JPH10291883A - Explosive composition - Google Patents

Explosive composition

Info

Publication number
JPH10291883A
JPH10291883A JP11746497A JP11746497A JPH10291883A JP H10291883 A JPH10291883 A JP H10291883A JP 11746497 A JP11746497 A JP 11746497A JP 11746497 A JP11746497 A JP 11746497A JP H10291883 A JPH10291883 A JP H10291883A
Authority
JP
Japan
Prior art keywords
starch
ammonium nitrate
mixture
explosive
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11746497A
Other languages
Japanese (ja)
Inventor
Hideaki Sugihara
秀明 杉原
Hiroyuki Taniguchi
弘幸 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP11746497A priority Critical patent/JPH10291883A/en
Publication of JPH10291883A publication Critical patent/JPH10291883A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/28Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
    • C06B31/285Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate with fuel oil, e.g. ANFO-compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an explosive compsn. less liable to cake even at high temp. and humidity and having superior antistatic performance by incorporating ammonium nitrate, fuel oil and starch or modified starch. SOLUTION: This explosive compsn. contains 70-97 wt.% ammonium nitrate, 2 5-25 wt.% fuel oil and 0.01-4.5 wt.% starch or modified starch. The ammonium nitrate is porous ammonium nitrate granule or a mixture of porous ammonium nitrate granule with its crushed product and has 5-24% rate of oil absorption, 0.5-2.5 mm average diameter and a hardness of 4-25. The fuel oil is, e.g. mineral oil, animal oil, alcohol, wax, a nitro compd. or a mixture of them. The starch is, e.g. wheat starch, cornstarch, rice starch or a mixture of them. The modified starch is, e.g. oxidized starch, acetyl starch, phosphated starch or a mixture of them. The average particle diameter of the starch or modified starch is 2-500 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、爆薬組成物に関す
る。更に詳しくは、採石、採鉱等の産業用爆破作業、と
りわけ穿孔等に直接流し込んで行われる爆破作業に利用
可能な爆薬組成物に関する。
[0001] The present invention relates to explosive compositions. More specifically, the present invention relates to an explosive composition that can be used for industrial blasting operations such as quarrying and mining, and in particular, blasting operations that are directly performed by pouring into a perforation or the like.

【0002】[0002]

【従来の技術】産業用爆破作業に用いられる爆薬として
は、ダイナマイト、含水爆薬、硝安爆薬、硝安と燃料油
を主要成分とする爆薬(以下ANFO爆薬という)等が
良く知られている。採石、採鉱用の爆薬としては、安価
であり、又穿孔に直接流し込んで使用できるという利点
からANFO爆薬が使用される場合が多い。
2. Description of the Related Art As explosives used in industrial blasting operations, dynamite, hydrous explosives, nitrite explosives, explosives containing ammonium nitrate and fuel oil as main components (hereinafter referred to as ANFO explosives) and the like are well known. As an explosive for quarrying and mining, ANFO explosives are often used because they are inexpensive and can be directly poured into perforations.

【0003】[0003]

【発明が解決しようとする課題】ANFO爆薬の主成分
は、多孔質粒状の硝酸アンモニウム(以下ポーラスプリ
ル硝安という)で、爆薬全体の90重量%以上を占める
事が多い。ANFO爆薬は、このポーラスプリル硝安に
軽油などの液体燃料を混合した比較的簡単な構成の爆薬
である。
The main component of the ANFO explosive is porous and granular ammonium nitrate (hereinafter referred to as porous prill nitrate), which often accounts for 90% by weight or more of the entire explosive. The ANFO explosive is an explosive having a relatively simple structure in which a liquid fuel such as light oil is mixed with the porous prill nitrate.

【0004】硝安は、水100gに対して0℃で約12
0g、又100℃では約950g溶解する水に溶けやす
い物質であり、高温において水に対する溶解度が急激に
増大する性質を有している。
[0004] Ammonium is about 12 g at 0 ° C for 100 g of water
It is a substance easily soluble in water that dissolves at 0 g or at about 950 g at 100 ° C., and has the property that its solubility in water rapidly increases at high temperatures.

