JPH11323116A - Biodegradable molding material, biodegradable molded article, and molding method for the biodegradable molding material - Google Patents

Biodegradable molding material, biodegradable molded article, and molding method for the biodegradable molding material

Info

Publication number
JPH11323116A
JPH11323116A JP10128996A JP12899698A JPH11323116A JP H11323116 A JPH11323116 A JP H11323116A JP 10128996 A JP10128996 A JP 10128996A JP 12899698 A JP12899698 A JP 12899698A JP H11323116 A JPH11323116 A JP H11323116A
Authority
JP
Japan
Prior art keywords
biodegradable
hydroxybutyric acid
molding material
weight
aliph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10128996A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsushita
浩幸 松下
Masahiro Harada
正広 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10128996A priority Critical patent/JPH11323116A/en
Publication of JPH11323116A publication Critical patent/JPH11323116A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a biodegradable molding material which has a good moldability and gives a molded article excellent in biodegradability and mechanical properties by compounding an aliph. polyester contg. at least a specified amt. of a resin contg. 3-hydroxybutyric acid units with glass fibers. SOLUTION: This molding material comprises 40-95 wt.% aliph. polyester and 5-60 wt.% glass fibers. The aliph. polyester contains at least 50 wt.% resin contg. 3-hydroxybutyric acid units. Pref., the resin contg. 3-hydroxybutyric acid has a wt. average mol.wt. of 100,000 or higher, and the rest of the aliph. polyester resin has a wt. average mol.wt. of 100,000-1,000,000. This aliph. polyester is a copolymer of a polyhydroxyalkanoate contg. 3-hydroxybutyric acid units, polylactic acid, a glycol, an aliph. carboxylic acid, etc. Glass fibers are added e.g. by coating with the aliph. polyester resin by melt extrusion followed by pelletizing or by mixing in an injection molding machine followed by molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス繊維を配合
した生分解性成形材料および成形品に関する。さらに詳
しくは、成形サイクル時間の短縮など優れた成形性、高
剛性、高い形状安定性などの優れた物理的性能、および
優れた生分解性を有するガラス繊維を配合した生分解性
樹脂成形材料、該生分解性成形材料から得られた生分解
性成形品および該生分解性成形材料の成形加工法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodegradable molding material containing glass fibers and a molded product. More specifically, a biodegradable resin molding material blended with glass fibers having excellent moldability such as shortening the molding cycle time, high rigidity, excellent physical performance such as high shape stability, and excellent biodegradability, The present invention relates to a biodegradable molded product obtained from the biodegradable molding material and a method for forming and processing the biodegradable molding material.

【0002】[0002]

【従来の技術】従来、数多くのプラスチックスが産業資
材、機械部品、自動車部品などの成形材料として利用さ
れてきている。同時に、環境保護の立場から、プラスチ
ックスの再利用が叫ばれるとともに、再利用が不可能な
利用分野において、微生物の働き、または加水分解等に
より分解する生分解性樹脂の利用が社会的に強く要請さ
れてきている。
2. Description of the Related Art Conventionally, many plastics have been used as molding materials for industrial materials, machine parts, automobile parts and the like. At the same time, from the standpoint of environmental protection, the recycling of plastics is called for, and the use of biodegradable resins, which degrade by the action of microorganisms or hydrolysis, is strongly used in applications where recycling is not possible. It has been requested.

