JPH11322481A - Explosive composition - Google Patents

Explosive composition

Info

Publication number
JPH11322481A
JPH11322481A JP12991998A JP12991998A JPH11322481A JP H11322481 A JPH11322481 A JP H11322481A JP 12991998 A JP12991998 A JP 12991998A JP 12991998 A JP12991998 A JP 12991998A JP H11322481 A JPH11322481 A JP H11322481A
Authority
JP
Japan
Prior art keywords
fatty acid
ammonium nitrate
acid amide
explosive
explosive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12991998A
Other languages
Japanese (ja)
Inventor
Hideaki Sugihara
秀明 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP12991998A priority Critical patent/JPH11322481A/en
Publication of JPH11322481A publication Critical patent/JPH11322481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an excellent antistatic effect without causing solidification of ammonium nitrate in an ANFO explosive by compounding a fatty acid amide in a compsn. comprising ammonium nitrate and fuel oil. SOLUTION: Ammonium nitrate, fuel oil and a fatty acid amide are incorporated into an explosive compsn. The fatty acid amide is preferably a >16C fatty acid amide or bisamide. The fatty acid amide is preferably incorporated by about 0.01 to 4.5 wt.% of the compsn. As for the ammonium nitrate, porous prill ammonium nitrate or a mixture of porous prill ammonium nitrate and its pulverized compd. is preferably used. The fatty acid amide is used as a lubricant to improve slipping property and blocking preventing property between substances. The fatty acid amide used is, for example, oleylamide, stear stearylamide, N,N'-methylene bis(stearylamide) or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、爆薬組成物に関す
る。更に詳しくは砕石、採鉱等の産業用爆破作業に広く
利用され、被破壊物の穿孔に直接装填される硝酸アンモ
ニウム(硝安)系の爆薬組成物に関する。
[0001] The present invention relates to explosive compositions. More particularly, the present invention relates to an ammonium nitrate (ammonium nitrate) explosive composition which is widely used in industrial blasting operations such as crushed stone and mining, and is directly loaded into perforations of objects to be destroyed.

【0002】[0002]

【従来の技術】産業用爆破作業に用いられる爆薬として
は、ダイナマイト、含水爆薬、硝安爆薬、ANFO爆薬
等が良く知られている。砕石、採鉱用の爆薬としては、
製造上及び取扱上の安全性が高く、安価であり、又穿孔
に直接流し込んで使用できるという利点からANFO爆
薬が使用される場合が多い。
2. Description of the Related Art Dynamite, hydrous explosives, nitric acid explosives, ANFO explosives and the like are well known as explosives used in industrial blasting operations. Explosives for crushed stone and mining
ANFO explosives are often used because of their advantages in that they are highly safe in production and handling, are inexpensive, and can be directly poured into perforations.

【0003】ANFO爆薬は、発破孔への装填のために
空気搬送方式の装填機によって高速で送られるときや流
し込み装填のときに、爆薬粒子同士の摩擦あるいは爆薬
粒子とホース壁面、被破壊物の壁面との摩擦によって多
量の静電気が発生する。ひとたび発生した静電気は、A
NFO爆薬自身、発破孔、ホース、装填作業者に徐々に
蓄積され、電気雷管への放電による爆発事故を引き起こ
す危険性がある。
[0003] When the ANFO explosive is fed at a high speed by a pneumatic conveying type loading machine for loading into a blast hole or when pouring is loaded, friction between explosive particles or explosive particles and a hose wall surface or a material to be destroyed is destroyed. A large amount of static electricity is generated by friction with the wall. Once generated static electricity is A
The NFO explosives themselves, which gradually accumulate in blast holes, hoses and loaders, may cause an explosion accident due to discharge to an electric detonator.

【0004】又、ANFO爆薬の主成分としては、硝安
が使用されしかも爆薬組成物の90重量%以上を占める
ことが多い。又硝安としては、多孔質粒状の硝安(以下
ポーラスプリル硝安という)が使用されることが多い。
硝安は高温において水に対する溶解度が急激に増大する
性質を有しているため、夏期等の高温時には、空気中等
の水分によって硝安の表面が一部溶解し、低温時には溶
解した表面から結晶が析出し、これを繰り返すことによ
りANFO爆薬全体が固まる(固化という)という問題
が生ずる。
Further, ammonium nitrate is used as the main component of the ANFO explosive and often accounts for 90% by weight or more of the explosive composition. As the nitrate, porous granular nitrate (hereinafter referred to as porous prill nitrate) is often used.
Since nitric acid has a property that its solubility in water rapidly increases at high temperatures, at high temperatures such as summer, the surface of nitric acid partially dissolves by moisture in the air, etc., and at low temperatures, crystals precipitate from the dissolved surface. By repeating this, there is a problem that the entire ANFO explosive is solidified (called solidification).

