JP2000185994A - Production of granular ammonium nitrate - Google Patents

Production of granular ammonium nitrate

Info

Publication number
JP2000185994A
JP2000185994A JP36228698A JP36228698A JP2000185994A JP 2000185994 A JP2000185994 A JP 2000185994A JP 36228698 A JP36228698 A JP 36228698A JP 36228698 A JP36228698 A JP 36228698A JP 2000185994 A JP2000185994 A JP 2000185994A
Authority
JP
Japan
Prior art keywords
ammonium nitrate
fine powder
boric acid
endothermic substance
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36228698A
Other languages
Japanese (ja)
Other versions
JP3846077B2 (en
Inventor
Shigeyuki Ohara
滋幸 大原
Seiichi Yoshida
誠一 吉田
Masashi Matsumoto
正志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP36228698A priority Critical patent/JP3846077B2/en
Publication of JP2000185994A publication Critical patent/JP2000185994A/en
Application granted granted Critical
Publication of JP3846077B2 publication Critical patent/JP3846077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/18Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/28Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent a solidification in the summer season, etc., improve the thermal stability and further prevent fine powdering without causing the deterioration of the detonation velocity when used as an oxidizing agent for explosive by making a fine powder of boric acid having a specific particle diameter as an endothermic substance stick to ammonium nitrate grains. SOLUTION: An endothermic substance is made to stick to porous ammonium nitrate grains obtained by passing an aqueous solution of molten ammonium nitrate through a spraying granulator, granulating into particles having about 1.0-2.0 mm average grain diameter. A fine powder having <=120 μm average particle diameter, especially a fine powder of boric acid is preferred as the endothermic substance. The sticking of the fine powder is preferably carried out by mixing, e.g. the ammonium nitrate grains with the fine powdery endothermic substance in a rotating drum so that the fine powder uniformly sticks to the grain surfaces. The amount of the sticking fine powder is preferably about 0.1-2 pts.wt. based on 100 pts.wt. of the ammonium nitrate. The porous granular ammonium nitrate having a high oil absorption volume is suitably used for mixing with a fuel oil component such as gas oil and producing explosive.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、隧道掘進、採石、
採鉱、採岩等の産業用爆破作業に汎く利用される爆薬に
好適に用いることのできる硝安に関する。
TECHNICAL FIELD The present invention relates to tunnel excavation, quarrying,
The present invention relates to nitrite that can be suitably used for explosives widely used in industrial blasting operations such as mining and rock mining.

【0002】[0002]

【従来の技術】硝安は、爆薬中の酸化剤としては価格が
安く、しかも化学的に安定で有用な製品として広く用い
られている。この硝安の製法としては、通常94〜96
重量%に調整された硝安水溶液を多孔板より噴霧させ、
塔内で冷却固化させて得られる含水率3〜4重量%の球
状硝安に、脂肪族アルキルアミン塩水溶液を噴霧後乾燥
し、さらに固結防止剤を添加して製品としている。
BACKGROUND OF THE INVENTION Ammonium is widely used as an oxidizing agent in explosives because it is inexpensive and chemically stable and useful. The production method of this nitrate is usually 94 to 96
Spray the ammonium nitrate aqueous solution adjusted to weight% from the perforated plate,
An aqueous solution of an aliphatic alkylamine salt is sprayed onto spherical ammonium nitrate having a water content of 3 to 4% by weight, which is obtained by cooling and solidifying in a tower, and then dried.