【0003】脂肪族ポリエステルは生分解性を有するこ
とが広く知られており、微生物による発酵法や化学合成
法などによって製造することができる。発酵法で得られ
る脂肪族ポリエステルは、一般的にポリヒドロキシアル
カノエートであり、通常3−ヒドロキシ酪酸単位を含む
が、その分子組成やモル比率により用途に見合った性能
を引き出すことが広く検討されている。化学合成法で
は、ポリカプロラクトンやポリブチレンサクシネート、
ポリエチレンサクシネート、ポリエステルカーボネー
ト、ポリ乳酸などがよく知られており、それぞれの特徴
に応じた用途開発が広く検討されている。高剛性が必要
とされる用途−例えば、接合部材、硬質日用雑貨類、そ
の他の硬質医療用、工業用および農業用資材−には、3
−ヒドロキシ酪酸単位を多く含む脂肪族ポリエステルや
ポリ乳酸の利用が期待されている。しかしながら、ポリ
−3−ヒドロキシ酪酸のような3−ヒドロキシ酪酸単位
を多く含む脂肪族ポリエステルやポリ乳酸では、用途に
よっては剛性が不足し対応できないものがあり、加えて
3−ヒドロキシ酪酸単位を多く含む脂肪族ポリエステル
では引張強度、曲げ強度が低く、またポリ乳酸では溶融
状態からの固化に時間がかかるため長い成形サイクル時
間が必要とされるとともに、成形条件によっては60℃
以上での形状安定性に劣る。この様な理由により高剛性
が必要な分野への生分解性樹脂の利用は限定されている
のが現状である。
[0003] It is widely known that aliphatic polyesters have biodegradability, and can be produced by a fermentation method using a microorganism, a chemical synthesis method, or the like. Aliphatic polyesters obtained by fermentation are generally polyhydroxyalkanoates and usually contain 3-hydroxybutyric acid units, but their molecular compositions and molar ratios have been widely studied to derive performance suitable for the application. I have. In the chemical synthesis method, polycaprolactone, polybutylene succinate,
Polyethylene succinate, polyester carbonate, polylactic acid, and the like are well known, and application development according to their characteristics is widely studied. For applications where high rigidity is required-for example, joining members, rigid daily necessities, other rigid medical, industrial and agricultural materials-
-Use of aliphatic polyesters and polylactic acids containing many hydroxybutyric acid units is expected. However, some aliphatic polyesters and polylactic acids containing a large amount of 3-hydroxybutyric acid units, such as poly-3-hydroxybutyric acid, have insufficient rigidity depending on the intended use, and in addition, contain a large amount of 3-hydroxybutyric acid units. Aliphatic polyesters have low tensile strength and bending strength, and polylactic acid takes a long time to solidify from a molten state, so a long molding cycle time is required.
The shape stability described above is inferior. For these reasons, the use of biodegradable resins in fields requiring high rigidity is currently limited.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来技術に
見られる前記問題を解決し、成形性、機械的性能、生分
解性に優れる、生分解性成形材料および成形品を提供す
ることをその課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and provides a biodegradable molding material and a molded article having excellent moldability, mechanical performance and biodegradability. The subject.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意検討を重ねた結果、本発明を完成する
に至った。すなわち、脂肪族ポリエステルにガラス繊維
を配合することにより、高剛性の実現、成形性、形状安
定性改善などの効果を得、成形材料として充分使用に耐
えうる性能となることを見いだし、本発明を完成させ
た。即ち本発明は、(1)脂肪族ポリエステル40〜9
5重量%およびガラス繊維5〜60重量%とからなり、
かつ該脂肪族ポリエステルが3−ヒドロキシ酪酸単位を
含む樹脂を50重量%以上含む樹脂である生分解性成形
材料、(2)3−ヒドロキシ酪酸単位を含む樹脂の重量
平均分子量が100,000以上であり、また3−ヒド
ロキシ酪酸単位を含む樹脂以外の脂肪族ポリエステルの
重量平均分子量が10,000〜1,000,000で
ある(1)に記載の生分解性成形材料、(3)3−ヒド
ロキシ酪酸単位を含む樹脂がポリ−3−ヒドロキシ酪酸
である(1)または(2)記載の生分解性成形材料、
(4)(1)に記載の生分解性成形材料から得られた生
分解性成形品、および(5)脂肪族ポリエステル40〜
95重量%およびガラス繊維5〜60重量%とからな
り、かつ該脂肪族ポリエステルが3−ヒドロキシ酪酸単
位を含む樹脂を50重量%以上含む樹脂である生分解性
成形材料を金型温度20℃〜90℃で成形加工する生分
解性成形材料の成形加工法に関する。
Means for Solving the Problems The present inventors have made intensive studies to solve the above problems, and as a result, have completed the present invention. That is, by blending the glass fiber with the aliphatic polyester, high rigidity is achieved, the moldability, the effects of improving shape stability, etc. are obtained, and it is found that the performance can be sufficiently used as a molding material. Completed. That is, the present invention relates to (1) aliphatic polyesters 40 to 9
5% by weight and 5-60% by weight of glass fiber,
And a biodegradable molding material in which the aliphatic polyester is a resin containing 50% by weight or more of a resin containing a 3-hydroxybutyric acid unit, and (2) a resin containing a 3-hydroxybutyric acid unit has a weight average molecular weight of 100,000 or more. The biodegradable molding material according to (1), wherein the aliphatic polyester other than the resin containing 3-hydroxybutyric acid unit has a weight average molecular weight of 10,000 to 1,000,000, The biodegradable molding material according to (1) or (2), wherein the resin containing a butyric acid unit is poly-3-hydroxybutyric acid.
(4) a biodegradable molded product obtained from the biodegradable molding material according to (1), and (5) an aliphatic polyester 40 to
A biodegradable molding material comprising 95% by weight and glass fiber of 5 to 60% by weight, and wherein the aliphatic polyester is a resin containing 50% by weight or more of a resin containing a 3-hydroxybutyric acid unit. The present invention relates to a method for forming a biodegradable molding material at 90 ° C.

【0006】[0006]

