JPH11323531A - Transparent electrically conductive film excellent in workability - Google Patents

Transparent electrically conductive film excellent in workability

Info

Publication number
JPH11323531A
JPH11323531A JP13335098A JP13335098A JPH11323531A JP H11323531 A JPH11323531 A JP H11323531A JP 13335098 A JP13335098 A JP 13335098A JP 13335098 A JP13335098 A JP 13335098A JP H11323531 A JPH11323531 A JP H11323531A
Authority
JP
Japan
Prior art keywords
film
conductive film
transparent conductive
amorphous
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13335098A
Other languages
Japanese (ja)
Other versions
JP3780100B2 (en
Inventor
Masao Mizuno
雅夫 水野
Takashi Miyamoto
隆志 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13335098A priority Critical patent/JP3780100B2/en
Priority to KR1019990016919A priority patent/KR100323297B1/en
Publication of JPH11323531A publication Critical patent/JPH11323531A/en
Application granted granted Critical
Publication of JP3780100B2 publication Critical patent/JP3780100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a transparent electrode low having electric resistivity and high visible ray transmissivity, easy to be etched and excellent in workability by allowing it to have a compsn. essentially consisting of the oxide of In, furthermore contg. a specified amt. of Ge and contg. a specified amt. of Sn according to necessary and composing its structure of amorphous one. SOLUTION: In a transparent electrically conductive film essentially consisting of the oxide of In, by atom, 2 to 12% Ge is incorporated to form the structure of the film into the amorphous one, and, if required, <=5% Sn is moreover incorporated to improve its workability. The amorphous structure of the film can be obtd., at the time of sputtering an In2 O3 target contg. a prescribed amt. of Ge in an inert gas atmosphere contg. gaseous oxygen and forming a film on a substrate, by controlling film forming conditions such as the film forming temp. the oxygen partial pressure, the film forming rate or the like. In this way, the transparent electrically conductive film having >=80% visible ray transmissivity and <=0.01 Ω . cm electric resistivity is formed and is made capable of corresponding to high precision suitable for a transparent displaying electrode such as a transistor type liq. crystal display.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加工性に優れた透
明導電膜に関し、特には、薄膜トランジスター型液晶デ
ィスプレイの表示電極用透明電極として好適な加工性に
優れた透明導電膜に関する技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film excellent in processability, and more particularly to a technical field relating to a transparent conductive film excellent in processability suitable as a transparent electrode for a display electrode of a thin film transistor type liquid crystal display. Belong.

【0002】[0002]

【従来の技術】低電気抵抗で、高い可視光透過率を有す
る透明導電膜は、フラットディスプレイの透明電極、太
陽電池の透明電極、タッチパネル等の多くの分野で利用
されている。
2. Description of the Related Art A transparent conductive film having a low electric resistance and a high visible light transmittance is used in many fields such as a transparent electrode of a flat display, a transparent electrode of a solar cell, and a touch panel.

【0003】中でも、液晶ディスプレイ;Liquid Cryst
al Display(以降、LCDという)は軽量、薄型、高解
像度の表示装置としてパーソナルコンピュータやディス
プレイ機器に盛んに利用されており、LCD用の透明電
極として透明導電膜は不可欠である。
[0003] Among them, a liquid crystal display; Liquid Cryst
The al Display (hereinafter referred to as LCD) is widely used in personal computers and display devices as a lightweight, thin and high-resolution display device, and a transparent conductive film is indispensable as a transparent electrode for LCD.

【0004】かかるLCDの画面表示は、液晶分子の配
置を印加電圧によって制御し、バックライトから画面へ
の透過光の光量を調節することにより、行われている。
従って、液晶を駆動するために、低電気抵抗であり、ま
た、可視光領域で高い透過率を有する透明導電膜が利用
される。現在、LCDの透明電極として用いられる透明
導電膜は、Snを添加したIn2O3(;Indium Tin Oxide)(以
降ITOという)である。
[0004] Such LCD screen display is performed by controlling the arrangement of liquid crystal molecules by an applied voltage and adjusting the amount of light transmitted from the backlight to the screen.
Therefore, in order to drive the liquid crystal, a transparent conductive film having low electric resistance and high transmittance in a visible light region is used. At present, a transparent conductive film used as a transparent electrode of an LCD is In 2 O 3 (; Indium Tin Oxide) to which Sn is added (hereinafter referred to as ITO).

【0005】ところで、液晶表示のためには画素を形成
する必要があり、画素に応じて透明電極もエッチングに
よるパターン形成が必要である。例えば、単純マトリッ
クス型LCDでは、透明電極が配線と画素電極を兼ねて
おり、画素幅に応じたパターン形成が必要であり、アク
ティブマトリックス型LCDでは、画素ごとに独立した
画素電極が必要であり、画素の大きさに対応した微細な
パターニングが必要である。ここで、画素電極としての
透明導電膜には、10μm 以下の加工精度、将来的には1
μm 程度の加工ができることが要求される。透明導電膜
の加工方法は、硝酸、塩酸、塩酸と硝酸の混酸、フッ
酸、塩化第二鉄水溶液、或いは、これらの混合液に酸化
剤を加えたもの等のエッチング液によりウェットエッチ
ングする方法が主流である。
[0005] By the way, it is necessary to form a pixel for liquid crystal display, and it is necessary to form a pattern of a transparent electrode according to the pixel by etching. For example, in a simple matrix type LCD, a transparent electrode also serves as a wiring and a pixel electrode, and it is necessary to form a pattern according to a pixel width. In an active matrix type LCD, an independent pixel electrode is required for each pixel, Fine patterning corresponding to the size of the pixel is required. Here, a transparent conductive film as a pixel electrode has a processing accuracy of 10 μm or less,
It is required to be able to process about μm. As a method of processing the transparent conductive film, a method of wet etching with an etching solution such as nitric acid, hydrochloric acid, a mixed acid of hydrochloric acid and nitric acid, hydrofluoric acid, an aqueous solution of ferric chloride, or a mixture of these with an oxidizing agent is used. Mainstream.

【0006】しかしながら、通常のマグネトロンスパッ
タリング法で成膜されたITOはエッチングが容易でな
い。即ち、ITOは通常マグネトロンスパッタリング法
で成膜されるが、成膜されるITOの低抵抗化を実現す
るために、成膜の際に基板が200 ℃程度に加熱され、こ
の際にITOは結晶化する。この結晶化したITO膜は
エッチングされ難く、エッチングが容易でない。
[0006] However, it is not easy to etch ITO formed by a usual magnetron sputtering method. That is, ITO is usually formed by a magnetron sputtering method, but in order to reduce the resistance of the formed ITO, the substrate is heated to about 200 ° C. during the film formation, and at this time, the ITO is crystallized. Become This crystallized ITO film is hard to be etched and is not easily etched.

【0007】従って、エッチングパターン形成の効率を
上げるためには、エッチングの容易な透明導電膜、即
ち、加工性に優れた透明導電膜を開発することが重要で
ある。
Therefore, in order to increase the efficiency of forming an etching pattern, it is important to develop a transparent conductive film that is easily etched, that is, a transparent conductive film that is excellent in workability.

【0008】かかるエッチングの容易な透明導電膜とし
ては、ITOの非晶質膜(ここで非晶質膜とはX線回折
パターンで最大ピークの半値幅が5度以上の幅をもつも
のをいう)があげられる。そのため、より容易にエッチ
ングが可能な非晶質ITO膜から透明電極を形成する試
みがなされており、かかる非晶質ITO膜の成膜方法が
検討されている。例えば、特開平4-48516 号公報には、
ITOを低温で成膜することにより非晶質なITO膜を
形成する方法が開示され、又、特開平3-64450号公報に
は、スパッタリングガス中に水素等のガスを導入して成
膜する方法が開示されている。
As such a transparent conductive film which can be easily etched, an amorphous film of ITO (here, an amorphous film means a film having a maximum width at half maximum of 5 degrees or more in an X-ray diffraction pattern). ). Therefore, attempts have been made to form a transparent electrode from an amorphous ITO film that can be more easily etched, and a method of forming such an amorphous ITO film is being studied. For example, JP-A-4-48516 discloses that
A method of forming an amorphous ITO film by forming ITO at a low temperature is disclosed. Japanese Patent Application Laid-Open No. 3-64450 discloses that a film such as hydrogen is introduced into a sputtering gas to form a film. A method is disclosed.

