JP2017110246A - Copper pipe - Google Patents

Copper pipe Download PDF

Info

Publication number
JP2017110246A
JP2017110246A JP2015243805A JP2015243805A JP2017110246A JP 2017110246 A JP2017110246 A JP 2017110246A JP 2015243805 A JP2015243805 A JP 2015243805A JP 2015243805 A JP2015243805 A JP 2015243805A JP 2017110246 A JP2017110246 A JP 2017110246A
Authority
JP
Japan
Prior art keywords
zinc
thickness
copper tube
film
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015243805A
Other languages
Japanese (ja)
Inventor
健一郎 上田
Kenichiro Ueda
健一郎 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2015243805A priority Critical patent/JP2017110246A/en
Publication of JP2017110246A publication Critical patent/JP2017110246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely obtain effect for suppressing generation of ant-lair-like corrosion while enhancing productivity with securing thermal conductivity which is a characteristic of a copper tube.SOLUTION: In a copper tube having a zinc coating 12 on an outer peripheral surface, thickness of the zinc coating 12 is set at 10 μm or less to secure thermal conductivity and time for forming the zinc coating 12 is shortened to enhance productivity. On the other hand, thickness of the zinc coating 12 is set at 1 μm to obtain a full effect for preventing generation of ant-lair-like corrosion and anticorrosive effect is maintained.SELECTED DRAWING: Figure 1

Description

この発明は、たとえば空調機器や冷凍機器などの伝熱管として用いられるような銅管に関し、より詳しくは、蟻の巣状腐食の発生を抑制できるような銅管に関する。   The present invention relates to a copper tube used as a heat transfer tube for air conditioning equipment, refrigeration equipment and the like, and more particularly to a copper pipe capable of suppressing the occurrence of ant nest corrosion.

銅管は銅または銅合金製であり、耐食性、熱伝導性、加工性などに優れるので、前述のように伝熱管などに好適に用いられている。
しかしながら、銅管に蟻の巣状腐食と呼ばれる特異な形態の腐食が発生することがまれにある。蟻の巣状腐食は、微細な局部腐食であり、腐食断面が蟻の巣のように複雑な形をしている。つまり腐食孔は微小なピンホールであり、その内部は複雑に枝分かれした微小空洞である。空洞の内部には腐食生成物として主に亜酸化銅が詰まっている。
The copper tube is made of copper or a copper alloy, and is excellent in corrosion resistance, thermal conductivity, workability, etc., and thus is suitably used for a heat transfer tube and the like as described above.
However, a rare form of corrosion called ant nest corrosion is rarely generated in copper pipes. The ant nest-like corrosion is a fine local corrosion, and the corrosion cross section has a complicated shape like an ant nest. That is, the corrosion hole is a minute pinhole, and the inside is a minute cavity that branches in a complicated manner. The inside of the cavity is mainly filled with cuprous oxide as a corrosion product.

蟻の巣状腐食の主な原因は使用環境中に存在する有機酸等の腐食媒であり、水と酸素があるところで起こり得る。
この腐食を抑制するため、たとえば下記特許文献1、2の発明が開示されている。特許文献1の発明は、銅管表面のpHを4〜8.6に保つ表面処理を行うというものである。その表面処理として溶融亜鉛めっきや亜鉛含有塗料があげられている。
The main cause of ant nest-like corrosion is a corrosion medium such as an organic acid present in the environment of use, which can occur in the presence of water and oxygen.
In order to suppress this corrosion, for example, the inventions of Patent Documents 1 and 2 below are disclosed. The invention of Patent Document 1 is to perform a surface treatment for keeping the pH of the copper tube surface at 4 to 8.6. As the surface treatment, hot dip galvanizing and zinc-containing paints are mentioned.

下記特許文献2の発明は、銅管の表面に、0.1μm〜50μmの厚さの金属亜鉛層を形成した構成である。金属亜鉛層は電気めっき等で形成される。この構成によると、腐食媒が溶解した付着水に亜鉛が溶出し、亜鉛はその溶出に伴うカソード反応により付着水をアルカリ側に移行させ、腐食の発生を抑制する。   The invention of the following Patent Document 2 has a configuration in which a metal zinc layer having a thickness of 0.1 μm to 50 μm is formed on the surface of a copper tube. The metal zinc layer is formed by electroplating or the like. According to this structure, zinc elutes in the adhering water in which the corrosion medium is dissolved, and the zinc moves the adhering water to the alkali side by the cathode reaction accompanying the elution, thereby suppressing the occurrence of corrosion.

特許文献1、2のいずれの発明も、亜鉛を含有する層を、腐食を抑制したい表面全体に形成するというものである。   In both inventions of Patent Documents 1 and 2, a layer containing zinc is formed on the entire surface where corrosion is to be suppressed.

しかし、亜鉛含有層を全体にまんべんなく均一に形成することは技術面からもコスト面からも負担が大きい。亜鉛含有層を電気めっきで形成すると、電気めっきの特性ゆえに溶融めっきと比較して膜厚に均一性があるとはいうものの、めっき厚は電流分布に左右されるので、一つの被めっき物の部分間におけるバラつきや、被めっき物間におけるバラつきもあり、必ずしも均一なめっき厚が得られるわけではない。このため特許文献1のように0.1μmの厚みでは、十分な効果が得られないことがあるうえに、持続性も不十分となりやすい。   However, uniformly forming the zinc-containing layer evenly over the entire surface is burdensome from the technical and cost viewpoints. If the zinc-containing layer is formed by electroplating, the film thickness is more uniform than hot-dipping due to the characteristics of electroplating, but the plating thickness depends on the current distribution. There are variations between parts and variations between objects to be plated, and a uniform plating thickness is not always obtained. For this reason, when the thickness is 0.1 μm as in Patent Document 1, sufficient effects may not be obtained, and the sustainability tends to be insufficient.

逆に、亜鉛含有層を厚くすると、防食効果は得やすくなるものの、膜厚が50μmもあると銅管の特性である熱伝導性の良さが損なわれてしまう。そのうえ、亜鉛含有層を電気めっきで形成する場合には、めっき処理に時間がかかり、生産性がよくない。   On the contrary, when the zinc-containing layer is thickened, the anticorrosion effect is easily obtained, but when the film thickness is 50 μm, the good thermal conductivity as a characteristic of the copper tube is impaired. In addition, when the zinc-containing layer is formed by electroplating, the plating process takes time and the productivity is not good.

特開2000−313968号公報JP 2000-313968 A 特開2000−304491号公報JP 2000-304491 A

そこで、この発明は、熱伝導性と生産性を確保しつつ、蟻の巣状腐食の発生を抑制する効果を確実に得られるようにすることを主な目的とする。   Therefore, the main object of the present invention is to ensure that the effect of suppressing the occurrence of ant nest corrosion is ensured while ensuring thermal conductivity and productivity.