【0005】静電気対策としては、耐静電気雷管、導電
性を有する装填ホースの使用等が行われている。また、
一般に物質中の水分はそのものの帯電防止に効果がある
ことから、水溶性の帯電防止剤を水溶液としてANFO
爆薬に含有させる方法がとられることもある。しかし、
前者は多量の静電気発生を前提とした消極的な対策であ
り、根本的な解決策とは言えない。又、後者は静電気対
策としては有効ではあるが、水溶液を添加することによ
り往々にしてANFO爆薬の固化を促進するという結果
になることがある。
As countermeasures against static electricity, use of an anti-static detonator, a loading hose having conductivity, and the like have been performed. Also,
In general, water in a substance is effective in preventing the charge of the substance itself.
Explosives may be included. But,
The former is a passive measure premised on the generation of a large amount of static electricity and cannot be said to be a fundamental solution. Although the latter is effective as a countermeasure against static electricity, the addition of an aqueous solution often results in the promotion of solidification of the ANFO explosive.

【0006】[0006]

【発明が解決しようとする課題】ANFO爆薬におい
て、これに使用されている硝安の固化を起こすことなく
且つ効率良く帯電を防止する方策の確立が望まれてい
る。
In ANFO explosives, it is desired to establish a measure for preventing charging efficiently without solidifying the ammonium nitrate used therein.

【0007】[0007]

【課題を解決する為の手段】本発明者らは、前記課題を
解決すべく、鋭意研究の結果、ANFO爆薬の配合成分
として、脂肪酸アミドを加えることにより、ANFO爆
薬の固化を招く事なく、優れた帯電防止効果が得られる
ことを見出し、本発明を完成させたものである。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result of adding fatty acid amide as a compounding component of the ANFO explosive, solidification of the ANFO explosive was not caused. The present inventors have found that an excellent antistatic effect can be obtained, and have completed the present invention.

【0008】即ち、本発明は、(1)硝酸アンモニウ
ム、燃料油及び脂肪酸アミドを含有することを特徴とす
る爆薬組成物、(2)脂肪酸アミドがC16(炭素数1
6)以上の脂肪酸アミドまたはビスアミドである(1)
の爆薬組成物、(3)脂肪酸アミドを爆薬組成物中に
0.01〜4.5重量%含有してなる(1)乃至(2)
のいずれか一項に記載の爆薬組成物、(4)硝酸アンモ
ニウムが、ポーラスプリル硝酸アンモニウムである
(1)乃至(3)のいずれか一項に記載の爆薬組成物、
(5)硝酸アンモニウムが、ポーラスプリル硝酸アンモ
ニウムとその粉砕品の混合物である(1)乃至(4)の
いずれか一項に記載の爆薬組成物、に関する。
That is, the present invention provides an explosive composition comprising (1) ammonium nitrate, a fuel oil and a fatty acid amide, and (2) a fatty acid amide comprising C16 (having 1 carbon atom).
6) The above fatty acid amide or bisamide (1)
The explosive composition of (1) or (2), wherein the fatty acid amide is contained in the explosive composition in an amount of 0.01 to 4.5% by weight.
The explosive composition according to any one of (1) to (3), wherein (4) ammonium nitrate is porous prill ammonium nitrate,
(5) The explosive composition according to any one of (1) to (4), wherein the ammonium nitrate is a mixture of porous prill ammonium nitrate and a crushed product thereof.