【0009】しかしながら、上記の如き低温で成膜した
ITOは、電気抵抗率が上昇して高くなると共に、可視
光透過率も減少して低いなどの欠点がある。又、スパッ
タリングガス中に水素等のガスを導入して成膜する方法
においては、充分なスパッタリングレートが得られない
などの問題点がある。
[0009] However, ITO formed at a low temperature as described above has drawbacks such as an increase in electrical resistivity and an increase, and a decrease in visible light transmittance and a decrease. Further, the method of forming a film by introducing a gas such as hydrogen into the sputtering gas has a problem that a sufficient sputtering rate cannot be obtained.

【0010】今後、高精細化が進むLCDにおいてエッ
チングの容易な透明導電膜の開発が不可欠であり、その
ため、低電気抵抗率及び高可視光透過率を有すると共
に、エッチングが容易で加工性に優れた透明導電膜の開
発が望まれている。
In the future, development of a transparent conductive film that is easy to etch is indispensable for LCDs with higher definition, and therefore has low electric resistivity and high visible light transmittance, is easy to etch, and has excellent workability. Development of a transparent conductive film has been desired.

【0011】[0011]

【発明が解決しようとする課題】本発明はこの様な事情
に着目してなされたものであって、その目的は、低電気
抵抗率及び高可視光透過率を有すると共に、エッチング
が容易で加工性に優れ、LCDの高精細化に対応可能な
非晶質の透明導電膜を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object to have a low electric resistivity and a high visible light transmittance and to be easily etched and processed. It is an object of the present invention to provide an amorphous transparent conductive film which is excellent in performance and can cope with high definition of LCD.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る透明導電膜は、請求項1〜6記載の
透明導電膜としており、それは次のような構成としたも
のである。即ち、請求項1記載の透明導電膜は、Inの酸
化物を主成分とする透明導電膜であって、Geを含有して
膜の構造が非晶質であることを特徴とする加工性に優れ
た透明導電膜である(第1発明)。
In order to achieve the above-mentioned object, a transparent conductive film according to the present invention is a transparent conductive film according to claims 1 to 6, which has the following structure. is there. That is, the transparent conductive film according to claim 1 is a transparent conductive film containing an oxide of In as a main component, and has a workability characterized by containing Ge and having an amorphous structure. It is an excellent transparent conductive film (first invention).

【0013】請求項2記載の透明導電膜は、Snを含有す
る請求項1記載の加工性に優れた透明導電膜である(第
2発明)。請求項3記載の透明導電膜は、Snの含有量が
Sn量とIn量の合計に対して5原子%以下である請求項2
記載の加工性に優れた透明導電膜である(第3発明)。
請求項4記載の透明導電膜は、Geの含有量がGe量とIn量
の合計に対して2〜12原子%である請求項1、2又は3
記載の加工性に優れた透明導電膜である(第4発明)。
請求項5記載の透明導電膜は、可視光透過率が80%以
上、電気抵抗率が0.01Ω・cm以下である請求項1、2、
3又は4記載の加工性に優れた透明導電膜である(第5
発明)。請求項6記載の透明導電膜は、液晶ディスプレ
イの透明電極として用いられる請求項1、2、3、4又
は5記載の透明導電膜である(第6発明)。
The transparent conductive film according to claim 2 is the transparent conductive film excellent in processability according to claim 1 containing Sn (second invention). The transparent conductive film according to claim 3 has a Sn content of
3. The composition according to claim 2, wherein the content is 5 atomic% or less with respect to the total of Sn content and In content.
A transparent conductive film having excellent processability as described (third invention).
In the transparent conductive film according to the fourth aspect, the content of Ge is 2 to 12 atomic% with respect to the total of the Ge amount and the In amount.
A transparent conductive film having excellent processability as described (fourth invention).
The transparent conductive film according to claim 5 has a visible light transmittance of 80% or more and an electric resistivity of 0.01 Ω · cm or less.
It is a transparent conductive film excellent in processability described in 3 or 4 (fifth embodiment).
invention). The transparent conductive film according to claim 6 is the transparent conductive film according to claim 1, 2, 3, 4, or 5 used as a transparent electrode of a liquid crystal display (sixth invention).

【0014】[0014]

【発明の実施の形態】本発明に係る透明導電膜は、例え
ばスパッタリング法により次のようにして成膜すること
ができる。即ち、スパッタリング装置内に基板を配置
し、一方、スパッタリングターゲットとして例えば In2
O3ターゲット上にGeのチップを設置した複合ターゲット
を配置し、酸素ガスを含む不活性ガス雰囲気中で、前記
基板を加熱した状態にしてから、この基板と前記複合タ
ーゲットとの間に電界を印加することにより、基板上に
Geを含有するIn2O3 よりなる透明導電膜を形成(成膜)
することができる。このとき、膜中のGe含有量、成膜温
度(基板の加熱温度)、不活性ガス雰囲気中の酸素分
圧、成膜速度等の成膜条件によって成膜される透明導電
膜の構造が非晶質となる。そうすると、Inの酸化物を主
成分とする透明導電膜であって、Geを含有して膜の構造
が非晶質である透明導電膜、即ち、本発明に係る透明導
電膜を得ることができる。尚、上記複合ターゲットでの
In2O3ターゲットとGeチップの表面積比率を変えること
により、Ge含有量を変化させることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The transparent conductive film according to the present invention can be formed, for example, by a sputtering method as follows. That is, a substrate is placed in a sputtering apparatus, while a sputtering target such as In 2
A composite target having a Ge chip placed thereon is placed on an O 3 target, and the substrate is heated in an inert gas atmosphere containing oxygen gas, and then an electric field is applied between the substrate and the composite target. By applying
Formation (film formation) of a transparent conductive film made of In 2 O 3 containing Ge
can do. At this time, the structure of the transparent conductive film to be formed depends on the film formation conditions such as the Ge content in the film, the film formation temperature (heating temperature of the substrate), the oxygen partial pressure in an inert gas atmosphere, and the film formation rate. It becomes crystalline. Then, a transparent conductive film mainly containing an oxide of In and containing Ge and having an amorphous film structure, that is, a transparent conductive film according to the present invention can be obtained. . In addition, in the above-mentioned composite target
The Ge content can be changed by changing the surface area ratio between the In 2 O 3 target and the Ge chip.

【0015】本発明者等はスパッタリング法により種々
の組成の透明導電膜を形成し、その組成、構造、及び、
透明導電膜としての特性を調べた。その結果、Inの酸化
物を主成分とする透明導電膜であって、Geを含有するも
の、或いは、Ge及びSnを含有するものは、非晶質膜とな
り、そのためにエッチングが容易で加工性に優れている
ことを見出し、又、0.01Ωcm以下の低電気抵抗率を有す
ると共に80%以上の高可視光透過率を有し、LCDの透
明電極として好適であることを見出し、本発明を完成す
るに至った。
The present inventors have formed transparent conductive films of various compositions by a sputtering method, and the composition, structure, and
The characteristics as a transparent conductive film were examined. As a result, a transparent conductive film containing an oxide of In as a main component and containing Ge or containing Ge and Sn becomes an amorphous film, so that etching is easy and workability is improved. The present invention has a low electrical resistivity of 0.01 Ωcm or less and a high visible light transmittance of 80% or more, and is suitable as a transparent electrode of LCD. I came to.

【0016】この詳細を以下説明する。The details will be described below.