【0003】硝安はII−V形式及びIII−IV形式の結晶
変態の転移を生ずることが知られ、II−IV形式の転移温
度は45〜51℃である。この結晶変態により粒状の硝
安の粗大粒子が一部崩壊して微細粒子あるいはダストを
発生させるという問題が知られ、これに対して結晶変態
の転移に対する感度を低下させる為、特公昭46−44
52号公報ではホウ酸、リン酸水素アンモニウム及び硫
安を溶融硝安液に溶解後、造粒製造する方法を開示して
いる。
Nitric acid is known to cause II-V and III-IV transformations, with II-IV transition temperatures of 45-51 ° C. This crystal transformation is known to cause a problem that the coarse particles of granular nitrate partially disintegrate to generate fine particles or dust. On the other hand, the sensitivity to the transformation of the crystal transformation is lowered.
No. 52 discloses a method for producing granules after dissolving boric acid, ammonium hydrogen phosphate and ammonium sulfate in a molten ammonium nitrate solution.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
方法では、爆薬の酸化剤として用いた場合の爆速が低下
することがある。また、特に爆薬の酸化剤として用いら
れる硝安には固結防止や熱的安定性の向上が求められて
いる。より具体的には製造、包装後の硝安が、特に夏場
固結するというようなことは防止されなければならな
い。従って、爆速の低下を生ずることなく固結防止効果
を上げることが望まれる。本発明は、これらの課題を解
決することを目的とするものである。
However, in the above method, the explosion velocity when used as an oxidizing agent for explosives may be reduced. In particular, ammonium nitrate used as an oxidizing agent for explosives is required to prevent caking and improve thermal stability. More specifically, it is necessary to prevent ammonium nitrate after production and packaging from solidifying, particularly in summer. Therefore, it is desired to improve the effect of preventing consolidation without lowering the explosion velocity. An object of the present invention is to solve these problems.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題に
鑑みて鋭意検討を重ねた結果、特定の物質を硝安粒子の
表面に付着させることにより固結が防止され、かつ熱的
安定性が向上することが判明した。すなわち、本発明
は、硝安粒子に吸熱物質を付着させることを特徴とする
粒状硝安の製造方法に存する。
The present inventors have conducted intensive studies in view of the above-mentioned problems, and as a result, it has been found that caking is prevented by adhering a specific substance to the surface of ammonium nitrate particles, and thermal stability is reduced. Was found to improve. That is, the present invention resides in a method for producing granular ammonium nitrate, which comprises adhering an endothermic substance to ammonium nitrate particles.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明では粒状の硝安に、吸熱物質を付着させることを
特徴としている。粒状の硝安自体の製造は、従来より知
られている各種の方法を採用して行えばよい。具体的に
は、溶融硝安水溶液を噴射造粒装置(プリリング・グラ
ニュレーター又はプリリング・タワー)を通して造粒す
る造粒工程、必要に応じて粒径調整を行う粒度調整工
程、さらに乾燥及び冷却工程を経て、固結防止剤を添加
して粒状硝安を製造する方法が代表的であり、このよう
にしてポーラスな比較的粒径の大きな粒状の、いわゆる
ポーラスプリル硝安を得ることができる。ポーラスプリ
ル硝安としては、通常、平均粒径1.0〜2.0mm程
度、吸油率が8〜12%程度のものが好適に使用され
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present invention is characterized in that an endothermic substance is attached to granular ammonium nitrate. The production of granular ammonium nitrate itself may be performed by using various methods known in the art. Specifically, a granulating step of granulating the molten ammonium nitrate aqueous solution through an injection granulating apparatus (a pre-ring granulator or a pre-ring tower), a particle size adjusting step of adjusting the particle diameter as necessary, and further a drying and cooling step. After that, a method of producing granular ammonium nitrate by adding an anti-caking agent is typical. In this way, a porous so-called porous prill ammonium nitrate having a relatively large particle diameter can be obtained. As the porous prill nitrate, one having an average particle size of about 1.0 to 2.0 mm and an oil absorption of about 8 to 12% is usually suitably used.

【0007】本発明における吸熱物質としては、具体的
には、ホウ酸、硫酸アルミニウム、硫酸カルシウム、硫
酸マグネシウム、炭酸マグネシウム、炭酸ナトリウム等
及びこれらの水和物、リン酸アンモニウム塩、硫酸アン
モニウム塩等のアンモニウム塩、炭酸ガス放出により吸
熱反応を生ずる炭酸カルシウム等の炭酸塩が挙げられ
る。これらの物質は30℃から900℃にかけての昇温
工程で吸熱反応を起こすものである。このような条件下
で吸熱反応が起こることにより熱的安定性が向上するも
のと考えられる。これらの物質の形態は特に限定されな
いが、プロセス上、望ましくは粉末状態とするのが良
い。これらの吸熱物質の中では、得られる硝安の物性
上、特にホウ酸が好ましい。
Specific examples of the endothermic substance in the present invention include boric acid, aluminum sulfate, calcium sulfate, magnesium sulfate, magnesium carbonate, sodium carbonate and the like, and hydrates thereof, ammonium phosphate salts, ammonium sulfate salts and the like. Examples thereof include ammonium salts and carbonates such as calcium carbonate which cause an endothermic reaction upon release of carbon dioxide gas. These substances cause an endothermic reaction in the temperature raising step from 30 ° C. to 900 ° C. It is considered that the endothermic reaction occurs under such conditions to improve the thermal stability. The form of these substances is not particularly limited, but is preferably in a powder state in the process. Among these endothermic substances, boric acid is particularly preferred in view of the physical properties of the obtained ammonium nitrate.