【0009】以下、本発明を詳細に説明する。本発明に
使用される脂肪酸アミドは、滑剤として物質間のスリッ
プ性、ブロッキング防止性を良くする為のもので、C1
6(炭素数16)以上の脂肪酸アミドまたはビスアミド
が好ましく、更に好ましくはC16(炭素数16)乃至
C38(炭素数38)の脂肪酸アミドまたはビスアミド
が使用される。使用しうる脂肪酸アミドの具体例を挙げ
れば、オレイン酸アミド、ステアリン酸アミド、N,
N’−メチレンビス(ステアリルアミド)、N,N’−
エチレンビス(ステアリルアミド)、メチロール・ステ
アリルアミド等の高級脂肪酸のアミドまたはビスアミド
である。
Hereinafter, the present invention will be described in detail. The fatty acid amide used in the present invention is used as a lubricant to improve slip properties between substances and anti-blocking properties.
Fatty acid amides or bisamides having 6 (C16) or more are preferable, and fatty acid amides or bisamides having C16 (C16) to C38 (C38) are more preferably used. Specific examples of the fatty acid amide that can be used include oleic acid amide, stearic acid amide, N,
N'-methylenebis (stearylamide), N, N'-
It is an amide or bisamide of a higher fatty acid such as ethylenebis (stearylamide) or methylol stearylamide.

【0010】本発明の爆薬組成物に用いられる脂肪酸ア
ミドの量は、少なすぎると帯電防止の効果が十分でな
く、多すぎると爆薬の性能低下を来すおそれがあるた
め、本発明の爆薬組成物中に通常0.01〜4.5重量
%、好ましくは0.1〜3重量%含有される。
If the amount of the fatty acid amide used in the explosive composition of the present invention is too small, the antistatic effect is not sufficient, and if it is too large, the performance of the explosive may be reduced. The content is usually 0.01 to 4.5% by weight, preferably 0.1 to 3% by weight.

【0011】本発明の爆薬組成物においては硝安として
はポーラスプリル硝安を用いるのが好ましい。ポーラス
プリル硝安としては、吸油率が5〜24重量%、平均粒
径0.5〜2.5mm、硬度が4〜25であるようなポ
ーラスプリル硝安が好ましい。又ポーラスプリル硝安は
爆薬組成物中に通常70〜97重量%、好ましくは90
〜95重量%含有される。
In the explosive composition of the present invention, it is preferable to use porous prill nitrate as ammonium nitrate. As porous prill nitrate, porous prill nitrate having an oil absorption of 5 to 24% by weight, an average particle diameter of 0.5 to 2.5 mm, and a hardness of 4 to 25 is preferable. Porous prill ammonium salt is usually contained in the explosive composition in an amount of 70 to 97% by weight, preferably 90 to 97% by weight.
9595% by weight.

【0012】硝安の吸油率は、一定の試料硝安を軽油に
一定時間浸しておいた後、吸引濾過し試験前後の重量差
より測定される。詳しくは試料硝安50gを直径40m
m、深さ50mmの硝子フィルター(11G−1)に入
れ、上皿直示天秤で秤量し、これを真空装置にセットす
る。硝子フィルター中に軽油40mlを注入し細い棒で
よく攪拌し、硝安と軽油の混合接触を図る。5分間放置
後、硝子フィルターに付属した下部のコックを開放し、
2分間軽油を自然流下させる。引き続き真空ポンプにて
5分間吸引(約30ml/minの流速)した後、軽油
を吸着した試料硝安の入ったままの硝子フィルターを上
皿直示天秤で秤量する。増量分が軽油吸着分である。以
上の測定を終えた後、元の試料硝安50gに対する軽油
吸着分(g)の比率(%)を吸油率(%)として表示す
る。計算式は下記(1)式の通り。
The oil absorption rate of ammonium nitrate is measured by immersing a fixed amount of sample nitric acid in light oil for a fixed period of time, filtering by suction, and measuring the weight difference before and after the test. Specifically, 50 g of sample nitrate is 40 m in diameter.
m, placed in a glass filter (11G-1) having a depth of 50 mm, weighed with an upper plate direct balance, and set in a vacuum apparatus. Inject 40 ml of light oil into a glass filter, stir well with a fine rod, and mix and contact ammonium nitrate and light oil. After leaving for 5 minutes, open the lower cock attached to the glass filter,
Let light oil flow naturally for 2 minutes. Subsequently, after suctioning with a vacuum pump for 5 minutes (flow rate of about 30 ml / min), the glass filter containing the sample nitric acid adsorbing light oil is weighed with an upper plate direct balance. The increase is the light oil adsorption. After the above measurement, the ratio (%) of the light oil adsorption (g) to 50 g of the original sample nitrate is indicated as the oil absorption (%). The calculation formula is as shown in the following formula (1).