【0017】従来、透明導電膜として用いられたIT
O、即ち、SnをドープしたIn2O3 の導電機構は次の通り
である。即ち、In2O3 中の酸素欠陥とSnが複合欠陥を形
成し、キャリア電子を放出する。そのため、ITOのキ
ャリア密度を上げるためには適当な量の酸素欠陥が必要
である。しかし、酸素欠陥が増加するとキャリア移動度
が低下する。従って、電気抵抗率を最小にするためには
適量の酸素欠陥を膜中に残してやる必要がある。
Conventionally, IT used as a transparent conductive film
The conduction mechanism of O, that is, Sn-doped In 2 O 3 is as follows. That is, oxygen deficiency and Sn in In 2 O 3 form a composite defect and emit carrier electrons. Therefore, in order to increase the carrier density of ITO, an appropriate amount of oxygen vacancy is required. However, when the oxygen vacancy increases, the carrier mobility decreases. Therefore, it is necessary to leave an appropriate amount of oxygen vacancies in the film in order to minimize the electric resistivity.

【0018】又、InとSnは原子番号が隣同士の原子であ
り、原子半径はそれぞれ1.44Å、1.41Åと極めて近い値
である。そのため、InとSnが置換されても、結晶のひず
みは小さい。従って、スパッタリング法で成膜した膜は
結晶質になりやすい性質を有している。
Further, In and Sn are atoms whose atomic numbers are adjacent to each other, and their atomic radii are extremely close to 1.44 ° and 1.41 °, respectively. Therefore, even if In and Sn are substituted, the strain of the crystal is small. Therefore, a film formed by a sputtering method tends to be crystalline.

【0019】上記の如き性質を有するITOに対して、
非晶質膜、低電気抵抗膜、あるいは高透過率膜を成膜す
るには、次のような成膜方法が適当であり、かかる成膜
方法を採用する必要があった。即ち、非晶質膜を得るた
めには低温で成膜する必要がある。低電気抵抗の膜を得
るためには高温で、かつ、適当な酸素分圧下、例えば0.
0005〜0.002mTorr程度で成膜する必要がある。又、高透
過率膜を得るためには高温で、かつ、高酸素分圧下で成
膜する必要がある。
For ITO having the above properties,
In order to form an amorphous film, a low electric resistance film, or a high transmittance film, the following film forming method is appropriate, and it was necessary to adopt such a film forming method. That is, it is necessary to form a film at a low temperature in order to obtain an amorphous film. In order to obtain a film having a low electric resistance, it is necessary to use a high temperature and an appropriate oxygen partial pressure, e.g., 0.
It is necessary to form a film at about 0005 to 0.002 mTorr. Further, in order to obtain a high transmittance film, it is necessary to form the film at a high temperature under a high oxygen partial pressure.

【0020】ITO膜の膜質と成膜方法には以上のよう
な関係が存在するため、低電気抵抗で、且つ高透過率を
有する非晶質膜を成膜するのは、困難であり、不可能で
あった。例えば、非晶質にするためには低温成膜する必
要があるが、低温成膜すると電気抵抗が高くなると共
に、透過率が減少する。又、透過率も高くするために高
酸素分圧下での成膜を行うと、さらに電気抵抗率が上昇
する。このように、ITOによって低電気抵抗で、且つ
高透過率の非晶質透明導電膜を得ることは困難であり、
不可能であった。
Since the above-mentioned relationship exists between the film quality of the ITO film and the film forming method, it is difficult to form an amorphous film having a low electric resistance and a high transmittance. It was possible. For example, it is necessary to form a film at a low temperature in order to make the film amorphous, but when the film is formed at a low temperature, the electric resistance increases and the transmittance decreases. Further, when the film is formed under a high oxygen partial pressure in order to increase the transmittance, the electric resistivity further increases. Thus, it is difficult to obtain an amorphous transparent conductive film having a low electric resistance and a high transmittance by ITO,
It was impossible.

【0021】そこで、本発明者等はSnとは異なる元素の
添加によるIn2O3 膜の非晶質化について研究した。その
結果、ある一定の成膜条件下では、Geの添加がIn2O3
の非晶質化に有効であり、しかも膜の電気抵抗率及び透
過率を損なわないことを見出した。
Therefore, the present inventors have studied the amorphousization of the In 2 O 3 film by adding an element different from Sn. As a result, it has been found that, under certain film formation conditions, the addition of Ge is effective for making the In 2 O 3 film amorphous, and does not impair the electrical resistivity and transmittance of the film.

【0022】即ち、Geを添加したIn2O3 膜(Ge添加In2O
3 膜)のキャリア電子は、In2O3 膜の酸素欠陥とは関係
なく、Geが直接放出した電子が主体となっいること、そ
のため酸素欠陥の量を自由に変化させても膜の電気抵抗
率が大きく変化せず、酸素欠陥の量を減少させても電気
抵抗率は上昇しないこと、そのため電気抵抗率を損うこ
となく酸素欠陥の量を減少させることができ、それによ
り高透過率を得ることができることを見出した。
That is, a Ge-doped In 2 O 3 film (Ge-doped In 2 O 3 film)
The carrier electrons in the 3 film) are mainly electrons directly emitted by Ge, regardless of the oxygen vacancies in the In 2 O 3 film. Therefore, even if the amount of oxygen vacancies is freely changed, the electric resistance of the film is The resistivity does not change significantly, and the electrical resistivity does not increase even if the amount of oxygen vacancies is reduced.Therefore, the amount of oxygen vacancies can be reduced without losing the electrical resistivity, thereby increasing the high transmittance. I found that I can get it.

【0023】又、Geの原子半径は1.22Åと小さく、酸化
インジウム(:In2O3)との格子を組む場合に結晶構造に
ひずみを生じさせる。そのため、一定量のGeを添加し、
成膜条件を制御すれば容易に結晶構造が崩れて、非晶質
の膜となる。その結果、従来のSn添加In2O3 では容易に
成膜できなかった非晶質膜が、Ge添加In2O3 膜では成膜
可能となり、加熱基板上でも(即ち、低温成膜しなくて
も)非晶質膜が得られることがわかった。そして、かか
る非晶質膜はエッチングが容易で加工性に優れているこ
とが確認された。
The atomic radius of Ge is as small as 1.22 °, which causes distortion in the crystal structure when forming a lattice with indium oxide (: In 2 O 3 ). Therefore, a certain amount of Ge is added,
If the film formation conditions are controlled, the crystal structure is easily broken and an amorphous film is formed. As a result, an amorphous film that could not be easily formed with the conventional Sn-added In 2 O 3 can be formed with the Ge-added In 2 O 3 film, and can be formed on a heated substrate (that is, without forming a low-temperature film). It was found that an amorphous film could be obtained. Then, it was confirmed that such an amorphous film was easily etched and had excellent workability.

【0024】本発明は以上のような知見に基づき完成さ
れたものであり、本発明に係る透明導電膜は、Inの酸化
物を主成分とする透明導電膜であって、Geを含有して膜
の構造が非晶質であるようにしている。従って、本発明
に係る透明導電膜は、低電気抵抗率及び高可視光透過率
を有すると共に、エッチングが容易で加工性に優れてい
る。
The present invention has been completed based on the above findings, and the transparent conductive film according to the present invention is a transparent conductive film mainly containing an oxide of In and containing Ge. The structure of the film is made amorphous. Therefore, the transparent conductive film according to the present invention has a low electric resistivity and a high visible light transmittance, and is easily etched and excellent in workability.

【0025】ところで、Ge添加In2O3 膜自体やGe添加I
TO膜自体は、従来より知られている。例えば、特開昭
62-202415 号公報には400 ℃の成膜条件でGe添加ITO
膜を成膜する技術が開示されている。しかしながら、こ
の公報に記載のGe添加ITO膜は膜欠陥の解消等をはか
るものであり、本発明の場合の如きエッチング性(即ち
加工性)の向上を意図するものではなく、この公報には
膜を非晶質にすることやエッチング性の向上をはかるこ
とは何も記載がなく、又、Ge添加により膜を非晶質にし
得ることは全く記載されていない。
Incidentally, the Ge-added In 2 O 3 film itself and the Ge-added
The TO film itself is conventionally known. For example,
No. 62-202415 discloses that Ge-doped ITO is deposited at 400 ° C.
A technique for forming a film is disclosed. However, the Ge-added ITO film described in this publication aims at eliminating film defects and the like, and is not intended to improve the etching property (that is, processability) as in the case of the present invention. There is no description of making a film amorphous or improving the etching property, and there is no description that the film can be made amorphous by adding Ge.