【0008】添加方法は硝安の表面に吸熱物質が付着す
る方法であれば特に限定されないが、例えば、硝安に微
粉末状の吸熱物質を回転ドラム内で混合して付着させる
といった方法が挙げられ、特に吸熱物質が硝安粒子の表
面に均一に付着される方法が望ましい。添加量は限定さ
れないが、通常、硝安100重量部に対して0.1重量
部〜2重量部である。0.1重量部未満では効果の発揮
が充分でない場合がある。一方、2重量部も添加すれば
効果の発現には充分であるし、場合によっては爆速の低
下をもたらす。吸熱物質としては、硝安粒子の表面への
均等付着及び付着力強化のため、微粉末であることが好
ましく、平均粒径で、通常120μm以下、好ましくは
100μm以下に粉砕された微粉末を使用することが望
ましい。
The method of addition is not particularly limited as long as the heat absorbing substance adheres to the surface of ammonium nitrate. For example, a method of mixing and adhering a fine powdery heat absorbing substance to ammonium nitrate in a rotating drum may be used. In particular, a method in which the endothermic substance is uniformly attached to the surface of the ammonium nitrate particles is desirable. The amount of addition is not limited, but is usually 0.1 to 2 parts by weight based on 100 parts by weight of ammonium nitrate. If the amount is less than 0.1 part by weight, the effect may not be sufficiently exhibited. On the other hand, if 2 parts by weight are added, the effect is sufficient, and in some cases, the explosion speed is reduced. The endothermic substance is preferably a fine powder for uniform adhesion to the surface of the ammonium nitrate particles and strengthening the adhesive force, and a fine powder having an average particle diameter of usually 120 μm or less, preferably 100 μm or less is used. It is desirable.

【0009】こうして表面に特定の物質を付着させた本
発明の硝安粒子は、熱安定性が向上し、固結防止効果も
有するものである。本発明において、硝安粒子の表面に
吸熱物質を付着させることにより効果を発現する機構は
完全には明らかではないが、吸熱物質が硝安粒子の表面
に点在していることが推測され、これにより、硝安粒子
同士の付着等を防止することにより固結防止効果を発揮
していること、また、硝安の溶液状態で添加した場合と
は異なり、これらの物質が硝安の粒子内部に混在するこ
とが防げるので、硝安が本来持っている性能を発揮で
き、爆速低下が防止できることが考えられる。
The ammonium nitrate particles of the present invention having a specific substance adhered to the surface have improved thermal stability and also have an effect of preventing caking. In the present invention, although the mechanism of exhibiting the effect by attaching the endothermic substance to the surface of the ammonium nitrate particles is not completely clear, it is presumed that the endothermic substance is scattered on the surface of the ammonium nitrate particles. In addition, it exhibits an anti-caking effect by preventing the adhesion of ammonium nitrate particles, and unlike when added in a solution state of ammonium nitrate, these substances may be mixed inside the particles of ammonium nitrate. It is conceivable that, since it can be prevented, the performance inherent to nitric acid can be exhibited, and a decrease in the explosion speed can be prevented.