【0013】 吸油率(%)=軽油吸着分(g)/試料50(g)×100 (1)Oil absorption rate (%) = light oil adsorption (g) / sample 50 (g) × 100 (1)

【0014】硝安の吸油率は、主として粒の内部に分布
する細孔容積や有効径によって左右されるものであり、
例えば細孔容積が大きければ、粒内部に軽油を保持し得
る空間が大となるので、吸油率が大となる。
The oil absorption rate of ammonium nitrate mainly depends on the pore volume and effective diameter distributed inside the grains.
For example, if the pore volume is large, the space that can hold light oil inside the grains becomes large, so that the oil absorption rate becomes large.

【0015】硝安の平均粒径は、一定量の硝安を篩目の
異なる各種篩を通し、各篩目毎の重量分布から測定され
る。計算式は下記(2)式の通り。
The average particle size of ammonium nitrate is measured from a weight distribution of each of a certain amount of ammonium nitrate through various sieves having different sieves. The calculation formula is as shown in the following formula (2).

【0016】 D=Σ(X×R/100) (2) 但し D=平均粒径(mm) X=篩網の平均目開き(mm) R=篩網上残留分重量(%)D = Σ (X × R / 100) (2) where D = average particle size (mm) X = average size of sieve mesh (mm) R = residue weight on sieve mesh (%)

【0017】ポーラスプリル硝安の硬度は、一定量のポ
ーラスプリル硝安の試料を硬度測定装置により一定の条
件で機械的に圧潰し、圧潰された量を見ることで測定さ
れる。測定に使用される装置は、減速機を介して回転す
る垂直の回転軸上に水平に固定された回転軸と共に回転
する受け皿(直径200mm)とこの受け皿に重ねて落
とし込む回転させない挽き皿(直径190mm、重量1
715g)から構成されている。試料硝安50gを硬度
測定装置の受け皿に入れ、皿上全面に平均に拡げ、この
上に挽き皿を重ねて、装置を起動する。40r.p.m
で15秒間起動させた後、装置を停止し、静止後、受け
皿を取り出し、中の試料を所定の篩に入れ、振とう機を
使用して、1分間振とうさせる。ついで篩通過の圧潰品
を採取し、これを秤量し、元の試料硝安50gに対する
圧潰量(g)の比率(%)として表示する。計算式は下
記(3)式の通り。
The hardness of the porous prill ammonium nitrate is measured by mechanically crushing a fixed amount of a sample of the porous prill ammonium nitrate under a predetermined condition using a hardness measuring device, and observing the amount of the crushed sample. The apparatus used for the measurement is a pan (200 mm in diameter) that rotates together with a rotation axis fixed horizontally on a vertical rotation axis that rotates through a speed reducer, and a non-rotating grinding dish (190 mm in diameter) that is dropped on the pan. , Weight 1
715 g). 50 g of sample nitrate is placed in a tray of a hardness measuring device, spread evenly over the entire surface of the plate, and a grinding plate is superimposed thereon, and the device is started. 40r. p. m
After starting for 15 seconds, the apparatus is stopped, and after stopping, the tray is taken out, the sample in the sieve is put into a predetermined sieve, and shaken for 1 minute using a shaker. Then, a crushed product passed through a sieve is collected, weighed, and displayed as a ratio (%) of the crushed amount (g) to 50 g of the original sample nitrate. The calculation formula is as shown in the following formula (3).

【0018】 硬度(%)=圧潰量(g)/試料50(g)×100 (3)Hardness (%) = Amount of crush (g) / Sample 50 (g) × 100 (3)

【0019】本発明の爆薬組成物に用いられる硝安とし
ては粒状の硝安とこれを粉砕して得た粉砕硝安との混合
物であっても良い。この場合も硝安としてはポーラスプ
リル硝安が使用され又硝安の粉砕品としてはポーラスプ
リル硝安を粉砕したものであっても良い。ポーラスプリ
ル硝安の粉砕品は例えば吸油率5〜24%のポーラスプ
リル硝安を、ボールミル、エッジランナ−のような固体
を粉末状に粉砕する一般的な粉砕機を用いて粉砕するこ
とで得られる。粉砕品の平均粒径は、0.01〜0.5
mm、好ましくは0.01〜0.3mmである。
The ammonium nitrate used in the explosive composition of the present invention may be a mixture of granular ammonium nitrate and crushed ammonium nitrate. In this case as well, porous prill nitrate is used as ammonium nitrate, and pulverized porous prill nitrate may be used as a pulverized product of ammonium nitrate. The pulverized product of porous prill nitrate can be obtained, for example, by pulverizing porous prill nitrate having an oil absorption of 5 to 24% using a general pulverizer such as a ball mill or an edge runner that pulverizes a solid into a powder. The average particle size of the pulverized product is 0.01 to 0.5
mm, preferably 0.01 to 0.3 mm.