【0005】ANFO爆薬の主成分は、前述の様にポー
ラスプリル硝安である為、夏期などの高温時期には、高
い温度の貯蔵条件下において空気中の水分或いは包材に
含まれる水分によって硝安の表面が一部溶解し、夜間等
に温度が下がると溶解した硝安表面から結晶が析出し、
この際隣接する硝安粒子同士が固着するといった現象を
繰り返し生じ、ANFO爆薬全体が固まる(固化、ケー
キングとも言う)という問題が見られる。この固化を防
ぐには、ANFO爆薬の温度を上昇させない、換言すれ
ば、貯蔵場所の空調をする等の処置をすれば防げるが、
費用的あるいは貯蔵場所の確保等で困難な事が多い。こ
の問題を防ぐ為にポーラスプリル硝安に固化防止剤が混
入されており、これによりある程度固化防止が可能であ
るが、著しい高温高湿の場合には十分な固化防止ができ
ない。
[0005] Since the main component of the ANFO explosive is porous prill nitrate as described above, under high temperature storage conditions such as summertime, under high temperature storage conditions, the moisture in the air or the moisture contained in the packaging material reduces the amount of nitrate. When the surface partially dissolves and the temperature drops at night or the like, crystals precipitate from the dissolved ammonium nitrate surface,
At this time, the phenomenon that the adjacent ammonium nitrate particles adhere to each other repeatedly occurs, and a problem is observed that the entire ANFO explosive solidifies (also referred to as solidification or caking). In order to prevent this solidification, it is possible to prevent the temperature of the ANFO explosive from being raised, in other words, by taking measures such as air-conditioning the storage location.
This is often difficult due to cost or storage space. In order to prevent this problem, an anti-solidification agent is mixed into the porous prilled ammonium nitrate, which can prevent solidification to some extent. However, in the case of extremely high temperature and high humidity, solidification cannot be sufficiently prevented.

【0006】又、ANFO爆薬は、発破孔への装填のた
めに空気搬送方式の装填機によって高速で送られるとき
や流し込み装填のときに、爆薬粒子同士の摩擦あるいは
爆薬粒子とホース壁面、被破壊物の壁面との摩擦によっ
て多量の静電気が発生する。発生した静電気は、ANF
O爆薬自身、発破孔、ホース、装填作業者等に帯電蓄積
され、電気雷管への放電による爆発事故を引き起こす危
険性がある。
Further, when the ANFO explosive is sent at a high speed by a pneumatic conveying type loading machine for loading into a blast hole or when it is poured into a blast hole, friction between the explosive particles or the explosive particles and the hose wall surface, the destruction of the hose, A large amount of static electricity is generated by friction with the wall of an object. The generated static electricity is ANF
There is a danger that the O-explosive itself is charged and accumulated in a blast hole, a hose, a loading operator, etc., and causes an explosion accident due to discharge to an electric detonator.

【0007】これに対する一般的な対策として、水溶性
の静電気防止剤を水溶液としてANFO爆薬に含有させ
る方法や、油溶性の帯電防止剤を軽油に溶解し使用する
方法が実施されているが、水溶性物質の使用は水分を吸
収することになり、又油溶性物質を使用した場合も高温
時の水分透過を十分に防げず、いずれの場合もANFO
爆薬が固化するという問題は解決されていない。
As a general countermeasure against this, a method of incorporating a water-soluble antistatic agent into an ANFO explosive as an aqueous solution or a method of dissolving an oil-soluble antistatic agent in light oil and using the same has been practiced. The use of water-soluble substances absorbs water, and the use of oil-soluble substances does not sufficiently prevent water permeation at high temperatures.
The problem of explosive solidification has not been solved.

【0008】[0008]

【課題を解決する為の手段】本発明者は、前記問題を解
決すべく鋭意研究の結果、ANFO爆薬の添加剤として
デンプン類又は化工デンプンを使用することにより、A
NFO爆薬の固化を生じ難くする事が出来るだけでな
く、優れた帯電防止効果をも示すことを見出し、本発明
を完成させたものである。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has found that the use of starch or modified starch as an additive for ANFO explosives has led to
The present invention has been found to not only make it harder for the NFO explosive to solidify, but also to show an excellent antistatic effect, thereby completing the present invention.

【0009】即ち、本発明は、 (1)硝酸アンモニウム、燃料油とデンプン類又は化工
デンプンを含有することを特徴とする爆薬組成物 (2)デンプン類又は化工デンプンを、爆薬組成物全体
に対して0.01〜4.5重量%含有してなる(1)に
記載の爆薬組成物 (3)硝酸アンモニウムが、ポーラスプリル硝酸アンモ
ニウム又はポーラスプリル硝酸アンモニウムとその粉砕
品の混合物である(1)に記載の爆薬組成物 に関する。
That is, the present invention provides: (1) an explosive composition comprising ammonium nitrate, a fuel oil and starch or modified starch; and (2) a starch or modified starch with respect to the entire explosive composition. The explosive composition according to (1), wherein the explosive composition according to (1) is contained in an amount of 0.01 to 4.5% by weight. (3) The ammonium nitrate is a porous prill ammonium nitrate or a mixture of porous prill ammonium nitrate and a crushed product thereof. Composition.

