JPH11318839A - Bloodless and consecutive hemodynamometer - Google Patents

Bloodless and consecutive hemodynamometer

Info

Publication number
JPH11318839A
JPH11318839A JP10146669A JP14666998A JPH11318839A JP H11318839 A JPH11318839 A JP H11318839A JP 10146669 A JP10146669 A JP 10146669A JP 14666998 A JP14666998 A JP 14666998A JP H11318839 A JPH11318839 A JP H11318839A
Authority
JP
Japan
Prior art keywords
blood pressure
signal
invasive
sphygmomanometer
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10146669A
Other languages
Japanese (ja)
Other versions
JP3037266B2 (en
Inventor
Kinya Hasegawa
欣也 長谷川
Yuji Nishimura
有史 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10146669A priority Critical patent/JP3037266B2/en
Priority to US09/290,394 priority patent/US6358212B1/en
Priority to CA002268691A priority patent/CA2268691C/en
Priority to EP99107592A priority patent/EP0951863B1/en
Priority to AT99107592T priority patent/ATE394990T1/en
Priority to DE69938689T priority patent/DE69938689D1/en
Priority to TW088106234A priority patent/TW410151B/en
Priority to CNA2004100589686A priority patent/CN1589735A/en
Priority to KR1019990013952A priority patent/KR100340830B1/en
Priority to CNB991050460A priority patent/CN1172629C/en
Publication of JPH11318839A publication Critical patent/JPH11318839A/en
Application granted granted Critical
Publication of JP3037266B2 publication Critical patent/JP3037266B2/en
Priority to US10/057,910 priority patent/US6743178B2/en
Priority to US10/721,076 priority patent/US6966879B2/en
Priority to US10/721,066 priority patent/US20040106873A1/en
Priority to US10/721,083 priority patent/US6802815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide smaller scale, low cost bloodless and consecutive hemodynamometer with high reliability and precision by A/D converting a detected signal including biological parameters received by a bloodless sensor without passing through a filter means and a phase detecting means, and allowing a processor to calculate-execute filter processing and phase detecting processing. SOLUTION: In a hemodynamometer for measuring blood pressure in a bloodless and consecutive state, a detected signal including biological parameters received by a bloodless sensor 101 is digitized by an A/D converter 103, and a band pass filtering processing 104, a low pass filtering processing 105 and a phase detecting processing 106 are executed by a processor. Thus, it is not necessary to mount a filtering circuit and a phase detecting circuit, thereby a size is reduced. In addition, reliability and precision are improved by the reduction of analog circuits.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生体内血管に振動
を与えて血管内を伝搬した振動を検出し解析することに
より、血圧を非侵襲で連続的に測定する非観血連続血圧
計に関し、特に血圧算出に必要となる位相検波処理また
はフィルタ処理と位相検波の両方をプロセッサによって
演算により実行させることで、低価格化、小型化、高信
頼化、高精度化を図るようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-invasive continuous blood pressure monitor for continuously and non-invasively measuring blood pressure by applying vibration to a blood vessel in a living body and detecting and analyzing the vibration propagated in the blood vessel. In particular, by causing the processor to execute both the phase detection process or the filter process and the phase detection required for blood pressure calculation by calculation by a processor, cost reduction, miniaturization, high reliability, and high accuracy are achieved. is there.

【0002】[0002]

【従来の技術】非侵襲で連続に血圧を測定する方法とし
て、特表平9−506024が知られている。特表平9−506024
は、血圧の変化に応じて血管の弾性が変化することを利
用し、血管を伝搬する音波の音速を検出することで血管
の弾性を算出し、その血管の弾性値から血圧を測定する
ものである。
2. Description of the Related Art As a method for continuously and non-invasively measuring blood pressure, Japanese Patent Publication No. 9-506024 is known. Tokiohei 9-506024
Utilizes the fact that the elasticity of blood vessels changes according to changes in blood pressure, calculates the elasticity of blood vessels by detecting the speed of sound of sound waves propagating through the blood vessels, and measures blood pressure from the elasticity value of the blood vessels. is there.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特表平
9−506024の具体例では、振動検出に続いて前置増幅
器、励振信号と血圧信号を分離するためのバンドパスフ
ィルタとローパスフィルタ、位相検波を行なうロックイ
ンアンプを、ハードウエアによって実施することが必要
と記載されている。しかしながらこれらハードウェア、
例えばロックインアンプは高精度なアナログ乗算器を必
要とするし、例えば直流信号まで忠実に再現するアナロ
グ回路を多く必要とするなど、血圧計の実現にあたって
価格が上昇する、物量が増大するという問題を有してい
た。
[Problems to be solved by the invention]
In the specific example of 9-506024, following a vibration detection, a preamplifier, a band-pass filter and a low-pass filter for separating an excitation signal and a blood pressure signal, and a lock-in amplifier for performing phase detection may be implemented by hardware. It is described as necessary. However, these hardware,
For example, lock-in amplifiers require high-precision analog multipliers, and, for example, require many analog circuits that faithfully reproduce even DC signals. Had.

