JPH11322323A - Carbon compound and its production, and electrode for secondary battery - Google Patents

Carbon compound and its production, and electrode for secondary battery

Info

Publication number
JPH11322323A
JPH11322323A JP10128553A JP12855398A JPH11322323A JP H11322323 A JPH11322323 A JP H11322323A JP 10128553 A JP10128553 A JP 10128553A JP 12855398 A JP12855398 A JP 12855398A JP H11322323 A JPH11322323 A JP H11322323A
Authority
JP
Japan
Prior art keywords
carbon
compound
silicon
group
phenol resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10128553A
Other languages
Japanese (ja)
Inventor
Soji Tsuchiya
宗次 土屋
Kazuhiro Watanabe
和廣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10128553A priority Critical patent/JPH11322323A/en
Publication of JPH11322323A publication Critical patent/JPH11322323A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cathodic carbon material for Li ion secondary batteries having large charge or discharge capacities by adding a specific amount of silicon to a carbon substance obtained by firing a phenolic resin in an inert gas atmosphere at a specified temperature. SOLUTION: This carbon material is obtained by mixing a phenolic resin with a silicon compound, thermally treating the mixture in the temperature range of 150-220 deg.C for >=2 hr, subjecting the product to a pyrolytic reaction treatment in an inert bas atmosphere or in vacuo in the temperature range of 450-600 deg.C, and subsequently similarly subjecting the product to a thermal treatment firing in an inert gas atmosphere or in vacuo in the temperature range of 800-1,500 deg.C. The silicon compound is preferably a silane compound having a reactive group comprising either of amino group. vinyl group, epoxy group, chloro group and hydroxyl group, and the silicon is preferably contained in an amount of 1-100 wt.% based on the carbon. The phenolic resin is preferably a resol type phenolic resin produced from formaldehyde and phenol in a ratio of 1.0-2.0 in the presence of an alkali catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主にリチウムイオ
ン2次電池で用いられる炭素電極材料、特に負極材料で
ある炭素化合物及びその製造方法並びに2次電池用電極
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon electrode material mainly used in a lithium ion secondary battery, particularly to a carbon compound as a negative electrode material, a method for producing the same, and an electrode for a secondary battery.

【0002】[0002]

【従来の技術】近年、小型、軽量及び高エネルギ−密度
の2次電池の開発が情報機器などの小型化、高性能化に
伴いさかんになってきている。そして、この小型2次電
池として、NiーCd、NiーH、Liイオンの3タイ
プが実用化されている。エネルギー密度が高い特徴をも
つLiイオン電池が小型、軽量を目的とした場合には、
有効に利用されている。Liイオン2次電池の負極材料
として、炭素材料が有用であることがすでに知られ、実
際に実用化されているLiイオン2次電池の多くの負極
として炭素材料が用いられている。
2. Description of the Related Art In recent years, the development of secondary batteries of small size, light weight and high energy density has become popular with miniaturization and high performance of information equipment and the like. As the small secondary battery, three types of Ni-Cd, Ni-H, and Li ions have been put to practical use. When a Li-ion battery with a feature of high energy density is intended to be small and lightweight,
It is being used effectively. It has been known that a carbon material is useful as a negative electrode material of a Li-ion secondary battery, and a carbon material is used as many negative electrodes of a Li-ion secondary battery that is actually put into practical use.

【0003】当初、負極としてリチウム金属自身を用い
ることが提案されたが、充電放電を繰り返し後、あるい
は充電時にリチウムがデンドライト状に析出して、これ
が原因で内部短絡や充放電の効率の著しい低下の現象が
生じる場合がある。従って、安全性上に課題があるとさ
れていいる。
[0003] Initially, it was proposed to use lithium metal itself as the negative electrode. However, lithium was deposited in a dendrite shape after repeated charging and discharging or during charging, which caused an internal short circuit and a significant decrease in charging and discharging efficiency. Phenomenon may occur. Therefore, it is said that there is a problem in safety.

【0004】しかし、リチウムイオンを電気化学的にイ
ンタ−カレ−ション、デインタ−カレ−ションを出来る
機能を有する炭素材料を用いることにより、このような
現象からの回避は可能となり、実用化されている。一方
で、まだ炭素材料を用いることで解決しなければならな
い課題、要望もいくつか存在しており、例えば、充放電
容量の大きさ、充電と放電の容量ロスや電解液の劣化に
よる電池特性の低下等が挙げられる。充放電容量の大き
さは、黒鉛構造では理論的には372mAh/g程度と
いわれている。黒鉛構造を有するものでも、形状の違い
で球状、ファイバー状、鱗片状などが知られている。実
用容量としては280から330mAh/gといわれて
いる。容量としては、大きければ大きい方が電池として
は、良いわけであるから、さらに高容量化が要望されて
いる。また、2次電池であるから、高繰り返し安定性、
さらに機器の用いられる環境に耐えられる耐環境性など
の高信頼性化も要望されている現状である。
[0004] However, by using a carbon material having a function of electrochemically intercalating and deintercalating lithium ions, it is possible to avoid such a phenomenon, and the lithium ion is practically used. I have. On the other hand, there are still some issues and demands that need to be solved by using carbon materials, such as the magnitude of charge / discharge capacity, the loss of charge and discharge capacity, and the deterioration of battery characteristics due to deterioration of the electrolyte. And the like. It is said that the magnitude of the charge / discharge capacity is theoretically about 372 mAh / g in the graphite structure. Even those having a graphite structure are known to be spherical, fibrous, scaly, etc., depending on the shape. It is said that the practical capacity is 280 to 330 mAh / g. As for the capacity, the larger the capacity, the better for the battery. Therefore, a higher capacity is demanded. In addition, since it is a secondary battery, high repetition stability,
Further, there is a demand for higher reliability such as environmental resistance that can withstand the environment in which the equipment is used.

【0005】[0005]

【発明が解決しようとする課題】そこで、充放電容量の
大きい負極材料として非晶質炭素材料が提案されてい
る。しかし、初期充電量は高いものが得られるが、黒鉛
系炭素と比較して放電ロスが大きく、放電量に対す電位
変動が大きいという課題がある。
Therefore, an amorphous carbon material has been proposed as a negative electrode material having a large charge / discharge capacity. However, although a high initial charge amount can be obtained, there is a problem that a discharge loss is large and a potential variation with respect to the discharge amount is large as compared with graphite-based carbon.