【0026】上記公報に記載のGe添加ITO膜の如く単
にGeを添加するだけでは非晶質の膜とはし得ず、又、上
記の如き400 ℃の成膜条件では非晶質のGe添加ITO膜
は得られない。本発明の場合のように非晶質の膜にする
ことによってエッチングが容易になる。故に、上記公報
に記載のGe添加ITO膜はエッチングが容易であるとは
いえない。
An amorphous film cannot be obtained simply by adding Ge as in the case of the Ge-added ITO film described in the above publication. No ITO film can be obtained. Etching is facilitated by forming an amorphous film as in the present invention. Therefore, it cannot be said that the Ge-added ITO film described in the above publication is easy to etch.

【0027】このように単にGeを添加するだけでは非晶
質の膜とはし得ず、エッチングが容易な膜を得ることは
できない。非晶質膜を得るには、Geを添加するだけでな
く、適当な成膜条件で成膜する必要がある。
As described above, it is not possible to obtain an amorphous film simply by adding Ge, and it is not possible to obtain a film which can be easily etched. In order to obtain an amorphous film, it is necessary not only to add Ge but also to form a film under appropriate film forming conditions.

【0028】しかも、低電気抵抗率及び高可視光透過率
を有すると共に、エッチングが容易で加工性に優れた非
晶質膜を得るには、Geを添加するだけでなく、さらに適
当な成膜条件で成膜する必要があり、又、Geの添加量を
選定することが望ましい。この成膜条件及びGeの添加量
等の詳細を以下説明する。
In addition, in order to obtain an amorphous film having a low electric resistivity and a high visible light transmittance, which is easy to be etched and has excellent workability, it is necessary to not only add Ge but also form an appropriate film. It is necessary to form a film under the conditions, and it is desirable to select the amount of Ge to be added. Details of the film forming conditions and the amount of Ge added will be described below.

【0029】成膜温度を100 〜300 ℃にし、Geの添加量
をGe量とIn量の合計に対して2〜12原子%にし、酸素分
圧を0.02mTorr 以上にして成膜すると、電気抵抗率が0.
01Ωcm以下であり、可視光透過率が膜厚1000Å以上の膜
に対しても80%以上である非晶質の透明導電膜を成膜し
得る。このとき、成膜速度を45Å/s以下にすることに
より非晶質の透明導電膜を成膜し得る。即ち、成膜温度
を100 〜300 ℃、雰囲気ガス中の酸素分圧を0.02mTorr
以上にすると共に成膜速度を45Å/s以下にして、Ge量
とIn量の合計に対してのGeの添加量(以下、Ge添加量と
いう):2〜12原子%の膜を成膜すると、電気抵抗率が
0.01Ωcm以下であり、可視光透過率が膜厚1000Å以上の
膜に対しても80%以上である非晶質の透明導電膜を得る
ことができる。
When the film formation temperature is set to 100 to 300 ° C., the amount of Ge added is set to 2 to 12 atomic% with respect to the total amount of Ge and In, and the oxygen partial pressure is set to 0.02 mTorr or more, the electric resistance The rate is 0.
An amorphous transparent conductive film having a visible light transmittance of not less than 01 Ωcm and a transmittance of visible light of not less than 80% with respect to a film having a thickness of not less than 1000 mm can be formed. At this time, an amorphous transparent conductive film can be formed by setting the film forming speed to 45 ° / s or less. That is, the film formation temperature is 100 to 300 ° C., and the oxygen partial pressure in the atmosphere gas is 0.02 mTorr.
At the same time, the film formation rate is set to 45 ° / s or less, and the amount of Ge added to the total of Ge amount and In amount (hereinafter referred to as Ge added amount): , Electrical resistivity
An amorphous transparent conductive film having a visible light transmittance of not more than 0.01 Ωcm and a visible light transmittance of not less than 80% with respect to a film having a thickness of not less than 1000 mm can be obtained.

【0030】この際、成膜温度を100 ℃未満、Ge添加量
を2原子%未満にすると、Geによるキャリア電子放出に
よる電気抵抗率の低下が充分でなく、電気抵抗率が0.01
Ωcm超となる。成膜温度を100 ℃未満、Ge添加量を12原
子%超にすると、容易に非晶質Ge添加In2O3 膜が得られ
るものの、可視光透過率が80%未満になる。
At this time, if the film formation temperature is less than 100 ° C. and the amount of Ge added is less than 2 atomic%, the decrease in the electric resistivity due to the emission of carrier electrons by Ge is not sufficient, and the electric resistivity is less than 0.01%.
It exceeds Ωcm. When the film formation temperature is less than 100 ° C. and the Ge content is more than 12 atomic%, an amorphous Ge-added In 2 O 3 film can be easily obtained, but the visible light transmittance is less than 80%.

【0031】成膜温度を300 ℃超にすると、電気抵抗
率:0.01Ωcm以下の膜を得るのは容易となるものの、非
晶質化が難しく、可視光透過率:80%以上を満たすGe添
加量:12原子%以下の条件では非晶質化しない。又、Ge
添加量:12原子%超では可視光透過率が80%未満にな
る。
When the film formation temperature is higher than 300 ° C., it is easy to obtain a film having an electric resistivity of 0.01 Ωcm or less, but it is difficult to make the film amorphous and it is necessary to add Ge which satisfies a visible light transmittance of 80% or more. Under the condition of an amount of 12 atomic% or less, the film does not become amorphous. Also, Ge
If the addition amount exceeds 12 atomic%, the visible light transmittance becomes less than 80%.

【0032】酸素分圧を0.02mTorr 未満にすると、可視
光透過率が80%未満に減少する。即ち、可視光透過率:
80%以上の非晶質膜を成膜するには、酸素分圧を0.02mT
orr以上にする必要がある。
When the oxygen partial pressure is less than 0.02 mTorr, the visible light transmittance is reduced to less than 80%. That is, visible light transmittance:
To form an amorphous film of 80% or more, the oxygen partial pressure must be 0.02 mT
Must be greater than orr.

【0033】このように、Ge添加In2O3 膜においては、
従来のITO膜の成膜の際の酸素分圧(:0.002mTorr)
に比べて10倍以上高い高酸素分圧下(:0.02mTorr 以
上)で成膜しても電気抵抗率が減少しない性質を有する
ため、電気抵抗率の増大を懸念することなく、高酸素分
圧下で成膜することができ、そのため、かかる高酸素分
圧下で成膜することにより、電気抵抗率の増加を来すこ
となく低電気抵抗率を維持した状態で、高可視光透過率
の非晶質膜を成膜することが可能となる。即ち、成膜温
度:100 〜300 ℃、Ge添加量:2〜12原子%、酸素分
圧:0.02mTorr 以上の条件で、電気抵抗率を維持したま
ま、可視光透過率:80%以上の非晶質膜を成膜すること
が可能となる。
Thus, in the Ge-doped In 2 O 3 film,
Oxygen partial pressure during conventional ITO film formation (: 0.002 mTorr)
It has the property that the electrical resistivity does not decrease even if the film is formed under a high oxygen partial pressure (: 0.02 mTorr or more) which is 10 times or more higher than that of the high oxygen partial pressure. The film can be formed under such a high oxygen partial pressure. Therefore, the amorphous film having a high visible light transmittance can be obtained while maintaining a low electric resistivity without increasing the electric resistivity. A film can be formed. That is, under the conditions of a film forming temperature: 100 to 300 ° C., an added amount of Ge: 2 to 12 atomic%, an oxygen partial pressure: 0.02 mTorr or more, a visible light transmittance: 80% or more while maintaining the electrical resistivity. A crystalline film can be formed.