【0010】以上説明した本発明の硝安粒子は、燃料油
成分と混合して爆薬の酸化剤として用いるのに好適であ
る。燃料油成分は、混合時に液体である燃料油成分が用
いられる。使用しうる燃料油の具体例としては、2号軽
油、灯油等の鉱物油、植物油、動物油が挙げられる。こ
の他、アルコール類、ワックス類、合成高分子類、ニト
ロ化合物等が燃料油として単独又は混合して使用可能で
ある。融点の高い燃料油成分は、それが液状になる温度
以上で、粒状硝安と混合することによって用いることが
できる。さらに、必要によって粒状硝安以外の酸化剤、
木粉、アルミ粉等の粉末添加燃料あるいは他の添加剤を
加え、ニーダー、回転ミキサーのような混合機に粒状硝
安を加え、撹拌しながら燃料油成分を添加混合して均一
とすることによって、爆薬を調製することができる。
The above-described ammonium nitrate particles of the present invention are suitable for being used as an oxidizing agent for explosives by being mixed with a fuel oil component. As the fuel oil component, a fuel oil component that is liquid at the time of mixing is used. Specific examples of usable fuel oils include mineral oils such as No. 2 light oil and kerosene, vegetable oils, and animal oils. In addition, alcohols, waxes, synthetic polymers, nitro compounds and the like can be used alone or as a mixture as a fuel oil. Fuel oil components with a high melting point can be used by mixing with particulate ammonium nitrate above the temperature at which it becomes liquid. Further, if necessary, an oxidizing agent other than granular ammonium nitrate,
By adding powdered fuel such as wood powder, aluminum powder or other additives or other additives, adding granular ammonium nitrate to a mixer such as a kneader or a rotary mixer, and adding and mixing the fuel oil component with stirring to make it uniform. Explosives can be prepared.

【0011】[0011]

【実施例】以下、本発明を実施例を用いて更に具体的に
説明する。なお、部及び%は特にことわりのない限り重
量部及び重量%を示す。以下に実施例で行った評価方法
について説明する。 (1)自己発熱開始温度 ARCによるステップ昇温法で測定した。詳しくは、試
料硝安1gを窒素雰囲気下で5℃のステップ昇温をさ
せ、0.02℃/分以上の発熱となった時の試料温度を
読みとり、その温度を自己発熱開始温度とした。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. Parts and% are parts by weight and% by weight unless otherwise specified. Hereinafter, the evaluation method performed in the examples will be described. (1) Self-heating start temperature Measured by a step heating method using ARC. More specifically, 1 g of the sample nitric acid was heated in steps of 5 ° C. in a nitrogen atmosphere, and the temperature of the sample when the heat generated was 0.02 ° C./min or more was read. The temperature was defined as the self-heating start temperature.

【0012】(2)固結防止性能 テンシロン固結強度テストにより評価した。即ち、試料
硝安400gを直径76mm 高さ100mmの塩ビ製
円筒容器に充填しビニール袋にて密閉した後、上部より
10kgの荷重をかけた状態で、20℃から45℃の熱
履歴を5回与えた後、ビニール袋及び塩ビ製円筒容器よ
り硝安を取り出し、この成形された硝安塊に上部より加
重を与えていき、硝安塊が崩壊した時の加重を読みと
り、その硝安の固結強度を測定した。この加重が大きい
ほど固結性が激しい、つまり防結性能が低いことを意味
する。
(2) Anti-consolidation performance Evaluated by a Tensilon consolidation strength test. That is, 400 g of sample nitrate was filled in a vinyl chloride cylindrical container having a diameter of 76 mm and a height of 100 mm, sealed with a plastic bag, and then subjected to a heat history of 20 to 45 ° C. five times with a load of 10 kg applied from above. After that, the ammonium nitrate was taken out from the plastic bag and the cylindrical container made of polyvinyl chloride, and a weight was applied to the molded ammonium lump from above, and the weight when the ammonium linter collapsed was read, and the consolidation strength of the ammonium nitrate was measured. . The larger the weight, the stronger the consolidation property, that is, the lower the anti-caking performance.

【0013】(3)吸油率 一定量の試料硝安を軽油に一定時間浸しておいた後、吸
引濾過し、試験前後の重量差より油吸着量を見ることに
より測定した。試料硝安50grに対する軽油吸着分
(gr)の比率(%)を吸油率とした、以下の式によっ
て求められる。なお、この吸油率の測定方法は、工業火
薬協会法に準拠した。 吸油率(%)=軽油吸着分(gr)/試料50(gr)
×100 (4)爆速 JIS鉄管中に充填された爆薬をJISK−4810に
記載された方法に準じて測定した。
(3) Oil Absorption Rate A predetermined amount of sample nitric acid was immersed in light oil for a certain period of time, filtered by suction, and measured by observing the oil adsorption from the weight difference before and after the test. The oil absorption is determined by the following equation, where the ratio (%) of the light oil adsorption (gr) to 50 gr of sample nitrate is defined as the oil absorption. The method for measuring the oil absorption was based on the Law of the Industrial Explosives Association. Oil absorption (%) = light oil adsorption (gr) / sample 50 (gr)
× 100 (4) Explosion speed The explosive charged in the JIS iron tube was measured according to the method described in JIS K-4810.