【発明の実施形態】本発明で示される脂肪族ポリエステ
ルとは、微生物が産生する3−ヒドロキシ酪酸単位を含
むポリヒドロキシアルカノエート、ポリ乳酸、グリコー
ル類と脂肪族カルボン酸などからの重合体およびこれら
の共重合体である。3−ヒドロキシ酪酸単位を含む樹脂
にはポリ−3−ヒドロキシ酪酸、3−ヒドロキシ酪酸と
3−ヒドロキシ吉草酸との共重合体や3−ヒドロキシ酪
酸と4−ヒドロキシ吉草酸との共重合体等がある。ポリ
−3−ヒドロキシ酪酸は、例えばアルカリゲネス(Alca
ligenes )属、アゾトバクター(Azotobacter )属、メ
チロバクテリウム(Methylobacterium)属、ノカルジア
(Nocardia)属、シュードモナス(Pseudomonas )属等
の細菌を用いた公知の発酵法により製造することができ
る。発酵法により得られたポリ−3−ヒドロキシ酪酸を
細菌菌体から分離精製する方法に関しては、例えば、米
国特許第3036959号公報、同第4101533号
公報、同第3275610号公報、ヨーロッパ特許第1
5123号公報に、ピリジン、塩化メチレン、1,2−
プロピレンカーボネート、クロロホルム、1,2−ジク
ロロエタンなどの溶剤を用いた精製法が記載されてお
り、また特開平7−177894号公報には細菌菌体を
高圧ホモジナイザーで破砕後、ポリヒドロキシアルカノ
エートを分離し、分離したポリヒドロキシアルカノエー
トを酵素系漂白剤で処理する方法が示されている。最近
では、発酵法によらずとも化学合成による3−ヒドロキ
シ酪酸単位を含むポリヒドロキシアルカノエートの製造
法が報告されている。
BEST MODE FOR CARRYING OUT THE INVENTION The aliphatic polyesters represented by the present invention include polyhydroxyalkanoates containing 3-hydroxybutyric acid units produced by microorganisms, polylactic acids, polymers from glycols and aliphatic carboxylic acids, and the like. Is a copolymer of Examples of the resin containing a 3-hydroxybutyric acid unit include poly-3-hydroxybutyric acid, a copolymer of 3-hydroxybutyric acid and 3-hydroxyvaleric acid, and a copolymer of 3-hydroxybutyric acid and 4-hydroxyvaleric acid. is there. Poly-3-hydroxybutyric acid is, for example, alkaligenes (Alca)
Ligenes), Azotobacter, Methylobacterium, Nocardia, Pseudomonas, and other known fermentation methods. Regarding a method for separating and purifying poly-3-hydroxybutyric acid obtained by a fermentation method from bacterial cells, for example, US Pat. Nos. 3,036,959, 4,015,533, 3,275,610, and European Patent 1
No. 5123, pyridine, methylene chloride, 1,2-
A purification method using a solvent such as propylene carbonate, chloroform, and 1,2-dichloroethane is described. Japanese Patent Application Laid-Open No. 177894/1995 crushes bacterial cells with a high-pressure homogenizer and separates polyhydroxyalkanoate. A method of treating the separated polyhydroxyalkanoate with an enzyme bleach is disclosed. Recently, a method for producing a polyhydroxyalkanoate containing a 3-hydroxybutyric acid unit by chemical synthesis without using a fermentation method has been reported.

【0007】また、ポリ乳酸は、化学合成法あるいは発
酵法により得られる乳酸を原料とし、例えばラクチドと
した後開環重合させる方法や、乳酸を直接重合させる方
法により製造することができる。グリコール類と脂肪族
カルボン酸などからの重合体は、例えば、コハク酸とブ
タンジオールなどから製造することができ、必要に応じ
てウレタン結合やカーボネート結合によって分子量を調
節することができる。本発明において、脂肪族ポリエス
テルに対するガラス繊維の添加方法には幾通りかの方法
がある。脂肪族ポリエステルを押出機を用いて溶融押出
しする際に、ガラス繊維ロービングをダイを通して通過
させ電線被膜と類似の方法によってガラス繊維ロービン
グの周囲を脂肪族ポリエステルで被膜した後冷却固化さ
せて所定の長さに切断することによりペレット状の成形
材料を製造することができる。また、押出機のホッパー
部にロービングカッターを設置し、ロービングを所定の
長さに切断しつつ所定の速度で押出機ホッパーへ滴下さ
せ、同時に所定の速度で脂肪族ポリエステルをホッパー
へ滴下させて両者の比率を所望の値に保ち、押出機内で
脂肪族ポリエステルを溶融移送すると同時にガラス繊維
を脂肪族ポリエステル内に均一に分散させてストランド
状に押出して冷却固化切断してペレット状成形材料にす
ることもできる。また、長さ2〜10mmのチョップト
・ストランド状のガラス繊維と脂肪族ポリエステルとを
予め所定の比率にブレンドし、これを押出機に滴下して
ペレット状の成形材料を成形することも可能である。以
上の他にガラス繊維チョップト・ストランドと脂肪族ポ
リエステルとをドライブレンドして成形材料とすること
もできる。
[0007] Polylactic acid can be produced by using lactic acid obtained by a chemical synthesis method or a fermentation method as a raw material, for example, lactide, followed by ring-opening polymerization, or by direct polymerization of lactic acid. The polymer from glycols and aliphatic carboxylic acids can be produced, for example, from succinic acid and butanediol, and the molecular weight can be adjusted by urethane bonds or carbonate bonds as needed. In the present invention, there are several methods for adding glass fibers to the aliphatic polyester. When the aliphatic polyester is melt-extruded using an extruder, a glass fiber roving is passed through a die, the periphery of the glass fiber roving is coated with an aliphatic polyester by a method similar to the electric wire coating, and then cooled and solidified to a predetermined length. By cutting into pieces, a pellet-shaped molding material can be produced. In addition, a roving cutter is installed in the hopper of the extruder, and the roving is cut into a predetermined length and dropped at a predetermined speed to the extruder hopper. Is maintained at a desired value, and at the same time, the aliphatic polyester is melt-transferred in the extruder, and at the same time, the glass fibers are uniformly dispersed in the aliphatic polyester, extruded into strands, cooled, solidified and cut into pellet-shaped molding materials. Can also. It is also possible to blend a chopped strand-like glass fiber having a length of 2 to 10 mm and an aliphatic polyester at a predetermined ratio in advance and drop the mixture into an extruder to form a pellet-shaped molding material. . In addition to the above, a chopped glass fiber strand and an aliphatic polyester may be dry blended to form a molding material.