この発明は、外周面または内周面の少なくとも一方に亜鉛皮膜を有する銅管であって、前記亜鉛皮膜の厚さが10μm以下であるとともに、1μm以上の銅管である。   The present invention is a copper tube having a zinc coating on at least one of an outer peripheral surface and an inner peripheral surface, and the zinc coating has a thickness of 10 μm or less and a copper tube of 1 μm or more.

この構成では、10μm以下の厚さである亜鉛皮膜から亜鉛が溶出し、腐食の発生を抑制する。しかも、亜鉛皮膜は分厚くならずに素地を覆うので熱伝導性の低下を抑制するうえに、亜鉛皮膜を電気めっきで形成する場合にはめっき処理時間の短縮化がはかれる。その一方で、亜鉛皮膜は1μm以上の厚みを有するので、亜鉛の溶出量を確保し、防食作用を十分に持続させる。   In this configuration, zinc is eluted from the zinc film having a thickness of 10 μm or less, and the occurrence of corrosion is suppressed. In addition, since the zinc coating covers the substrate without being thickened, the thermal conductivity is prevented from being lowered. In addition, when the zinc coating is formed by electroplating, the plating processing time can be shortened. On the other hand, since the zinc film has a thickness of 1 μm or more, the zinc elution amount is secured and the anticorrosion action is sufficiently maintained.

この発明の態様として、前記亜鉛皮膜を外周面のみに有する銅管としてもよい。
この構成では、亜鉛皮膜のない内周面では完全な熱伝導性が保たれる。一方、腐食媒にさらされやすい外周面では亜鉛皮膜により前述のような防食作用がなされる。
As an aspect of this invention, it is good also as a copper pipe which has the said zinc membrane | film | coat only on an outer peripheral surface.
In this configuration, complete thermal conductivity is maintained on the inner peripheral surface without the zinc film. On the other hand, the anticorrosive action as described above is performed by the zinc film on the outer peripheral surface which is easily exposed to the corrosion medium.

課題を解決するための別の手段は、外周面または内周面の少なくとも一方に亜鉛皮膜を有する銅管の製造方法であって、材料銅管に対して電気亜鉛めっき処理をして亜鉛皮膜を形成し、前記電気亜鉛めっき処理を前記亜鉛皮膜の厚さが10μm以下であるとともに、1μm以上となるように行う銅管の製造方法である。   Another means for solving the problem is a method of manufacturing a copper pipe having a zinc film on at least one of an outer peripheral surface and an inner peripheral surface, and the zinc film is formed by subjecting the material copper pipe to an electrogalvanizing treatment. It is the manufacturing method of the copper tube which forms and performs the said electrogalvanization process so that the thickness of the said zinc membrane | film | coat is 10 micrometers or less, and it becomes 1 micrometer or more.

この構成では、電気亜鉛めっき処理を所定の条件で一定時間行って、前述の範囲の厚さの亜鉛皮膜を形成する。亜鉛皮膜は10μm以下の厚さであり、分厚くならずに素地を覆って熱伝導性の低下を抑制する。分厚くないので電気めっき処理を行う一定の時間は短くなる。その一方で、亜鉛皮膜は1μm以上の厚みを有するので、亜鉛の溶出量を確保し、防食作用を十分に持続させる。   In this configuration, the electrogalvanizing treatment is performed for a certain period of time under predetermined conditions to form a zinc film having a thickness in the above range. The zinc film has a thickness of 10 μm or less and covers the substrate without being thick, thereby suppressing a decrease in thermal conductivity. Since it is not thick, a certain time for performing the electroplating process is shortened. On the other hand, since the zinc film has a thickness of 1 μm or more, the zinc elution amount is secured and the anticorrosion action is sufficiently maintained.

この発明の態様として、前記電気亜鉛めっき処理後に、クロメート処理をして亜鉛皮膜の表面にクロメート皮膜を形成してもよい。
この構成では、クロメート皮膜が亜鉛皮膜の耐久性を向上し、比較的薄い亜鉛皮膜でも十分な防食作用を持続させる。また用途が空調機器や冷凍機器などの伝熱管であることから、前記クロメート皮膜は環境に配慮した3価クロメート皮膜であるとよい。
As an aspect of this invention, after the electrogalvanizing treatment, chromate treatment may be performed to form a chromate coating on the surface of the zinc coating.
In this configuration, the chromate film improves the durability of the zinc film and maintains a sufficient anticorrosive action even with a relatively thin zinc film. Moreover, since the application is a heat transfer tube such as an air conditioner or refrigeration equipment, the chromate film may be a trivalent chromate film in consideration of the environment.

この発明の態様として、前記材料銅管に曲げ加工を行ってヘアピン加工部を形成したのちに、前記電気亜鉛めっき処理を行うとよい。
この構成では、あらかじめヘアピン加工部が形成された材料銅管に電気亜鉛めっき処理を行うので、ヘアピン加工部を形成する際に亜鉛皮膜が損傷することを完全に防止することができ、前述の防食作用を確実に得る。またバッチ処理が可能であるため、少量での処理が可能となり、メッキ処理設備のコンパクト化が図れ、これにより処理コストの低減につながる。
As an aspect of the present invention, the electrogalvanizing treatment may be performed after bending the material copper tube to form a hairpin processed portion.
In this configuration, since the electro-galvanizing process is performed on the material copper tube in which the hairpin processed part is formed in advance, the zinc film can be completely prevented from being damaged when the hairpin processed part is formed, and the above-described anticorrosion Get the action reliably. In addition, since batch processing is possible, processing in a small amount is possible, and the plating processing facility can be made compact, which leads to reduction in processing cost.

この発明によれば、熱伝導性と生産性を確保しつつ、蟻の巣状腐食の発生を抑制することができる。   According to the present invention, it is possible to suppress the occurrence of ant nest corrosion while ensuring thermal conductivity and productivity.

銅管の横断面断面図。The cross-sectional view of a copper tube. 銅管の要部の断面図。Sectional drawing of the principal part of a copper pipe. 直管におけるめっき時間とめっき厚の関係を示すグラフ。The graph which shows the relationship between the plating time and plating thickness in a straight pipe. ヘアピン加工部を有する銅管の斜視図。The perspective view of the copper tube which has a hairpin processed part. ヘアピン加工部を有する銅管の製造工程を示すフローチャート。The flowchart which shows the manufacturing process of the copper pipe which has a hairpin process part. ヘアピン加工部のめっき厚測定位置を示す説明図。Explanatory drawing which shows the plating thickness measurement position of a hairpin process part. ヘアピン加工部を有する銅管におけるめっき時間とめっき厚の関係を示すグラフ。The graph which shows the relationship between the plating time and plating thickness in the copper pipe which has a hairpin processed part. 試験体の試験前と後の外観を示す写真。The photograph which shows the external appearance of the test body before and after the test. 腐食が発生した銅管の最大腐食部分の断面写真。A cross-sectional photograph of the maximum corroded portion of a copper pipe where corrosion has occurred.