【0004】本発明は、上記従来の問題を解決するもの
で、血圧算出に必要となる位相検波処理またはフィルタ
処理と位相検波の両方をプロセッサによって演算により
実行させることで、位相検波のためのハードウェアある
いはフィルタのためのハードウェアを不要とし、もって
低価格、小型、高信頼性、高精度で優れた非観血連続血
圧計を提供することを目的とする。
[0004] The present invention solves the above-mentioned conventional problems, and executes a phase detection process or a filter process required for blood pressure calculation and both a phase detection and a phase calculation by a processor. An object of the present invention is to provide a non-invasive continuous sphygmomanometer which is excellent in cost, size, high reliability, high accuracy, without the need for hardware or hardware for a filter.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するため
に本発明は、血圧算出に必要な位相検波処理または位相
検波処理とフィルタ処理をプロセッサによって演算実行
させるために、位相検波処理を行なうよりも前の段階で
検出信号をディジタル化する構成をとり、励振器と、前
記励振器により与えられ動脈上を伝搬した振動を電気信
号に変換する非観血センサと、最高血圧と最低血圧の絶
対値を測定するキャリブレーション用血圧計と、前記非
観血センサにより検出した信号の位相変化から算出した
動圧波形と前記キャリブレーション用血圧計からの測定
値により非観血で連続的に生体内の血圧を算出する血圧
算出手段を備えたものである。
In order to solve the above-mentioned problems, the present invention provides a phase detecting process or a phase detecting process and a filtering process necessary for calculating blood pressure. Also takes a configuration to digitize the detection signal at the previous stage, an exciter, a non-invasive sensor that converts the vibration given by the exciter and propagated on the artery into an electric signal, an absolute systolic blood pressure and a diastolic blood pressure. A blood pressure monitor for measuring a value, a dynamic pressure waveform calculated from a phase change of a signal detected by the non-invasive sensor and a measurement value from the blood pressure monitor for non-invasive blood continuously and in vivo. Blood pressure calculating means for calculating the blood pressure of the subject.

【0006】以上により血圧算出に必要な信号処理をプ
ロセッサによって演算により実行させることで、信号処
理のためのハードウェアを低減させ、もって低価格、小
型、高信頼性、高精度で優れた非観血連続血圧計が得ら
れる。
As described above, the signal processing required for calculating the blood pressure is executed by the processor through the calculation, thereby reducing the hardware for the signal processing. Therefore, low cost, small size, high reliability, high accuracy and excellent insight are realized. A continuous blood pressure monitor is obtained.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、体表から生体内の動脈を振動させる励振器と、前記
励振器により与えられ動脈上を伝搬した振動を電気信号
に変換する非観血センサと、最高血圧と最低血圧の絶対
値を測定するキャリブレーション用血圧計と、前記非観
血センサに接続されて検出信号をディジタル化するA/
D変換器と、ディジタル化された検出信号に対して血圧
算出に必要なフィルタ処理と位相検波処理を演算によっ
て実行するようにプログラムされたプロセッサと、信号
処理された検出信号と前記キャリブレーション用血圧計
からの測定値により非観血で連続的に生体内の血圧を算
出する血圧算出手段を備えたことを特徴とする非観血連
続血圧計であり、血圧算出に必要となる位相検波処理と
フィルタ処理がプロセッサにより実行されることから、
位相検波処理とフィルタ処理のハードウェアを不要とす
ることができ、低価格、小型、高信頼性、高精度で優れ
た非観血連続血圧計を提供することができるという作用
を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention according to claim 1 of the present invention provides an exciter for vibrating an artery in a living body from a body surface, and converts the vibration given by the exciter and propagated on the artery into an electric signal. Non-invasive sensor, a calibration sphygmomanometer for measuring absolute values of systolic blood pressure and diastolic blood pressure, and an A / B connected to the non-invasive sensor and digitizing a detection signal.
A D-converter, a processor programmed to execute filter processing and phase detection processing required for blood pressure calculation on the digitized detection signal by calculation, a signal-processed detection signal and the calibration blood pressure. A non-invasive continuous sphygmomanometer characterized by comprising a blood pressure calculating means for continuously calculating the in-vivo blood pressure in a non-invasive manner by the measurement value from the meter, a phase detection process required for blood pressure calculation and Because the filtering is performed by the processor,
Hardware for phase detection processing and filter processing can be dispensed with, and there is an effect that a low-priced, compact, highly reliable, highly accurate, and excellent non-invasive continuous blood pressure monitor can be provided.