【0008】さらにまた、本発明に含まれる成形品は、
前記の如き押出機を使用せずとも、射出成形機のような
成形機内において、脂肪族ポリエステルとガラス繊維と
を混合させそのまま成形品とすることもできる。例え
ば、供給口にロービングカッターを設置し、ガラス繊維
ロービングを所定の長さに切断しつつ所定供給口に供給
し、同時に所定量の脂肪族ポリエステルを射出成形機の
材料供給口に供給し成形機内において脂肪族ポリエステ
ルとガラス繊維とを混合し、そのまま成形品とする方法
である。また、脂肪族ポリエステルにガラス繊維を配合
するに際し、ガラス繊維含有量の高い配合済みペレット
と脂肪族ポリエステルペレットとを上記と同様の手段に
よって配合し、ガラス繊維含有量を調節することもでき
るし、ガラス繊維含有量の高いペレットと脂肪族ポリエ
ステルとを成形機に供給し、ガラス繊維の低い成形品を
得ることもできる。
Further, a molded article included in the present invention is:
Even without using an extruder as described above, an aliphatic polyester and glass fiber can be mixed into a molded product as it is in a molding machine such as an injection molding machine. For example, a roving cutter is installed at a supply port, and the glass fiber roving is cut into a predetermined length and supplied to a predetermined supply port, and at the same time, a predetermined amount of aliphatic polyester is supplied to a material supply port of an injection molding machine, and the inside of the molding machine is supplied. In this method, the aliphatic polyester and glass fiber are mixed to form a molded product as it is. Further, when blending the glass fiber with the aliphatic polyester, the blended pellets having a high glass fiber content and the aliphatic polyester pellets are blended by the same means as described above, and the glass fiber content can be adjusted, A pellet having a high glass fiber content and an aliphatic polyester can be supplied to a molding machine to obtain a molded product having a low glass fiber.

【0009】ガラス繊維の配合量は成形品の機械的性
質、熱的性質あるいは成形加工の観点から5〜60重量
%、好ましくは10〜50重量%である。ガラス繊維含
有量が5重量%より低いときはガラス繊維による剛性付
与、強度付与の効果が充分に発揮されず、性能が優れた
成形品を得ることができない。またガラス繊維が60重
量%を越えると、成形材料の円滑な製造が困難になり、
各工程における使用機械の磨耗が増し、成形品中のガラ
ス繊維の均一な分散が得難く、成形品の外観が悪くなる
などの欠点が目立ち好ましくない。本発明における脂肪
族ポリエステルは、3−ヒドロキシ酪酸単位を含む樹脂
を50重量%以上とする。なぜなら3−ヒドロキシ酪酸
単位を含む樹脂以外の樹脂に例えばポリカプロラクト
ン、ポリブチレンサクシネート、ポリエチレンサクシネ
ート、ポリエステルカーボネートなどの柔軟性に富んだ
樹脂を用い、それらを50重量%以上含む場合、剛性が
不足し満足な成形品を得られない恐れがある。また剛性
の高いポリ乳酸を50重量%以上使用した場合、成形サ
イクル時間が長くなるからである。
The amount of the glass fiber is from 5 to 60% by weight, preferably from 10 to 50% by weight, from the viewpoint of the mechanical properties, thermal properties and molding process of the molded article. When the glass fiber content is lower than 5% by weight, the effects of imparting rigidity and strength by the glass fibers are not sufficiently exhibited, and a molded article having excellent performance cannot be obtained. If the glass fiber content exceeds 60% by weight, smooth production of the molding material becomes difficult,
Defects such as increased wear of the machine used in each step, difficulty in uniformly dispersing the glass fibers in the molded article, and deterioration of the appearance of the molded article are conspicuous and undesirable. In the aliphatic polyester in the present invention, the content of the resin containing a 3-hydroxybutyric acid unit is 50% by weight or more. The reason is that when a resin other than the resin containing a 3-hydroxybutyric acid unit is a highly flexible resin such as polycaprolactone, polybutylene succinate, polyethylene succinate, or polyester carbonate, and the content thereof is 50% by weight or more, rigidity is reduced. Insufficient molding may not be obtained. In addition, when polylactic acid having high rigidity is used in an amount of 50% by weight or more, the molding cycle time becomes long.