この発明を実施するための一形態を、以下図面を用いて説明する。
図1は、伝熱管などとして使用される銅管11、またはその伝熱管などとなる前の中間体としての銅管11の横断面図である。銅管11は外周面または内周面の少なくとも一方に亜鉛皮膜12を有している。すなわち、亜鉛皮膜12は外周面か内周面のいずれか一方、または双方に形成される。この例では、亜鉛皮膜12を外周面のみに有する例を示している。亜鉛皮膜12は電気亜鉛めっきで、外周面に対してその全面に形成されている。
An embodiment for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view of a copper tube 11 used as a heat transfer tube or the like, or a copper tube 11 as an intermediate body before becoming a heat transfer tube or the like. The copper tube 11 has a zinc coating 12 on at least one of the outer peripheral surface and the inner peripheral surface. That is, the zinc coating 12 is formed on either the outer peripheral surface or the inner peripheral surface, or both. In this example, the example which has the zinc membrane | film | coat 12 only in an outer peripheral surface is shown. The zinc film 12 is formed on the entire surface of the outer peripheral surface by electrogalvanizing.

亜鉛皮膜12の厚さtは10μm以下であるとともに、1μm以上である。これは、亜鉛皮膜12が分厚くなることによる銅管11の熱伝導性の低下抑制と、亜鉛皮膜12の形成時間の短縮化をはかりながらも、十分な防食効果を得るとともに、所定期間にわたる亜鉛の十分な溶出を可能にするためである。   The thickness t of the zinc coating 12 is 10 μm or less and 1 μm or more. This suppresses the decrease in the thermal conductivity of the copper tube 11 due to the thickening of the zinc coating 12, and shortens the formation time of the zinc coating 12, while obtaining a sufficient anticorrosion effect, and the zinc coating over a predetermined period. This is to enable sufficient elution.

好ましくは、亜鉛皮膜の厚さは3μm以上7μm以下であるとよい。3μm以上であれば電気めっきによる亜鉛皮膜の成長過程で生じるピンホールを少なくできることで、亜鉛皮膜の溶出に伴う白錆発生の抑制効果が顕著となる。また、7μm以下であれば、当該白錆発生を抑制しつつ、亜鉛皮膜処理コストを抑えて防食効果が実現されるからである。   Preferably, the thickness of the zinc film is 3 μm or more and 7 μm or less. If it is 3 μm or more, pinholes generated during the growth of the zinc film by electroplating can be reduced, and the effect of suppressing the occurrence of white rust accompanying the elution of the zinc film becomes remarkable. Moreover, if it is 7 micrometers or less, it is because the anticorrosion effect is implement | achieved by suppressing the zinc film processing cost, suppressing the said white rust generation | occurrence | production.

このような構成の銅管11は、材料銅管11aに対して電気亜鉛めっき処理をして亜鉛皮膜12を形成し、電気亜鉛めっき処理を亜鉛皮膜12の厚さが10μm以下であるとともに、1μm以上となるように行って製造される。   In the copper tube 11 having such a configuration, the material copper tube 11a is subjected to an electrogalvanization process to form a zinc film 12, and the electrogalvanization process is performed with a thickness of the zinc film 12 of 10 μm or less and 1 μm. It is manufactured by going as described above.

電気亜鉛めっき処理後はクロメート処理をして、図2に示したように、亜鉛皮膜12の表面にクロメート皮膜13を形成する。このクロメート皮膜13は3価クロメート皮膜であるのが好ましい。   After the electrogalvanization treatment, chromate treatment is performed to form a chromate film 13 on the surface of the zinc film 12 as shown in FIG. The chromate film 13 is preferably a trivalent chromate film.

電気亜鉛めっきは、材料銅管11aに対して必要な前処理を十分に行ったのち、めっき液に漬けて行う。材料銅管11aが直管である場合、電気亜鉛めっき時の電流が管端部に回り込むため、端部の内周面にも亜鉛めっきがなされるので、前述のように亜鉛皮膜12を外周面のみに形成するためには、電気亜鉛めっき後に端部を切除したり、端部にめっき液が入らないようにシリコン製の栓をしたり、端部をめっき液から出したりするとよい。   The electrogalvanization is performed by dipping in a plating solution after sufficiently performing the necessary pretreatment on the material copper tube 11a. When the material copper pipe 11a is a straight pipe, since the current at the time of electrogalvanization circulates to the pipe end portion, the inner peripheral surface of the end portion is also galvanized. In order to form them only, it is preferable to cut off the end after electrogalvanizing, plug the silicon so that the plating solution does not enter the end, or remove the end from the plating solution.

電気亜鉛めっき処理に際して銅管11の内周面に酸化皮膜ができる場合には、その厚さは極力薄くなるようにする。これは、熱伝導率が低下すると考えられるからである。具体的には、酸化皮膜(酸化銅および亜酸化銅)の厚さは0.1μm以下であるとよい。   When an oxide film is formed on the inner peripheral surface of the copper tube 11 during the electrogalvanizing process, the thickness is made as thin as possible. This is because the thermal conductivity is considered to decrease. Specifically, the thickness of the oxide film (copper oxide and cuprous oxide) is preferably 0.1 μm or less.

電気亜鉛めっきの条件は、所望の厚さの亜鉛皮膜が形成されるように電流密度や時間が設定される。たとえば、外径9.0mm、肉厚0.28mm、長さ1000mmの銅管に電気亜鉛めっきをする場合には、亜鉛濃度10g/L、水酸化ナトリウム濃度110g/L、めっき液温度を約25℃、電流密度を3A/dmとして、めっき時間を20分間とすれば、約6μmの厚さの亜鉛皮膜がえられる。1μm以上で10μm以下の亜鉛皮膜を形成するには、前述条件で、5分間以上33分間以内の電気亜鉛めっき処理を行うとよい。特に、亜鉛皮膜の厚さを3μm〜7μmとするには、12分間以上24分間以内の電気亜鉛めっき処理を行う。 The conditions for electrogalvanizing are set such that the current density and time are such that a zinc film having a desired thickness is formed. For example, when electrogalvanizing a copper tube having an outer diameter of 9.0 mm, a wall thickness of 0.28 mm, and a length of 1000 mm, the zinc concentration is 10 g / L, the sodium hydroxide concentration is 110 g / L, and the plating solution temperature is about 25. ° C., a current density of 3A / dm 2, when the plating time of 20 minutes, the thickness of the zinc coating of about 6μm will be obtained. In order to form a zinc film of 1 μm or more and 10 μm or less, electrogalvanizing treatment for 5 minutes or more and 33 minutes or less may be performed under the above-described conditions. In particular, in order to make the thickness of the zinc film 3 μm to 7 μm, electrogalvanizing treatment is performed for 12 minutes or more and within 24 minutes.