【0020】本発明において、ポーラスプリル硝安とそ
の粉砕品とは、任意の比率で混合し得るものであるが、
その混合割合は通常前者が20〜80重量%、後者が8
0〜20重量%である。
In the present invention, porous prill ammonium nitrate and its pulverized product can be mixed in any ratio.
The mixing ratio is usually 20 to 80% by weight for the former and 8 for the latter.
0 to 20% by weight.

【0021】本発明の爆薬に用いられる燃料油として
は、混合時に液体である燃料油が用いられる。使用しう
る燃料油の具体例としては2号軽油、灯油等の鉱物油、
動物油等が挙げられる。更に、用途によってメチルアル
コール、エチルアルコール等のアルコール類、パラフィ
ンワックス、マイクロクリスタリンワックス等のワック
ス類、ジニトロトルエン、ジニトロキシレン等のニトロ
化合物等が燃料油として単独又は混合して使用できる。
融点の高い燃料油は、それが液状になる温度以上で、硝
安と混合する事によって用いることができる。
As the fuel oil used in the explosive of the present invention, a fuel oil which is liquid at the time of mixing is used. Specific examples of fuel oils that can be used include mineral oils such as No. 2 light oil and kerosene,
Animal oils and the like. Further, alcohols such as methyl alcohol and ethyl alcohol, waxes such as paraffin wax and microcrystalline wax, and nitro compounds such as dinitrotoluene and dinitroxylene can be used alone or in combination as a fuel oil depending on the use.
Fuel oils with a high melting point can be used by mixing with ammonium nitrate above the temperature at which it becomes liquid.

【0022】本発明において、燃料油量は、通常爆薬組
成物中に通常2.5〜25重量%、好ましくは4〜10
重量%含有される。
In the present invention, the fuel oil amount is usually 2.5 to 25% by weight, preferably 4 to 10% by weight in the explosive composition.
% By weight.

【0023】本発明の爆薬は、当業者が周知の如く、必
要によって、硝安又はその粉砕品以外の酸化剤、例えば
硝酸カリウムや過塩素酸塩、更には、木粉、Al粉のよ
うな粉末追加燃料あるいは、他の添加剤を加える事が可
能である。
As is well known to those skilled in the art, the explosive of the present invention may contain, if necessary, an oxidizing agent other than ammonium nitrate or a crushed product thereof, for example, potassium nitrate or perchlorate, and additionally powder such as wood powder or Al powder. It is possible to add fuel or other additives.

【0024】本発明の爆薬は、前記脂肪酸アミドを燃料
油に溶解又は分散し、ニーダー、回転ミキサーのような
混合機でポーラスプリル硝安と混合、又は同様の混合機
でポーラスプリル硝安と軽油を混合した後に脂肪酸アミ
ドを加え、混合することによって製造される。又、攪
拌、混合の機能を備えているならば、他の混合機も勿論
使用可能である。融点の高い燃料油を用いる場合には、
加温及び保温の装置の設備された混合機を用いる方が好
ましい。
In the explosive of the present invention, the fatty acid amide is dissolved or dispersed in fuel oil and mixed with porous prill nitrate using a mixer such as a kneader or a rotary mixer, or mixed with porous prill nitrate and light oil using a similar mixer. After that, the fatty acid amide is added and mixed. Other mixers can of course be used as long as they have stirring and mixing functions. When using fuel oil with a high melting point,
It is preferable to use a mixer equipped with a heating and warming device.

【0025】本発明の爆薬組成物は、優れた帯電防止効
果を示すと共に、高温・高湿時においても極めて固化し
難いという特質を示す。
The explosive composition of the present invention exhibits an excellent antistatic effect and has a characteristic that it is extremely hard to solidify even at high temperature and high humidity.

【0026】[0026]

【実施例】本発明を実施例を挙げて更に詳しく説明する
が、本発明がこれらの実施例のみに限定されるものでは
ない。実施例において、部は重量部、%は重量%であ
る。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples, parts are parts by weight and% is% by weight.