【0008】また、請求項2に記載の発明は、体表から
生体内の動脈を振動させる励振器と、前記励振器により
与えられ動脈上を伝搬した振動を電気信号に変換する非
観血センサと、最高血圧と最低血圧の絶対値を測定する
キャリブレーション用血圧計と、前記非観血センサから
の検出信号に対するフィルタ手段と、フィルタ処理が施
された検出信号をディジタル化するA/D変換器と、デ
ィジタル化された検出信号に対して血圧算出に必要な位
相検波処理を演算によって実行するようにプログラムさ
れたプロセッサと、信号処理された検出信号と前記キャ
リブレーション用血圧計からの測定値により非観血で連
続的に生体内の血圧を算出する血圧算出手段を備えたこ
とを特徴とする非観血連続血圧計であり、血圧算出に必
要となる位相検波処理がプロセッサにより実行されるこ
とから、位相検波に必要なハードウェアを不要とするこ
とができ、低価格、小型、高信頼性、高精度で優れた非
観血連続血圧計を提供することができるという作用を有
する。
According to a second aspect of the present invention, there is provided an exciter for vibrating an artery in a living body from a body surface, and a non-invasive sensor for converting the vibration provided by the exciter and propagated on the artery into an electric signal. A calibration sphygmomanometer for measuring absolute values of systolic blood pressure and diastolic blood pressure, filter means for a detection signal from the non-invasive sensor, and A / D conversion for digitizing the filtered detection signal A processor which is programmed to execute a phase detection process required for blood pressure calculation on the digitized detection signal by calculation, a signal processed detection signal and a measurement value from the calibration sphygmomanometer. A non-invasive continuous sphygmomanometer comprising a non-invasive blood pressure calculating means for continuously calculating an in-vivo blood pressure according to the phase detection required for blood pressure calculation Since the processing is executed by the processor, the hardware required for the phase detection can be eliminated, and a low-priced, compact, highly reliable, highly accurate and excellent non-invasive continuous blood pressure monitor can be provided. Has the effect of being able to.

【0009】以下、本発明の実施の形態について、図1
と図2を用いて説明する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG.

【0010】(第1の実施の形態)図1は本発明の第1
の実施の形態における非観血連続血圧計の構成を示すブ
ロック図である。図1において励振器111は血管を振動
させるための電気振動子であり、励振器111はディジタ
ル化された数値を発生する周期関数発生手段113とD/
A変換器112によって駆動される。振動された血管から
は非観血センサ101によって血圧などの複数の生体パラ
メータを含む信号が検出される。検出された信号は前置
増幅器102を経てA/D変換器103によってディジタル化
される。ディジタル化された検出信号はプロセッサに取
り込まれ、プログラムによってバンドパスフィルタ処理
104およびローパスフィルタ処理105が実行される。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
It is a block diagram which shows the structure of the non-invasive continuous sphygmomanometer in embodiment. In FIG. 1, an exciter 111 is an electric vibrator for oscillating a blood vessel, and an exciter 111 is provided with a periodic function generating means 113 for generating a digitized numerical value and a D / D converter.
It is driven by the A converter 112. From the vibrated blood vessel, a signal including a plurality of biological parameters such as blood pressure is detected by the non-invasive sensor 101. The detected signal is digitized by an A / D converter 103 via a preamplifier 102. The digitized detection signal is captured by the processor and bandpass filtered by the program.
104 and low-pass filter processing 105 are executed.