クロメート処理は、公知の適宜の方法(市販の3価のクロメート処理剤を用いてカタログの標準方法)で行われる。この処理により、亜鉛の溶解によってクロム酸イオンが還元され、pHが上昇して、3価クロムの水酸化物(Cr(OH))を主体とする皮膜が亜鉛めっき表面に生成するとされている。クロメート処理により形成されるクロメート皮膜13は図2に模式的に示すように、ごく薄い(膜厚は0.5μm未満)ながらも優れた耐食性がある。処理方法(処理液温度30℃に1分間程度浸漬)もいたって簡単で低コストで行える。 The chromate treatment is performed by a known appropriate method (standard method of catalog using commercially available trivalent chromate treatment agent). By this treatment, chromate ions are reduced by dissolution of zinc, the pH is increased, and a film mainly composed of trivalent chromium hydroxide (Cr (OH) 3 ) is formed on the galvanized surface. . As schematically shown in FIG. 2, the chromate film 13 formed by the chromate treatment is extremely thin (thickness is less than 0.5 μm) but has excellent corrosion resistance. The treatment method (immersion for about 1 minute at a treatment solution temperature of 30 ° C.) is also simple and can be performed at low cost.

ここで、真っ直ぐな材料銅管11aである直管におけるめっき時間とめっき厚の関係を調べた結果を示す。
実験条件はつぎのとおりである。
材料:外径7.94mm、肉厚0.31mm、長さ900mmの銅管
電気亜鉛めっき条件:電流密度3A/dm、めっき時間1分間、5分間、20分間、40分間
電気亜鉛めっき後にクロメート処理したものとしていないものの二種類を製造し、断面観察をしてめっき厚を測定したところ、図3のような結果が得られた。
Here, the result of having investigated the relationship between the plating time and the plating thickness in the straight pipe which is the straight material copper pipe 11a is shown.
The experimental conditions are as follows.
Material: Copper tube with outer diameter of 7.94 mm, wall thickness of 0.31 mm, length of 900 mm Electrogalvanizing conditions: Current density 3 A / dm 2 , plating time 1 min, 5 min, 20 min, 40 min Chromate after electrogalvanization When two types of materials that were not treated were manufactured and the thickness of the plating was measured by observing the cross section, the result as shown in FIG. 3 was obtained.

図3は、よこ軸に処理時間(分間)、たて軸にめっき厚(mm)をとって、直管におけるめっき時間とめっき厚の関係を示したグラフである。処理時間を「5分間」「20分間」「40分間」としたときのめっき厚を測定した。   FIG. 3 is a graph showing the relationship between the plating time and the plating thickness in a straight pipe, with the processing time (minutes) on the horizontal axis and the plating thickness (mm) on the vertical axis. The plating thickness was measured when the treatment time was “5 minutes”, “20 minutes”, and “40 minutes”.

図3からわかるように、クロメート処理したものでもしないものでも、5分間のめっき時間で少なくとも1μm(0.001mm)の亜鉛皮膜が得られることがわかる。また40分間もめっき時間を取れば10μm(0.01mm)以上の厚さの亜鉛皮膜が得られることもわかる。なお、めっき厚の測定をしていないが、めっき時間を1分間としたものについては、通常処理で実施する光沢処理(酸洗)で亜鉛皮膜が消失してしまった。   As can be seen from FIG. 3, it can be seen that a zinc film of at least 1 μm (0.001 mm) can be obtained in a plating time of 5 minutes, whether or not the chromate treatment. It can also be seen that a zinc film having a thickness of 10 μm (0.01 mm) or more can be obtained if the plating time is as long as 40 minutes. In addition, although the plating thickness was not measured, the zinc film disappeared by the glossing treatment (pickling) performed in the normal treatment for those with a plating time of 1 minute.

この結果から、前述のようなめっき条件においては、めっき時間は5分間以上で40分間までであれば、直管においての外周面に1μm以上10μm以下の亜鉛皮膜12が得られると考えられる。尚、本実験では処理液は強制撹拌せずに電気メッキ時に発生するガスで自然に起こったことのみとしたが、強制撹拌して銅表面に処理液(亜鉛)を供給することにより、より早くめっき厚が大きくなる。このため、銅管11の製造に際して電気亜鉛めっきに要する時間が短くてよく、生産性の向上を図ることができる。   From this result, it is considered that the zinc coating 12 having a thickness of 1 μm or more and 10 μm or less can be obtained on the outer peripheral surface of the straight pipe if the plating time is 5 minutes or more and 40 minutes under the above plating conditions. In this experiment, it was assumed that the treatment liquid naturally occurred with the gas generated during electroplating without forced stirring, but it became faster by supplying the treatment liquid (zinc) to the copper surface with forced stirring. Plating thickness increases. For this reason, when manufacturing the copper pipe 11, the time which electrogalvanization requires may be short, and the improvement of productivity can be aimed at.

図4に示したようなヘアピン加工部15を有する銅管11を製造するには、図5の流れ図に示したように、まず材料銅管11aに曲げ加工n12を行ってヘアピン加工部15を形成したのち、アルカリ脱脂、水洗などの前処理n12をして電気亜鉛めっき処理n13を行って亜鉛皮膜12を形成し、このあと水洗、活性化処理等の後処理n14、クロメート処理n15、水洗(および/あるいは湯洗)等の後処理n16を順にしてから乾燥n17を行う。   To manufacture the copper tube 11 having the hairpin processing portion 15 as shown in FIG. 4, as shown in the flowchart of FIG. 5, the material copper tube 11a is first bent n12 to form the hairpin processing portion 15. After that, pretreatment n12 such as alkaline degreasing and rinsing is performed, and electrozinc plating treatment n13 is performed to form a zinc film 12, followed by post-treatment n14 such as rinsing and activation treatment, chromate treatment n15, rinsing (and After the post-treatment n16 is performed in order, drying n17 is performed.

ヘアピン加工部15を有する銅管11について、そのヘアピン加工部15のめっき時間とめっき厚の関係を調べた。
実験条件はつぎのとおりである。
材料:外径7.94mm、肉厚0.31mmで、ヘアピン加工部の内径が14mm、ヘアピン加工部から管端までの長さが14.5mmの銅管
電気亜鉛めっき条件:電流密度3A/dm、めっき時間5分間、20分間、40分間。ヘアピン加工部15が横に向く姿勢でハンガに吊り、めっき液に浸漬した。
About the copper tube 11 which has the hairpin process part 15, the relationship between the plating time of the hairpin process part 15 and plating thickness was investigated.
The experimental conditions are as follows.
Material: Copper tube with an outer diameter of 7.94 mm, a wall thickness of 0.31 mm, an inner diameter of the hairpin processed portion of 14 mm, and a length from the hairpin processed portion to the tube end of 14.5 mm Electrogalvanizing conditions: Current density 3 A / dm 2. Plating time 5 minutes, 20 minutes, 40 minutes. The hairpin processed part 15 was hung on a hanger in a posture facing sideways and immersed in a plating solution.

この場合も前述の実験と同じく、電気亜鉛めっき後にクロメート処理したものとしていないものを製造し、断面観察をしてめっき厚を測定した。めっき厚の測定に際して、特徴的な形状の部分の全体の平均値を求めた。平均値の求め方を、図6説明図を参照して説明する。図6はヘアピン加工部15を有する銅管の正面図(図6(a))と側面図(図6(b))である。図6(a)に示したように、U字状に曲がる半円弧状の部分のマンドレル側の湾曲始点を0度部位として、そこから、45度、90度、135度、180度の部位を特定し、180度部位を「A」、135度部位を「B」、90度部位を「C」、45度部位を「D」、0度部位を「E」とした。また、図6(b)に示したように、銅管11の円形または略円形断面の外周面位置におけるU字状湾曲の湾曲内周側で最も内側に位置する点(円形または略円形断面の中心を通り、銅管の長手方向に沿った線上の湾曲内周側の点)を「内」、湾曲外周側で最も外側に位置する点(円形または略円形断面の中心を通り、銅管の長手方向に沿った線上の湾曲外周側の点)を「外」、これら「内」と「外」を結ぶ線と直角に交わる線上の左右の2点を「左」「右」とした。   In this case as well, as described above, a non-chromate treated product after electrogalvanizing was manufactured, and the cross-sectional observation was performed to measure the plating thickness. When measuring the plating thickness, an average value of the entire characteristic shape was obtained. A method for obtaining the average value will be described with reference to FIG. FIG. 6 is a front view (FIG. 6A) and a side view (FIG. 6B) of a copper tube having a hairpin processed portion 15. As shown in FIG. 6 (a), the mandrel-side curve starting point of the semicircular arc-shaped part that bends in a U-shape is defined as a 0 degree region, from which regions of 45 degrees, 90 degrees, 135 degrees, and 180 degrees are defined. The 180 degree region was identified as “A”, the 135 degree region as “B”, the 90 degree region as “C”, the 45 degree region as “D”, and the 0 degree region as “E”. Further, as shown in FIG. 6B, a point (circular or substantially circular cross-section) located on the innermost side on the curved inner peripheral side of the U-shaped curve at the outer peripheral surface position of the circular or substantially circular cross-section of the copper tube 11. The innermost point on the curved inner circumference on the line along the longitudinal direction of the copper tube passes through the center, and the outermost point on the outer circumferential side of the copper tube passes through the center of the circular or substantially circular cross section. The point on the curved outer peripheral side on the line along the longitudinal direction) was defined as “outside”, and the two left and right points on the line perpendicular to the line connecting “inside” and “outside” were defined as “left” and “right”.

そして、図6に示す「A」「B」「C」「D」「E」における、管周方向の「外」「右」「内」「左」の各部のめっき厚を測定し、「外」「右」「内」「左」の各部での平均値を算出してさらに、全体の平均値を求めた。この結果、図7のような結果が得られた。   Then, the plating thicknesses of “outside”, “right”, “inside”, and “left” in the pipe circumferential direction in “A”, “B”, “C”, “D”, and “E” shown in FIG. The average value in each part of “right” “inside” and “left” was calculated, and the average value of the whole was obtained. As a result, a result as shown in FIG. 7 was obtained.

図7は、よこ軸に「外」「右」「内」「左」の各部を示し、たて軸に亜鉛めっき皮膜の厚さを示した棒グラフで、めっき時間を「5分間」「20分間」「40分間」として、クロメート処理したものとしないものの2種類について調べた結果である。図7(a)はクロメート処理「有」で、めっき時間「5分間」、図7(b)はクロメート処理「有」で、めっき時間「20分間」、図7(c)はクロメート処理「有」で、めっき時間「40分間」である。図7(d)はクロメート処理「無」で、めっき時間「5分間」、図7(e)はクロメート処理「無」で、めっき時間「20分間」、図7(f)はクロメート処理「無」で、めっき時間「40分間」である。各グラフには、「外」「右」「内」「左」の各部のめっき厚を「A」(180度部位)〜「E」(0度部位)で測定し、例えば、「外」に対して「A」〜「E」部の5点から求めた平均値を「外」の平均値とし、同様に「右」「内」「左」のそれぞれに対して「A」〜「E」部の5点から求めた平均値を「右」「内」「左」の平均値として棒グラフで示している。また、「外」「右」「内」「左」の4つの平均値から求めた各処理条件でのヘアピン部の全平均値を図7(a)〜図7(f)の中に記入している。図7(a)は0.6μm、図7(b)は5.8μm、図7(c)は11.8μm、図7(d)は1.0μm、図7(e)は6.3μm、図7(f)は11.3μmである。   FIG. 7 is a bar graph showing the outer part, the right part, the inner part, and the left part on the horizontal axis and the thickness of the galvanized film on the vertical axis. The plating time is “5 minutes” and “20 minutes”. "40 minutes" is the result of examining two types of chromate treated and not. Fig. 7 (a) shows chromate treatment "Yes", plating time "5 minutes", Fig. 7 (b) shows chromate treatment "Yes", plating time "20 minutes", Fig. 7 (c) shows chromate treatment "Yes". The plating time is “40 minutes”. FIG. 7 (d) shows the chromate treatment “no”, plating time “5 minutes”, FIG. 7 (e) shows the chromate treatment “no”, plating time “20 minutes”, and FIG. 7 (f) shows the chromate treatment “no”. The plating time is “40 minutes”. In each graph, the plating thickness of each part of “outside”, “right”, “inside”, and “left” is measured from “A” (180 degree part) to “E” (0 degree part). On the other hand, the average value obtained from the five points “A” to “E” is the average value of “outside”, and similarly “A” to “E” for “right”, “inside”, and “left” respectively. The average value obtained from the five points of the part is shown as a bar graph as the average value of “right”, “inside”, and “left”. In addition, the total average value of the hairpin portion under each processing condition obtained from the four average values of “outside”, “right”, “inside”, and “left” is entered in FIGS. 7 (a) to 7 (f). ing. 7 (a) is 0.6 μm, FIG. 7 (b) is 5.8 μm, FIG. 7 (c) is 11.8 μm, FIG. 7 (d) is 1.0 μm, FIG. 7 (e) is 6.3 μm, FIG. 7F shows 11.3 μm.