【0014】(実施例1)平均粒径1.35mm、吸油
率10.4%のポーラスプリル硝安100重量部に、平
均粒径20μm程度の微粉末ホウ酸を0.1重量部、回
転ドラム内で混合して硝安粒子表面にホウ酸を付着させ
た。得られたホウ酸添加硝安粒子について、自己発熱開
始温度及び防結性能を測定した。
Example 1 0.1 part by weight of fine boric acid having an average particle diameter of about 20 μm was added to 100 parts by weight of porous prill nitrate having an average particle diameter of 1.35 mm and an oil absorption of 10.4%, and the inside of a rotating drum was used. To make boric acid adhere to the surface of the ammonium nitrate particles. With respect to the obtained boric acid-added ammonium nitrate particles, the self-heating start temperature and the caulking prevention performance were measured.

【0015】(実施例2)平均粒径1.35mm、吸油
率10.4%のポーラスプリル硝安100重量部に、平
均粒径20μm程度の微粉末ホウ酸を0.5重量部、回
転ドラム内で混合して硝安粒子表面にホウ酸を付着させ
た。得られたホウ酸添加硝安粒子について、自己発熱開
始温度及び防結性能を測定した。
Example 2 0.5 parts by weight of fine boric acid having an average particle size of about 20 μm was added to 100 parts by weight of porous prilled ammonium nitrate having an average particle diameter of 1.35 mm and an oil absorption of 10.4%. To make boric acid adhere to the surface of the ammonium nitrate particles. With respect to the obtained boric acid-added ammonium nitrate particles, the self-heating start temperature and the caulking prevention performance were measured.

【0016】(実施例3)平均粒径1.35mm、吸油
率10.4%のポーラスプリル硝安100重量部に、平
均粒径20μm程度の微粉末ホウ酸を1.0重量部、回
転ドラム内で混合して硝安粒子表面にホウ酸を付着させ
た。得られたホウ酸添加硝安粒子について、自己発熱開
始温度及び防結性能を測定した。
Example 3 1.0 part by weight of fine boric acid having an average particle diameter of about 20 μm was added to 100 parts by weight of porous prill nitrate having an average particle diameter of 1.35 mm and an oil absorption of 10.4%. To make boric acid adhere to the surface of the ammonium nitrate particles. With respect to the obtained boric acid-added ammonium nitrate particles, the self-heating start temperature and the caulking prevention performance were measured.

【0017】(実施例4)平均粒径1.35mm、吸油
率10.4%のポーラスプリル硝安100重量部に、平
均粒径20μm程度の微粉末ホウ酸を2.0重量部、回
転ドラム内で混合して硝安粒子表面にホウ酸を付着させ
た。 得られたホウ酸添加硝安粒子について、自己発熱
開始温度及び防結性能を測定した。
Example 4 2.0 parts by weight of fine boric acid having an average particle diameter of about 20 μm was added to 100 parts by weight of porous prill nitrate having an average particle diameter of 1.35 mm and an oil absorption of 10.4%, and the inside of a rotating drum was used. To make boric acid adhere to the surface of the ammonium nitrate particles. With respect to the obtained boric acid-added ammonium nitrate particles, the self-heating start temperature and the caulking prevention performance were measured.

【0018】(実施例5)平均粒径1.15mm、吸油
率10.5%のポーラスプリル硝安100重量部に、平
均粒径20μm程度の微粉末ホウ酸を0.5重量部、回
転ドラム内で混合して硝安粒子表面にホウ酸を付着させ
た。得られたホウ酸添加硝安粒子94部と軽油6部とを
十分混合して爆薬とし、JIS鉄管中に充填し、爆速を
測定した。
Example 5 0.5 part by weight of fine boric acid having an average particle size of about 20 μm was added to 100 parts by weight of porous prilled ammonium nitrate having an average particle diameter of 1.15 mm and an oil absorption of 10.5%. To make boric acid adhere to the surface of the ammonium nitrate particles. 94 parts of the obtained boric acid-added ammonium nitrate particles and 6 parts of light oil were sufficiently mixed to prepare an explosive, which was filled in a JIS iron tube, and the explosion velocity was measured.