【0027】実施例1 吸油率約10%、平均粒径約1.2mm、硬度約12の
ポーラスプリル硝安93.7部をシグマ翼を備えた室温
の横型ニーダーに移し、脂肪酸アミド(花王社製、脂肪
酸アマイドS(商品名))0.3部を溶解した2号軽油
6部を添加し、80rpmで5分間混合することによ
り、本発明の爆薬組成物を得た。
Example 1 93.7 parts of porous prill nitrate having an oil absorption of about 10%, an average particle diameter of about 1.2 mm and a hardness of about 12 were transferred to a horizontal kneader equipped with a sigma blade at room temperature, and subjected to fatty acid amide (manufactured by Kao Corporation). Then, 6 parts of No. 2 light oil in which 0.3 part of fatty acid amide S (trade name) was dissolved was added and mixed at 80 rpm for 5 minutes to obtain an explosive composition of the present invention.

【0028】実施例2 実施例1と同じポーラスプリル硝安93.7部を室温の
回転ミキサー(コンクリートミキサー)に移し、N,
N’−エチレンビス(ステアリルアミド)(花王社製、
カオーワックスEB−FF(商品名))0.3部を溶解
した2号軽油6部を加え、70rpmで5分間混合する
ことにより、本発明の爆薬組成物を得た。
EXAMPLE 2 93.7 parts of the same porous prill nitrate as in Example 1 were transferred to a rotary mixer (concrete mixer) at room temperature.
N'-ethylenebis (stearylamide) (manufactured by Kao Corporation,
6 parts of No. 2 light oil in which 0.3 part of Kaowax EB-FF (trade name) was dissolved was added and mixed at 70 rpm for 5 minutes to obtain an explosive composition of the present invention.

【0029】実施例3 実施例1と同じポーラスプリル硝安50部とその粉砕品
(平均粒径0.1mm)43.9部を、シグマ翼を備え
た室温の横型ニーダーに移し、2号軽油6部を加え、8
0rpmで5分間混合した。その後脂肪酸アミド(前記
脂肪酸アマイドS)0.1部を加え、同じ回転数で2分
間混合することにより、本発明の爆薬組成物を得た。
Example 3 50 parts of the same porous prill ammonium nitrate as in Example 1 and 43.9 parts of its pulverized product (average particle size: 0.1 mm) were transferred to a horizontal kneader equipped with sigma blades at room temperature. Add 8 parts
Mix for 5 minutes at 0 rpm. Thereafter, 0.1 part of a fatty acid amide (the above-mentioned fatty acid amide S) was added and mixed at the same rotation speed for 2 minutes to obtain an explosive composition of the present invention.

【0030】比較例1 実施例1と同じポーラスプリル硝安94部をシグマ翼を
備えた室温の横型ニーダーに移し、2号軽油6部を加
え、80rpmで5分間混合し、比較用の爆薬を得た。
Comparative Example 1 94 parts of the same porous prill nitrate as in Example 1 was transferred to a horizontal kneader equipped with a sigma wing at room temperature, and 6 parts of No. 2 light oil was added and mixed at 80 rpm for 5 minutes to obtain a comparative explosive. Was.

【0031】実施例及び比較例で得られた各爆薬につい
て、固化度、静電電位及び爆速の測定を行った。
For each of the explosives obtained in Examples and Comparative Examples, the degree of solidification, electrostatic potential and explosion velocity were measured.

【0032】固化度の測定に用いる試料は、内径50m
m、高さ300mmの塩ビ製の円筒形容器に各爆薬を3
00g入れ、その上に2.7kgの荷重を掛けたまま、
40℃の温度で8時間加熱した後、20℃で16時間冷
却するサイクルを1回繰り返すことによって得た。
The sample used for measuring the degree of solidification has an inner diameter of 50 m.
Each explosive is placed in a cylindrical container made of PVC, 300 mm high and 300 mm high.
While putting a 2.7kg load on it,
This was obtained by repeating a cycle of heating at a temperature of 40 ° C. for 8 hours and then cooling at 20 ° C. for 16 hours once.