これらのグラフからわかるように、40分間のめっき時間を取ればクロメート処理したものでもしないものでも10μm(0.01mm)以上の厚さの亜鉛皮膜が得られることがわかる。めっき時間が5分間では、クロメート処理したものでは亜鉛皮膜が1μm(0.001mm)に満たなかったが、それよりも少しめっき時間を長くするか、あるいは強制撹拌すれば平均1μm(0.001mm)以上の亜鉛皮膜が得られることが予想できる。また、めっき時間を20分間、40分間とすると、「内」のめっき厚は他の部位よりも薄くなるようにみえるが、40分間のめっき時間ではその「内」部位のめっき厚も平均10μmに達することもわかる。   As can be seen from these graphs, a zinc film having a thickness of 10 μm (0.01 mm) or more can be obtained with or without the chromate treatment if a plating time of 40 minutes is taken. When the plating time was 5 minutes, the zinc coating was less than 1 μm (0.001 mm) with the chromate treatment, but if the plating time was made slightly longer or forced stirring, the average was 1 μm (0.001 mm) It can be expected that the above zinc coating is obtained. Also, when the plating time is 20 minutes and 40 minutes, the plating thickness of “inner” seems to be thinner than other parts, but the plating thickness of the “inner” part is also 10 μm on average in the plating time of 40 minutes. You can see that

この結果から、前述のようなめっき条件においては、ヘアピン加工部ではめっき時間を5分間より長く40分間までとすれば、外周面に1μm以上10μm以下の亜鉛皮膜12が得られると考えられる。特に、めっき時間を20分間とれば、すべての部位において3μm〜7μmの範囲に収まる亜鉛皮膜12が確実に得られると考えられる。   From this result, it is considered that the zinc coating 12 having a thickness of 1 μm or more and 10 μm or less can be obtained on the outer peripheral surface when the plating time is longer than 5 minutes and up to 40 minutes in the hairpin processed part under the above plating conditions. In particular, if the plating time is 20 minutes, it is considered that the zinc coating 12 that fits in the range of 3 μm to 7 μm can be reliably obtained at all sites.

このため、ヘアピン加工部15を有する場合でも、銅管11の製造に際して電気亜鉛めっきに要する時間が短くてよく、生産性の向上を図ることができる。しかも、電気亜鉛めっき処理の前にあらかじめヘアピン加工部15が形成されているので、形成した亜鉛皮膜12に曲げ加工によって負荷をかける必要がないので、亜鉛皮膜12が損傷するような不都合を回避できる。   For this reason, even when it has the hairpin process part 15, the time which electrogalvanization requires in the manufacture of the copper pipe 11 may be short, and improvement of productivity can be aimed at. In addition, since the hairpin processing portion 15 is formed in advance before the electrogalvanization treatment, it is not necessary to apply a load to the formed zinc coating 12 by bending, so that it is possible to avoid the disadvantage that the zinc coating 12 is damaged. .

つぎのような銅管を製造して、蟻の巣状腐食の発生を観察した。   The following copper tubes were manufactured, and the occurrence of ant nest corrosion was observed.

銅管11は、図1に示したように、外周面のみの全体に亜鉛皮膜12を備えたものである。具体的には、素材である銅管(材料銅管11a)として、りん脱酸銅(JIS H3300 C1220T OL材)の管材を用いた。銅管11aは、外径7.94mm、肉厚0.31mm、長さ100mmである。外表面の全体には前述のような亜鉛皮膜12が形成されている。   As shown in FIG. 1, the copper tube 11 is provided with a zinc coating 12 only on the entire outer peripheral surface. Specifically, a phosphorus-deoxidized copper (JIS H3300 C1220T OL material) tube was used as the material copper tube (material copper tube 11a). The copper tube 11a has an outer diameter of 7.94 mm, a wall thickness of 0.31 mm, and a length of 100 mm. The zinc coating 12 as described above is formed on the entire outer surface.

亜鉛皮膜12は電気亜鉛めっきで形成され、亜鉛皮膜12は、めっき処理時間の違いで厚みに違いを持たせてある。めっき処理時間は、5分間、20分間、40分間である。めっき時間の違いによる亜鉛皮膜12の厚さの違いについては図3を参照のこと。   The zinc coating 12 is formed by electrogalvanization, and the zinc coating 12 has a difference in thickness due to a difference in plating treatment time. The plating treatment time is 5 minutes, 20 minutes, and 40 minutes. See FIG. 3 for the difference in thickness of the zinc coating 12 due to the difference in plating time.

比較のため、亜鉛皮膜12のみの銅管のほかに、クロメート処理をして亜鉛皮膜の表面にクロメート皮膜13を形成した銅管と、亜鉛皮膜12を有しないりん脱酸銅そのままの銅管(PDC)と、無酸素銅そのままの銅管(OFC)を用意した。これらの銅管のサイズは、PDCおよび銅管11は外径7.94mm、肉厚0.31mmであり、OFCは外径9.0mm、肉厚0.26mmで、長さはいずれも100mmである。   For comparison, in addition to a copper tube having only the zinc coating 12, a copper tube having a chromate treatment to form a chromate coating 13 on the surface of the zinc coating and a copper tube having no zinc coating 12 and having a phosphorous deoxidized copper as it is ( PDC) and a copper tube (OFC) of oxygen-free copper as it is. The sizes of these copper pipes are as follows: PDC and copper pipe 11 have an outer diameter of 7.94 mm and a wall thickness of 0.31 mm, OFC has an outer diameter of 9.0 mm and a wall thickness of 0.26 mm, and the length is 100 mm. is there.

これらの試験体に対して次のような実験を行い、蟻の巣状腐食の発生状況を調べた。   The following experiments were conducted on these specimens to examine the occurrence of ant nest corrosion.

内容量1L密閉容器の中に、腐食媒として濃度100ppmの蟻酸水溶液100mLを入れ、試験体を試験管に入れて試験体が蟻酸水溶液と直接接触しない状態で立てかけて、容器内の雰囲気を酸素に置換したのち、常温の室内に4週間(28日間)放置した。実験開始後、容器内の雰囲気を酸素に置換するために、1週間ごとに酸素ガスを1L/min.の流量で5分間流入させた。   Put 100 mL of formic acid aqueous solution with a concentration of 100 ppm as a corrosive medium in a 1 L internal container, put the test specimen in a test tube and stand it in a state where it is not in direct contact with the formic acid aqueous solution, and change the atmosphere in the container to oxygen After the replacement, it was left in a room temperature room for 4 weeks (28 days). In order to replace the atmosphere in the container with oxygen after the start of the experiment, oxygen gas was changed to 1 L / min. At a flow rate of 5 minutes.