【0010】以下、本発明を詳細に説明する。本発明の
爆薬組成物で用いられるデンプン類又は化工デンプンと
しては、起源植物により円形、楕円形及び多角形等種々
の形状のものがあるが、いずれのものであっても使用出
来る。使用し得るデンプン類の具体例としては、可溶性
デンプン、小麦デンプン、トウモロコシデンプン、バレ
イショデンプン、米デンプン、甘しょデンプン、タピオ
カデンプン等が、又使用し得る化工デンプンの具体例と
しては、α−デンプン、酸化デンプン、アセチルデンプ
ン、リン酸デンプン、エ−テル化デンプン(ヒドロキシ
エチルデンプン、ヒドロキシメチルデンプン、デンプン
グリコール酸ナトリウム等)、デンプン−アクリル酸グ
ラフト重合体等がそれぞれ挙げられ、これらは単独又は
2種以上混合して用いられる。その平均粒径としては、
通常2〜500μm、好ましくは10〜100μmであ
る。本発明の爆薬組成物に用いられるデンプン類又は化
工デンプンとしては、前述の物質のいずれを用いても効
果があるが、特に小麦デンプンが優れた効果を示す。
Hereinafter, the present invention will be described in detail. The starches or modified starches used in the explosive composition of the present invention include various shapes such as a circle, an ellipse, and a polygon depending on the source plant, and any of them can be used. Specific examples of starches that can be used include soluble starch, wheat starch, corn starch, potato starch, rice starch, sweetened starch, tapioca starch, and the like.Examples of modified starch that can be used include α-starch. , Oxidized starch, acetyl starch, phosphate starch, etherified starch (hydroxyethyl starch, hydroxymethyl starch, sodium starch glycolate, etc.), starch-acrylic acid graft polymer and the like. Used as a mixture of more than one species. As the average particle size,
Usually, it is 2 to 500 μm, preferably 10 to 100 μm. As the starch or modified starch used in the explosive composition of the present invention, any of the above-mentioned substances is effective, but wheat starch in particular exhibits an excellent effect.

【0011】本発明の爆薬組成物に用いられるデンプン
類又は化工デンプンの量は、少なすぎると効果が十分で
なく、多すぎると爆薬としての性能低下が生じるおそれ
がある為、爆薬組成物全体に対して好ましくは0.01
〜4.5重量%、更に好ましくは0.2〜3重量%の範
囲で使用される。
If the amount of starch or modified starch used in the explosive composition of the present invention is too small, the effect is not sufficient. If the amount is too large, the performance as an explosive may be reduced. Preferably 0.01
To 4.5% by weight, more preferably 0.2 to 3% by weight.

【0012】本発明の爆薬組成物に用いられる硝安は、
吸油率が5〜24%、平均粒径0.5〜2.5mmでか
つ、硬度が4〜25であるポーラスプリル硝安(未粉砕
品)が好ましい。本発明で用いる硝安としては、ポーラ
スプリル硝安又はポーラスプリル硝安とその粉砕品の混
合物であってもよく、その使用量は、爆薬組成物全体に
対して通常70〜97重量%の範囲であるが、好ましく
は90〜95重量%の範囲で使用される。
The ammonium nitrate used in the explosive composition of the present invention is:
Porous prill nitrate (unground product) having an oil absorption of 5 to 24%, an average particle size of 0.5 to 2.5 mm, and a hardness of 4 to 25 is preferable. The ammonium nitrate used in the present invention may be porous prill nitrate or a mixture of porous prill nitrate and its pulverized product, and the amount used is usually in the range of 70 to 97% by weight based on the entire explosive composition. , Preferably in the range of 90 to 95% by weight.

【0013】硝安の吸油率は、一定の試料硝安を軽油に
一定時間浸しておいた後、吸引濾過し試験前後の重量差
より油吸着量を計算することによって算出される。例え
ば、試料硝安50gを直径40mm、深さ50mmの硝
子フィルター(11G−1)に入れ、上皿直示天秤で秤
量し、これを真空装置にセットする。ついで硝子フィル
ター中に軽油40mlを注入し細い棒でよく攪拌し、硝
安と軽油の混合接触を図る。5分間放置後、硝子フィル
ターに付属した下部のコックを開放し、2分間軽油を自
然流下させる。引き続き真空ポンプにて5分間吸引(約
30ml/minの流速)した後、軽油を吸着した試料
硝安の入ったままの硝子フィルターを上皿直示天秤で秤
量する。増量分が軽油吸着分である。元の試料硝安50
gに対する軽油吸着分(g)の比率(%)を吸油率
(%)として表示する。計算式は下記(1)式の通り。
以上は工業火薬協会において定められた方法に準拠した
ものである。
The oil absorption rate of ammonium nitrate is calculated by immersing a predetermined amount of sample nitric acid in light oil for a certain period of time, performing suction filtration, and calculating the oil adsorption from the weight difference before and after the test. For example, 50 g of sample nitric acid is placed in a glass filter (11G-1) having a diameter of 40 mm and a depth of 50 mm, weighed with an upper direct balance, and set in a vacuum device. Next, 40 ml of light oil is injected into the glass filter, and the mixture is thoroughly stirred with a thin rod to achieve mixed contact between ammonium nitrate and light oil. After standing for 5 minutes, open the lower cock attached to the glass filter and let light oil flow naturally for 2 minutes. Subsequently, after suctioning with a vacuum pump for 5 minutes (at a flow rate of about 30 ml / min), the glass filter containing the sample ammonium adsorbed with light oil is weighed with an upper plate direct balance. The increase is the light oil adsorption. Original sample nitrate 50
The ratio (%) of the light oil adsorption (g) to g is indicated as the oil absorption (%). The calculation formula is as shown in the following formula (1).
The above is based on the method defined by the Industrial Explosives Association.