【0010】3−ヒドロキシ酪酸単位を含む樹脂とその
他脂肪族ポリエステルとをブレンドする場合、ガラス繊
維を配合する前にブレンドペレットを作製しておいても
良いし、ガラス繊維を配合するのと同時でも良い。また
は、3−ヒドロキシ酪酸単位を含む樹脂にガラス繊維を
配合した後にその他の脂肪族ポリエステルをブレンドし
ても良い。使用する3−ヒドロキシ酪酸単位を含む樹脂
の重量平均分子量は、溶融粘度などの点から、10,0
00以上が好ましく、さらには50,000以上が特に
好ましい。なぜなら、3−ヒドロキシ酪酸単位を含む樹
脂の重量平均分子量が10,000以下であると溶融粘
度が低すぎてしまい、バリ、ひけなど外観不良を引き起
こす可能性があるためである。また、3−ヒドロキシ酪
酸単位を含む樹脂以外の脂肪族ポリエステルは重量平均
分子量で10,000から100,000が好ましく、
さらに好ましくは30,000から500,000が好
ましい。なぜなら、重量平均分子量が10,000以下
であると溶融粘度が低すぎ、100,000以上である
と溶融粘度が高すぎて押出、射出などの成形ができなく
なる恐れがあるためである。
When blending a resin containing a 3-hydroxybutyric acid unit with another aliphatic polyester, a blend pellet may be prepared before blending the glass fiber, or at the same time as blending the glass fiber. good. Alternatively, another aliphatic polyester may be blended after blending glass fibers with a resin containing a 3-hydroxybutyric acid unit. The weight average molecular weight of the resin containing a 3-hydroxybutyric acid unit to be used is 10.0 or less from the viewpoint of melt viscosity and the like.
It is preferably at least 00, more preferably at least 50,000. This is because if the weight average molecular weight of the resin containing the 3-hydroxybutyric acid unit is 10,000 or less, the melt viscosity is too low, and there is a possibility of causing poor appearance such as burrs and sink marks. Further, the aliphatic polyester other than the resin containing a 3-hydroxybutyric acid unit preferably has a weight average molecular weight of 10,000 to 100,000,
More preferably, it is 30,000 to 500,000. This is because if the weight average molecular weight is 10,000 or less, the melt viscosity is too low, and if it is 100,000 or more, the melt viscosity may be too high to make molding such as extrusion and injection impossible.

【0011】本発明による成形品を得る場合、金型温度
を20℃〜90℃とするのが好ましく、さらに好ましく
は、40℃〜80℃とするのが好ましい。なぜなら、脂
肪族ポリエステルの中で50%以上を占める3−ヒドロ
キシ酪酸単位を含む脂肪族ポリエステルは、60℃付近
が最も結晶化速度が速いため、成形サイクル時間が短縮
できるからである。本発明の範囲を逸脱せず、本発明の
目的を損なわない範囲において、脂肪族ポリエステル、
ガラス繊維以外の物質、例えば無機充填剤、着色剤、可
塑剤、結晶核剤、滑剤、紫外線吸収剤、帯電防止剤、難
燃化剤、酸化防止剤などの慣用の添加剤を目的に応じて
添加することができる。
When the molded article according to the present invention is to be obtained, the mold temperature is preferably from 20 ° C. to 90 ° C., more preferably from 40 ° C. to 80 ° C. This is because the molding cycle time of an aliphatic polyester containing a 3-hydroxybutyric acid unit occupying 50% or more of the aliphatic polyester has the highest crystallization rate at around 60 ° C. Without departing from the scope of the present invention, aliphatic polyesters, in a range that does not impair the object of the present invention,
Depending on the purpose, substances other than glass fibers, such as inorganic fillers, colorants, plasticizers, crystal nucleating agents, lubricants, ultraviolet absorbers, antistatic agents, flame retardants, antioxidants, etc. Can be added.

【0012】[0012]

【発明の効果】本発明により、成形性に優れるとともに
生分解性に優れ、高剛性が必要とされる成形品を与え、
各種部材に適応させることができる。
According to the present invention, a molded article which is excellent in moldability, excellent in biodegradability and requires high rigidity is provided.
It can be adapted to various members.

【0013】[0013]

〔重量平均分子量の測定〕(Measurement of weight average molecular weight)

方法:ゲル・パーミエーション・クロマトグラフィー
(GPC) 溶媒:クロロホルム 流速:1ml/min 〔引張性能〕 装置:オリエンテック社 テンシロン 測定:JIS K 7213準拠 〔曲げ性能〕 装置:オリエンテック社 テンシロン 測定:JIS K 7203準拠 〔衝撃試験〕 装置:上島製作所 インパクトテスター 測定:JIS K 7110準拠 〔熱変形温度測定〕 装置:東洋精機社 HDT TESTER 測定:JIS K 7207準拠
Method: Gel permeation chromatography (GPC) Solvent: chloroform Flow rate: 1 ml / min [Tensile performance] Apparatus: Orientec Tensilon measurement: JIS K 7213 [Bending performance] Apparatus: Orientec Tensilon measurement: JIS K 7203 compliant [Impact test] Equipment: Kamishima Seisakusho impact tester Measurement: JIS K 7110 compliant [Heat deformation temperature measurement] Equipment: Toyo Seiki HDT TESTER Measurement: JIS K 7207 compliant

【0014】実施例1〜2 工業技術院生命工学工業技術研究所に寄託してある細
菌、プロトモナス エクストルクエンス(Protomonas e
xtorquens )K(受託番号:FERM BP−354
8)を用い、メタノールを炭素源として好気的に連続培
養を行った。培養条件は培養温度32℃、培養pH6.
5、平均滞留時間40時間であり、窒素の供給速度が菌
体増殖の律速となるよう連続培養を行った。なお、最近
の文献によれば本菌はメチロバクテリウム(Methylobac
terium)属に属されている(I.J.Bousfield and P.N.Gr
een;Int.J.Syst.Bacteriol.,35,209(1985)、T.Urakami
etal.;Int.J.Syst.Bcteriol.,43,504-513(1993) )。連
続培養により得られた菌体を上記特開平7−17789
4号公報に記載のポリ−3−ヒドロキシ酪酸の分離精製
法に従い、高圧ホモゲナイザーで破砕後、遠心分離し、
分離したポリ−3−ヒドロキシ酪酸を先ずプロテアーゼ
で処理し次いで過酸化水素処理を行い高純度のポリ−3
−ヒドロキシ酪酸を得た。この精製したポリ−3−ヒド
ロキシ酪酸の重量平均分子量は800,000であっ
た。このポリ−3−ヒドロキシ酪酸に繊維長3mm、径
13μmのガラス繊維を総重量の30%および50%と
なるように加え、さらに結晶核剤として窒化ホウ素を
0.5%混合した後、スクリュー型2軸押出機を用いて
ペレット化を行った。その際のスクリュー温度は150
〜170℃で行った。ペレット化した時点での重量平均
分子量は400,000であった。こうして得られたペ
レットを型締め圧力100ton/cm2 の射出成形機
を用いて引張試験、曲げ試験、衝撃試験、HDT測定用
試験片の作製を行った。その際、スクリュー温度は17
0〜190℃、金型温度は60℃で行った。成形サイク
ル時間、各測定結果を表1に示した。
Examples 1-2 A bacterium, Protomonas e, deposited with the Institute of Biotechnology and Industrial Technology, National Institute of Advanced Industrial Science and Technology.
xtorquens) K (Accession number: FERM BP-354)
Using 8), continuous culture was performed aerobically using methanol as a carbon source. The culture conditions were a culture temperature of 32 ° C. and a culture pH of 6.
5. Continuous cultivation was performed so that the average residence time was 40 hours, and the nitrogen supply rate was the rate-determining rate of bacterial cell growth. According to recent literature, this bacterium is methylobacterium (Methylobac
terium) (IJBousfield and PNGr)
een; Int.J.Syst.Bacteriol., 35,209 (1985), T. Urakami
etal .; Int. J. Syst. Bcteriol., 43, 504-513 (1993)). The cells obtained by continuous culturing were subjected to the method described in JP-A-7-17789.
According to the method for separating and purifying poly-3-hydroxybutyric acid described in JP-A-4, after crushing with a high-pressure homogenizer, centrifugation was performed.
The separated poly-3-hydroxybutyric acid is first treated with a protease and then treated with hydrogen peroxide to obtain high-purity poly-3.
-Hydroxybutyric acid was obtained. The weight average molecular weight of this purified poly-3-hydroxybutyric acid was 800,000. A glass fiber having a fiber length of 3 mm and a diameter of 13 μm was added to this poly-3-hydroxybutyric acid so as to be 30% and 50% of the total weight, and further, 0.5% of boron nitride was mixed as a crystal nucleating agent. Pelletization was performed using a twin screw extruder. The screw temperature at that time is 150
Performed at 170170 ° C. The weight average molecular weight at the time of pelletization was 400,000. The pellets thus obtained were subjected to a tensile test, a bending test, an impact test, and a test piece for HDT measurement using an injection molding machine having a mold clamping pressure of 100 ton / cm 2 . At that time, the screw temperature was 17
The test was performed at 0 to 190 ° C and a mold temperature of 60 ° C. Table 1 shows the molding cycle time and each measurement result.

【0015】比較例1 実施例1〜2と同手法により菌体から精製したポリ−3
−ヒドロキシ酪酸に窒化ホウ素0.5重量%加え、スク
リュー型2軸押出機を用いてペレット化を行った。その
際のスクリュー温度は150〜170℃で行った。ペレ
ット化した時点での重量平均分子量は400,000で
あった。こうして得られたペレットを実施例1〜2と同
手法で引張試験、曲げ試験、衝撃試験、HDT測定用試
験片の作製を行った。成形サイクル時間、各種測定結果
を表1に示した。
Comparative Example 1 Poly-3 purified from cells by the same method as in Examples 1 and 2.
-0.5% by weight of boron nitride was added to -hydroxybutyric acid and pelletized using a screw type twin screw extruder. The screw temperature at that time was performed at 150 to 170 ° C. The weight average molecular weight at the time of pelletization was 400,000. The pellets thus obtained were subjected to a tensile test, a bending test, an impact test, and a test piece for HDT measurement in the same manner as in Examples 1 and 2. Table 1 shows the molding cycle time and various measurement results.

【0016】比較例2〜3 ポリ乳酸(商品名 ラクティー品番1012、(株)島
津製作所製)を実施例1〜2と同手法で引張試験、曲げ
試験、衝撃試験、HDT測定用試験片の作製を行った。
但し、射出成形機のスクリュー温度は200〜230
℃、金型温度30℃および100℃で行った。成形サイ
クル時間、各種測定結果を表1に示した。
Comparative Examples 2-3 Polylactic acid (trade name: Lacty Part No. 1012, manufactured by Shimadzu Corporation) was prepared in the same manner as in Examples 1-2 to produce a tensile test, a bending test, an impact test, and a test piece for HDT measurement. Was done.
However, the screw temperature of the injection molding machine is 200 to 230.
C., a mold temperature of 30 ° C. and 100 ° C. Table 1 shows the molding cycle time and various measurement results.

【0017】比較例4 実施例1〜2で作製したガラス繊維が50重量%配合さ
れたペレットを金型温度を100℃とした以外実施例1
〜2と同手法で射出成形を行った。成形サイクル時間を
表1に示した。
COMPARATIVE EXAMPLE 4 Pellets containing 50% by weight of the glass fibers prepared in Examples 1 and 2 were used except that the mold temperature was changed to 100.degree.
Injection molding was performed in the same manner as in Nos. 1 to 2. Table 1 shows the molding cycle time.

【0018】実施例3〜4 実施例1〜2で作製したガラス繊維が50重量%配合さ
れたペレットに対しポリ乳酸(商品名 ラクティー品番
1012、(株)島津製作所製)もしくはポリブチレン
サクシネート(商品名 ビオノーレ#1001、昭和高
分子株式会社製)を総重量の20%ブレンドし、実施例
1〜2と同手法で引張試験、曲げ試験、衝撃試験、HD
T測定用試験片の作製を行った。その際、射出成形機の
スクリュー温度は170〜190℃、金型温度は60℃
で行った。成形サイクル時間、各種測定結果を表1に示
した。
Examples 3-4 Polylactic acid (trade name: Lacty Part No. 1012, manufactured by Shimadzu Corporation) or polybutylene succinate (commercially available) was added to the pellets containing 50% by weight of the glass fibers prepared in Examples 1-2. (Bionore # 1001, manufactured by Showa Polymer Co., Ltd.) was blended at 20% of the total weight, and tensile tests, bending tests, impact tests, HD
A test piece for T measurement was produced. At this time, the screw temperature of the injection molding machine was 170 to 190 ° C, and the mold temperature was 60 ° C.
I went in. Table 1 shows the molding cycle time and various measurement results.

【0019】比較例5 実施例1〜2で作製したPHB19.8重量%、ポリ乳
酸(商品名 ラクティー品番1012、(株)島津製作
所製)29.7重量%にガラス繊維が50重量%、窒化
ホウ素0.5重量%配合したペレットを作製し、実施例
1〜2と同手法で射出成形を行った。その際、射出成形
機のスクリュー温度は170〜190℃、金型温度は3
0℃で行った。成形サイクル時間を表1に示した。
Comparative Example 5 19.8% by weight of PHB prepared in Examples 1 and 2; 29.7% by weight of polylactic acid (trade name: Lacty part number 1012; manufactured by Shimadzu Corporation); 50% by weight of glass fiber; Pellets containing 0.5% by weight of boron were prepared, and injection molding was performed in the same manner as in Examples 1 and 2. At this time, the screw temperature of the injection molding machine was 170 to 190 ° C., and the mold temperature was 3
Performed at 0 ° C. Table 1 shows the molding cycle time.

【0020】[0020]

【表1】 [Table 1]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 脂肪族ポリエステル40〜95重量%お
よびガラス繊維5〜60重量%からなり、且つ該脂肪族
ポリエステルが3−ヒドロキシ酪酸単位を含む樹脂を5
0重量%以上含むことを特徴とする生分解性成形材料。
1. A resin comprising 40 to 95% by weight of an aliphatic polyester and 5 to 60% by weight of glass fiber, wherein said aliphatic polyester contains a 3-hydroxybutyric acid unit.
A biodegradable molding material containing 0% by weight or more.
【請求項2】 3−ヒドロキシ酪酸単位を含む樹脂の重
量平均分子量が100,000以上であり、また3−ヒ
ドロキシ酪酸単位を含む樹脂以外の脂肪族ポリエステル
の重量平均分子量が10,000〜1,000,000
である請求項1記載の生分解性成形材料。
2. The resin containing 3-hydroxybutyric acid units has a weight average molecular weight of 100,000 or more, and the aliphatic polyester other than the resin containing 3-hydroxybutyric acid units has a weight average molecular weight of 10,000 to 1, , 000,000
The biodegradable molding material according to claim 1, which is:
【請求項3】 3−ヒドロキシ酪酸単位を含む樹脂がポ
リ−3−ヒドロキシ酪酸である請求項1または2記載の
生分解性成形材料。
3. The biodegradable molding material according to claim 1, wherein the resin containing a 3-hydroxybutyric acid unit is poly-3-hydroxybutyric acid.
【請求項4】 請求項1記載の生分解性成形材料から得
られた生分解性成形品。
4. A biodegradable molded article obtained from the biodegradable molding material according to claim 1.
【請求項5】 脂肪族ポリエステル40〜95重量%お
よびガラス繊維5〜60重量%とからなり、かつ該脂肪
族ポリエステルが3−ヒドロキシ酪酸単位を含む樹脂を
50重量%以上含む樹脂である生分解性成形材料を金型
温度20℃〜90℃で成形加工することを特徴とする、
生分解性成形材料の成形加工法。
5. Biodegradation comprising 40 to 95% by weight of an aliphatic polyester and 5 to 60% by weight of glass fibers, wherein said aliphatic polyester is a resin containing at least 50% by weight of a resin containing a 3-hydroxybutyric acid unit. Characterized in that the molding material is molded at a mold temperature of 20 ° C to 90 ° C,
Molding method for biodegradable molding materials.
JP10128996A 1998-05-12 1998-05-12 Biodegradable molding material, biodegradable molded article, and molding method for the biodegradable molding material Pending JPH11323116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10128996A JPH11323116A (en) 1998-05-12 1998-05-12 Biodegradable molding material, biodegradable molded article, and molding method for the biodegradable molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10128996A JPH11323116A (en) 1998-05-12 1998-05-12 Biodegradable molding material, biodegradable molded article, and molding method for the biodegradable molding material

Publications (1)

Publication Number Publication Date
JPH11323116A true JPH11323116A (en) 1999-11-26

Family

ID=14998566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10128996A Pending JPH11323116A (en) 1998-05-12 1998-05-12 Biodegradable molding material, biodegradable molded article, and molding method for the biodegradable molding material

Country Status (1)

Country Link
JP (1) JPH11323116A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054366A1 (en) 2003-12-02 2005-06-16 Kaneka Corporation Poly(3-hydroxyalkanoate) composition and molded object thereof
JP2008133483A (en) * 2000-04-07 2008-06-12 Ntn Corp Rolling bearing
JP2008144972A (en) * 2000-04-07 2008-06-26 Ntn Corp Rolling bearing
JP2009179803A (en) * 1999-12-20 2009-08-13 Sony Corp Electronic appliance
JP2011168798A (en) * 2003-12-19 2011-09-01 Nec Corp Flame retardant thermoplastic resin composition
CN102337012A (en) * 2011-07-08 2012-02-01 华南理工大学 High-strength P34HB/long glass fiber composite material and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179803A (en) * 1999-12-20 2009-08-13 Sony Corp Electronic appliance
JP2008190721A (en) * 2000-04-07 2008-08-21 Ntn Corp Rolling bearing
JP2008133483A (en) * 2000-04-07 2008-06-12 Ntn Corp Rolling bearing
JP2008144972A (en) * 2000-04-07 2008-06-26 Ntn Corp Rolling bearing
JP2008180385A (en) * 2000-04-07 2008-08-07 Ntn Corp Rolling bearing
JP2008180386A (en) * 2000-04-07 2008-08-07 Ntn Corp Rolling bearing
JP2008202789A (en) * 2000-04-07 2008-09-04 Ntn Corp Rolling bearing
JP2008208998A (en) * 2000-04-07 2008-09-11 Ntn Corp Rolling bearing
JP2008221211A (en) * 2000-04-07 2008-09-25 Ntn Corp Rolling bearing
WO2005054366A1 (en) 2003-12-02 2005-06-16 Kaneka Corporation Poly(3-hydroxyalkanoate) composition and molded object thereof
CN100436539C (en) * 2003-12-02 2008-11-26 株式会社钟化 Poly(3-hydroxyalkanoate) composition and molded object thereof
JPWO2005054366A1 (en) * 2003-12-02 2007-06-28 株式会社カネカ Poly (3-hydroxyalkanoate) composition and molded article thereof
JP2011168798A (en) * 2003-12-19 2011-09-01 Nec Corp Flame retardant thermoplastic resin composition
CN102337012A (en) * 2011-07-08 2012-02-01 华南理工大学 High-strength P34HB/long glass fiber composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6273627B2 (en) Polyester resin composition and molded article containing the resin composition
US6191203B1 (en) Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation
EP0996670B1 (en) Pha compositions and methods for their use in the production of pha films
JP5620061B2 (en) Process for producing polylactic acid block copolymer
JP6368245B2 (en) Aliphatic polyester resin composition and molded article containing the resin composition
JP6339939B2 (en) Polyester resin composition and molded article containing the resin composition
CN108424626B (en) Polylactic acid and polypropylene carbonate composite material and preparation method thereof
JP2017222791A (en) Poly-3-hydroxyalkanoate-based resin composition and molded body
CN114230989A (en) Preparation method of environment-friendly biodegradable PBAT (poly (butylene adipate-co-terephthalate)) foaming material
EP4052877A1 (en) Resin composition and manufacturing method of resin molded product
EP4357417A1 (en) Marine degradable polyhydroxyalkanoate composition, molded body and preparation method therefor
CN115803381A (en) Aliphatic polyester resin composition and use thereof
JP4503215B2 (en) Lactic acid-based resin composition, peroxide-modified lactic acid-based resin composition, and molded articles thereof
JPH11323116A (en) Biodegradable molding material, biodegradable molded article, and molding method for the biodegradable molding material
KR101690082B1 (en) Biodegradable resin composition and biodegradable film prepared therefrom
CN115627057B (en) Straw and preparation method thereof
CN115926406B (en) Full-degradable high-barrier polyester composite film material, preparation method and application
JP2000129143A (en) Biodegradable molded product, its material and its production
JP2000239508A (en) Biodegradable molding compound and its molding
US20230145613A1 (en) Poly(3-hydroxybutyrate)-based resin tube and method for producing same
JP2002012674A (en) Aliphatic polyester composition for master batch and method for producing aliphatic polyester film using the composition
KR102419479B1 (en) Biodegradable resin composition and molded article
JP2004331913A (en) Process for producing biodegradable polyester resin composition
JP6172795B2 (en) POLYESTER RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED BODY FORMED FROM SAME COMPOSITION
JP3623053B2 (en)   Biodegradable resin molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080618