1999-11-26

Family

ID=15114620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13385598A Pending JPH11325793A (en) 1998-05-15 1998-05-15 Member for heat exchanger

Country Status (1)

Country Link
JP (1) JPH11325793A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127605A (en) * 2010-12-17 2012-07-05 Suction Gas Engine Mfg Co Ltd Heat exchanger and method for peoduction thereof
JP2017110246A (en) * 2015-12-15 2017-06-22 古河電気工業株式会社 Copper pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127605A (en) * 2010-12-17 2012-07-05 Suction Gas Engine Mfg Co Ltd Heat exchanger and method for peoduction thereof
JP2017110246A (en) * 2015-12-15 2017-06-22 古河電気工業株式会社 Copper pipe

Similar Documents

Publication Publication Date Title
JP4339690B2 (en) Alloy compositions and methods for low temperature fluxless brazing
JP6186239B2 (en) Aluminum alloy heat exchanger
JP6030300B2 (en) Heat exchanger manufacturing method using pre-coated fin material and heat exchanger
JP5115963B2 (en) Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance
WO2010150727A1 (en) Heat exchanger made from aluminum alloy, and process for production of coolant passage tube for use in the heat exchanger
JP5334086B2 (en) Aluminum heat exchanger having excellent corrosion resistance and method for producing the same
JPS61186164A (en) Production of aluminum heat exchanger
US20120292001A1 (en) Soldered aluminum heat exchanger
JP2009058139A (en) Member for aluminum-made heat exchanger having superior corrosion resistance
JP2016099101A (en) Heat exchanger, and method of manufacturing the same
JP6106530B2 (en) Method for preventing corrosion of heat exchange pipe outer surface made of extruded aluminum and method for producing heat exchanger
JP2005257257A (en) Heat exchanger and its manufacturing method
JP2016099100A (en) Heat exchanger, and method of manufacturing the same
JP2000087162A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JPH11325792A (en) Heat exchanger
JP3762146B2 (en) Metal member joining structure and joining method
JPH11325793A (en) Member for heat exchanger
JP2006188756A (en) Heat exchanger tube with high corrosion resistance, heat exchanger, and method for producing the heat exchanger
JP2019070499A (en) Method of manufacturing heat exchanger
JPH11304395A (en) Member for heat exchanger and heat exchanger using it
JP2001502757A (en) Advanced electrolytic corrosion protection
US4182399A (en) Process for removing heavy metal ions from aqueous fluids
JP2000304491A (en) Heat exchanger member
US4178990A (en) Solar energy collector system
JP3151152B2 (en) Evaporator with excellent corrosion resistance