【0011】バンドパスフィルタ処理104によって検出
信号から励振信号成分が抽出され位相検波処理106に入
力される。位相検波処理106は、前記周期関数発生手段1
13によって発生された周期ディジタル信号を発生源とし
てバンドパスフィルタ114によって所望の単一周波数成
分となった周期信号を参照信号として乗算演算を行なう
ものである。なお当然のことながら周期関数発生手段11
3からの周期信号が所望の単一周波数成分で構成されて
いる場合、あるいは高調波の影響が無視できる場合はバ
ンドパスフィルタ114は省略可能である。またバンドパ
スフィルタ114あるいは周期関数発生手段113を、バンド
パスフィルタ処理104、ローパスフィルタ処理105および
位相検波処理106が実行されるのと同一のプロセッサで
実行させることが可能であることは言うまでもない。
An excitation signal component is extracted from the detection signal by a band-pass filter 104 and input to a phase detector 106. The phase detection process 106 is a process for generating the periodic function 1
A multiplication operation is performed by using the periodic digital signal generated by 13 as a generation source and a periodic signal having a desired single frequency component by the bandpass filter 114 as a reference signal. Naturally, the periodic function generating means 11
When the periodic signal from 3 is composed of a desired single frequency component, or when the influence of harmonics can be ignored, the bandpass filter 114 can be omitted. Needless to say, the band-pass filter 114 or the periodic function generating means 113 can be executed by the same processor in which the band-pass filter processing 104, the low-pass filter processing 105, and the phase detection processing 106 are executed.

【0012】位相検波処理106によって位相シフトされ
た励振信号が検波処理を受け位相シフトの実成分、虚成
分が抽出され、ローパスフィルタ処理105によって分離
された自然信号、キャリブレーション用血圧計123によ
って計測された最高血圧値と最低血圧値とともに生体パ
ラメータ算出手段121に入力される。生体パラメータ算
出手段121は実および虚成分位相シフト、自然信号、最
低最高血圧値をもとに血圧値をリアルタイムに算出し、
ユーザインタフェース122に表示する。
The excitation signal phase-shifted by the phase detection processing 106 is subjected to detection processing to extract a real component and an imaginary component of the phase shift. The natural signal separated by the low-pass filter processing 105 is measured by the calibration sphygmomanometer 123. The obtained systolic blood pressure value and diastolic blood pressure value are input to the biological parameter calculating means 121. The biological parameter calculating means 121 calculates the blood pressure value in real time based on the real and imaginary component phase shifts, the natural signal, the lowest systolic blood pressure value,
It is displayed on the user interface 122.

【0013】なお生体パラメータ算出手段121は、バン
ドパスフィルタ処理104、ローパスフィルタ処理105およ
び位相検波処理106が実行されるのと同一のプロセッサ
で実行させることが可能であることは容易に予想でき
る。
It can be easily expected that the biological parameter calculating means 121 can be executed by the same processor in which the band-pass filter processing 104, the low-pass filter processing 105, and the phase detection processing 106 are executed.

【0014】図3(a)は血管から返ってくる自然信号
と、励振信号を示している。非観血センサ101によって
検出される信号は、血管からの自然信号に励振器111に
よって励振された励振信号が重畳したものである。この
ことを示したのが図3(b)である。バンドパスフィルタ
処理104、ローパスフィルタ処理105はこれら自然信号と
励振信号を分離する目的で設けられている。
FIG. 3A shows a natural signal returned from a blood vessel and an excitation signal. The signal detected by the non-invasive sensor 101 is a signal obtained by superimposing the excitation signal excited by the exciter 111 on the natural signal from the blood vessel. FIG. 3B shows this fact. The band-pass filter processing 104 and the low-pass filter processing 105 are provided for the purpose of separating these natural signals and excitation signals.