【0034】Ge添加量:2〜12原子%のGe添加In2O3
へSnを添加した場合、Snは電気抵抗率を上昇させる方向
に働き、Snの含有量がSn量とIn量の合計に対して4原子
%以上の場合に電気抵抗率が0.01Ωcm以上になる。Snの
含有量が5原子%以下では非晶質化には影響がない。
Ge addition amount: When Sn is added to a Ge-added In 2 O 3 film of 2 to 12 atomic%, Sn acts in a direction to increase the electric resistivity, and the Sn content is lower than the Sn amount and the In amount. When it is 4 atomic% or more with respect to the total, the electric resistivity becomes 0.01 Ωcm or more. If the Sn content is 5 atomic% or less, there is no effect on the amorphization.

【0035】本発明に係る非晶質の透明導電膜及び従来
の透明導電膜であるITO膜についてのエッチング特性
の調査結果の例を以下説明する。尚、透明導電膜のエッ
チング特性はエッチング液の種類によって著しく異なっ
ている。この調査では、最も単純なエッチング液の一つ
である60%硝酸をエッチング液として用い、エッチング
速度を測定した。
Examples of the results of investigation of the etching characteristics of the amorphous transparent conductive film according to the present invention and the ITO film which is a conventional transparent conductive film will be described below. Note that the etching characteristics of the transparent conductive film are significantly different depending on the type of the etchant. In this study, the etching rate was measured using 60% nitric acid, one of the simplest etchants, as an etchant.

【0036】本発明に係る非晶質の透明導電膜におい
て、成膜温度:200 ℃の条件で成膜されたものはエッチ
ング速度:200 〜750 Å/min であり、成膜温度:20℃
の条件で成膜されたものはエッチング速度:200 〜900
Å/min であった。これに対し、従来の透明導電膜であ
るITO膜では、成膜温度:200 ℃の条件で成膜された
ものは60%硝酸ではエッチングが不可能であり、成膜温
度:20℃の条件で成膜されたものはエッチング速度:80
Å/min であった。このように、本発明に係る非晶質の
透明導電膜は従来の透明導電膜であるITO膜よりも、
エッチング特性(加工性)が格段に優れている。
In the amorphous transparent conductive film according to the present invention, the film formed at a film forming temperature of 200 ° C. has an etching rate of 200 to 750 ° C./min and a film forming temperature of 20 ° C.
Etching rate: 200 to 900
Å / min. On the other hand, in the case of a conventional ITO film which is a transparent conductive film, a film formed at a film forming temperature of 200 ° C. cannot be etched with 60% nitric acid, and a film forming temperature of 20 ° C. The etching rate of the film is 80
Å / min. As described above, the amorphous transparent conductive film according to the present invention is more effective than the conventional transparent conductive film ITO film.
The etching characteristics (workability) are extremely excellent.

【0037】このように本発明に係る非晶質の透明導電
膜は優れた特性を有するので、LCDや太陽電池の透明
電極として好適に用いることができる。
As described above, since the amorphous transparent conductive film according to the present invention has excellent characteristics, it can be suitably used as a transparent electrode of an LCD or a solar cell.

【0038】[0038]

【実施例】〔実施例1(実験例1)〕スパッタリングタ
ーゲットとして、 In2O3ターゲット(純度 99.95%)上
にGeのチップ(純度 99.99%)或いはGeO2チップ(純度
99.9%)と、Snのチップ(純度99.99 %)或いはSnO2
ップ(純度99.9%)とを所定量設置した複合ターゲッ
ト、又は、GeとSnとを所定量含有するIn2O3 ターゲット
を用い、ガラス基板(コーニング社製#7059)上に透明
導電膜を形成(成膜)した。このときの成膜条件は下記
の通りである。
[Example 1 (Experimental example 1)] A Ge chip (purity 99.99%) or a GeO 2 chip (purity) on an In 2 O 3 target (purity 99.95%) as a sputtering target
99.9%) and a composite target in which Sn chips (purity 99.99%) or SnO 2 chips (purity 99.9%) are installed in a predetermined amount, or an In 2 O 3 target containing a predetermined amount of Ge and Sn, A transparent conductive film was formed (deposited) on a glass substrate (Corning # 7059). The film forming conditions at this time are as follows.

【0039】 基板温度(成膜温度)----200 ℃ 雰囲気ガス--------------2.0 %O2含有Ar 雰囲気ガス圧------------2mTorr 電力--------------------3.0 W/cm2 成膜速度----------------40Å/secSubstrate temperature (film formation temperature) ---- 200.degree. C. Atmospheric gas -------------- 2.0% O 2 containing Ar atmosphere gas pressure --------- --- 2mTorr Power -------------------- 3.0W / cm 2 Deposition rate ---------------- 40Å / Sec

【0040】上記成膜により得られた透明導電膜につい
てX線回折装置でX線回折パターンを測定した。その結
果であるX線回折図を図1に示す。膜の構造は非晶質で
あることがわかる。
The X-ray diffraction pattern of the transparent conductive film obtained by the above film formation was measured with an X-ray diffraction apparatus. FIG. 1 shows an X-ray diffraction pattern as a result. It can be seen that the structure of the film is amorphous.

【0041】また、4端子(探針)法により比抵抗(電
気抵抗率)を測定し、自記分光光度計で可視光透過率を
測定した。又、60%硝酸を用いてエッチングし、エッチ
ング速度を測定した。これらの結果を表1に示す。
The specific resistance (electrical resistivity) was measured by a four-terminal (probe) method, and the visible light transmittance was measured by a self-recording spectrophotometer. Etching was performed using 60% nitric acid, and the etching rate was measured. Table 1 shows the results.

【0042】〔実施例2(実験例2)〕スパッタリング
ターゲットとして、 In2O3ターゲット(純度 99.95%)
上にGeのチップ(純度 99.99%)或いはGeO2チップ(純
度99.9%)を所定量設置した複合ターゲット、又は、Ge
を所定量含有するIn2O3 ターゲットを用い、ガラス基板
上に透明導電膜を形成した。このときの成膜条件は下記
の通りである。
Example 2 (Experimental Example 2) In 2 O 3 target (purity 99.95%) as a sputtering target
A Ge target (purity 99.99%) or a GeO 2 chip (purity 99.9%) is mounted on the target in a predetermined amount.
A transparent conductive film was formed on a glass substrate using an In 2 O 3 target containing a predetermined amount of The film forming conditions at this time are as follows.

【0043】 基板温度(成膜温度)----200 ℃ 雰囲気ガス--------------2.0 %O2含有Ar 雰囲気ガス圧------------2mTorr 電力--------------------4.5 W/cm2 成膜速度----------------25Å/secSubstrate temperature (film formation temperature) ---- 200.degree. C. Atmospheric gas -------------- 2.0% O 2 containing Ar atmosphere gas pressure --------- --- 2mTorr Power -------------------- 4.5 W / cm 2 Deposition rate ---------------- 25Å / Sec

【0044】上記成膜により得られた透明導電膜につい
て実施例1の場合と同様の方法によりX線回折パターン
を測定した。その結果であるX線回折図を図1に示す。
膜の構造は非晶質であることがわかる。
The X-ray diffraction pattern of the transparent conductive film obtained by the above film formation was measured in the same manner as in Example 1. FIG. 1 shows an X-ray diffraction pattern as a result.
It can be seen that the structure of the film is amorphous.

【0045】また、実施例1の場合と同様の方法によ
り、比抵抗(電気抵抗率)、可視光透過率、及び、エッ
チング速度を測定した。これらの結果を表1に示す。
In the same manner as in Example 1, the specific resistance (electrical resistivity), the visible light transmittance, and the etching rate were measured. Table 1 shows the results.