【0033】固化度の測定は、長さ500mmの棹の端
部に荷重を掛けても動かない台上に設置した支柱に棹が
上下方向にのみ滑らかに動くようボルトナットで固定
し、この固定端から100mmの位置に上述の試料を置
き、固定端と反対側に徐々に荷重を掛けていき、試料の
形が崩れる荷重を読み取ることによって測定した。従っ
て、測定値が大きいほど強固に固化しているという評価
になる。
The degree of solidification is measured by using bolts and nuts so that the rod moves only vertically in a column installed on a table that does not move even if a load is applied to the end of the rod having a length of 500 mm. The above-described sample was placed at a position 100 mm from the end, a load was gradually applied to the side opposite to the fixed end, and the load was measured by reading the load at which the shape of the sample collapsed. Therefore, it is evaluated that the larger the measured value is, the more solidified it is.

【0034】静電電位の測定は、温度10℃、絶対湿度
5g・HO/kg・airにおいて、45度に傾斜し
た長さ1820mmのアルミニウム製のスパウト上にポ
リシートを敷き、スパウト上端に取り付けたホッパーか
ら各爆薬500gを100g/secで流し出し、スパ
ウト上端から700mmの位置に設けられた直径60m
mの穴を通して、スパウト裏面に対して垂直に100m
mの距離にセンサーを固定した集電式電位測定器(春日
電機社製、KS−525型)を用いて、ポリシートに発
生する静電電位を読み取ることにより行った。以上は火
薬学会規格(ES−81)に準処したものである。
At a temperature of 10 ° C. and an absolute humidity of 5 g · H 2 O / kg · air, the electrostatic potential was measured by laying a policyt on an aluminum spout having a length of 1820 mm and inclined at 45 degrees and placing the policyt on the upper end of the spout. 500 g of each explosive is poured out from the attached hopper at a rate of 100 g / sec, and a diameter of 60 m is provided at a position 700 mm from the upper end of the spout.
100m perpendicular to the back of the spout
The measurement was performed by reading the electrostatic potential generated in the policy using a current collecting potential measuring instrument (KS-525, manufactured by Kasuga Electric) having the sensor fixed at a distance of m. The above is based on the Pharmaceutical Society of Japan standard (ES-81).

【0035】又、爆速の測定は、火薬学会規格(ES−
41(1))に準処し、各爆薬150gを比重0.88
になるように内径35mm、厚さ3mm、長さ230m
mの鋼管に入れ、ブースターとしてペントライト15g
を使用して、ドートリッシュ法により行った。
The measurement of the explosion velocity is performed according to the standard of the Pharmaceutical Society of Japan (ES-
41 (1)), and 150 g of each explosive is 0.88 in specific gravity
35mm inside diameter, 3mm thick, 230m long
m, put it in a steel tube and use it as a booster
Was carried out by the Doitlish method.

【0036】各爆薬の固化度、静電電位及び爆速の測定
試験結果を表1に示す。
Table 1 shows the measurement test results of the solidification degree, electrostatic potential and explosion velocity of each explosive.

【0037】[0037]

【表1】 表1 各爆薬組成物の性能 固化度(kg) 静電電位(−kV) 爆速(m/sec) 実施例1 0.5 10 2880 実施例2 0.3 12 2850 実施例3 0.7 20 2890 比較例1 7.0 100 2850Table 1 Performance of each explosive composition Solidification degree (kg) Electrostatic potential (-kV) Explosion speed (m / sec) Example 1 0.5 10 2880 Example 2 0.3 12 2850 Example 30 0.7 20 2890 Comparative Example 1 7.0 100 2850

【0038】表1から明らかなように、固化度について
は、比較例1が非常に強く固化しているのに比べ、実施
例1〜3は固化しているとは言えない状態であり、静電
電位についても比較例と比べて実施例1〜3における高
い帯電防止性が明らかである。又、爆速に関しては、実
施例1〜3において明らかなように、脂肪酸アミドの添
加による負の影響は無いことが判る。
As is clear from Table 1, the degree of solidification is very strong in Comparative Example 1, whereas Examples 1 to 3 cannot be said to be solidified. Regarding the electric potential, the higher antistatic property in Examples 1 to 3 is apparent as compared with the comparative example. Further, as is clear from Examples 1 to 3, the explosion velocity has no negative influence due to the addition of the fatty acid amide.