【0019】(比較例1)実施例1〜4で使用した、微
粉末ホウ酸を添加する前の、平均粒径1.35mm、吸
油率10.4%のポーラスプリル硝安について、測定及
び評価を行った。
(Comparative Example 1) The porous prill nitrate having an average particle diameter of 1.35 mm and an oil absorption of 10.4% used in Examples 1 to 4 before adding fine boric acid was measured and evaluated. went.

【0020】(比較例2)実施例5で使用した、微粉末
ホウ酸を添加する前の、平均粒径1.15mm、吸油率
10.5%のポーラスプリル硝安94部と、軽油6部と
を十分混合し爆薬とし、JIS鉄管中に充填し、爆速を
測定した。
Comparative Example 2 94 parts of porous prill ammonium nitrate having an average particle diameter of 1.15 mm and an oil absorption of 10.5%, and 6 parts of light oil used before adding the fine boric acid used in Example 5 Was sufficiently mixed to form an explosive, which was filled into a JIS iron tube, and the explosion velocity was measured.

【0021】(比較例3)ホウ酸、リン酸水素アンモニ
ウム、硫安の混合物(0.5:1:0.05重量比)を
溶融硝安水溶液に合計0.04%添加し、造粒、乾燥、
冷却して平均粒径1.13mm、吸油率10.6%のポ
ーラスプリル硝安を得た。このポーラスプリル硝安94
部と、軽油6部とを十分混合し爆薬とし、JIS鉄管中
に充填し、爆速を測定した。
Comparative Example 3 A mixture of boric acid, ammonium hydrogen phosphate, and ammonium sulfate (0.5: 1: 0.05 weight ratio) was added to a molten ammonium nitrate aqueous solution in a total amount of 0.04%, and granulation, drying,
After cooling, porous prill nitrate having an average particle size of 1.13 mm and an oil absorption of 10.6% was obtained. This porous prill nitrate 94
And 6 parts of light oil were sufficiently mixed to form an explosive, which was filled in a JIS iron tube, and the explosion velocity was measured.

【0022】以上において実施例1〜4と比較例1の自
己発熱開始温度を比較すると、本発明によるポーラスプ
リル硝安の自己発熱開始温度は上昇しており熱安定性が
向上したことがわかる。また、固結強度を比較すると、
ホウ酸添加率が高いほど固結強度は低くなり、本発明に
よるポーラスプリル硝安の防結性能が向上したことがわ
かる。一方、実施例5及び比較例2〜3の爆速を比較す
ると、本発明によるポーラスプリル硝安を用いた爆薬
は、爆速が低下することなく性能が維持されていること
がわかる。
Comparing the self-heating onset temperatures of Examples 1 to 4 and Comparative Example 1 above, it can be seen that the self-heating onset temperature of the porous prill nitrate according to the present invention has increased and the thermal stability has been improved. Also, comparing the consolidation strength,
It can be seen that the higher the boric acid addition rate, the lower the consolidation strength, and the better the performance of the porous prill nitrate anti-caking of the present invention. On the other hand, comparing the explosion speeds of Example 5 and Comparative Examples 2 and 3, it can be seen that the explosive using porous prill nitrate according to the present invention maintains its performance without lowering the explosion speed.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明により、爆速の低下を起こすこと
なく熱的安定性が高く、固結防止効果を発揮する粒状硝
安を得ることができる。
According to the present invention, it is possible to obtain granular ammonium nitrate having high thermal stability and an effect of preventing caking without lowering the explosion velocity.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】硝安粒子に、吸熱物質を付着させることを
特徴とする粒状硝安の製造方法。
1. A method for producing granular ammonium nitrate, comprising adhering an endothermic substance to ammonium nitrate particles.
【請求項2】吸熱物質が平均粒径120μm以下の微粉
末である請求項1記載の粒状硝安の製造方法。
2. The method for producing granular ammonium nitrate according to claim 1, wherein the endothermic substance is a fine powder having an average particle size of 120 μm or less.
【請求項3】吸熱物質がホウ酸である請求項1または2
記載の粒状硝安の製造方法。
3. The method according to claim 1, wherein the endothermic substance is boric acid.
A method for producing the granular ammonium nitrate as described above.
【請求項4】請求項1から3いずれかに記載の粒状硝安
を、燃料油成分と混合してなる爆薬の製造方法。
4. A method for producing an explosive, comprising mixing the particulate ammonium nitrate according to claim 1 with a fuel oil component.
JP36228698A 1998-12-21 1998-12-21 Production method of granular ammonium nitrate Expired - Fee Related JP3846077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36228698A JP3846077B2 (en) 1998-12-21 1998-12-21 Production method of granular ammonium nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36228698A JP3846077B2 (en) 1998-12-21 1998-12-21 Production method of granular ammonium nitrate