【0046】〔実施例3(実験例3)〕実施例2の場合
と同様のスパッタリングターゲットを用い、同様のガラ
ス基板上に透明導電膜を形成した。このときの成膜条件
は下記の通りである。
Example 3 (Experimental Example 3) A transparent conductive film was formed on a similar glass substrate using the same sputtering target as in Example 2. The film forming conditions at this time are as follows.

【0047】 基板温度(成膜温度)----200 ℃ 雰囲気ガス--------------2.0 %O2含有Ar 雰囲気ガス圧------------4mTorr 電力--------------------4.5 W/cm2 成膜速度----------------25Å/secSubstrate temperature (deposition temperature) ---- 200.degree. C. Atmosphere gas -------------- 2.0% O 2 containing Ar atmosphere gas pressure --------- ---- 4mTorr power -------------------- 4.5 W / cm 2 Deposition rate ---------------- 25Å / Sec

【0048】上記成膜により得られた透明導電膜につい
て実施例1の場合と同様の方法によりX線回折パターン
を測定した。その結果であるX線回折図を図1に示す。
膜の構造は非晶質であることがわかる。
The X-ray diffraction pattern of the transparent conductive film obtained by the film formation was measured in the same manner as in Example 1. FIG. 1 shows an X-ray diffraction pattern as a result.
It can be seen that the structure of the film is amorphous.

【0049】また、実施例1の場合と同様の方法によ
り、比抵抗(電気抵抗率)、可視光透過率、及び、エッ
チング速度を測定した。これらの結果を表1に示す。
In the same manner as in Example 1, the specific resistance (electrical resistivity), visible light transmittance, and etching rate were measured. Table 1 shows the results.

【0050】〔実施例4(実験例4)〕実施例2の場合
と同様のスパッタリングターゲットを用い、同様のガラ
ス基板上に透明導電膜を形成した。このときの成膜条件
は下記の通りである。
Example 4 (Experimental Example 4) Using the same sputtering target as in Example 2, a transparent conductive film was formed on a similar glass substrate. The film forming conditions at this time are as follows.

【0051】 基板温度(成膜温度)----200 ℃ 雰囲気ガス--------------2.0 %O2含有Ar 雰囲気ガス圧------------2mTorr 電力--------------------4.5 W/cm2 成膜速度----------------40Å/secSubstrate temperature (film formation temperature) ---- 200.degree. C. Atmospheric gas -------------- 2.0% O 2 containing Ar gas pressure --------- --- 2mTorr power -------------------- 4.5 W / cm 2 Deposition rate ---------------- 40Å / Sec

【0052】上記成膜により得られた透明導電膜につい
て実施例1の場合と同様の方法によりX線回折パターン
を測定した。その結果であるX線回折図を図1に示す。
膜の構造は非晶質であることがわかる。
The X-ray diffraction pattern of the transparent conductive film obtained by the above film formation was measured in the same manner as in Example 1. FIG. 1 shows an X-ray diffraction pattern as a result.
It can be seen that the structure of the film is amorphous.

【0053】また、実施例1の場合と同様の方法によ
り、比抵抗(電気抵抗率)、可視光透過率、及び、エッ
チング速度を測定した。これらの結果を表1に示す。
Further, the specific resistance (electrical resistivity), the visible light transmittance, and the etching rate were measured in the same manner as in Example 1. Table 1 shows the results.

【0054】〔実施例5(実験例5)〕実施例2の場合
と同様のスパッタリングターゲットを用い、同様のガラ
ス基板上に透明導電膜を形成した。このときの成膜条件
は下記の通りである。
Example 5 (Experimental Example 5) A transparent conductive film was formed on a similar glass substrate using the same sputtering target as in Example 2. The film forming conditions at this time are as follows.

【0055】 基板温度(成膜温度)----300 ℃ 雰囲気ガス--------------4.0 %O2含有Ar 雰囲気ガス圧------------0.5mTorr 電力--------------------4.5 W/cm2 成膜速度----------------25Å/secSubstrate temperature (deposition temperature) ---- 300.degree. C. Atmospheric gas -------------- 4.0% O 2 containing Ar atmosphere gas pressure --------- --- 0.5mTorr Power -------------------- 4.5 W / cm 2 Deposition rate ---------------- 25Å / sec

【0056】上記成膜により得られた透明導電膜につい
て実施例1の場合と同様の方法によりX線回折パターン
を測定した。その結果であるX線回折図を図1に示す。
膜の構造は非晶質であることがわかる。
The X-ray diffraction pattern of the transparent conductive film obtained by the above film formation was measured in the same manner as in Example 1. FIG. 1 shows an X-ray diffraction pattern as a result.
It can be seen that the structure of the film is amorphous.

【0057】また、実施例1の場合と同様の方法によ
り、比抵抗(電気抵抗率)、可視光透過率、及び、エッ
チング速度を測定した。これらの結果を表1に示す。
In the same manner as in Example 1, the specific resistance (electrical resistivity), visible light transmittance, and etching rate were measured. Table 1 shows the results.

【0058】〔実施例6(実験例6)〕実施例2の場合
と同様のスパッタリングターゲットを用い、同様のガラ
ス基板上に透明導電膜を形成した。このときの成膜条件
は下記の通りである。
Example 6 (Experimental Example 6) A transparent conductive film was formed on a similar glass substrate using the same sputtering target as in Example 2. The film forming conditions at this time are as follows.

【0059】 基板温度(成膜温度)----100 ℃ 雰囲気ガス--------------2.0 %O2含有Ar 雰囲気ガス圧------------3mTorr 電力--------------------4.5 W/cm2 成膜速度----------------40Å/secSubstrate temperature (film formation temperature) ---- 100 ° C. Atmosphere gas -------------- 2.0% O 2 containing Ar atmosphere gas pressure --------- --- 3mTorr power -------------------- 4.5 W / cm 2 Deposition rate ---------------- 40Å / Sec

【0060】上記成膜により得られた透明導電膜につい
て実施例1の場合と同様の方法によりX線回折パターン
を測定した。その結果であるX線回折図を図1に示す。
膜の構造は非晶質であることがわかる。
The X-ray diffraction pattern of the transparent conductive film obtained by the film formation was measured in the same manner as in Example 1. FIG. 1 shows an X-ray diffraction pattern as a result.
It can be seen that the structure of the film is amorphous.

【0061】また、実施例1の場合と同様の方法によ
り、比抵抗(電気抵抗率)、可視光透過率、及び、エッ
チング速度を測定した。これらの結果を表1に示す。
In the same manner as in Example 1, the specific resistance (electrical resistivity), the visible light transmittance, and the etching rate were measured. Table 1 shows the results.

【0062】〔実施例7(実験例7)〕実施例2の場合
と同様のスパッタリングターゲットを用い、同様のガラ
ス基板上に透明導電膜を形成した。このときの成膜条件
は下記の通りである。
Example 7 (Experimental Example 7) A transparent conductive film was formed on the same glass substrate using the same sputtering target as in Example 2. The film forming conditions at this time are as follows.

【0063】 基板温度(成膜温度)----20℃ 雰囲気ガス--------------2.0 %O2含有Ar 雰囲気ガス圧------------3mTorr 電力--------------------2.0 W/cm2 成膜速度----------------40Å/secSubstrate temperature (deposition temperature) ---- 20 ° C. Atmospheric gas -------------- 2.0% O 2 containing Ar atmosphere gas pressure --------- --- 3mTorr power -------------------- 2.0 W / cm 2 Deposition rate ---------------- 40Å / Sec

【0064】上記成膜により得られた透明導電膜につい
て実施例1の場合と同様の方法によりX線回折パターン
を測定した。その結果であるX線回折図を図1に示す。
膜の構造は非晶質であることがわかる。
The X-ray diffraction pattern of the transparent conductive film obtained by the above film formation was measured in the same manner as in Example 1. FIG. 1 shows an X-ray diffraction pattern as a result.
It can be seen that the structure of the film is amorphous.