【0014】 吸油率(%)=軽油吸着分(g)/試料50(g)×100 (1)Oil absorption rate (%) = gas oil adsorption (g) / sample 50 (g) × 100 (1)

【0015】硝安の吸油率は、主として粒の内部に分布
する細孔容積や有効径(軽油が浸透可能な細孔の最小
径)によって左右されるものであり、例えば細孔容積が
大きければ、粒内部に軽油を保持し得る空間が大となる
ので吸油率が大となる。
The oil absorption rate of ammonium nitrate depends mainly on the pore volume and effective diameter (minimum diameter of pores through which light oil can penetrate) distributed inside the grains. For example, if the pore volume is large, Since the space capable of holding the light oil inside the grains is large, the oil absorption rate is large.

【0016】粒子内部に多くの細孔を有するいわゆるポ
ーラスプリル硝安は、通常調節された濃度の高温硝安溶
解水溶液を噴射造粒装置(プリリング・グラニュレータ
又はプリリング・タワー)を通すことで造粒され、引き
続く乾燥工程、冷却工程などを経て製造されている。ポ
ーラスプリル硝安の細孔容積、細孔有効径などは、造粒
工程における硝安濃度や溶解液温度などの原料条件及び
造粒装置、乾燥装置の操作条件等の製造過程に大きく支
配されており、これらの製造過程を調節することで所望
の吸油率のものが得られる。
The so-called porous prill nitrate having many pores inside the particles is usually granulated by passing an aqueous solution of a high-temperature nitrate solution having a controlled concentration through an injection granulator (a pre-ring granulator or a pre-ring tower). It is manufactured through a subsequent drying step, cooling step, and the like. The pore volume, effective pore diameter, etc. of porous prill ammonium nitrate are largely governed by raw material conditions such as ammonium nitrate concentration and solution temperature in the granulation process, granulation equipment, and manufacturing processes such as operating conditions of the drying equipment. By adjusting these manufacturing processes, a product having a desired oil absorption can be obtained.

【0017】硝安の平均粒径は、一定量の硝安を篩目の
異なる各種篩を通し、各篩目毎の重量から得られる重量
分布から計算される。計算式は下記(2)式の通り。
The average particle size of ammonium nitrate is calculated from a weight distribution obtained by passing a certain amount of ammonium nitrate through various sieves having different sieves and obtaining the weight of each sieve. The calculation formula is as shown in the following formula (2).

【0018】 D=Σ(R×X/100) (2) 但し D=平均粒径(mm) R=各々の篩網上残留分重量(%) X=篩網の平均目開き(mm)D = Σ (R × X / 100) (2) where D = average particle size (mm) R = residual weight on each sieve mesh (%) X = average mesh size of sieve mesh (mm)

【0019】粒状硝安の硬度は、一定量の試料硝安を硬
度測定装置により一定の条件で機械的に圧潰し、圧潰さ
れた量の測定値を使用して計算される。使用される装置
は、減速機を介して回転する垂直の回転軸上に水平に固
定された回転軸と共に回転する受け皿(直径200m
m)と、この受け皿に重ねて落とし込む回転させない挽
き皿(直径190mm、重量1715g)から構成され
ている。試料硝安50gを硬度測定装置の受け皿に入
れ、皿上全面に平均に拡げ、この上に挽き皿を重ねて装
置を起動する。一定時間経過後装置を停止し、静止後受
け皿を取り出し、中の試料を所定の篩に入れ、振とう機
を使用して1分間振とうさせる。ついで篩通過の圧潰品
を採取し、これを秤量し、元の試料硝安50gに対する
圧潰量(g)の比率(%)を硬度として表示する。計算
式は下記(3)式の通り。以上は工業火薬協会法に定め
られた方法に準拠したものである。
The hardness of granular ammonium nitrate is calculated by mechanically crushing a fixed amount of sample nitric acid by a hardness measuring device under certain conditions, and using the measured value of the crushed amount. The device used is a pan (200 m diameter) that rotates with a horizontally fixed rotation axis on a vertical rotation axis that rotates through a speed reducer.
m) and a non-rotating grind plate (diameter 190 mm, weight 1715 g) which is dropped onto the tray. 50 g of sample nitrate is placed in a tray of a hardness measuring device, spread evenly over the entire surface of the plate, and a grinding plate is placed on top of this to start the device. After a certain period of time, the apparatus is stopped, and after the standstill, the pan is taken out, the sample inside is put into a predetermined sieve, and shaken for 1 minute using a shaker. Then, a crushed product passed through a sieve is collected, weighed, and the ratio (%) of the crushed amount (g) to 50 g of the original sample nitrate is indicated as hardness. The calculation formula is as shown in the following formula (3). The above is based on the method defined in the Industrial Explosives Association Law.