Publications (2)

Publication Number Publication Date
JP2000185994A true JP2000185994A (en) 2000-07-04
JP3846077B2 JP3846077B2 (en) 2006-11-15

Family

ID=18476468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36228698A Expired - Fee Related JP3846077B2 (en) 1998-12-21 1998-12-21 Production method of granular ammonium nitrate

Country Status (1)

Country Link
JP (1) JP3846077B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027464A1 (en) * 2002-09-19 2004-04-01 Sumitomo Electric Industries, Ltd. Diffractive optical device and method for producing same
RU2643950C2 (en) * 2016-07-15 2018-02-06 Федеральное Государственное Бюджетное Учреждение Науки Институт Проблем Комплексного Освоения Недр Им. Академика Н.В. Мельникова Российской Академии Наук (Ипкон Ран) Device for producing porous granulated ammonium nitrate
CN116924863A (en) * 2023-07-25 2023-10-24 山西省民爆集团有限公司 Ultrapure carbon-based mixed explosive and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027464A1 (en) * 2002-09-19 2004-04-01 Sumitomo Electric Industries, Ltd. Diffractive optical device and method for producing same
US7573638B2 (en) 2002-09-19 2009-08-11 Sumitomo Electric Industries, Ltd. Diffractive optical element and method of its formation
RU2643950C2 (en) * 2016-07-15 2018-02-06 Федеральное Государственное Бюджетное Учреждение Науки Институт Проблем Комплексного Освоения Недр Им. Академика Н.В. Мельникова Российской Академии Наук (Ипкон Ран) Device for producing porous granulated ammonium nitrate
CN116924863A (en) * 2023-07-25 2023-10-24 山西省民爆集团有限公司 Ultrapure carbon-based mixed explosive and preparation method and application thereof
CN116924863B (en) * 2023-07-25 2024-05-17 山西省民爆集团有限公司 Ultrapure carbon-based mixed explosive and preparation method and application thereof

Also Published As

Publication number Publication date
JP3846077B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JPH07206568A (en) Production of granulated igniter
US2590054A (en) Process of producing ammonium nitrate-containing composition
EP0648528B1 (en) Porous prilled ammonium nitrate
EP0719243B1 (en) Grouting materials and their use
ES2674718T3 (en) Ammonium nitrate granule and method for preparing it
US3966853A (en) Process for preparing prilled porous ammonium nitrate
US3212944A (en) Ammonium nitrate compositions containing hydratable metal salts and methods for producing the same
JP2011528315A (en) Method for preparing a composition comprising ammonium nitrate double salt
JP3846077B2 (en) Production method of granular ammonium nitrate
RU2332392C2 (en) Fertiliser elements having coat
SU1056896A3 (en) Method for producing granulated complex fertilizers
JP2003034785A (en) Method for manufacturing thermal storage medium
JP2002543031A (en) Granular gas charge
JP2000143380A (en) Explosive composition and its production
CA1048292A (en) High-content azide agricultural formulation
UA72007C2 (en) An explosive composition, ammomium nitrate product in the form of particles and a method for the preparation thereof
KR102546603B1 (en) Improvement of anti-caking properties of ammonium nitrate particles stored in airtight container
US20230331638A1 (en) Granulated explosive based on a water-in-oil emulsion, and production and use thereof
JPS5879895A (en) Explosive based on ammonium nitrate-carbon mixture
JPH10291883A (en) Explosive composition
JPS6328656B2 (en)
JPH0239478B2 (en)
JPS63282116A (en) Granular calcium hydroxide and manufacture thereof
JPH05286977A (en) Granular triethylenediamine
JPH0375287A (en) Porous siliceous granule

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050513

A521 Written amendment

Effective date: 20050513

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Effective date: 20060403

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

LAPS Cancellation because of no payment of annual fees