【0065】また、実施例1の場合と同様の方法によ
り、比抵抗(電気抵抗率)、可視光透過率、及び、エッ
チング速度を測定した。これらの結果を表1に示す。
The specific resistance (electrical resistivity), the visible light transmittance, and the etching rate were measured in the same manner as in Example 1. Table 1 shows the results.

【0066】〔比較例1(実験例8)〕スパッタリング
ターゲットとして、 In2O3ターゲット(純度 99.95%)
上にSnのチップ(純度 99.99%)或いはSnO2チップ(純
度99.9%)を所定量設置した複合ターゲット、又は、Sn
を所定量含有するIn2O3 ターゲットを用い、ガラス基板
上に透明導電膜を形成した。このときの成膜条件は下記
の通りである。
Comparative Example 1 (Experimental Example 8) In 2 O 3 target (purity: 99.95%) as a sputtering target
A composite target in which a predetermined amount of Sn chips (purity 99.99%) or SnO 2 chips (purity 99.9%) are set on top, or Sn
A transparent conductive film was formed on a glass substrate using an In 2 O 3 target containing a predetermined amount of The film forming conditions at this time are as follows.

【0067】 基板温度(成膜温度)----200 ℃ 雰囲気ガス--------------0.1 %O2含有Ar 雰囲気ガス圧------------1mTorr 電力--------------------2.0 W/cm2 成膜速度----------------12Å/secSubstrate temperature (film formation temperature) ---- 200.degree. C. Atmospheric gas -------------- Ar atmosphere gas pressure containing 0.1% O 2 --------- --- 1mTorr power -------------------- 2.0 W / cm 2 deposition rate ---------------- 12Å / Sec

【0068】上記成膜により得られた透明導電膜につい
て実施例1の場合と同様の方法によりX線回折パターン
を測定した。その結果であるX線回折図を図1に示す。
膜の構造は非晶質ではなく、結晶質であることがわか
る。
The X-ray diffraction pattern of the transparent conductive film obtained by the above film formation was measured in the same manner as in Example 1. FIG. 1 shows an X-ray diffraction pattern as a result.
It can be seen that the structure of the film is not amorphous but crystalline.

【0069】また、実施例1の場合と同様の方法によ
り、比抵抗(電気抵抗率)、可視光透過率、及び、エッ
チング速度を測定した。これらの結果を表1に示す。
The specific resistance (electrical resistivity), visible light transmittance, and etching rate were measured in the same manner as in Example 1. Table 1 shows the results.

【0070】〔比較例2(実験例9)〕比較例1の場合
と同様のスパッタリングターゲットを用い、同様のガラ
ス基板上に透明導電膜を形成した。このときの成膜条件
は下記の通りである。
Comparative Example 2 (Experimental Example 9) Using the same sputtering target as in Comparative Example 1, a transparent conductive film was formed on a similar glass substrate. The film forming conditions at this time are as follows.

【0071】 基板温度(成膜温度)----20℃ 雰囲気ガス--------------0.1 %O2含有Ar 雰囲気ガス圧------------1mTorr 電力--------------------2.0 W/cm2 成膜速度----------------12Å/secSubstrate temperature (deposition temperature) ---- 20 ° C. Atmospheric gas -------------- 0.1% O 2 containing Ar atmosphere gas pressure --------- --- 1mTorr power -------------------- 2.0 W / cm 2 deposition rate ---------------- 12Å / Sec

【0072】上記成膜により得られた透明導電膜につい
て実施例1の場合と同様の方法によりX線回折パターン
を測定した。その結果、膜の構造は非晶質ではなく、結
晶質であることが確認された。
The X-ray diffraction pattern of the transparent conductive film obtained by the film formation was measured in the same manner as in Example 1. As a result, it was confirmed that the structure of the film was not amorphous but crystalline.

【0073】また、実施例1の場合と同様の方法によ
り、比抵抗(電気抵抗率)、可視光透過率、及び、エッ
チング速度を測定した。これらの結果を表1に示す。
The specific resistance (electrical resistivity), visible light transmittance, and etching rate were measured in the same manner as in Example 1. Table 1 shows the results.

【0074】〔比較例3(実験例10)〕実施例2の場合
と同様のスパッタリングターゲットを用い、同様のガラ
ス基板上に透明導電膜を形成した。このときの成膜条件
は下記の通りである。
Comparative Example 3 (Experimental Example 10) A transparent conductive film was formed on the same glass substrate using the same sputtering target as in Example 2. The film forming conditions at this time are as follows.

【0075】 基板温度(成膜温度)----20℃ 雰囲気ガス--------------2.0 %O2含有Ar 雰囲気ガス圧------------1mTorr 電力--------------------2.0 W/cm2 成膜速度----------------25Å/secSubstrate temperature (film formation temperature) ---- 20 ° C. Atmospheric gas -------------- 2.0% O 2 containing Ar atmosphere gas pressure --------- --- 1mTorr power -------------------- 2.0 W / cm 2 deposition rate ---------------- 25Å / Sec

【0076】上記成膜により得られた透明導電膜につい
て実施例1の場合と同様の方法によりX線回折パターン
を測定した。その結果、膜の構造は非晶質ではなく、結
晶質であることが確認された。
The X-ray diffraction pattern of the transparent conductive film obtained by the above film formation was measured in the same manner as in Example 1. As a result, it was confirmed that the structure of the film was not amorphous but crystalline.

【0077】また、実施例1の場合と同様の方法によ
り、比抵抗(電気抵抗率)、可視光透過率、及び、エッ
チング速度を測定した。これらの結果を表1に示す。
Further, in the same manner as in Example 1, the specific resistance (electrical resistivity), the visible light transmittance, and the etching rate were measured. Table 1 shows the results.

【0078】〔比較例4(実験例11)〕実施例2の場合
と同様のスパッタリングターゲットを用い、同様のガラ
ス基板上に透明導電膜を形成した。このときの成膜条件
は下記の通りである。
Comparative Example 4 (Experimental Example 11) A transparent conductive film was formed on the same glass substrate using the same sputtering target as in Example 2. The film forming conditions at this time are as follows.

【0079】 基板温度(成膜温度)----20℃ 雰囲気ガス--------------2.0 %O2含有Ar 雰囲気ガス圧------------1mTorr 電力--------------------2.0 W/cm2 成膜速度----------------25Å/secSubstrate temperature (film formation temperature) ---- 20 ° C. Atmospheric gas -------------- 2.0% O 2 containing Ar atmosphere gas pressure --------- --- 1mTorr power -------------------- 2.0 W / cm 2 deposition rate ---------------- 25Å / Sec

【0080】上記成膜により得られた透明導電膜につい
て実施例1の場合と同様の方法によりX線回折パターン
を測定した。その結果、膜の構造は非晶質であることが
確認された。
The X-ray diffraction pattern of the transparent conductive film obtained by the above film formation was measured in the same manner as in Example 1. As a result, it was confirmed that the structure of the film was amorphous.

【0081】また、実施例1の場合と同様の方法によ
り、比抵抗(電気抵抗率)、可視光透過率、及び、エッ
チング速度を測定した。これらの結果を表1に示す。
In the same manner as in Example 1, the specific resistance (electrical resistivity), the visible light transmittance, and the etching rate were measured. Table 1 shows the results.