【0006】本発明は、上記リチウムイオン2次電池に
用いられる負極として用いられる炭素材料のうち、単位
重量あるいは体積当りの放電容量が大きい負極材料を提
供することを目的とする。
An object of the present invention is to provide a negative electrode material having a large discharge capacity per unit weight or volume among carbon materials used as a negative electrode used in the lithium ion secondary battery.

【0007】[0007]

【課題を解決するための手段】負極に用いられる炭素材
料は、出発原料や作り方により、構造をはじめ、性質に
違いが出て、電池特性が大きく異なる。これまでに炭素
材料の規定には構造面からはX線回折法による平均格子
定数、ラマンスペクトル測定からの1580cm-1と1
360cm-1の強度比などがあり、物性としては密度、
粉末粒径、比表面積など、化学的構造面から炭素/水素
の原子比、などで規定された炭素材料が提案されてい
る。
Means for Solving the Problems The carbon material used for the negative electrode has a difference in the characteristics including the structure depending on the starting material and how to make it, and the battery characteristics greatly differ. So far, the definition of the carbon material has been determined from the structural aspect as an average lattice constant by the X-ray diffraction method and 1580 cm -1 from the Raman spectrum measurement.
There are an intensity ratio of 360 cm -1 and the like.
There has been proposed a carbon material defined by the atomic ratio of carbon / hydrogen in terms of chemical structure such as powder particle size and specific surface area.

【0008】炭素材料的には、電池容量に影響する主要
因子としては結晶構造が知られていて、結晶性について
は非晶質性炭素材料の方が充放電量の高いものが得られ
ることが知られている。充放電機構としては、2000
℃以上の焼成で作製される結晶性炭素である黒鉛系炭素
については、NMR解析などによるLiイオンの存在状
態の検討により、充放電現象ははっきりしていて、黒鉛
の層間へのLiイオンの出入りによるものと考えられて
いる。2000℃以下での焼成でつくられる非晶性の構
造を有する炭素については充電時におけるLiイオンの
存在状態ははっきりしていない。
As a carbon material, a crystal structure is known as a main factor affecting the battery capacity. Regarding the crystallinity, an amorphous carbon material can provide a material having a higher charge / discharge amount. Are known. The charge / discharge mechanism is 2000
Regarding graphite-based carbon, which is crystalline carbon produced by baking above ℃, the charge / discharge phenomenon is clear by examining the state of the presence of Li ions by NMR analysis and the like, and the transfer of Li ions into and out of the graphite layers It is believed to be due to. With respect to carbon having an amorphous structure formed by firing at 2000 ° C. or lower, the existence state of Li ions during charging is not clear.

【0009】一般には、いくつかのモデルが提案されて
いる。例えば、結晶性と同様に、不規則に存在する層構
造の層内、細孔や層の構造欠陥内にクラスター状態でと
じこめられているとか、層の表面に吸着状態で存在する
とかではないかと推定されている。
Generally, several models have been proposed. For example, as in the case of crystallinity, it may be trapped in a layer state in an irregular layer structure, pores or structural defects in the layer in a cluster state, or may exist in an adsorbed state on the surface of the layer. It is estimated.

【0010】容量を決める要因としては、上記のような
因子が結晶系炭素と同様に非晶質系についてもいわれて
いる。材料的に炭素に添加剤が含有されたものも提案さ
れている。特開平3−245438号公報にはリンやホ
ウ素の添加により、容量向上の効果あることがのべられ
ている。特開平8−259213号公報、特開平−31
5822号公報にはケイ素を含有した炭素化合物で容量
の特性の向上した例が示されている。さらに、ここには
炭素化合物の製造方法が示されていて、高分子前駆体が
ケイ素含有ポリマ−と硬化剤の混合物からなり、熱分解
前に硬化反応を行うことが記されている。例として、エ
ポキシ基を有する材料が開示されている。
[0010] As a factor for determining the capacity, the above factors are said to be applied to the amorphous type as well as the crystalline carbon. There has also been proposed a material in which an additive is contained in carbon as a material. Japanese Patent Application Laid-Open No. 3-245438 discloses that the addition of phosphorus or boron has the effect of improving the capacity. JP-A-8-259213, JP-A-31
No. 5822 discloses an example in which a silicon-containing carbon compound has improved capacity characteristics. In addition, it discloses a method for producing a carbon compound, in which a polymer precursor is composed of a mixture of a silicon-containing polymer and a curing agent, and a curing reaction is performed before thermal decomposition. As an example, a material having an epoxy group is disclosed.

【0011】本発明では、原料として難黒鉛系材料であ
るフェノ−ル樹脂を選択した。フェノ−ル樹脂にはノボ
ラック型、レゾ−ル型があるが、ここで望ましい型はレ
ゾ−ル型である。フェノ−ル樹脂を原料とした炭素はこ
れまでに多く提案されているが、本発明ではケイ素原子
を含有することであり、かつその分散状態が原子状、あ
るいは超微粒子状で炭素材料に均一分散していることで
ある。炭素材料自身においても、電池特性上で特に容量
の向上に影響する表面構造、細孔、構造欠陥などを意識
的に制御することを基本として焼成条件や処理などが提
案されている。
In the present invention, a phenol resin, which is a non-graphite material, is selected as a raw material. The phenolic resin includes a novolak type and a resol type, but the preferable type is a resol type. Many carbons using phenolic resin as a raw material have been proposed so far.However, in the present invention, the carbon containing silicon atoms is dispersed in the carbon material in the form of atoms or ultrafine particles in a uniform state. It is doing. Regarding the carbon material itself, firing conditions and treatments have been proposed on the basis of consciously controlling the surface structure, pores, structural defects, and the like, which particularly affect the improvement of capacity in battery characteristics.

【0012】Liイオン2次電池として必要な基本特性
は、電池容量の大小と容量と電位の繰り返し使用時の安
定性である。黒鉛系の放電曲線のパターンは放電容量に
対する電位変動は小さいが、前述したが容量に限界があ
るのが特徴である。非晶質系炭素を用いた場合は放電曲
線のパターンとして2タイプがある。一つは単位重量当
たりの放電容量が大きくすることができるが、容量に対
する電位変動が大きいことである。もう一つは容量に対
して、黒鉛系と同様な電位変動の小さい領域をもつが、
まだ容量が小さいという課題を有している。ここで提供
しているタイプはこのタイプである。
The basic characteristics required for a Li-ion secondary battery are the size of the battery capacity and the stability when the capacity and potential are repeatedly used. The pattern of the graphite-based discharge curve has a small potential variation with respect to the discharge capacity, but as described above, it is characterized in that the capacity is limited. When amorphous carbon is used, there are two types of discharge curve patterns. One is that the discharge capacity per unit weight can be increased, but the potential fluctuation with respect to the capacity is large. The other has a small potential fluctuation region similar to the graphite system with respect to the capacity,
There is still a problem that the capacity is small. The type provided here is this type.

【0013】非晶質系炭素は、真密度は黒鉛系炭素と比
較して小さくなるので単位体積当たり容量の比較になる
と不利になる。黒鉛系では真密度が大きいことにより粉
末にして印刷後で非晶質系と比較すると20%から50
%ほど黒鉛系のほうがかさ密度が大きい。従って、非晶
質系で容量の優位性を出すためには50%以上単位重量
当たりの容量が大きくなければならない。非晶質性炭素
一般について、Liイオンの貯蔵サイトの構造は、まだ
不明確な点があるが、層構造、細孔、表面構造などが影
響することが推定されている。
[0013] Since the true density of amorphous carbon is lower than that of graphite carbon, it is disadvantageous when comparing the capacity per unit volume. Due to the high true density of the graphite system, it is 20% to 50% as compared with the amorphous system after printing into a powder after printing.
%, The bulk density of the graphite system is larger. Therefore, in order to obtain the superior capacity in the amorphous system, the capacity per unit weight must be large by 50% or more. Regarding the amorphous carbon in general, the structure of the Li ion storage site has some unclear points, but it is estimated that the layer structure, pores, surface structure, and the like have an influence.

【0014】本発明では、難黒鉛系材料のフェノ−ル樹
脂とケイ素を複合化したものを原料として、炭素化合物
を合成する。この炭素化合物において、層、細孔、表面
などの構造を制御して、Liイオンの貯蔵サイトの増大
を図って、高容量化を図ろうとするものである。
In the present invention, a carbon compound is synthesized from a composite of phenolic resin and silicon as a raw material, which is a non-graphite material. In this carbon compound, the structure of layers, pores, surfaces, and the like is controlled to increase the number of Li ion storage sites and to increase the capacity.

【0015】フェノ−ル樹脂には、ノボラック型、レゾ
ール型がある。高温熱処理を行う過程で樹脂は溶融しな
いものの方が、かつ適当な難黒鉛性を有するものの方が
望ましい。従って、この不融化のための硬化条件も重要
な条件となる。ノボラック型樹脂の場合は、架橋材を添
加して、熱硬化反応を起こせねばならない。
The phenolic resin includes a novolak type and a resol type. It is preferable that the resin does not melt in the process of performing the high-temperature heat treatment and that the resin has a suitable non-graphitic property. Therefore, the curing conditions for infusibility are also important conditions. In the case of a novolak resin, a crosslinking agent must be added to cause a thermosetting reaction.

【0016】レゾール型樹脂は、自己で熱硬化反応を起
こす。硬化反応を樹脂の内部まで均一に反応を起こすた
めには、熱酸化や分解反応が生じない条件で十分な熱処
理を行う必要がある。そのためには、粉砕前の80℃か
ら200℃での熱処理で硬化反応を行った後、粉砕処理
を行い、さらに180℃から220℃の範囲で熱処理を
十分に行う必要がある。炭素化合物状態でケイ素が原子
状に分散された状態を形成するためには、原料状態でフ
ェノール樹脂とケイ素化合物を分子状で混合する必要が
ある。そのためには、フェノール樹脂とケイ素化合物と
もに溶液になっている状態で混合できることが望まし
い。フェノール樹脂は水溶液、あるいは適当な有機溶剤
との混合により溶液状態が得られる。
The resole type resin causes a thermosetting reaction by itself. In order for the curing reaction to occur uniformly within the resin, it is necessary to perform a sufficient heat treatment under conditions that do not cause thermal oxidation or decomposition reaction. For this purpose, it is necessary to carry out a curing reaction by heat treatment at 80 ° C. to 200 ° C. before pulverization, then to carry out pulverization treatment, and to further sufficiently perform heat treatment at 180 ° C. to 220 ° C. In order to form a state in which silicon is dispersed in an atomic state in a carbon compound state, it is necessary to mix a phenol resin and a silicon compound in a molecular state in a raw material state. For this purpose, it is desirable that both the phenol resin and the silicon compound can be mixed in a solution. The phenol resin can be obtained in a solution state by mixing with an aqueous solution or an appropriate organic solvent.

【0017】ケイ素化合物の原料としては、液状になる
ものであればよい。適当な化合物として、シランカップ
リング剤が使用できる。シランカップリング剤は反応性
官能基を有しているわけであるが、ここでは特には、官
能基は限定されるわけではないが、フェノール樹脂と分
散しやすいというものとしてはアミノ基、ビニル基、エ
ポキシ基、クロロ基、水酸基などの基を有しているもの
が良い。このような化合物を適当な組成で混合分散後、
前記の硬化、粉砕、不融化処理を行った後、炭素化の熱
処理を行うわけであるが、熱処理としては、不活性ガス
中で800℃から1500℃の範囲で最適化することに
より所望の炭素粉末が得られる。
The raw material of the silicon compound may be any material as long as it becomes liquid. A silane coupling agent can be used as a suitable compound. Although the silane coupling agent has a reactive functional group, the functional group is not particularly limited here, but the amino group and the vinyl group are easily dispersed with the phenol resin. , An epoxy group, a chloro group, a hydroxyl group and the like. After mixing and dispersing such a compound with an appropriate composition,
After the above-described curing, pulverization, and infusibilization treatments, a heat treatment for carbonization is performed. The heat treatment is performed by optimizing in an inert gas in a range of 800 ° C to 1500 ° C to obtain a desired carbon. A powder is obtained.

【0018】熱処理として不活性ガス雰囲気中で450
から600℃の温度でまず予備的熱処理を行った後、前
記の高温処理を行うとより電池特性の優れたものが得ら
れる場合がある。450℃から600℃の範囲が最もフ
ェノール樹脂が熱分解反応を起こす範囲であるため、こ
こまで昇温、降温速度などの条件を制御することによ
り、細孔や表面構造の異なったものが得られる。
Heat treatment is performed at 450 in an inert gas atmosphere.
First, a preliminary heat treatment is performed at a temperature of from about 600 ° C. to about 600 ° C., and then the above-described high-temperature treatment may provide a battery having more excellent battery characteristics. Since the range of 450 ° C. to 600 ° C. is the range in which the phenol resin undergoes the thermal decomposition reaction, by controlling the conditions such as the temperature increase and the temperature decrease rate, it is possible to obtain different pores and surface structures. .

【0019】炭素構造については、N2ガス、CO2ガス
による比表面積測定、X線測定、TEM観察などにより
評価できる。比表面積としては、N2ガスの場合は必ず
しも電池の容量とは相関関係はない。むしろ、CO2ガ
スで測定をした比表面積の方が相関関係がある。これ
は、細孔の大きさの評価がN2ガスの場合では2nm以
上に限られるからと思われる。CO2ガスでは1nm以
下のの細孔についても評価ができる。ただし、この値が
小さいからと言って、必ずしも粉末の内部まで細孔や構
造欠陥量が少ないとは言い切れない。粉末の内部につい
ては、X線回折測定や小角散乱測定、TEMなどの測定
により評価を行った。その結果、ケイ素は原子状で分散
されている方が電池特性が優れていることが分かった。
ケイ素が酸化物や他の化合物で存在するとかえって容量
などの電池特性が低下する。ケイ素が原子状に分散され
ることにより、炭素の構造特に、細孔の大きさ、分布に
影響することが分かった。、存在している本特許で求め
る炭素粉末の表面構造、細孔、構造欠陥の形成状態に影
響を与える因子としては、出発原料の構造と焼成条件が
大きいことがわかった。
The carbon structure can be evaluated by specific surface area measurement using N 2 gas or CO 2 gas, X-ray measurement, TEM observation and the like. The specific surface area does not always have a correlation with the capacity of the battery in the case of N2 gas. Rather, the specific surface area measured with CO2 gas is more correlated. This is presumably because the evaluation of the pore size is limited to 2 nm or more in the case of N2 gas. With CO2 gas, pores of 1 nm or less can be evaluated. However, just because this value is small does not necessarily mean that the amount of pores and structural defects is small even inside the powder. The inside of the powder was evaluated by measurement such as X-ray diffraction measurement, small angle scattering measurement, and TEM. As a result, it was found that when silicon was dispersed in an atomic state, the battery characteristics were better.
When silicon is present as an oxide or another compound, battery characteristics such as capacity are rather deteriorated. It has been found that the atomic dispersion of silicon affects the structure of carbon, particularly the size and distribution of pores. It was found that the factors affecting the surface structure, pores, and the state of formation of structural defects of the carbon powder required in the present patent are the structure of the starting material and the firing conditions.

【0020】以上、ここでは、フェノール樹脂から焼成
された炭素にケイ素原子が原子状に分散された炭素化合
物をLiイオン2次電池の負極として提供をした。
As described above, a carbon compound obtained by dispersing silicon atoms in carbon in a carbon fired from a phenol resin is provided as a negative electrode of a Li-ion secondary battery.

【0021】[0021]

【発明の実施の形態】本発明の請求項1に記載の発明
は、フェノ−ル樹脂を原料として、不活性ガス雰囲気中
で800℃から1400℃の範囲焼成された炭素物質に
ケイ素が炭素に対して1から100重量%含有すること
ようにしたものであり、高容量化をはかる事ができると
いう作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention relates to a method in which phenol resin is used as a raw material, and silicon is converted to carbon in a carbon material fired at a temperature of 800 to 1400 ° C. in an inert gas atmosphere. On the other hand, it is contained in an amount of 1 to 100% by weight, and has an effect that the capacity can be increased.

【0022】請求項2に記載の発明は、請求項1記載の
炭素化合物において、フェノ−ル樹脂と室温で液状のケ
イ素化合物とを混合後、焼成するようにしたものであ
り、高容量化をはかる事ができるという作用を有する。
According to a second aspect of the present invention, there is provided the carbon compound according to the first aspect, wherein the phenol resin is mixed with a silicon compound which is liquid at room temperature and then calcined. It has the effect that it can be measured.

【0023】請求項3に記載の発明は、請求項1または
請求項2記載の炭素化合物において、フェノ−ル樹脂と
ケイ素化合物を混合し、150℃から220℃℃の範囲
の温度で2H以上の熱処理において、ケイ素化合物とし
て前述のいずれかの反応基を有するシラン化合物を用い
るものであり、高容量化をはかる事ができるという作用
を有する。
According to a third aspect of the present invention, there is provided a carbon compound according to the first or second aspect, wherein a phenol resin and a silicon compound are mixed, and the mixture is mixed at a temperature in the range of 150 ° C. to 220 ° C. and 2H or more. In the heat treatment, a silane compound having any of the above-mentioned reactive groups is used as the silicon compound, and has an effect that the capacity can be increased.

【0024】請求項4に記載の発明は、請求項1乃至3
のいずれかに記載の炭素化合物において、ケイ素化合物
として、アミノ基、ビニル基、エポキシ基、クロロ基、
水酸基のいずれかの反応基を有するシラン化合物を用い
るようにしたものであり、高容量化をはかる事ができる
という作用を有する。
[0024] The invention described in claim 4 is the first to third aspects of the present invention.
In the carbon compound according to any of the above, as a silicon compound, an amino group, a vinyl group, an epoxy group, a chloro group,
In this case, a silane compound having any one of the reactive groups of hydroxyl groups is used, and has an effect of increasing the capacity.

【0025】請求項5に記載の発明は、請求項1乃至4
のいずれかに記載の炭素化合物の製造方法において、フ
ェノ−ル樹脂とケイ素化合物を混合後、150℃から2
20℃の範囲の温度で2H以上の熱処理を行い、その後
粉砕処理を行い、さらにその後、150℃から220℃
での熱処理を行い、この処理を1回以上繰り返すことに
より、高容量化をはかる事ができるという作用を有す
る。
[0025] The invention according to claim 5 is the invention according to claims 1 to 4.
In the method for producing a carbon compound according to any one of the above, after mixing the phenol resin and the silicon compound,
A heat treatment of 2H or more is performed at a temperature in the range of 20 ° C., and then a pulverizing process is performed, and thereafter, a temperature of 150 to 220 ° C.
By performing this heat treatment and repeating this treatment one or more times, it is possible to increase the capacity.

【0026】請求項6に記載の発明は、請求項5記載の
炭素化合物の製造方法において、フェノ−ル樹脂とケイ
素化合物を混合後、150℃から220℃の範囲の温度
で2H以上の熱処理を行い、その後不活性ガス雰囲気
中、あるいは真空中で450℃から600℃までの温度
範囲で熱分解反応処理して後、粉砕処理を行い、その後
同じく不活性ガス雰囲気中、あるいは真空中で、800
℃から1500℃の熱処理により焼成されるものであ
り、高容量化をはかる事ができるという作用を有する。
According to a sixth aspect of the present invention, in the method for producing a carbon compound according to the fifth aspect, after mixing the phenol resin and the silicon compound, the mixture is subjected to a heat treatment at 150 ° C. to 220 ° C. for 2H or more. After that, a pyrolysis reaction treatment is performed in a temperature range from 450 ° C. to 600 ° C. in an inert gas atmosphere or vacuum, and then a pulverization treatment is performed.
It is fired by a heat treatment at a temperature of from 1500C to 1500C, and has the effect of increasing the capacity.

【0027】請求項7に記載の発明は、請求項5または
請求項6記載の炭素化合物の製造方法において、フェノ
−ル樹脂として、ホルムアルデヒドとフェノ−ルの比率
が1.0から2.0の比率でアルカリ触媒のよりつくら
れるレゾ−ル型を用いるようにしたものであり、高容量
化をはかる事ができるという作用を有する。
According to a seventh aspect of the present invention, in the method for producing a carbon compound according to the fifth or sixth aspect, the phenolic resin has a ratio of formaldehyde to phenol of 1.0 to 2.0. It uses a resol type which is made of an alkali catalyst in a ratio, and has an effect that a high capacity can be achieved.

【0028】請求項8に記載の発明は、請求項5乃至7
のいずれかに記載の炭素化合物の製造方法において、け
い素がフェノール樹脂と混合し、さらに焼成した後にそ
の分散状態が原子状であるようにしたものであり、高容
量化をはかる事ができるという作用を有する。
[0028] The invention according to claim 8 provides the invention according to claims 5 to 7.
In the method for producing a carbon compound according to any one of the above, silicon is mixed with a phenol resin, and after being further calcined, the dispersed state is in an atomic state, and it is possible to increase the capacity. Has an action.

【0029】請求項9に記載の発明は、請求項1乃至8
のいずれかに記載の炭素化合物あるいは製造方法により
つくられる炭素化合物を用いた2次電池用電極としたも
のであり、高容量化をはかる事ができるという作用を有
する。
The invention according to claim 9 is the invention according to claims 1 to 8
And an electrode for a secondary battery using the carbon compound described in any one of the above or the carbon compound produced by the production method, and has an effect of increasing the capacity.

【0030】[0030]

【実施例】次に、本発明の具体例を説明する。Next, specific examples of the present invention will be described.

【0031】フェノール樹脂としてレゾール型を原料と
した炭素粉末の作製例を以下に示す。
An example of the production of carbon powder using a resol type as a phenol resin is shown below.

【0032】フェノール樹脂は水酸化ナトリウムを触媒
として、合成し、水溶液状態に保持した。これにエポキ
シ基を有するシランカップリング剤であるγーグリシド
キシプロピルトリメトキシシラン(トーレ・シリコーン
株)をフェノール樹脂に対して0、10、20、30w
t%を添加し、攪拌、混合を十分に行った。その後、8
0℃で水分を乾燥した後、150℃で1H、さらに18
0℃で2Hの熱処理を行った。次に、この樹脂状で粉砕
処理を行った。粒径の大きさとしては、平均10μmに
なるようにした。その後、200℃で5H熱処理を行
い、硬化反応を十分に進ませた。その後、窒素ガス雰囲
気中で500℃で1Hの熱処理を行い、室温に一度戻し
た。その後、さらに、昇温速度を3℃/minで行い、
1100℃で1Hの熱処理を行い、5℃/minの速度
で降温した。このようにして、作製された炭素化合物の
評価を行ったところ次のような結果が得られた。
The phenol resin was synthesized using sodium hydroxide as a catalyst and kept in an aqueous solution. A silane coupling agent having an epoxy group, γ-glycidoxypropyltrimethoxysilane (Toray Silicone Co., Ltd.) was added to the phenol resin in an amount of 0, 10, 20, 30 w.
Then, the mixture was sufficiently stirred and mixed. Then 8
After drying the water at 0 ° C, 1H at 150 ° C,
A heat treatment of 2H was performed at 0 ° C. Next, a pulverization process was performed on the resin. The average size of the particles was 10 μm. Thereafter, a 5H heat treatment was performed at 200 ° C. to sufficiently advance the curing reaction. Thereafter, a heat treatment was performed at 500 ° C. for 1 H in a nitrogen gas atmosphere, and the temperature was returned to room temperature once. Thereafter, the temperature is further increased at a rate of 3 ° C./min,
Heat treatment was performed at 1100 ° C. for 1 H, and the temperature was lowered at a rate of 5 ° C./min. When the carbon compound thus produced was evaluated, the following results were obtained.

【0033】まず、比表面積であるが、N2ガスとCO2
ガスで計った場合の結果を(表1)に示す。N2ガスに
よる比表面積では、シランカップリング剤の添加量に対
して小さくなり、CO2ガスでは大きくなる傾向があ
る。従って細孔分布てきには、添加量に応じて細孔が小
さいものが増加していると考えられる。
First, regarding the specific surface area, N 2 gas and CO 2
The results when measured with gas are shown in (Table 1). The specific surface area due to N2 gas tends to be smaller than the added amount of the silane coupling agent, and tends to be larger with CO2 gas. Therefore, it can be considered that pores having small pores are increasing in proportion to the amount of addition.

【0034】[0034]

【表1】 [Table 1]

【0035】X線回折測定を行うと炭素の層構造に起因
するブロードなピークが観察されるだけで、ケイ素化合
物によるピークは観察されなかった。ケイ素原子の存在
を確認するために、蛍光X線分析を行ったところ、添加
量に応じたケイ素の炭素の中への存在が確認できた。こ
れより、ケイ素は原子状に炭素の中で分散されていると
考えられる。
When X-ray diffraction measurement was performed, only a broad peak due to the carbon layer structure was observed, but no peak due to the silicon compound was observed. When X-ray fluorescence analysis was performed to confirm the presence of silicon atoms, the presence of silicon in the carbon corresponding to the amount of addition was confirmed. From this, it is considered that silicon is atomically dispersed in carbon.

【0036】また、X線の小角散乱測定より、モデル式
より細孔の大きさを推定すると、細孔の大きさは添加量
に応じて小さくなる傾向が得られた。
Further, when the size of the pores was estimated from the model formula based on the small-angle scattering measurement of X-rays, the size of the pores tended to become smaller in accordance with the added amount.

【0037】以上のような特性の炭素粉末化合物は、シ
ランカップリング剤の種類やフェノール樹脂の種類が異
なっても混合が良くできれば類似の特性のものができ
る。その場合、熱処理条件を最適化して、所望の電池特
性に合った炭素構造としての層構造、細孔、構造欠陥な
どの量を制御する必要がある。
The carbon powder compounds having the above characteristics can have similar characteristics even if the type of the silane coupling agent and the type of the phenol resin are different from each other as long as mixing is good. In this case, it is necessary to optimize the heat treatment conditions and control the amount of the layer structure, pores, structural defects, and the like as the carbon structure that matches the desired battery characteristics.

【0038】本発明の炭素化合物の電池特性の評価のた
めに作製した電池はコイン型のものである。負極材の電
極特性を検討するのに、対極としてはLi箔を用いた。
炭素電極は炭素化後粉砕してポリフッ化ビニリデンを結
着材として用いて、銅箔上にシート状成型した。粒径は
平均粒径が10μmになるように調整した。粒度分布測
定はレ−ザ回折法により行った。電解液に基本組成とし
ては、溶媒をエチレンカ−ボネ−トとジエチレンカーボ
ネートの混合溶媒、電解質はLiPF6を用いた。このよう
にして作られた電極を用いて電池の試作を行い充放電容
量について特に評価を行った。充放電量は2サイクル目
のもので評価を行った。充電操作は定電流定と定電圧1
0mV印加を行って十分に試料粉末が充電反応が行える
条件で行った、放電量測定は定電流0.2mA/cm2
で行った。
The battery prepared for evaluating the battery characteristics of the carbon compound of the present invention is a coin type. For examining the electrode characteristics of the negative electrode material, a Li foil was used as a counter electrode.
The carbon electrode was carbonized and pulverized, and formed into a sheet shape on a copper foil using polyvinylidene fluoride as a binder. The particle size was adjusted so that the average particle size was 10 μm. The particle size distribution was measured by a laser diffraction method. As the basic composition of the electrolytic solution, a mixed solvent of ethylene carbonate and diethylene carbonate was used as a solvent, and LiPF 6 was used as an electrolyte. A trial production of a battery was performed using the electrode thus manufactured, and the charge / discharge capacity was particularly evaluated. The charge / discharge amount was evaluated at the second cycle. Charging operation is constant current constant and constant voltage 1
0 mV was applied and the sample powder was sufficiently charged to perform the charging reaction. The discharge amount was measured at a constant current of 0.2 mA / cm 2.
I went in.

【0039】(実施例1)負極材原料として前記で述べ
たレゾール型フェノール樹脂とシランカップリング剤と
の複合化したものを用いた。シランカップリング剤の添
加量が0、10、20、30wt%の4種類を作製し
た。これらの粉末を用いて電池試料を作製して電池特性
の評価を行った。結果を(表2)に示す。
(Example 1) As a negative electrode material, a composite of the above-mentioned resol type phenol resin and a silane coupling agent was used. Four types were prepared in which the added amount of the silane coupling agent was 0, 10, 20, and 30 wt%. Battery samples were prepared using these powders, and battery characteristics were evaluated. The results are shown in (Table 2).

【0040】[0040]

【表2】 [Table 2]

【0041】(実施例2)負極材原料として用いるレゾ
ール型フェノール樹脂において、ホルムアルデヒドとフ
ェノールの比率が0.8、1.0、1.2、1.4、
1.6、1.8、2.0、2.2の場合の8種の検討を
行った。シランカップリング材としては前記のエポキシ
基を有するものでフェノールに対して20wt%のもの
を用いた。重合触媒としてはNaOHを用いた。N2ガ
ス雰囲気中で600℃で熱処理後、粉砕処理を行った。
さらに同じくN2カ゛ス中で1000℃、1Hの熱処理を行
った。このようにしてつくられた炭素粉末を用いて電池
試料を作製し、同じく電池特性を測定した。結果を(表
3)に示す。
Example 2 In a resol type phenol resin used as a raw material for a negative electrode material, the ratio of formaldehyde to phenol was 0.8, 1.0, 1.2, 1.4,
Eight types of studies were performed for 1.6, 1.8, 2.0, and 2.2. As the silane coupling material, one having the above-mentioned epoxy group and 20 wt% based on phenol was used. NaOH was used as a polymerization catalyst. After heat treatment at 600 ° C. in an N 2 gas atmosphere, pulverization was performed.
Further, a heat treatment at 1000 ° C. for 1 hour was performed in a N 2 gas. A battery sample was prepared using the carbon powder thus prepared, and the battery characteristics were measured in the same manner. The results are shown in (Table 3).

【0042】[0042]

【表3】 [Table 3]

【0043】(実施例3)上記のフェノール樹脂の中で
シランカップリング材の添加量が30%で、ホルムアル
デヒドとフェノールの比率が1.4のもので、180℃
における熱処理を行わないもの、180℃で2H行った
もの、さらに粉砕後180℃の2Hを行ったもの、18
0℃で5H行った後、それぞれ、500℃で熱処理を
し、さらに1200℃で1Hの熱処理を行った。このよ
うにしてつくられた炭素粉末を用いて電池試料を作製し
て、同じく電池特性を測定した。結果を(表4)に示
す。
(Example 3) In the above phenol resin, the amount of the silane coupling agent added was 30% and the ratio of formaldehyde to phenol was 1.4.
In which no heat treatment was performed, in which 2H was performed at 180 ° C., and further in which 2H was performed at 180 ° C. after pulverization, 18
After performing 5 H at 0 ° C., heat treatment was performed at 500 ° C., and heat treatment was performed at 1200 ° C. for 1 H, respectively. A battery sample was prepared using the carbon powder thus prepared, and the battery characteristics were also measured. The results are shown in (Table 4).

【0044】[0044]

【表4】 [Table 4]

【0045】以上、各実施例は請求項要因の効果を説明
のためにあげたもので、この条件に限定されるものでは
ない。各電池で最大容量をだすためには、各原料の組成
比、添加材量、焼成条件など最適の条件を見つけ出すこ
とが必要である。
As described above, the respective embodiments have been described for the purpose of explaining the effects of the claim factors, and are not limited to these conditions. In order to obtain the maximum capacity of each battery, it is necessary to find out the optimum conditions such as the composition ratio of each raw material, the amount of the additive, and the firing conditions.

【0046】[0046]

【発明の効果】以上のように負極材料として用いられる
炭素粉末を有機原料から焼成で炭素化する際に、ある特
定の温度範囲での制御、原料構造の選択、炭素粉末の表
面や細孔制御を行うことにより、充放電容量の大きいて
Liイオン2次電池用の負極炭素材料が提供できる。そ
して、この負極を用いることにより、高エネルギー密度
のLiイオン2次電池が提供できる。
As described above, when carbonizing carbon powder used as a negative electrode material from an organic raw material by firing, control in a specific temperature range, selection of the raw material structure, control of the surface and pores of the carbon powder. By performing the above, a negative electrode carbon material having a large charge / discharge capacity for a Li-ion secondary battery can be provided. By using this negative electrode, a Li-ion secondary battery having a high energy density can be provided.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 フェノ−ル樹脂を原料として、不活性ガ
ス雰囲気中で800℃から1500℃の範囲焼成された
炭素物質に、ケイ素が炭素に対して1から100重量%
含有することを特徴とする炭素化合物。
1. A carbon material fired at 800 ° C. to 1500 ° C. in an inert gas atmosphere using a phenol resin as a raw material, wherein silicon is contained in an amount of 1 to 100% by weight based on carbon.
A carbon compound characterized by containing.
【請求項2】 フェノ−ル樹脂と液状のケイ素化合物と
を室温で混合後、焼成することを特徴とする請求項1記
載の炭素化合物。
2. The carbon compound according to claim 1, wherein the phenol resin and the liquid silicon compound are mixed at room temperature and then calcined.
【請求項3】 フェノ−ル樹脂とケイ素化合物を混合
後、150℃から220℃の範囲の温度で2H以上の熱
処理において、ケイ素化合物の反応基を有するシラン化
合物を用いることを特徴とする請求項1または請求項2
記載の炭素化合物。
3. A silane compound having a reactive group of the silicon compound is used in a heat treatment at a temperature in the range of 150 ° C. to 220 ° C. for 2H or more after mixing the phenol resin and the silicon compound. 1 or Claim 2
The carbon compound as described above.
【請求項4】 ケイ素化合物として、アミノ基、ビニル
基、エポキシ基、クロロ基、水酸基のいずれかの反応基
を有するシラン化合物を用いることを特徴とする請求項
1乃至3のいずれかに記載の炭素化合物。
4. The silicon compound according to claim 1, wherein the silicon compound is a silane compound having any one of an amino group, a vinyl group, an epoxy group, a chloro group and a hydroxyl group. Carbon compounds.
【請求項5】 フェノ−ル樹脂とケイ素化合物を混合
し、150℃から220℃の範囲の温度で2H以上の熱
処理を理を行い、その後粉砕処理を行い、さらにその
後、150℃から220℃での熱処理を行う処理を1回
以上繰り返すことを特徴とする請求項1乃至4のいずれ
かに記載の炭素化合物の製造方法。
5. A phenolic resin and a silicon compound are mixed, heat-treated at a temperature in the range of 150 ° C. to 220 ° C. for 2H or more, followed by pulverization, and then at 150 ° C. to 220 ° C. The method for producing a carbon compound according to any one of claims 1 to 4, wherein the heat treatment is repeated one or more times.
【請求項6】 フェノ−ル樹脂とケイ素化合物を混合
し、150℃から220℃の範囲の温度で2H以上の熱
処理を行い、その後不活性ガス雰囲気中、あるいは真空
中で450℃から600℃までの温度範囲で熱分解反応
処理した後、粉砕処理を行い、その後同じく不活性ガス
雰囲気中、あるいは真空中で800℃から1500℃の
熱処理により焼成されることを特徴とする請求項5記載
の炭素化合物の製造方法。
6. A phenol resin and a silicon compound are mixed and heat-treated at a temperature in the range of 150 ° C. to 220 ° C. for 2H or more, and then from 450 ° C. to 600 ° C. in an inert gas atmosphere or vacuum. The carbon according to claim 5, characterized in that the carbon is subjected to a thermal decomposition reaction treatment in the temperature range described above, followed by a pulverization treatment, and then calcined by a heat treatment at 800 ° C to 1500 ° C in an inert gas atmosphere or vacuum. A method for producing a compound.
【請求項7】 フェノ−ル樹脂として、ホルムアルデヒ
ドとフェノ−ルの比率が1.0から2.0の比率ででア
ルカリ触媒によりつくられるレゾ−ル型を用いることを
特徴とする請求項5または請求項6記載の炭素化合物の
製造方法。
7. The phenolic resin according to claim 5, wherein the resin is a resin type produced by an alkali catalyst at a ratio of formaldehyde to phenol of 1.0 to 2.0. A method for producing a carbon compound according to claim 6.
【請求項8】 けい素が、フェノール樹脂と混合後、さ
らに焼成後にその分散状態が原子状であることを特徴と
する請求項5または請求項6記載の炭素化合物の製造方
法。
8. The method for producing a carbon compound according to claim 5, wherein the dispersion state of the silicon after mixing with the phenol resin and after the calcination is atomic.
【請求項9】 請求項1乃至8のいずれかに記載の炭素
化合物あるいは製造方法によりつくられる炭素化合物を
用いた2次電池用電極。
9. An electrode for a secondary battery using the carbon compound according to claim 1 or a carbon compound produced by the production method.
JP10128553A 1998-05-12 1998-05-12 Carbon compound and its production, and electrode for secondary battery Pending JPH11322323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10128553A JPH11322323A (en) 1998-05-12 1998-05-12 Carbon compound and its production, and electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10128553A JPH11322323A (en) 1998-05-12 1998-05-12 Carbon compound and its production, and electrode for secondary battery

Publications (1)

Publication Number Publication Date
JPH11322323A true JPH11322323A (en) 1999-11-24

Family

ID=14987615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10128553A Pending JPH11322323A (en) 1998-05-12 1998-05-12 Carbon compound and its production, and electrode for secondary battery

Country Status (1)

Country Link
JP (1) JPH11322323A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287904A (en) * 2000-04-05 2001-10-16 Sumitomo Durez Co Ltd Carbon material and method for producing the same
JP2001345100A (en) * 2000-05-31 2001-12-14 Hitachi Chem Co Ltd Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP2002298842A (en) * 2001-03-29 2002-10-11 Sumitomo Bakelite Co Ltd Method for manufacturing electrode composition for nonaqueous electrolyte secondary battery
JP2003282054A (en) * 2002-03-20 2003-10-03 Osaka Gas Co Ltd Manufacturing method of negative electrode material for lithium secondary battery and lithium secondary battery
WO2014097819A1 (en) * 2012-12-17 2014-06-26 日本電気株式会社 Negative electrode material for lithium ion secondary batteries, and method for evaluating same
JP2015062168A (en) * 2013-08-19 2015-04-02 Jsr株式会社 Method for manufacturing electrode material, electrode, and power storage device
WO2020129467A1 (en) * 2018-12-19 2020-06-25 Dic株式会社 Silicon nanoparticles, non-aqueous secondary battery negative electrode active material using said silicon nanoparticles, and secondary battery
CN112467098A (en) * 2020-10-30 2021-03-09 合肥国轩高科动力能源有限公司 High-capacity and good-stability silicon-carbon negative electrode material and preparation method thereof
CN112521172A (en) * 2020-12-04 2021-03-19 拓米(成都)应用技术研究院有限公司 Composite carbon material for in-situ growth of carbon fibers and preparation method and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287904A (en) * 2000-04-05 2001-10-16 Sumitomo Durez Co Ltd Carbon material and method for producing the same
JP2001345100A (en) * 2000-05-31 2001-12-14 Hitachi Chem Co Ltd Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP2002298842A (en) * 2001-03-29 2002-10-11 Sumitomo Bakelite Co Ltd Method for manufacturing electrode composition for nonaqueous electrolyte secondary battery
JP2003282054A (en) * 2002-03-20 2003-10-03 Osaka Gas Co Ltd Manufacturing method of negative electrode material for lithium secondary battery and lithium secondary battery
WO2014097819A1 (en) * 2012-12-17 2014-06-26 日本電気株式会社 Negative electrode material for lithium ion secondary batteries, and method for evaluating same
JP2015062168A (en) * 2013-08-19 2015-04-02 Jsr株式会社 Method for manufacturing electrode material, electrode, and power storage device
US9543079B2 (en) 2013-08-19 2017-01-10 Jsr Corporation Production process for electrode material, electrode and electric storage device
WO2020129467A1 (en) * 2018-12-19 2020-06-25 Dic株式会社 Silicon nanoparticles, non-aqueous secondary battery negative electrode active material using said silicon nanoparticles, and secondary battery
JPWO2020129467A1 (en) * 2018-12-19 2021-02-15 Dic株式会社 Silicon nanoparticles and non-aqueous secondary batteries using them Active materials for negative electrodes and secondary batteries
CN112467098A (en) * 2020-10-30 2021-03-09 合肥国轩高科动力能源有限公司 High-capacity and good-stability silicon-carbon negative electrode material and preparation method thereof
CN112521172A (en) * 2020-12-04 2021-03-19 拓米(成都)应用技术研究院有限公司 Composite carbon material for in-situ growth of carbon fibers and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP4974597B2 (en) Negative electrode and negative electrode active material for lithium ion secondary battery
JP6450480B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material
JP4866611B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery using the negative electrode material, and non-aqueous electrolyte secondary battery
KR102022891B1 (en) Manufacturing method of negative material for rechargeable battery, negative material for rechargeable battery made by the same, and rechargeable battery including the same
JPWO2013146168A1 (en) Electrode material
JP2018163762A (en) Electrode material for lithium ion secondary battery, method for manufacturing the same, electrode for lithium ion secondary battery and lithium ion secondary battery
JPH0831422A (en) Carbon material for negative electrode of lithium secondary battery and manufacture thereof
JP2018006270A (en) Graphite carbon material for lithium ion secondary battery negative electrode, method for manufacturing the same, and negative electrode or battery arranged by use thereof
KR20170102949A (en) Carbon material, production method thereof and use thereof
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2021180187A (en) Method for manufacturing negative electrode material for lithium ion secondary battery, and negative electrode material for lithium ion secondary battery
CN113054188A (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2002231225A (en) Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JPH11322323A (en) Carbon compound and its production, and electrode for secondary battery
US20170092938A1 (en) Electrode material for lithium-ion rechargeable battery, electrode for lithium-ion rechargeable battery and lithium-ion rechargeable battery
WO2020213628A1 (en) Composite carbon particles, method for manufacturing same and use thereof
KR20020070842A (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
KR20230118529A (en) Lithium-Doped Silicon Oxide Composite Anode Material With High Initial Coulombic Efficiency and Preparation Method Thereof
JP6447013B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
TW201822394A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2005200276A (en) Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery
US12017916B2 (en) Amorphous carbon material, prepared by subjecting mixture of carbonaceous material and aqueous solution to phase separation and drying, preparation method and use thereof
JP2018006271A (en) Carbon material for lithium ion secondary battery negative electrode, intermediate thereof, method for manufacturing the same, and negative electrode or battery arranged by use thereof
KR20220087143A (en) Negative electrode material for lithium ion secondary battery, preparation method thereof, and lithium ion secondary battery comprising same