【0015】本発明の第1の実施の形態によれば、血圧
を算出するために必要な位相検波処理、フィルタ処理が
プロセッサを用いた演算処理によって実行されるため、
従来の血圧計のようにハードウェアによる位相検波処
理、フィルタ処理をことさらに設ける必要がなく、血圧
計を実現するための物量を大幅に低減できるという効果
が得られる。また従来は位相検波処理、フィルタ処理を
アナログ回路によって実現してきたが、これらを排除で
きるため高い信頼性、精度をもった非観血連続血圧計を
実現できるという効果も得られる。
According to the first embodiment of the present invention, the phase detection processing and the filter processing necessary for calculating the blood pressure are executed by the arithmetic processing using the processor.
Unlike the conventional sphygmomanometer, it is not necessary to additionally provide a phase detection process and a filter process by hardware, and an effect that a physical quantity for realizing the sphygmomanometer can be greatly reduced can be obtained. Conventionally, the phase detection processing and the filter processing have been realized by the analog circuit. However, since these can be eliminated, an effect that a non-invasive continuous blood pressure monitor having high reliability and accuracy can be realized can be obtained.

【0016】(第2の実施の形態)図2は本発明の第2
の実施の形態における非観血連続血圧計の構成を示すブ
ロック図である。図2において励振器211は血管を振動
させるための電気振動子であり、励振器211はディジタ
ル化された数値を発生する周期関数発生手段213とD/
A変換器212によって駆動される。振動された血管から
は非観血センサ201によって血圧などの複数の生体パラ
メータを含む信号が検出される。検出された信号は前置
増幅器202を経てバンドパスフィルタ204およびローパス
フィルタ205に入力され、それぞれによって検出信号か
ら励振信号成分と自然信号成分が抽出される。励振信号
成分と自然信号成分は交互に選択器207によってそのい
ずれかが選択され、A/D変換器203に入力されディジ
タル化される。これは一般にA/D変換器より選択器の
方が安価に構成できるためであり、必要に応じてA/D
変換器を2組み用いても構わない。
(Second Embodiment) FIG. 2 shows a second embodiment of the present invention.
It is a block diagram which shows the structure of the non-invasive continuous sphygmomanometer in embodiment. In FIG. 2, an exciter 211 is an electric vibrator for oscillating a blood vessel, and the exciter 211 is provided with a periodic function generating means 213 for generating a digitized numerical value and D / D
It is driven by the A converter 212. A signal including a plurality of biological parameters such as blood pressure is detected by the non-invasive sensor 201 from the vibrated blood vessel. The detected signal is input to a band-pass filter 204 and a low-pass filter 205 via a preamplifier 202, and an excitation signal component and a natural signal component are extracted from the detected signal by each. Either the excitation signal component or the natural signal component is alternately selected by the selector 207 and input to the A / D converter 203 to be digitized. This is because a selector can generally be constructed at a lower cost than an A / D converter.
Two sets of converters may be used.

【0017】このようにディジタル化された励振信号と
自然信号はプロセッサに取り込まれるが、励振信号につ
いては位相検波処理206に入力される。位相検波処理206
は、前記周期関数発生手段213によって発生された周期
ディジタル信号を発生源としてバンドパスフィルタ214
によって所望の単一周波数成分となった周期信号を参照
信号として乗算演算を行なうものである。なお当然のこ
とながら周期関数発生手段213からの周期信号が所望の
単一周波数成分で構成されている場合、あるいは高調波
の影響が無視できる場合はバンドパスフィルタ214は省
略可能である。また周期関数発生手段213およびバンド
パスフィルタ214を、位相検波処理206が実行されるのと
同一のプロセッサで実行させることが可能であることは
言うまでもない。
The digitized excitation signal and natural signal are taken into the processor, but the excitation signal is input to the phase detection processing 206. Phase detection processing 206
The band-pass filter 214 uses the periodic digital signal generated by the periodic function generator 213 as a source.
The multiplication operation is performed using the periodic signal that has become a desired single frequency component as a reference signal. Needless to say, the bandpass filter 214 can be omitted when the periodic signal from the periodic function generator 213 is composed of a desired single frequency component, or when the influence of harmonics can be ignored. Needless to say, the periodic function generating means 213 and the band-pass filter 214 can be executed by the same processor in which the phase detection processing 206 is executed.