【0082】[0082]

【表1】 [Table 1]

【0083】[0083]

【発明の効果】本発明に係る透明導電膜は、以上の如き
構成を有し作用をなすものであり、低電気抵抗率及び高
可視光透過率を有すると共に、エッチングが容易で加工
性に優れた非晶質の透明導電膜であり、そのため、薄膜
トランジスター型液晶ディスプレイの表示電極用等の透
明電極として好適に用いることができ、特には今後の液
晶ディスプレイの高精細化、大型化、カラー化等の高機
能化及び品質向上を図ることができるという顕著な効果
を奏し得る。
The transparent conductive film according to the present invention has the above-mentioned structure and functions, has a low electric resistivity and a high visible light transmittance, is easily etched, and has excellent workability. It is an amorphous transparent conductive film that can be suitably used as a transparent electrode such as a display electrode of a thin film transistor type liquid crystal display. It is possible to obtain a remarkable effect that high functionality and quality can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例及び比較例に係る透明導電膜並びに基
板のガラスについてのX線回折図である。
FIG. 1 is an X-ray diffraction diagram of a transparent conductive film and glass of a substrate according to Examples and Comparative Examples.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Inの酸化物を主成分とする透明導電膜で
あって、Geを含有して膜の構造が非晶質であることを特
徴とする加工性に優れた透明導電膜。
1. A transparent conductive film having excellent workability, characterized by being a transparent conductive film containing an oxide of In as a main component and containing Ge and having an amorphous structure.
【請求項2】 Snを含有する請求項1記載の加工性に優
れた透明導電膜。
2. The transparent conductive film having excellent workability according to claim 1, which contains Sn.
【請求項3】 Snの含有量がSn量とIn量の合計に対して
5原子%以下である請求項2記載の加工性に優れた透明
導電膜。
3. The transparent conductive film excellent in processability according to claim 2, wherein the content of Sn is 5 atomic% or less with respect to the total of Sn content and In content.
【請求項4】 Geの含有量がGe量とIn量の合計に対して
2〜12原子%である請求項1、2又は3記載の加工性に
優れた透明導電膜。
4. The transparent conductive film excellent in processability according to claim 1, wherein the content of Ge is 2 to 12 atomic% with respect to the total of the amount of Ge and the amount of In.
【請求項5】 可視光透過率が80%以上、電気抵抗率が
0.01Ω・cm以下である請求項1、2、3又は4記載の加
工性に優れた透明導電膜。
5. The visible light transmittance is 80% or more, and the electric resistivity is
The transparent conductive film excellent in processability according to claim 1, 2, 3, or 4 having a resistivity of 0.01 Ω · cm or less.
【請求項6】 液晶ディスプレイの透明電極として用い
られる請求項1、2、3、4又は5記載の透明導電膜。
6. The transparent conductive film according to claim 1, which is used as a transparent electrode of a liquid crystal display.
JP13335098A 1998-05-15 1998-05-15 Transparent conductive film with excellent processability Expired - Fee Related JP3780100B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13335098A JP3780100B2 (en) 1998-05-15 1998-05-15 Transparent conductive film with excellent processability
KR1019990016919A KR100323297B1 (en) 1998-05-15 1999-05-12 Transparent conducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13335098A JP3780100B2 (en) 1998-05-15 1998-05-15 Transparent conductive film with excellent processability

Publications (2)

Publication Number Publication Date
JPH11323531A true JPH11323531A (en) 1999-11-26
JP3780100B2 JP3780100B2 (en) 2006-05-31

Family

ID=15102677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13335098A Expired - Fee Related JP3780100B2 (en) 1998-05-15 1998-05-15 Transparent conductive film with excellent processability

Country Status (1)

Country Link
JP (1) JP3780100B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307553A (en) * 2000-04-24 2001-11-02 Geomatec Co Ltd Transparent conductive film, its manufacturing method, and its application
US6911163B2 (en) 2002-03-27 2005-06-28 Sumitomo Metal Mining Co., Ltd. Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescene device
KR100744017B1 (en) * 2001-06-26 2007-07-30 미츠이 긴조쿠 고교 가부시키가이샤 Sputtering target for forming transparent conductive film of high electric resistance and method for producing transparent conductive film of high electric resistance
JP2010202930A (en) * 2009-03-03 2010-09-16 Nippon Mining & Metals Co Ltd Sintered target of oxide, method for producing the target, transparent electroconductive film, and method for producing transparent electroconductive film
US7825021B2 (en) * 2004-01-16 2010-11-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
EP2327673A1 (en) * 2008-09-25 2011-06-01 JX Nippon Mining & Metals Corporation Oxide sintered compact for producing transparent conductive film
US9028726B2 (en) 2008-09-25 2015-05-12 Jx Nippon Mining & Metals Corporation Oxide sintered compact for producing transparent conductive film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307553A (en) * 2000-04-24 2001-11-02 Geomatec Co Ltd Transparent conductive film, its manufacturing method, and its application
KR100744017B1 (en) * 2001-06-26 2007-07-30 미츠이 긴조쿠 고교 가부시키가이샤 Sputtering target for forming transparent conductive film of high electric resistance and method for producing transparent conductive film of high electric resistance
US6911163B2 (en) 2002-03-27 2005-06-28 Sumitomo Metal Mining Co., Ltd. Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescene device
US7125503B2 (en) 2002-03-27 2006-10-24 Sumitomo Metal Mining Co., Ltd. Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device
US7276187B2 (en) 2002-03-27 2007-10-02 Sumitomo Metal Mining Co., Ltd. Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminiscence device
US7276186B2 (en) 2002-03-27 2007-10-02 Sumitomo Metal Mining Co., Ltd. Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device
US7825021B2 (en) * 2004-01-16 2010-11-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
EP2327673A1 (en) * 2008-09-25 2011-06-01 JX Nippon Mining & Metals Corporation Oxide sintered compact for producing transparent conductive film
US20110163277A1 (en) * 2008-09-25 2011-07-07 Masakatsu Ikisawa Oxide sintered compact for preparing transparent conductive film
EP2327673A4 (en) * 2008-09-25 2012-05-23 Jx Nippon Mining & Metals Corp Oxide sintered compact for producing transparent conductive film
US9028726B2 (en) 2008-09-25 2015-05-12 Jx Nippon Mining & Metals Corporation Oxide sintered compact for producing transparent conductive film
JP2010202930A (en) * 2009-03-03 2010-09-16 Nippon Mining & Metals Co Ltd Sintered target of oxide, method for producing the target, transparent electroconductive film, and method for producing transparent electroconductive film

Also Published As

Publication number Publication date
JP3780100B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JP6595084B2 (en) Semiconductor device
JP3961172B2 (en) Oxide transparent conductive film, oxide transparent conductive film forming target, substrate manufacturing method, electronic apparatus, and liquid crystal display device provided with previous oxide transparent conductive film
JP4170454B2 (en) Article having transparent conductive oxide thin film and method for producing the same
TWI631205B (en) Etching solution composition for silver layer and an display substrate using the same
KR20130092628A (en) Semiconductor thin film and method for manufacturing same, and thin film transistor
US9076875B2 (en) Thin film transistor substrate with pixel matrix
EP1953766A1 (en) Transparent conductive film, and substrate, electronic device and liquid crystal display using same
US20110102722A1 (en) Indium tin oxide sputtering target and transparent conductive film fabricated using the same
JP3366046B2 (en) Amorphous transparent conductive film
JPH07262829A (en) Transparent conductive film and its forming method
TW201716632A (en) Silver etching solution composition and display substrate using the same mainly comprising 30-60 wt% of phosphoric acid, 0.5-10 wt% of nitric acid, 33-50 wt% of acetic acid, and 0.01-10 wt% of azole-based compounds
JPH11323531A (en) Transparent electrically conductive film excellent in workability
JP4168689B2 (en) Thin film laminate
JP4700352B2 (en) TFT substrate and manufacturing method thereof
US20090104379A1 (en) Transparent electrode film and electronic device
JP2002184242A (en) Substrate with electrode and method of manufacturing the substrate
JPH0950711A (en) Transparent conductive film
JPH07223814A (en) Indium oxide film having enhanced resistance
JP2001318389A (en) Transparent electrode substrate, its manufacturing method and liquid crystal device
KR19990088213A (en) Transparent conducting film
JP4079457B2 (en) Method for increasing resistance of indium-tin oxide film
JPH06293957A (en) Indium oxide film enhanced in resistance
KR100859517B1 (en) Amorphous transparent conductive film and method for preparing the same
JPH11329085A (en) Low electrical resistant transparent conductive film
JPH06275130A (en) Transparent conductive film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees