JP2000239508A - Biodegradable molding compound and its molding - Google Patents

Biodegradable molding compound and its molding

Info

Publication number
JP2000239508A
JP2000239508A JP4014899A JP4014899A JP2000239508A JP 2000239508 A JP2000239508 A JP 2000239508A JP 4014899 A JP4014899 A JP 4014899A JP 4014899 A JP4014899 A JP 4014899A JP 2000239508 A JP2000239508 A JP 2000239508A
Authority
JP
Japan
Prior art keywords
molding
biodegradable
warpage
low
phb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4014899A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsushita
浩幸 松下
Koji Yamamoto
山本  幸司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP4014899A priority Critical patent/JP2000239508A/en
Publication of JP2000239508A publication Critical patent/JP2000239508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a biodegradable molding compound having low warpage, excellent in mechanical properties and biodegradability by melting and mixing polyhydroxybutyric acid, polylactic acid, inorganic filler and crystal nuclearating agent. SOLUTION: This compound is obtained by melting and mixing (A) preferably 50-90 wt.% more preferably 70-85 wt.% poly-3-hydroxybutyric acid based on total weight of the component A and B, (B) polylactic acid, (C) 10-60 wt.% inorganic filler preferably having 0.1-50 μm particle diameter (e.g. calcium carbonate), (D) 0.3-5.0 wt.% crystal nuclearating agent (e.g. boron nitride) and (E), if necessary, a colorant, a plasticizer, a mold releasing agent, a lubricant or the like. The component A can be prepared by fermentation process using a bacteria belonging to the genus Alcaligenes, the genus Azotobacter, the genus Methylobacterium and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリ−3−ヒドロ
キシ酪酸(以下PHBと略す)、ポリ乳酸(以下PLA
と略す)、無機フィラーおよび結晶核剤からなる生分解
性を有した低反り成形材料およびその成形方法に関す
る。
TECHNICAL FIELD The present invention relates to poly-3-hydroxybutyric acid (hereinafter abbreviated as PHB), polylactic acid (hereinafter referred to as PLA)
The present invention relates to a biodegradable low warpage molding material comprising an inorganic filler and a crystal nucleating agent and a molding method thereof.

【0002】[0002]

【従来の技術】従来、数多くのプラスチックスが産業資
材、機械部品、自動車部品などの成形材料として利用さ
れてきている。同時に、環境保護の立場から、プラスチ
ックスの再利用が叫ばれるとともに、再利用が不可能な
利用分野において、微生物の働き、または加水分解等に
より分解する生分解性樹脂の利用が社会的に強く要請さ
れてきている。一般的に脂肪族ポリエステルは、生分解
性を有することが知られており、各々の分子組成により
異なった性能を有している。このことから、それぞれの
特徴を生かした用途開発が製造メーカー、加工メーカー
などで積極的に行われている。PHBおよびPLAは、
脂肪族ポリエステルに代表される生分解性樹脂群の中で
剛性が高い特徴を有していることから、高剛性が必要と
される分野への適用が期待されている。高剛性が必要と
される用途として、プラスチックリール、ファン類など
の電気部品、大型パネル、ハウジング類などの工業用品
や工業用部材、建築部材などの硬質成形体があげられ、
中には反りのない平面を求められる場合がある。
2. Description of the Related Art Conventionally, many plastics have been used as molding materials for industrial materials, machine parts, automobile parts and the like. At the same time, from the standpoint of environmental protection, the recycling of plastics is called for, and the use of biodegradable resins, which degrade by the action of microorganisms or hydrolysis, is strongly used in applications where recycling is not possible. It has been requested. Generally, aliphatic polyesters are known to have biodegradability, and have different properties depending on their molecular compositions. For this reason, manufacturers and processing manufacturers are actively developing applications that take advantage of their respective characteristics. PHB and PLA are
It has high rigidity among biodegradable resins represented by aliphatic polyesters, and is expected to be applied to fields requiring high rigidity. Applications that require high rigidity include electrical parts such as plastic reels and fans, large panels, industrial articles such as housings, industrial members, and rigid molded articles such as building members.
In some cases, a flat surface without warpage may be required.

【0003】PHBでは、ガラス転移点が5℃であるこ
となどの理由により結晶化を速める条件で成形される
が、平板などの成形体を成形する際、成形体を金型から
取り出した後数時間かけてゆっくりと結晶化が進み、反
りが発生する場合がある。またPLAでは、ガラス転移
点が約60℃であることから金型温度を60℃以下で成
形する場合が多く、この場合、得られた成形体は約60
℃を越えると変形が起こる可能性がある。またPLAの
結晶化を進める金型温度で成形した場合、成形サイクル
時間が非常に大きくなり実用的ではない。加えてPLA
では自然環境下での生分解性速度は遅いことが知られて
いる。このことから速い生分解性速度を有し、かつ反り
が発生しない高剛性材料の要求に対し、PHB、PLA
は応えるべき剛性を有しているにも関わらず、充分に対
応しきれていないのが現実である。
[0003] PHB is molded under conditions that accelerate crystallization because of a glass transition point of 5 ° C. When molding a molded article such as a flat plate, it takes several hours after the molded article is removed from a mold. Crystallization proceeds slowly over time, and warpage may occur. Further, in the case of PLA, since the glass transition point is about 60 ° C., the mold is often molded at a mold temperature of 60 ° C. or less.
If the temperature exceeds ℃, deformation may occur. Further, when molding is performed at a mold temperature at which crystallization of PLA proceeds, the molding cycle time becomes extremely long, which is not practical. Plus PLA
It is known that the rate of biodegradability in natural environments is low. Therefore, PHB and PLA have been developed to meet the demand for a high-rigidity material having a high biodegradability rate and no warpage.
The reality is that despite having the stiffness to respond, it has not been able to respond sufficiently.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来技術に
見られる前記問題を解決し、機械的性能、生分解性に優
れる、生分解性低反り成形材料およびその成形方法を提
供することをその課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and provides a biodegradable low-warping molding material having excellent mechanical performance and biodegradability, and a molding method therefor. The subject.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意検討を重ねた結果、本発明を完成する
に至った。すなわち、生分解性樹脂にPHBおよびPL
Aを用い、かつ炭酸カルシュウムに代表されるような無
機フィラーと窒化ホウ素に代表されるような結晶核剤を
適当量配合させた生分解性樹脂組成物が、現実的な成形
サイクル時間でかつ反りの発生がほとんど見られず、充
分実用的な強度を有する成形体に転化できることを見い
だし本発明を完成させた。
Means for Solving the Problems The present inventors have made intensive studies to solve the above problems, and as a result, have completed the present invention. That is, PHB and PL are added to the biodegradable resin.
A, and a biodegradable resin composition containing an appropriate amount of an inorganic filler typified by calcium carbonate and a crystal nucleating agent typified by boron nitride can be formed with a realistic molding cycle time and warpage. Generation was hardly observed, and it was found that it could be converted into a molded article having sufficiently practical strength, and the present invention was completed.

【0006】本発明の要旨は、(1)PHB、PLA、
無機フィラーおよび結晶核剤を溶融混合して得られる生
分解性低反り成形材料、(2)PHBの重量がPHBと
PLAとの重量の和に対して50%〜90%である
(1)記載の生分解性低反り成形材料、(3)無機フィ
ラーに炭酸カルシュウムを用い、該炭酸カルシュウムの
生分解性低反り成形材料に対する配合量を10〜60重
量%とする(1)〜(2)のいずれかに記載の生分解性
低反り成形材料、(4)結晶核剤として窒化ホウ素を用
い、該窒化ホウ素の生分解性低反り成形材料に対する配
合量を0.3〜5.0重量%とする(1)〜(3)のい
ずれかに記載の生分解性低反り成形材料および、(5)
(1)〜(4)のいずれかに記載の生分解性低反り成形
材料を、成形時の樹脂温度を130〜250℃、金型温
度を0〜70℃として成形する生分解性低反り材料の成
形方法。
The gist of the present invention is (1) PHB, PLA,
A biodegradable low warpage molding material obtained by melting and mixing an inorganic filler and a crystal nucleating agent, (2) the weight of PHB is 50% to 90% based on the sum of the weights of PHB and PLA. (3) calcium carbonate is used as the inorganic filler, and the blending amount of the calcium carbonate with respect to the biodegradable low warpage molding material is 10 to 60% by weight. (4) Boron nitride is used as a crystal nucleating agent, and the compounding amount of the boron nitride with respect to the biodegradable low warpage molding material is 0.3 to 5.0% by weight. (1) to (3), a low-curable biodegradable molding material according to any one of (1) to (3), and (5)
(1) The biodegradable low-warp material is formed by molding the biodegradable low-warp molding material according to any one of (1) to (4) at a resin temperature of 130 to 250 ° C and a mold temperature of 0 to 70 ° C. Molding method.

【0007】[0007]

【発明の実施形態】本発明で示されるPHBは、例えば
アルカリゲネス(Alcaligenes )属、アゾトバクター
(Azotobacter )属、メチロバクテリウム(Methylobac
terium)属、ノカルジア(Nocardia)属、シュードモナ
ス(Pseudomonas )属等の細菌を用いた公知の発酵法に
より製造することができる。発酵法により得られたPH
Bを分離精製する方法に関しては、例えば、米国特許第
3036959号公報、同第4101533号公報、同
第3275610号公報、ヨーロッパ特許第15123
号公報に、ピリジン、塩化メチレン、1, 2−プロピレ
ンカーボネート、クロロホルム、1, 2−ジクロロエタ
ンなどの溶剤を用いた精製法が記載されており、また特
開平7−177894号公報には細菌菌体を高圧ホモジ
ナイザーで破砕後、PHBを分離し、分離したPHBを
酵素系漂白剤で処理する方法が示されている。最近で
は、発酵法によらずとも化学合成による3−ヒドロキシ
酪酸単位を含むPHBの製造法が報告されている。ま
た、ポリ乳酸は、化学合成法あるいは発酵法により得ら
れる乳酸を原料とし、例えばラクチドとした後開環重合
させる方法や、乳酸を直接重合させる方法により製造す
ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION PHB shown in the present invention is, for example, a genus Alcaligenes, a genus Azotobacter, a methylobacterium.
terium), Nocardia, Pseudomonas, etc. by a known fermentation method. PH obtained by fermentation method
Regarding the method for separating and purifying B, for example, US Pat. Nos. 3,036,959, 4,015,533, 3,275,610, and EP 15123.
Discloses a purification method using a solvent such as pyridine, methylene chloride, 1,2-propylene carbonate, chloroform, and 1,2-dichloroethane, and JP-A-7-177894 discloses a bacterial cell. Is crushed by a high-pressure homogenizer, PHB is separated, and the separated PHB is treated with an enzyme-based bleach. Recently, a method for producing PHB containing a 3-hydroxybutyric acid unit by chemical synthesis without using a fermentation method has been reported. Further, polylactic acid can be produced by using lactic acid obtained by a chemical synthesis method or a fermentation method as a raw material, for example, a method of ring-opening polymerization after forming lactide, or a method of directly polymerizing lactic acid.

【0008】本発明で示される無機フィラーは、炭酸カ
ルシュウム、炭酸カルシュウムウイスカー、炭酸マグネ
シュウム、タルク、マイカ、雲母などを示すことができ
が、その中でも炭酸カルシュウムが、価格、得られた成
形体の性能の面で優れており、好ましい。無機フィラー
の粒径は、特に限定されることはないが、汎用的に用い
られている0.1〜50μmが良い。また、結晶核剤
は、窒化ホウ素、特定の粒径のタルクなどを示すことが
できるが、その中でも窒化ホウ素が、結晶化速度を増大
させる効果の面から優れており、好ましい。
The inorganic filler represented by the present invention can be calcium carbonate, calcium carbonate whisker, magnesium carbonate, talc, mica, mica, etc. Among them, calcium carbonate is expensive, and the performance of the obtained molded product is high. Is excellent in terms of The particle size of the inorganic filler is not particularly limited, but is preferably 0.1 to 50 μm, which is generally used. Further, the crystal nucleating agent can be boron nitride, talc having a specific particle size, or the like. Among them, boron nitride is preferable because it is excellent in the effect of increasing the crystallization rate.

【0009】本発明において、PHBの重量はPHBと
PLAの重量の和に対して50〜90%であることが好
ましく、70〜85%がさらに好ましい。なぜなら、P
HBの重量が50%を下回り、PLAの重量の方が大き
くなると、成形体中に非結晶部分のPLAが多く占める
ことになり、結果的に60℃以上での耐熱性が劣ること
になる。90%を越えると、PHBの成形後の結晶化に
よる反りの発生が目立つようになり好ましくない。炭酸
カルシュウムに代表されるような無機フィラーは10〜
60重量%配合することが好ましい。無機フィラーに
は、バリの発生を抑えるとともに剛性をさらに増す効果
があるが、10重量%を下回ると、バリの発生を抑える
充分な効果が得られない可能性があり、60重量%を越
えると成形品がもろくなるとともに比重が大きくなり、
使用される用途が限定される可能性があり好ましくな
い。結晶核剤は0.3〜5.0重量%配合することが好
ましい。なぜなら0.3重量%を下回るとPHBの結晶
化速度促進効果が不十分となり、成形品が金型から取り
出された後にPHBが結晶化し反りの発生につながる可
能性があるからである。5.0重量%を越えてもPHB
結晶化速度促進効果のさらなる向上はほとんど認められ
ないこと、結晶核剤は比較的高価であることから5.0
重量%を越えない方が好ましい。
In the present invention, the weight of PHB is preferably 50 to 90%, more preferably 70 to 85%, based on the sum of the weight of PHB and PLA. Because P
If the weight of HB is less than 50% and the weight of PLA is larger, the amorphous portion of PLA occupies a large amount in the molded product, resulting in poor heat resistance at 60 ° C. or higher. If it exceeds 90%, warpage due to crystallization after molding of PHB becomes noticeable, which is not preferable. Inorganic fillers such as calcium carbonate are 10 to 10
It is preferable to mix 60% by weight. The inorganic filler has an effect of suppressing the generation of burrs and further increasing the rigidity. However, if it is less than 10% by weight, there is a possibility that a sufficient effect of suppressing the generation of burrs may not be obtained. As the molded product becomes brittle, the specific gravity increases,
It is not preferable because the intended use may be limited. It is preferable that the nucleating agent is incorporated in an amount of 0.3 to 5.0% by weight. This is because if it is less than 0.3% by weight, the effect of accelerating the crystallization rate of PHB becomes insufficient, and PHB may be crystallized after the molded article is taken out from the mold, which may cause warpage. PHB over 5.0 wt%
The crystallization rate accelerating effect is hardly further improved, and the nucleating agent is relatively expensive.
It is preferred that the amount does not exceed weight%.

【0010】本発明における低反り成形材料を成形する
際、樹脂温度は130〜250℃とすることが好まし
く、180〜220℃がさらに好ましい。なぜなら13
0℃より低い温度の場合、充分に可塑化せず満足する成
形体が得られない。250℃を越えると樹脂の分解によ
る劣化が著しく好ましくない。金型温度は、0〜70℃
とすることが好ましく、0〜40℃がさらに好ましい。
なぜなら0℃より低い温度の場合、連続成形中、温度を
保つための設備が大きくなり、製品にかかる費用が大き
くなる可能性がある。また、70℃を越えると成形サイ
クル時間が長くなるため好ましくない。
When molding the low warpage molding material of the present invention, the resin temperature is preferably from 130 to 250 ° C., more preferably from 180 to 220 ° C. Because 13
If the temperature is lower than 0 ° C., a sufficient molded product cannot be obtained because of insufficient plasticization. If the temperature exceeds 250 ° C., deterioration due to decomposition of the resin is extremely undesirable. Mold temperature is 0-70 ° C
And preferably 0 to 40 ° C.
If the temperature is lower than 0 ° C., equipment for maintaining the temperature during continuous molding becomes large, and the cost for the product may increase. On the other hand, if the temperature exceeds 70 ° C., the molding cycle time is undesirably long.

【0011】本発明の範囲を逸脱せず、本発明の目的を
損なわない範囲において、PHB、PLA、無機フィラ
ーおよび結晶核剤以外の物質、例えば、着色剤、可塑
剤、離型剤、滑剤、紫外線吸収剤、帯電防止剤、難燃化
剤、酸化防止剤などの慣用の添加剤を目的に応じて添加
することができる。
[0011] Substances other than PHB, PLA, inorganic fillers and nucleating agents, such as coloring agents, plasticizers, release agents, lubricants, etc., do not depart from the scope of the present invention and do not impair the objects of the present invention. Conventional additives such as an ultraviolet absorber, an antistatic agent, a flame retardant, and an antioxidant can be added according to the purpose.

【0012】本発明の生分解性成形材料は、工業用・土
木用・農業用・漁業用資材、機械部品、医療用部材など
の硬質低反り成形体を得ることができる。これら成形品
は、使用後の回収または再利用が不可能で埋め立て処理
などが想定される用途、例えば、プラスチックリール、
ファン類、大型パネル、ハウジング類、各種自動車部品
などに転化することができる。
[0012] The biodegradable molding material of the present invention can be used to obtain hard low warpage molded products such as industrial / civil engineering / agricultural / fishing materials, machine parts, medical members and the like. These molded products cannot be collected or reused after use and are expected to be used in landfills, for example, plastic reels,
It can be converted into fans, large panels, housings, various automobile parts, etc.

【0013】[0013]

【発明の効果】本発明により、機械的性能、生分解性に
優れる低反り成形材料を与え、各種部材に適用させるこ
とができる。
According to the present invention, a low-warping molding material having excellent mechanical performance and biodegradability can be provided, and can be applied to various members.

【0014】[0014]

【実施例】次に実施例により本発明を詳細に説明する
が、本発明はこれに限定されるものではない。尚、各種
測定は以下に示す方法で行った。 比重測定 : 水中置換法 引張試験 : JIS K 7213 曲げ試験 : JIS K 7203 耐熱性評価: 引張試験片を片持ちし、60℃で静置さ
せる。2hr後の変形量で評価した。 反り評価 : 帽子型反り評価成形体(つば部:厚さ
1.5mm 直径9cm、突起部:高さ1.4mm 直
径2.1mm)を成形し、つばの縁における水平からの
変形量で評価した。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. Various measurements were performed by the following methods. Specific gravity measurement: Underwater displacement method Tensile test: JIS K 7213 Bending test: JIS K 7203 Heat resistance evaluation: A tensile test piece is cantilevered and allowed to stand at 60 ° C. Evaluation was made based on the deformation amount after 2 hours. Warpage evaluation: A hat-shaped warpage evaluation molded article (collar part: thickness 1.5 mm, diameter 9 cm, projection part: height 1.4 mm, diameter 2.1 mm) was molded, and evaluated by the amount of deformation from the horizontal at the edge of the collar. .

【0015】実施例1〜4 工業技術院生命工学工業技術研究所に寄託してある細
菌、プロトモナス エクストルクエンス(Protomonas e
xtorquens )K(受託番号:FERM BP−354
8)を用い、メタノールを炭素源として好気的に連続培
養を行った。培養条件は培養温度32℃、培養pH6.
5、平均滞留時間40時間であり、窒素の供給速度が菌
体増殖の律速となるよう連続培養を行った。なお、最近
の文献によれば本菌はメチロバクテリウム(Methylobac
terium)属に属されている(I.J.Bousfield and P.N.Gr
een;Int.J.Syst.Bacteriol.,35,209(1985)、T.Urakami
etal.;Int.J.Syst.Bcteriol.,43,504-513(1993) )。連
続培養により得られた菌体を上記特開平7−17789
4に記載のPHBの分離精製法に従い、高圧ホモゲナイ
ザーで破砕後、遠心分離し、分離したPHBを先ずプロ
テアーゼで処理し次いで過酸化水素処理を行い高純度の
PHBを得た。このPHBとPLA(島津製作所株式会
社製 ラクティー品番1012)、炭酸カルシウム(日
東粉化工業株式会社製 NS100)、窒化ホウ素(電
気化学工業株式会社製 SP2)を表1に示す割合であ
らかじめ混合させておき、スクリュー型2軸押出機(ス
クリュー径45mm)を用いてペレット化した。こうし
て得られたペレットを型締め圧力100ton/cm2
の射出成形機を用いて引張試験、曲げ試験、耐熱性評価
用試験片、反り評価用試験片の作製を行った。その際、
樹脂温度は185℃、金型温度は30℃で行った。各種
測定を行い、表1に上記試験結果を示した。
Examples 1-4 A bacterium, Protomonas extorquens, deposited at the Institute of Biotechnology and Industrial Technology, National Institute of Advanced Industrial Science and Technology.
xtorquens) K (Accession number: FERM BP-354)
Using 8), continuous culture was performed aerobically using methanol as a carbon source. The culture conditions were a culture temperature of 32 ° C. and a culture pH of 6.
5. Continuous cultivation was performed so that the average residence time was 40 hours, and the nitrogen supply rate was the rate-determining rate of bacterial cell growth. According to recent literature, this bacterium is methylobacterium (Methylobac
terium) (IJBousfield and PNGr)
een; Int.J.Syst.Bacteriol., 35,209 (1985), T. Urakami
etal .; Int. J. Syst. Bcteriol., 43, 504-513 (1993)). The cells obtained by continuous culturing were subjected to the method described in JP-A-7-17789.
According to the method for separating and purifying PHB described in 4 above, after crushing with a high-pressure homogenizer, centrifugation, the separated PHB was first treated with a protease, and then treated with hydrogen peroxide to obtain high-purity PHB. The PHB and PLA (Lacty part number 1012, manufactured by Shimadzu Corporation), calcium carbonate (NS100, manufactured by Nitto Powder Chemical Co., Ltd.), and boron nitride (SP2, manufactured by Denki Kagaku Kogyo Co., Ltd.) are mixed in advance in the proportions shown in Table 1. The mixture was pelletized using a screw type twin screw extruder (screw diameter: 45 mm). The pellet obtained in this manner was subjected to a mold clamping pressure of 100 ton / cm 2.
, A tensile test, a bending test, a test piece for evaluating heat resistance, and a test piece for evaluating warpage were performed. that time,
The resin temperature was 185 ° C and the mold temperature was 30 ° C. Various measurements were made, and the test results are shown in Table 1.

【0016】比較例1 実施例1〜2と同手法により菌体から精製したPHBに
窒化ホウ素0.5重量%加え、スクリュー型2軸押出機
を用いてペレット化を行った。こうして得られたペレッ
トを実施例1〜4と同手法で引張試験、曲げ試験、耐熱
性評価用用試験片、反り評価用試験片の作製を行った。
その際、樹脂温度は185℃、金型温度は30℃で行っ
た。各種測定を行い、表2に上記試験結果を示した。 比較例2〜3 PLA(島津製作所 ラクティー品番1012)を実施
例1〜4と同手法で引張試験、曲げ試験、耐熱性評価用
試験片、反り評価用試験片の作製を行った。その際、樹
脂温度は210℃、金型温度は30℃および100℃で
行った。各種測定を行い、表2に上記試験結果を示し
た。 比較例4 PHBおよびPLAの配合比を変えた以外実施例1〜4
と同手法で、引張試験、曲げ試験、耐熱性評価用試験
片、反り評価用試験片の作製を行った。その際、樹脂温
度は185℃、金型温度は30℃で行った。各種測定を
行い、表2に上記試験結果を示した。
Comparative Example 1 0.5% by weight of boron nitride was added to PHB purified from cells by the same method as in Examples 1 and 2, and pelletized using a screw type twin screw extruder. The pellets thus obtained were subjected to a tensile test, a bending test, a test piece for heat resistance evaluation and a test piece for warpage evaluation in the same manner as in Examples 1 to 4.
At that time, the resin temperature was 185 ° C. and the mold temperature was 30 ° C. Various measurements were made, and Table 2 shows the test results. Comparative Examples 2 to 3 PLA (Shimadzu Corporation, Lacty part number 1012) was subjected to the same method as in Examples 1 to 4 to produce a tensile test, a bending test, a test piece for evaluating heat resistance, and a test piece for evaluating warpage. At that time, the resin temperature was 210 ° C., and the mold temperature was 30 ° C. and 100 ° C. Various measurements were made, and Table 2 shows the test results. Comparative Example 4 Examples 1-4 except that the mixing ratio of PHB and PLA was changed
In the same manner as above, a tensile test, a bending test, a test piece for evaluating heat resistance and a test piece for evaluating warpage were produced. At that time, the resin temperature was 185 ° C. and the mold temperature was 30 ° C. Various measurements were made, and Table 2 shows the test results.

【0017】比較例5 炭酸カルシウムを配合しなかった以外実施例1〜4と同
手法で、引張試験、曲げ試験、耐熱性評価用試験片、反
り評価用試験片の作製を行った。その際、樹脂温度は1
85℃、金型温度は30℃で行った。各種測定を行い、
表2に上記試験結果を示した。 比較例6 窒化ホウ素を配合しなかった以外実施例1〜4と同手法
で、引張試験、曲げ試験、耐熱性評価用試験片、反り評
価用試験片の作製を行った。その際、樹脂温度は185
℃、金型温度は30℃で行った。各種測定を行い、表2
に上記試験結果を示した。 比較例7 樹脂温度を185℃、金型温度を80℃とした以外実施
例1と同様に、引張試験、曲げ試験、耐熱性評価用試験
片、反り評価用試験片の作製を行った。その際、各種測
定を行い、表2に上記試験結果を示した。
Comparative Example 5 A tensile test, a bending test, a test piece for evaluating heat resistance, and a test piece for evaluating warpage were performed in the same manner as in Examples 1 to 4 except that calcium carbonate was not blended. At that time, the resin temperature is 1
The test was performed at 85 ° C. and a mold temperature of 30 ° C. Perform various measurements,
Table 2 shows the test results. Comparative Example 6 A tensile test, a bending test, a test piece for evaluating heat resistance, and a test piece for evaluating warpage were performed in the same manner as in Examples 1 to 4, except that boron nitride was not blended. At that time, the resin temperature was 185
C. and a mold temperature of 30.degree. After various measurements, Table 2
Shows the test results. Comparative Example 7 A tensile test, a bending test, a test piece for evaluating heat resistance, and a test piece for evaluating warpage were performed in the same manner as in Example 1 except that the resin temperature was set to 185 ° C. and the mold temperature was set to 80 ° C. At that time, various measurements were made, and Table 2 shows the above test results.

【0018】[0018]

【表1】 表1 実施例 実施例 実施例 実施例 比較例 1 2 3 4 1 組成(wt% ) PHB 61.5 51.0 56.0 36.0 99.5 PLA 20.0 17.0 12.0 12.0 炭酸カルシュウム 18.0 30.0 30.0 50.0 窒化ホウ素 0.5 2.0 2.0 2.0 0.5 金型温度(℃) 30 30 30 30 30 成形サイクル時間(秒) * 40 40 40 40 50 引張強度(kgf/cm2) 360 375 340 290 330 引張弾性率(tonf/cm2) 47 50 50 60 30 曲げ強度(kgf/cm2) 522 550 510 430 550 曲げ弾性率(tonf/cm2) 47 53 50 75 36 耐熱性評価 ** ○ ○ ○ ○ ○ 反り評価 *** ○ ○ ○ ○ × * 引張試験片を成形した際の成形サイクル時間 ** ○ほとんど変化なし △少し変化が見られた ×大きく変化した *** ○ほとんど変化なし △少し変化が見られた ×大きく変化したTable 1 Example 1 Example Example Example Example Comparative Example 1 2 3 4 1 Composition (wt% ) PHB 61.5 51.0 56.0 36.0 99.5 PLA 20.0 17.0 12.0 12.0 Calcium carbonate 18.0 30.0 30.0 50.0 Boron nitride 0.5 2.0 2.0 2.0 0.5 Mold temperature (℃) 30 30 30 30 30 Molding cycle time (sec) * 40 40 40 40 50 Tensile strength (kgf / cm 2 ) 360 375 340 290 330 330 Tensile modulus (tonf / cm 2 ) 47 50 50 60 30 bending strength (kgf / cm 2) 522 550 510 430 550 flexural modulus (tonf / cm 2) 47 53 50 75 36 heat resistance evaluation ** ○ ○ ○ ○ ○ warp rating *** ○ ○ ○ ○ × * tensile test Molding cycle time when molding a piece ** ○ Almost no change △ Little change was observed × Large change *** ○ Almost no change △ Little change was observed × Large change

【0019】[0019]

【表2】 表2 比較例 比較例 比較例 比較例 比較例 比較例 2 3 4 5 6 7 組成(wt% ) PHB 19.5 61.5 61.5 61.5 PLA 100.0 100.0 56.0 38.0 20.0 20.0 炭酸カルシュウム 24.0 18.5 18.0 窒化ホウ素 0.5 0.5 0.5 金型温度(℃) 30 100 30 30 30 80 成形サイクル時間(秒) * 70 >500 40 55 65 110 引張強度(kgf/cm2) 660 490 330 350 300 引張弾性率(tonf/cm2) 36 52 31 45 47 曲げ強度(kgf/cm2) 1000 670 820 530 450 曲げ弾性率(tonf/cm2) 35 46 36 42 40 耐熱性評価 ** × △ ○ △ ○反り評価 *** ○ ○ × △ × * 引張試験片を成形した際の成形サイクル時間 ** ○ほとんど変化なし △少し変化が見られた ×大きく変化した *** ○ほとんど変化なし △少し変化が見られた ×大きく変化した Table 2 Comparative Example Comparative Example Comparative Example Comparative Example Comparative Example Comparative Example Comparative Example 2 3 4 5 6 7 Composition (wt% ) PHB 19.5 61.5 61.5 61.5 PLA 100.0 100.0 56.0 38.0 20.0 20.0 Calcium carbonate 24.0 18.5 18.0 Boron nitride 0.5 0.5 0.5 Mold temperature (° C) 30 100 30 30 30 80 Molding cycle time (sec) * 70> 500 40 55 65 110 Tensile strength (kgf / cm 2 ) 660 490 330 350 300 Tensile modulus (tonf / cm 2 ) 36 52 31 45 47 Flexural strength (kgf / cm 2 ) 1000 670 820 530 450 Flexural modulus (tonf / cm 2 ) 35 46 36 42 40 Heat resistance evaluation ** × △ ○ △ ○ Warpage evaluation *** ○ ○ × △ × * Molding cycle time when molding tensile test pieces ** ○ Almost no change △ Slight change was observed × Large change *** ○ Almost no change △ Slight change was observed × Large change

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ポリ−3−ヒドロキシ酪酸、ポリ乳酸、
無機フィラーおよび結晶核剤を溶融混合して得られるこ
とを特徴とする生分解性低反り成形材料。
1. Poly-3-hydroxybutyric acid, polylactic acid,
A biodegradable low-warping molding material obtained by melting and mixing an inorganic filler and a crystal nucleating agent.
【請求項2】 ポリ−3−ヒドロキシ酪酸の重量がポリ
−3−ヒドロキシ酪酸とポリ乳酸との重量の和に対して
50%〜90%である請求項1記載の生分解性低反り成
形材料。
2. The biodegradable low warpage molding material according to claim 1, wherein the weight of poly-3-hydroxybutyric acid is 50% to 90% based on the sum of the weights of poly-3-hydroxybutyric acid and polylactic acid. .
【請求項3】 無機フィラーに炭酸カルシュウムを用
い、該炭酸カルシュウムの生分解性低反り成形材料に対
する配合量を10〜60重量%とする請求項1〜2のい
ずれかに記載の生分解性低反り成形材料。
3. The low biodegradable material according to claim 1, wherein calcium carbonate is used as the inorganic filler, and the compounding amount of the calcium carbonate with respect to the low biodegradable molding material is 10 to 60% by weight. Warpage molding material.
【請求項4】 結晶核剤として窒化ホウ素を用い、該窒
化ホウ素の生分解性低反り成形材料に対する配合量を
0.3〜5.0重量%とする請求項1〜3のいずれかに
記載の生分解性低反り成形材料。
4. The method according to claim 1, wherein boron nitride is used as a crystal nucleating agent, and the compounding amount of the boron nitride with respect to the biodegradable low warpage molding material is 0.3 to 5.0% by weight. Low biodegradable molding material.
【請求項5】 請求項1〜4のいずれかに記載の生分解
性低反り成形材料を、成形時の樹脂温度を130〜25
0℃、金型温度を0〜70℃として成形することを特徴
とする生分解性低反り材料の成形方法。
5. The resin material at the time of molding the biodegradable low-warpage molding material according to claim 1, wherein the resin temperature is 130 to 25.
A method for molding a biodegradable low warpage material, wherein the molding is performed at 0 ° C. and a mold temperature of 0 to 70 ° C.
JP4014899A 1999-02-18 1999-02-18 Biodegradable molding compound and its molding Pending JP2000239508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4014899A JP2000239508A (en) 1999-02-18 1999-02-18 Biodegradable molding compound and its molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4014899A JP2000239508A (en) 1999-02-18 1999-02-18 Biodegradable molding compound and its molding

Publications (1)

Publication Number Publication Date
JP2000239508A true JP2000239508A (en) 2000-09-05

Family

ID=12572696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4014899A Pending JP2000239508A (en) 1999-02-18 1999-02-18 Biodegradable molding compound and its molding

Country Status (1)

Country Link
JP (1) JP2000239508A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111747A (en) * 2004-10-15 2006-04-27 Sony Corp Composite composition and molded product using the composite composition
WO2007095712A1 (en) * 2006-02-24 2007-08-30 Phb Industrial S.A. Environmentally degradable polymeric composition and method for obtaining an environmentally degradable polymeric composition
JP2010142986A (en) * 2008-12-16 2010-07-01 Ricoh Co Ltd Method of molding thermoplastic resin and molded article
KR20140081985A (en) 2012-12-21 2014-07-02 도레이첨단소재 주식회사 Multi-layer sheet of polylactic acid having an excellent shock and heat resistance and manufacturing method thereof
KR20140081986A (en) 2012-12-21 2014-07-02 도레이첨단소재 주식회사 Multi-layer sheet of polylactic acid and manufacturing method thereof
US10544301B2 (en) 2016-02-09 2020-01-28 Kaneka Corporation Biodegradable polyester resin composition and molded article formed from said resin composition
WO2021084800A1 (en) * 2019-10-31 2021-05-06 株式会社Tbm Resin composition and manufacturing method of resin molded product
CN114207030A (en) * 2019-07-12 2022-03-18 株式会社Tbm Biodegradable resin composition and molded article

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111747A (en) * 2004-10-15 2006-04-27 Sony Corp Composite composition and molded product using the composite composition
WO2007095712A1 (en) * 2006-02-24 2007-08-30 Phb Industrial S.A. Environmentally degradable polymeric composition and method for obtaining an environmentally degradable polymeric composition
JP2010142986A (en) * 2008-12-16 2010-07-01 Ricoh Co Ltd Method of molding thermoplastic resin and molded article
KR20140081985A (en) 2012-12-21 2014-07-02 도레이첨단소재 주식회사 Multi-layer sheet of polylactic acid having an excellent shock and heat resistance and manufacturing method thereof
KR20140081986A (en) 2012-12-21 2014-07-02 도레이첨단소재 주식회사 Multi-layer sheet of polylactic acid and manufacturing method thereof
US10544301B2 (en) 2016-02-09 2020-01-28 Kaneka Corporation Biodegradable polyester resin composition and molded article formed from said resin composition
CN114207030A (en) * 2019-07-12 2022-03-18 株式会社Tbm Biodegradable resin composition and molded article
CN114207030B (en) * 2019-07-12 2023-10-24 株式会社Tbm Biodegradable resin composition and molded article
WO2021084800A1 (en) * 2019-10-31 2021-05-06 株式会社Tbm Resin composition and manufacturing method of resin molded product
JP2021070761A (en) * 2019-10-31 2021-05-06 株式会社Tbm Resin composition and manufacturing method of resin molded product

Similar Documents

Publication Publication Date Title
EP2345688B1 (en) Process for producing resin composition
JP4572516B2 (en) Method for producing resin composition
JP5014908B2 (en) Crystalline polylactic acid resin composition and molded article comprising the same
WO2008044796A1 (en) Biodegradable resin composition
KR20100126661A (en) Resin composition and molded article
WO2006033229A1 (en) Resin composition and molding thereof
JP2010121131A (en) Natural fiber-reinforced polylactic acid resin composition and molded article using the same
EP1657280A1 (en) Resin composition, and method for producing the same
JP5226335B2 (en) Resin composition and molded body formed by molding the same
JP2006328117A (en) Impact-resistant environmental material, method for producing the same, and molded article
JP4887860B2 (en) Polylactic acid resin composition for injection molding, method for producing the same, and injection molded body
JP2006328163A (en) Polylactic acid-based resin composition, molding of the same and method for molding the same
EP1957581B1 (en) Poly(trimethylene terephthalate)/poly(alpha-hydroxy acid) molded, shaped articles
KR101412516B1 (en) Biodegradable resin composition including polylactic acid and method for manufacturing thereof
JP2000239508A (en) Biodegradable molding compound and its molding
KR20150047924A (en) Polylactic acid-polyamide alloy resin composition
CN109721786B (en) Polyethylene composite material and preparation method thereof
JP5273646B2 (en) Flame retardant polylactic acid resin composition and molded article obtained by molding the same
WO2015076560A1 (en) Polylactic acid/acrylonitrile-butadiene-styrene copolymer alloy resin composition
JP2000129143A (en) Biodegradable molded product, its material and its production
JPH11323116A (en) Biodegradable molding material, biodegradable molded article, and molding method for the biodegradable molding material
KR102419479B1 (en) Biodegradable resin composition and molded article
JP2006348159A (en) Polylactic acid-based resin composition, molded product thereof, and method for producing the same
JP2015113442A (en) Polylactic acid-based resin composition and molded body composed of the same
US6403728B1 (en) Formed articles from polyester resins