【0018】位相検波処理206によって位相シフトされ
た励振信号が検波処理を受け位相シフトの実成分、虚成
分が抽出され、ローパスフィルタ205による処理によっ
て分離された自然信号、キャリブレーション用血圧計22
3によって計測された最高血圧値と最低血圧値とともに
生体パラメータ算出手段221に入力される。生体パラメ
ータ算出手段221は実および虚成分位相シフト、自然信
号、最低最高血圧値をもとに血圧値をリアルタイムに算
出し、ユーザインタフェース222に表示する。
The excitation signal phase-shifted by the phase detection processing 206 is subjected to detection processing to extract a real component and an imaginary component of the phase shift, and a natural signal separated by the processing by the low-pass filter 205, the blood pressure monitor 22 for calibration.
The systolic blood pressure value and the diastolic blood pressure value measured by 3 are input to the biological parameter calculating means 221. The biological parameter calculating means 221 calculates a blood pressure value in real time based on the real and imaginary component phase shifts, the natural signal, and the diastolic blood pressure value, and displays the blood pressure value on the user interface 222.

【0019】なお生体パラメータ算出手段221は、位相
検波処理206が実行されるのと同一のプロセッサで実行
させることが可能であることは容易に予想できる。
It can be easily anticipated that the biological parameter calculating means 221 can be executed by the same processor in which the phase detection processing 206 is executed.

【0020】本発明の第2の実施の形態によれば、血圧
を算出するために必要な位相検波処理がプロセッサを用
いた演算処理によって実行されるため、従来の血圧計の
ようにハードウェアによる位相検波処理をことさらに設
ける必要がなく、血圧計を実現するための物量を低減で
きるという効果が得られる。また従来は、位相検波処理
をアナログ回路によって実現してきたが、これを排除で
きるため高い信頼性、精度をもった非観血連続血圧計を
実現できるという効果も得られる。
According to the second embodiment of the present invention, the phase detection process required for calculating the blood pressure is executed by an arithmetic process using a processor, so that it is performed by hardware like a conventional sphygmomanometer. There is no need to further provide a phase detection process, and the effect of reducing the amount of material for realizing the sphygmomanometer can be obtained. Conventionally, the phase detection processing has been realized by an analog circuit. However, since the phase detection processing can be eliminated, an effect of realizing a non-invasive continuous blood pressure monitor having high reliability and accuracy can be obtained.

【0021】[0021]

【発明の効果】以上説明したように、血圧算出に必要と
なる位相検波処理またはフィルタ処理と位相検波の両方
をプロセッサによって演算により実行させることで、位
相検波のためのハードウェアあるいはフィルタのための
ハードウェアを不要とし、もって低価格、小型、高信頼
性、高精度で優れた非観血連続血圧計を提供することが
できるようになる。
As described above, the phase detection processing or filter processing required for blood pressure calculation and both the phase detection and the phase detection are executed by the processor by the calculation, so that the hardware for the phase detection or the filter for the filter is executed. It is possible to provide an excellent non-invasive continuous sphygmomanometer which does not require hardware, is low-priced, compact, highly reliable, highly accurate and excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における非観血連続
血圧計の構成を示すブロック図、
FIG. 1 is a block diagram illustrating a configuration of a non-invasive continuous sphygmomanometer according to a first embodiment of the present invention;

【図2】本発明の第2の実施の形態における非観血連続
血圧計の構成を示すブロック図、
FIG. 2 is a block diagram showing a configuration of a non-invasive continuous sphygmomanometer according to a second embodiment of the present invention;

【図3】(a)自然信号の波形と励振信号の波形を示す
図、(b)自然信号に励振信号が重畳した波形を示す図
である。
3A is a diagram illustrating a waveform of a natural signal and a waveform of an excitation signal, and FIG. 3B is a diagram illustrating a waveform in which an excitation signal is superimposed on the natural signal.