【0039】[0039]

【発明の効果】高い帯電防止性を示すと共に、高温・高
湿時においても極めて固化し難いという特質を有する爆
薬組成物を得ることができた。
According to the present invention, it is possible to obtain an explosive composition which has high antistatic properties and has a characteristic that it hardly solidifies even at high temperature and high humidity.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】硝酸アンモニウム、燃料油及び脂肪酸アミ
ドを含有することを特徴とする爆薬組成物。
1. An explosive composition comprising ammonium nitrate, a fuel oil and a fatty acid amide.
【請求項2】脂肪酸アミドがC16(炭素数16)以上
の脂肪酸アミドまたはビスアミドである請求項1の爆薬
組成物。
2. The explosive composition according to claim 1, wherein the fatty acid amide is a fatty acid amide or a bisamide having C16 (C16) or more.
【請求項3】脂肪酸アミドを爆薬組成物中に0.01〜
4.5重量%含有してなる請求項1乃至請求項2のいず
れか一項に記載の爆薬組成物。
3. The method of claim 1, wherein the fatty acid amide is contained in the explosive composition in an amount of 0.01 to 0.01%.
The explosive composition according to any one of claims 1 to 2, comprising 4.5% by weight.
【請求項4】硝酸アンモニウムが、ポーラスプリル硝酸
アンモニウムである請求項1乃至請求項3のいずれか一
項に記載の爆薬組成物。
4. The explosive composition according to claim 1, wherein the ammonium nitrate is porous prill ammonium nitrate.
【請求項5】硝酸アンモニウムが、ポーラスプリル硝酸
アンモニウムとその粉砕品の混合物である請求項1乃至
請求項4のいずれか一項に記載の爆薬組成物。
5. The explosive composition according to claim 1, wherein the ammonium nitrate is a mixture of porous prill ammonium nitrate and a pulverized product thereof.
JP12991998A 1998-05-13 1998-05-13 Explosive composition Pending JPH11322481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12991998A JPH11322481A (en) 1998-05-13 1998-05-13 Explosive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12991998A JPH11322481A (en) 1998-05-13 1998-05-13 Explosive composition

Publications (1)

Publication Number Publication Date
JPH11322481A true JPH11322481A (en) 1999-11-24

Family

ID=15021652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12991998A Pending JPH11322481A (en) 1998-05-13 1998-05-13 Explosive composition

Country Status (1)

Country Link
JP (1) JPH11322481A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071363A1 (en) * 2011-11-17 2013-05-23 Dyno Nobel Asia Pacific Pty Ltd Blasting compositions
RU2556107C1 (en) * 2014-07-01 2015-07-10 Мария Сергеевна Кирилова Method of obtaining waterproof ammonite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071363A1 (en) * 2011-11-17 2013-05-23 Dyno Nobel Asia Pacific Pty Ltd Blasting compositions
CN103946184A (en) * 2011-11-17 2014-07-23 戴诺诺贝尔亚太股份有限公司 Blasting compositions
CN103946184B (en) * 2011-11-17 2019-09-24 戴诺诺贝尔亚太股份有限公司 Explosive composite
US10723670B2 (en) 2011-11-17 2020-07-28 Dyno Nobel Asia Pacific Pty Limited Blasting compositions
RU2556107C1 (en) * 2014-07-01 2015-07-10 Мария Сергеевна Кирилова Method of obtaining waterproof ammonite

Similar Documents

Publication Publication Date Title
JPH11322481A (en) Explosive composition
JP2002047088A (en) Granular explosive composition with water resistance
JP3797826B2 (en) Explosive composition
WO2004009516A1 (en) Waterproof granular explosive composition
JPH11278974A (en) Explosive composition
JPH11147784A (en) Explosive composition
JP2002137983A (en) Explosion composition
EP0020156B1 (en) Cap-sensitive powdered explosive composition
JP2002029877A (en) Water resistant granular explosive composition
JP2007008753A (en) Explosive composition
JP3862828B2 (en) Explosive composition
JPH10291883A (en) Explosive composition
JP3797840B2 (en) Explosive composition
JP2005132636A (en) Explosive composition
JP2002060293A (en) Water resistant granular explosive composition
JP3599623B2 (en) Explosive composition
JP4622549B2 (en) Water-resistant granular explosive composition
JP2011168458A (en) Explosive composition
JP2009057258A (en) Ammonium nitrate oil explosive
JP2002348187A (en) Explosive composition
JP2004002169A (en) Explosive composition
JP3773270B2 (en) explosive
JP2004051479A (en) Water-resistant granular explosive composition
JP2002338383A (en) Explosive composition
JP2004067506A (en) Water resistant granular explosive composition