【0020】 硬度(%)=圧潰量(g)/試料50(g)×100 (3)Hardness (%) = Amount of crush (g) / Sample 50 (g) × 100 (3)

【0021】本発明の爆薬組成物に用いられる硝安は、
ポーラスプリル硝安の粉砕品であってもよく、そのよう
な粉砕品は、吸油率5〜24%のポーラスプリル硝安
を、ボールミル、エッジランナーのような固体物質を粉
末状に粉砕する一般的な粉砕機を用いて粉砕することに
より得られ、平均粒径は、通常0.01〜0.5mm、
好ましくは0.01〜0.3mmである。
The ammonium nitrate used in the explosive composition of the present invention is:
A pulverized product of porous prill nitrate may be used. Such a pulverized product is a general pulverization method of pulverizing porous prill nitrate having an oil absorption of 5 to 24% into a powdery form of a solid material such as a ball mill and an edge runner. The average particle size is usually 0.01 to 0.5 mm,
Preferably it is 0.01 to 0.3 mm.

【0022】本発明の爆薬組成物においては、ポーラス
プリル硝安とその粉砕品を混合して用いるのが好まし
く、その割合は任意である。
In the explosive composition of the present invention, it is preferable to use a mixture of porous prill nitrate and its pulverized product, and the ratio is arbitrary.

【0023】本発明の爆薬組成物に用いられる燃料油
は、混合時に液状である油が好ましい。使用し得る燃料
油の具体例としては、2号軽油、灯油等の鉱物油、動物
油等が挙げられる。更に、用途によってアルコール類、
ワックス類、ニトロ化合物等が燃料油として単独又は混
合して使用できる。燃料油は、常温で液体であれば加温
する必要がないが、融点の高いものについては加温して
液状とし、それが液状になる温度以上でポーラスプリル
硝安と混合するのが好ましい。
The fuel oil used in the explosive composition of the present invention is preferably an oil which is liquid at the time of mixing. Specific examples of usable fuel oils include mineral oils such as No. 2 light oil and kerosene, and animal oils. Further, depending on the application, alcohols,
Waxes, nitro compounds and the like can be used alone or as a mixture as a fuel oil. It is not necessary to heat the fuel oil if it is liquid at normal temperature, but it is preferable that the fuel oil having a high melting point is heated to be liquid and mixed with the porous prill nitrate at a temperature higher than the temperature at which it becomes liquid.

【0024】本発明の爆薬組成物に用いられる燃料油の
使用量は、通常爆薬組成物全体の2.5〜25重量%、
好ましくは4〜10重量%の範囲である。
The amount of fuel oil used in the explosive composition of the present invention is usually 2.5 to 25% by weight of the entire explosive composition,
Preferably it is in the range of 4 to 10% by weight.

【0025】本発明の爆薬組成物は、必要によってポー
ラスプリル硝安及び/又はその粉砕品以外の酸化剤、例
えば硝酸カリウムや過塩素酸塩、更には木粉、Al粉の
ような粉末燃料等その他の添加剤を加える事ができる。
The explosive composition of the present invention may contain, if necessary, an oxidizing agent other than porous prill nitrate and / or its pulverized product, for example, potassium nitrate and perchlorate, and other powdered fuels such as wood powder and Al powder. Additives can be added.

【0026】本発明の爆薬組成物は、ニーダー、回転ミ
キサーのような混合機を使用し、ポーラスプリル硝安又
はポーラスプリル硝安とその粉砕品の混合物、燃料油及
びデンプン類又は化工デンプンを混合することによって
製造される。ポーラスプリル硝安又はポーラスプリル硝
安とその粉砕品の混合物と燃料油を混合した後、デンプ
ン類又は化工デンプンを添加する方が好ましい。又、攪
拌、混合の機能を備えているならば、他の混合機も使用
可能である。融点の高い燃料油を用いる場合には、加温
及び保温の装置の設備された混合機を用いるのが好まし
い。混合は、ポーラスプリル硝安の粒があまり粉砕され
ない攪拌、混合速度及び時間で行われる事が好ましく、
通常20rpm〜120rpm程度の回転数で2分〜2
0分程度の混合を行えば良い。ポーラスプリル硝安又は
ポーラスプリル硝安とその粉砕品の混合物と燃料油、デ
ンプン類又は化工デンプンを別々に加えて混合する時
は、ポーラスプリル硝安又はポーラスプリル硝安とその
粉砕品の混合物と燃料油の混合を20rpm〜120r
pm程度の回転数で2分〜20分程度、更にこれにデン
プン類又は化工デンプンを加えて20rpm〜120r
pm程度の回転数で1分〜20分程度混合すれば良い。
The explosive composition of the present invention is obtained by using a mixer such as a kneader or a rotary mixer to mix porous prill nitrate or a mixture of porous prill nitrate and its pulverized product, fuel oil and starch or modified starch. Manufactured by It is preferable to add starch or modified starch after mixing fuel oil with porous prill nitrate or a mixture of porous prill nitrate and its pulverized product. In addition, other mixers can be used as long as they have stirring and mixing functions. When a fuel oil having a high melting point is used, it is preferable to use a mixer equipped with a heating and warming device. It is preferable that the mixing is performed with stirring, mixing speed and time in which the particles of the porous prill nitrate are not so crushed,
Normally at a rotation speed of about 20 rpm to 120 rpm for 2 minutes to 2
Mixing may be performed for about 0 minutes. When separately adding and mixing the fuel oil, starch or modified starch, the mixture of the porous prill nitrate or the mixture of the porous prill nitrate and the pulverized product and the fuel oil, 20 rpm to 120 r
about 2 minutes to 20 minutes at a rotation speed of about pm, and further add starches or modified starch to the mixture and add 20 to 120 rpm.
The mixing may be performed at a rotation speed of about pm for about 1 to 20 minutes.

【0027】本発明の爆薬組成物は、固化防止剤及び帯
電防止剤とし機能するデンプン類又は化工デンプンを含
有するため、優れた帯電防止効果を有すると共に、高温
高湿時においても極めて固化し難いという特質を示す。
Since the explosive composition of the present invention contains a starch or a modified starch which functions as an anti-solidification agent and an antistatic agent, it has an excellent antistatic effect and is extremely hard to solidify even at high temperature and high humidity. It shows the characteristic that.

【0028】[0028]

【実施例】本発明を実施例を挙げて更に詳しく説明する
が、本発明がこれらの実施例のみに限定されるものでは
ない。実施例において、部は重量部を意味する。又%は
重量%である。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples, parts mean parts by weight. % Is% by weight.

【0029】実施例1 吸油率12%、平均粒径1mm、硬度12のポーラスプ
リル硝安93.5部をシグマ翼を備えた室温の横型ニー
ダーに移し、2号軽油6部を添加し、80rpmで5分
間混合した。その後平均粒径約20μmの小麦デンプン
0.5部を加え、同じ回転数で1分間混合し、本発明の
爆薬組成物を得た。
Example 1 93.5 parts of porous prill nitrate having an oil absorption of 12%, an average particle diameter of 1 mm and a hardness of 12 were transferred to a horizontal kneader equipped with a sigma blade at room temperature, and 6 parts of No. 2 light oil was added. Mix for 5 minutes. Thereafter, 0.5 parts of wheat starch having an average particle size of about 20 μm was added and mixed at the same rotation speed for 1 minute to obtain an explosive composition of the present invention.

【0030】実施例2 実施例1と同じポーラスプリル硝安93.1部を室温の
回転ミキサー(コンクリートミキサー)に移し、2号軽
油5.9部を加え、70rpmで3分間混合し、その後
平均粒径約200μmのデンプングリコール酸ナトリウ
ム1.0部を加え、同じ回転数で更に5分間混合し、本
発明の爆薬組成物を得た。
Example 2 93.1 parts of the same porous prill ammonium nitrate as in Example 1 was transferred to a rotary mixer (concrete mixer) at room temperature, 5.9 parts of No. 2 light oil was added, and the mixture was mixed at 70 rpm for 3 minutes. 1.0 part of sodium starch glycolate having a diameter of about 200 μm was added and mixed at the same rotation speed for another 5 minutes to obtain an explosive composition of the present invention.

【0031】実施例3 実施例1と同じポーラスプリル硝安50部とその粉砕品
(平均粒径0.1mm)43.1部を、シグマ翼を備え
た室温の横型ニーダーに移し、2号軽油5.9部を加
え、80rpmで2分間混合した。その後、平均粒径約
20μmの小麦デンプン1.0部を加え、同じ回転数で
更に3分間混合し、本発明の爆薬組成物を得た。
Example 3 50 parts of the same porous prill nitrate as in Example 1 and 43.1 parts of its pulverized product (average particle size: 0.1 mm) were transferred to a horizontal kneader equipped with sigma blades at room temperature. .9 parts were added and mixed at 80 rpm for 2 minutes. Thereafter, 1.0 part of wheat starch having an average particle size of about 20 μm was added, and the mixture was further mixed at the same rotation speed for 3 minutes to obtain an explosive composition of the present invention.