最大腐食深さの測定は、外観観察で腐食が発生していると思われる数箇所を、断面観察し、外周面における最大腐食深さ部を探索することで求めた。なお、腐食深さは銅管断面の外表面からの深さを測定して求めた。また、断面写真を合わせて撮影した。   The maximum corrosion depth was measured by observing a cross section of several places where corrosion was considered to occur in appearance observation and searching for the maximum corrosion depth portion on the outer peripheral surface. The corrosion depth was determined by measuring the depth from the outer surface of the copper tube cross section. The cross-sectional photographs were taken together.

実験後、つまり腐食媒に接触させる前と後の外観を図8の写真に示す。この写真から、めっき時間を長くして亜鉛皮膜12を厚くした方が白粉の発生が少ない、クロメート処理した方が白粉の発生が少ないということがわかる。   The appearance after the experiment, that is, before and after contact with the corrosive medium is shown in the photograph of FIG. From this photograph, it can be seen that the longer the plating time and the thicker the zinc film 12, the smaller the generation of white powder, and the lower the generation of white powder the chromate treatment.

試験結果は表1に示すとおりである。表1は、すべての試験体を縦に並べて、その右よこにサンプル名と最大腐食深さ(mm)を並べたものである。亜鉛皮膜12を有する銅管については、サンプルを2個ずつ評価し、比較のためにりん脱酸銅(PDC)および無酸素銅(OFC)についても、サンプルを2個ずつ評価した。「腐食なし」は腐食が見当たらなかったもので、それ以外には最大腐食深さを記入し、その部分の断面写真を撮影している。断面写真は図9に示す。写真は、上側が銅管の外周面側で、腐食が認められたサンプルのみを示している。   The test results are as shown in Table 1. Table 1 shows all the test specimens arranged vertically, with the sample name and the maximum corrosion depth (mm) arranged on the right side. For the copper tube having the zinc coating 12, two samples were evaluated. For comparison, two samples were also evaluated for phosphorus deoxidized copper (PDC) and oxygen-free copper (OFC). “No corrosion” means that no corrosion was found. Otherwise, the maximum corrosion depth was entered, and a cross-sectional photograph of that part was taken. A cross-sectional photograph is shown in FIG. In the photograph, only the sample in which the upper side is the outer peripheral surface side of the copper tube and corrosion is recognized is shown.

*腐食深さは、銅管断面の外表面からの深さを測定

表1に見られるように、亜鉛皮膜12を有する試験体の場合、めっき時間が20分間と40分間のものは、クロメート皮膜13があるものもないものも、外周面での腐食の発生は認められなかった。一方、りん脱酸銅管(PDC)と無酸素銅管(OFC)では、蟻の巣状腐食の発生があった。ただし、無酸素銅管(OFC)のほうが、りん脱酸銅管(PDC)よりも総じて腐食深さは浅かった。亜鉛皮膜12を有する試験体の場合、めっき時間が5分間のものでは、蟻の巣状腐食が確認できたものとできなかったものがあり、蟻の巣状腐食が確認できた部分では、亜鉛皮膜が犠牲防食により消失していることが分かった。
* Corrosion depth is measured from the outer surface of the copper tube cross section.

As can be seen in Table 1, in the case of the test body having the zinc coating 12, the occurrence of corrosion on the outer peripheral surface was recognized, with the plating time being 20 minutes and 40 minutes, without the chromate coating 13. I couldn't. On the other hand, in the phosphorus-deoxidized copper pipe (PDC) and the oxygen-free copper pipe (OFC), ant nest corrosion occurred. However, the corrosion depth of the oxygen-free copper tube (OFC) was generally shallower than that of the phosphorus-deoxidized copper tube (PDC). In the case of the specimen having the zinc coating 12, when the plating time is 5 minutes, there is a case where ant nest corrosion can be confirmed and a case where ant nest corrosion is confirmed, It was found that the film disappeared due to sacrificial protection.

この結果から、今回の腐食試験条件では、めっき時間が5分間の、亜鉛皮膜12が1μmに満たないものは、十分な防食効果が得られない可能性があり、持続性が他に比べて劣っていると考えられる。しかし、亜鉛皮膜12の厚さが1μm以上であれば、特に3μmを超える厚さにできる20分間のめっき時間で亜鉛皮膜を形成した場合には、十分な防食効果が得られるとともに、耐久性も十分なものとすることができると考えられる。   From this result, under the current corrosion test conditions, if the plating time is 5 minutes and the zinc coating 12 is less than 1 μm, there is a possibility that sufficient anticorrosion effect may not be obtained, and the sustainability is inferior compared to others. It is thought that. However, if the thickness of the zinc film 12 is 1 μm or more, particularly when the zinc film is formed with a plating time of 20 minutes which can be a thickness exceeding 3 μm, a sufficient anticorrosive effect can be obtained and durability can be improved. It can be considered sufficient.

11…銅管
11a…素材銅管
12…亜鉛皮膜
13…クロメート皮膜
15…ヘアピン加工部
DESCRIPTION OF SYMBOLS 11 ... Copper pipe 11a ... Material copper pipe 12 ... Zinc film 13 ... Chromate film 15 ... Hairpin processing part

Claims (6)