【0032】比較例1 実施例1と同じポーラスプリル硝安94部をシグマ翼を
備えた室温の横型ニーダーに移し、2号軽油6部を加
え、80rpmで5分間混合し、比較用の爆薬組成物を
得た。
Comparative Example 1 94 parts of the same porous prill nitrate as in Example 1 was transferred to a horizontal kneader equipped with a sigma wing at room temperature, 6 parts of No. 2 light oil was added, and mixed at 80 rpm for 5 minutes to prepare a comparative explosive composition. I got

【0033】実施例及び比較例で得られた各爆薬組成物
について、固化度、静電電位及び爆速の測定を行った。
For each of the explosive compositions obtained in Examples and Comparative Examples, the degree of solidification, electrostatic potential and explosion velocity were measured.

【0034】固化度の測定に用いる試料は、内径50m
m、高さ300mmの塩ビ製の円筒形容器に各爆薬組成
物を300g入れ、その上に2.7kgの荷重を掛けた
まま、40℃の温度で8時間加熱した後、20℃で16
時間冷却するサイクルを2回繰り返すことによって得
た。
The sample used for measuring the degree of solidification has an inner diameter of 50 m.
m, 300 g of each explosive composition in a cylindrical container made of PVC having a height of 300 mm, heated at a temperature of 40 ° C. for 8 hours while applying a load of 2.7 kg thereon, and then heated at 20 ° C. for 16 hours.
Obtained by repeating the time cooling cycle twice.

【0035】固化度の測定は、長さ500mmの棹の端
部に荷重を掛けても動かない台上に設置した支柱に棹が
上下方向にのみ滑らかに動くようボルトナットで固定
し、この固定端から100mmの位置に上述の試料を置
き、固定端と反対側に徐々に荷重を掛けていき、試料の
形が崩れる荷重を読み取ることによって測定した。従っ
て、測定値が大きいほど強固に固化しているという評価
になる。
The degree of solidification is measured by using bolts and nuts so that the rod moves only vertically in a column installed on a stand that does not move even if a load is applied to the end of the rod having a length of 500 mm. The above-described sample was placed at a position 100 mm from the end, a load was gradually applied to the side opposite to the fixed end, and the load was measured by reading the load at which the shape of the sample collapsed. Therefore, it is evaluated that the larger the measured value is, the more solidified it is.

【0036】静電電位の測定は、温度10℃、絶対湿度
5g・H2O/kg・airにおいて、45°に傾斜し
た長さ1820mmのアルミニウム製のスパウト上にポ
リシートを敷き、スパウト上端に取り付けたホッパーか
ら各爆薬組成物500gを100g/secで流し出
し、スパウト上端から700mmの位置に設けられた直
径60mmの穴を通して、スパウト裏面に対して垂直に
100mmの距離にセンサーを固定した集電式電位測定
器(春日電機社製、KS−525型)を用いて、ポリシ
ートに発生する静電電位を読み取ることにより行った。
以上は火薬学会において定められた規格(ES−81)
に準拠したものである。
The electrostatic potential was measured at a temperature of 10 ° C. and an absolute humidity of 5 g · H 2 O / kg · air. A current collector in which 500 g of each explosive composition was poured out from the attached hopper at 100 g / sec, and a sensor was fixed at a distance of 100 mm vertically to the back surface of the spout through a hole with a diameter of 60 mm provided at a position 700 mm from the upper end of the spout. The measurement was carried out by reading the electrostatic potential generated in the policy using a potentiometer (KS-525, manufactured by Kasuga Electric).
The above is the standard (ES-81) defined by the Pharmacopoeia
It is based on.

【0037】又、爆速の測定は、火薬学会において定め
られた規格(ES−41(1))に準拠し、各爆薬組成
物150gを比重0.88になるように内径35mm、
厚さ3mm、長さ230mmの鋼管に入れ、ブースター
としてペントライト15gを使用して、ドートリッシュ
法により行った。
The measurement of the explosion velocity is based on the standard (ES-41 (1)) defined by the Pharmaceutical Society of Japan, and 150 g of each explosive composition has an inner diameter of 35 mm and a specific gravity of 0.88.
The sample was placed in a steel tube having a thickness of 3 mm and a length of 230 mm, and was subjected to a Dortolish method using 15 g of a pentolite as a booster.

【0038】各爆薬組成物の固化度、静電電位及び爆速
の測定試験結果を表1に示す。
Table 1 shows the measurement test results of the solidification degree, electrostatic potential and explosion speed of each explosive composition.

【0039】[0039]

【表1】 表1 固化度(kg) 静電電位(−kV) 爆速(m/sec) 実施例1 0.1 10 2880 実施例2 0.5 30 2850 実施例3 0.1 10 2980 比較例1 13.62 100 2850Table 1 Solidification degree (kg) Electrostatic potential (-kV) Explosion velocity (m / sec) Example 1 0.1 10 2880 Example 2 0.5 30 2850 Example 3 0.1 10 2980 Comparative example 1 13.62 100 2850

【0040】表1から判るように、固化度については、
比較例1が非常に強く固化しているのに比べ、実施例1
〜3は固化しているとは言えない状態であり、静電電位
についても、比較例と比べて実施例1〜3における優れ
た帯電防止効果を示すことが明らかである。又、爆速に
関しては、実施例1〜3において明らかなように、小麦
デンプン及びデンプングリコール酸ナトリウムの添加に
よる爆速の低下が無いことが判る。
As can be seen from Table 1, regarding the degree of solidification,
Comparative Example 1 is very strongly solidified, while Example 1
No. to No. 3 cannot be said to be solidified, and it is clear that the antistatic effect in Examples 1 to 3 is also superior with respect to the electrostatic potential in Comparative Examples. In addition, regarding the explosion speed, as is clear from Examples 1 to 3, it was found that there was no decrease in the explosion speed due to the addition of wheat starch and sodium starch glycolate.

【0041】[0041]

【発明の効果】本発明の爆薬組成物は、優れた帯電防止
効果を有すると共に、高温高湿時においても固化し難い
という特質を有する爆薬組成物である。
The explosive composition of the present invention has an excellent antistatic effect and is hardly solidified even at high temperature and high humidity.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】硝酸アンモニウム、燃料油とデンプン類又
は化工デンプンを含有することを特徴とする爆薬組成
物。
1. An explosive composition comprising ammonium nitrate, fuel oil and starch or modified starch.
【請求項2】デンプン類又は化工デンプンを、爆薬組成
物全体に対して0.01〜4.5重量%含有してなる請
求項1に記載の爆薬組成物。
2. The explosive composition according to claim 1, wherein the starch or the modified starch is contained in an amount of 0.01 to 4.5% by weight based on the whole explosive composition.
【請求項3】硝酸アンモニウムが、ポーラスプリル硝酸
アンモニウム又はポーラスプリル硝酸アンモニウムとそ
の粉砕品の混合物である請求項1に記載の爆薬組成物。
3. The explosive composition according to claim 1, wherein the ammonium nitrate is porous prill ammonium nitrate or a mixture of porous prill ammonium nitrate and a crushed product thereof.
JP11746497A 1997-04-22 1997-04-22 Explosive composition Pending JPH10291883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11746497A JPH10291883A (en) 1997-04-22 1997-04-22 Explosive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11746497A JPH10291883A (en) 1997-04-22 1997-04-22 Explosive composition

Publications (1)

Publication Number Publication Date
JPH10291883A true JPH10291883A (en) 1998-11-04

Family

ID=14712338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11746497A Pending JPH10291883A (en) 1997-04-22 1997-04-22 Explosive composition

Country Status (1)

Country Link
JP (1) JPH10291883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473594B1 (en) * 2002-05-06 2005-03-08 주식회사 한화 Low density ammonium nitrate fuel oil with the improved power and small odor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473594B1 (en) * 2002-05-06 2005-03-08 주식회사 한화 Low density ammonium nitrate fuel oil with the improved power and small odor

Similar Documents

Publication Publication Date Title
JPS61205690A (en) Stable nitrate/slurry explosive
US4775431A (en) Macroemulsion for preparing high density explosive compositions
JP2002047088A (en) Granular explosive composition with water resistance
JPH10291883A (en) Explosive composition
JP3797826B2 (en) Explosive composition
WO2004009516A1 (en) Waterproof granular explosive composition
US3210160A (en) Apparatus for forming an explosive component from a melt
JPH11322481A (en) Explosive composition
JP3773270B2 (en) explosive
US4456494A (en) System for making an aqueous slurry-type blasting composition
JPH11278974A (en) Explosive composition
JP2002029877A (en) Water resistant granular explosive composition
JP2002060293A (en) Water resistant granular explosive composition
EP0052147A1 (en) System for making an aqueous slurry-type blasting composition
JP2000185994A (en) Production of granular ammonium nitrate
JPH1179878A (en) Explosive composition
JPS62171983A (en) Storage-stable emulsion blend explosive
JPH09278578A (en) Explosive
JP2002137983A (en) Explosion composition
JP2003246694A (en) Explosive
JP2002348187A (en) Explosive composition
JPH08259365A (en) Granular explosive
JPH08295588A (en) Granular explosive
US3378415A (en) Explosive slurry containing an agglom-erate of an inorganic nitrate oxidizer and a fuel and method of making
JP2000016891A (en) Explosive composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060131

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060605