外周面または内周面の少なくとも一方に亜鉛皮膜を有する銅管であって、
前記亜鉛皮膜の厚さが10μm以下であるとともに、1μm以上である
銅管。
A copper tube having a zinc coating on at least one of the outer peripheral surface or the inner peripheral surface,
The copper pipe whose thickness of the said zinc membrane is 10 micrometers or less and is 1 micrometers or more.
前記亜鉛皮膜を外周面のみに有する
請求項1に記載の銅管。
The copper pipe according to claim 1 which has said zinc coat only on an outer peripheral surface.
外周面または内周面の少なくとも一方に亜鉛皮膜を有する銅管の製造方法であって、
材料銅管に対して電気亜鉛めっき処理をして亜鉛皮膜を形成し、
前記電気亜鉛めっき処理を前記亜鉛皮膜の厚さが10μm以下であるとともに、1μm以上となるように行う
銅管の製造方法。
A method for producing a copper tube having a zinc coating on at least one of an outer peripheral surface or an inner peripheral surface,
Electrolytic galvanizing treatment for copper pipe material to form a zinc film,
A method of manufacturing a copper tube, wherein the electrogalvanizing treatment is performed so that the thickness of the zinc coating is 10 μm or less and 1 μm or more.
前記電気亜鉛めっき処理後に、クロメート処理をして亜鉛皮膜の表面にクロメート皮膜を形成する
請求項3に記載の銅管の製造方法。
The method for producing a copper tube according to claim 3, wherein after the electrogalvanizing treatment, chromate treatment is performed to form a chromate coating on the surface of the zinc coating.
前記クロメート皮膜が3価クロメート皮膜である
請求項4に記載の銅管の製造方法。
The method for producing a copper tube according to claim 4, wherein the chromate film is a trivalent chromate film.
前記材料銅管に曲げ加工を行ってヘアピン加工部を形成したのちに、
前記電気亜鉛めっき処理を行う
請求項3から請求項5のうちいずれか一項に記載の銅管の製造方法。
After forming the hairpin processing part by bending the material copper tube,
The manufacturing method of the copper pipe as described in any one of Claims 3-5 which performs the said electrogalvanization process.
JP2015243805A 2015-12-15 2015-12-15 Copper pipe Pending JP2017110246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015243805A JP2017110246A (en) 2015-12-15 2015-12-15 Copper pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015243805A JP2017110246A (en) 2015-12-15 2015-12-15 Copper pipe

Publications (1)

Publication Number Publication Date
JP2017110246A true JP2017110246A (en) 2017-06-22

Family

ID=59080899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015243805A Pending JP2017110246A (en) 2015-12-15 2015-12-15 Copper pipe

Country Status (1)

Country Link
JP (1) JP2017110246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386824A (en) * 2022-06-27 2022-11-25 金龙精密铜管集团股份有限公司 Copper pipe corrosion prevention method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103195A (en) * 1983-11-09 1985-06-07 Mitsui Mining & Smelting Co Ltd Surface treatment of zinc, zinc alloy and copper, copper alloy
JPS6149905A (en) * 1984-05-30 1986-03-12 フラマト−ム エ コムパニ− Method and device for preventing corrosion of tube steam generator
JPH11256358A (en) * 1998-03-09 1999-09-21 Sanyo Electric Co Ltd Corrosion resistance copper pipe for heat exchanger
JPH11325793A (en) * 1998-05-15 1999-11-26 Furukawa Electric Co Ltd:The Member for heat exchanger
JPH11325792A (en) * 1998-05-13 1999-11-26 Furukawa Electric Co Ltd:The Heat exchanger
JP2000002396A (en) * 1998-06-18 2000-01-07 Furukawa Electric Co Ltd:The Resin-covered copper tube
JP2009041092A (en) * 2007-08-10 2009-02-26 Daiwa Fine Chemicals Co Ltd (Laboratory) Chemical treatment liquid for galvanizing or galvannealing film, and method for forming corrosion protection coating using the same
WO2012137680A1 (en) * 2011-04-01 2012-10-11 ディップソール株式会社 Finishing agent for trivalent chromium chemical conversion coating film, and method for finishing black trivalent chromium chemical conversion coating film
WO2014148127A1 (en) * 2013-03-19 2014-09-25 株式会社Uacj Highly corrosion-resistant copper pipe

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103195A (en) * 1983-11-09 1985-06-07 Mitsui Mining & Smelting Co Ltd Surface treatment of zinc, zinc alloy and copper, copper alloy
JPS6149905A (en) * 1984-05-30 1986-03-12 フラマト−ム エ コムパニ− Method and device for preventing corrosion of tube steam generator
JPH11256358A (en) * 1998-03-09 1999-09-21 Sanyo Electric Co Ltd Corrosion resistance copper pipe for heat exchanger
JPH11325792A (en) * 1998-05-13 1999-11-26 Furukawa Electric Co Ltd:The Heat exchanger
JPH11325793A (en) * 1998-05-15 1999-11-26 Furukawa Electric Co Ltd:The Member for heat exchanger
JP2000002396A (en) * 1998-06-18 2000-01-07 Furukawa Electric Co Ltd:The Resin-covered copper tube
JP2009041092A (en) * 2007-08-10 2009-02-26 Daiwa Fine Chemicals Co Ltd (Laboratory) Chemical treatment liquid for galvanizing or galvannealing film, and method for forming corrosion protection coating using the same
WO2012137680A1 (en) * 2011-04-01 2012-10-11 ディップソール株式会社 Finishing agent for trivalent chromium chemical conversion coating film, and method for finishing black trivalent chromium chemical conversion coating film
WO2014148127A1 (en) * 2013-03-19 2014-09-25 株式会社Uacj Highly corrosion-resistant copper pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386824A (en) * 2022-06-27 2022-11-25 金龙精密铜管集团股份有限公司 Copper pipe corrosion prevention method

Similar Documents

Publication Publication Date Title
JP2016166397A (en) Tin plated copper alloy terminal material, manufacturing method therefor and wire terminal part structure
JP2017110246A (en) Copper pipe
JP5464876B2 (en) Sn-coated copper or copper alloy and method for producing the same
KR101626701B1 (en) Galvanized steel tube, and method for manufacturing galvanized steel tube
JPH0436498A (en) Surface treatment of steel wire
JP5476651B2 (en) Hot-dip galvanized steel pipe and method for producing hot-dip galvanized material
JP2009185346A (en) Highly corrosion resistant plated steel
US3808057A (en) Method of applying protective coatings to metal articles
JPS621856A (en) Corrosion resistant copper-base member and its manufacture
US10260660B2 (en) Multi-walled pipe and manufacture thereof
JP4393349B2 (en) Cold-rolled steel sheet with excellent phosphatability and post-coating salt hot water resistance
JP6119931B2 (en) Steel plate for container and method for producing steel plate for container
JP5879020B2 (en) Hot-dip galvanized steel pipe
JP5994960B1 (en) Steel plate for container and method for producing steel plate for container
JP6066030B2 (en) Steel plate for container and method for producing steel plate for container
RU2651801C1 (en) Method of a thin heat-resistant electric conductor manufacturing
JPWO2016088750A1 (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
Oluwole et al. Investigating corrosion charateristics of Electroplated medium carbon steel in sodium carbonate environment for decorative objects applications
JP2007023337A (en) Steel having excellent corrosion resistance and corrosion fatigue resistance, and its surface treatment method
JP3331589B2 (en) Manufacturing method of copper tube coated with inner plating
JP3341242B2 (en) Corrosion resistant copper tube and its manufacturing method
JPH05123084A (en) Fishing hook
JPH0445282A (en) Internally tinned copper pipe for feeding water and hot water and production thereof
JP6565308B2 (en) Steel plate for container and method for producing steel plate for container
KR101106010B1 (en) Method for manufacturing ferritic stainless steel having a corrosion-resisting layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190104