【符号の説明】[Explanation of symbols]

101、201 非観血センサ 102、202 前置増幅器 103、203 A/D変換器 104 バンドパスフィルタ処理 105 ローパスフィルタ処理 106、206 位相検波処理 111、211 励振器 112、212 D/A変換器 113、213 周期関数発生手段 114、214 バンドパスフィルタ 121、221 生体パラメータ算出手段 122、222 ユーザインタフェース 123、223 キャリブレーション用血圧計 204 パンドパスフィルタ 205 ローパスフィルタ 101, 201 Non-invasive sensor 102, 202 Preamplifier 103, 203 A / D converter 104 Band pass filter processing 105 Low pass filter processing 106, 206 Phase detection processing 111, 211 Exciter 112, 212 D / A converter 113 , 213 Periodic function generator 114, 214 Band pass filter 121, 221 Biological parameter calculator 122, 222 User interface 123, 223 Calibration sphygmomanometer 204 Pand pass filter 205 Low pass filter

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年4月8日[Submission date] April 8, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、体表から生体内の動脈を振動させる励振器と、前記
励振器により与えられ動脈上を伝搬した振動を電気信号
に変換する非観血センサと、最高血圧と最低血圧の絶対
値を測定するキャリブレーション用血圧計と、前記非観
血センサに接続されて検出信号をディジタル化するA/
D変換器と、ディジタル化された検出信号に対して血圧
算出に必要なフィルタ処理と位相検波処理を演算によっ
て実行するようにプログラムされたプロセッサと、信号
処理された検出信号と前記キャリブレーション用血圧計
からの測定値により非観血で連続的に生体内の血圧を算
出する血圧算出手段と、前記位相検波処理によって得ら
れた実および虚成分位相シフトを表示する表示手段を備
えたことを特徴とする非観血連続血圧計であり、血圧算
出に必要となる位相検波処理とフィルタ処理がプロセッ
サにより実行されることから、位相検波処理とフィルタ
処理のハードウェアを不要とすることができ、低価格、
小型、高信頼性、高精度で優れた非観血連続血圧計を提
供することができるという作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention according to claim 1 of the present invention provides an exciter for vibrating an artery in a living body from a body surface, and converts the vibration given by the exciter and propagated on the artery into an electric signal. Non-invasive sensor, a calibration sphygmomanometer for measuring absolute values of systolic blood pressure and diastolic blood pressure, and an A / B connected to the non-invasive sensor and digitizing a detection signal.
A D-converter, a processor programmed to execute filter processing and phase detection processing required for blood pressure calculation on the digitized detection signal by calculation, a signal-processed detection signal and the calibration blood pressure. and blood pressure calculating means for calculating the blood pressure continuously in vivo by measurement in a non-invasive in a total, resulting et by the phase detection process
A non-invasive continuous sphygmomanometer characterized by comprising a display means for displaying the real and imaginary component phase shifts, since the phase detection processing and the filter processing required for blood pressure calculation are executed by the processor. , Eliminating the need for hardware for phase detection and filtering,
It has the effect of being able to provide an excellent non-invasive continuous sphygmomanometer with a small size, high reliability, high accuracy, and excellent performance.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】また、請求項2に記載の発明は、体表から
生体内の動脈を振動させる励振器と、前記励振器により
与えられ動脈上を伝搬した振動を電気信号に変換する非
観血センサと、最高血圧と最低血圧の絶対値を測定する
キャリブレーション用血圧計と、前記非観血センサから
の検出信号に対するフィルタ手段と、フィルタ処理が施
された検出信号をディジタル化するA/D変換器と、デ
ィジタル化された検出信号に対して血圧算出に必要な位
相検波処理を演算によって実行するようにプログラムさ
れたプロセッサと、信号処理された検出信号と前記キャ
リブレーション用血圧計からの測定値により非観血で連
続的に生体内の血圧を算出する血圧算出手段と、前記位
相検波処理によって得られた実および虚成分位相シフト
を表示する表示手段を備えたことを特徴とする非観血連
続血圧計であり、血圧算出に必要となる位相検波処理が
プロセッサにより実行されることから、位相検波に必要
なハードウェアを不要とすることができ、低価格、小
型、高信頼性、高精度で優れた非観血連続血圧計を提供
することができるという作用を有する。
According to a second aspect of the present invention, there is provided an exciter for vibrating an artery in a living body from a body surface, and a non-invasive sensor for converting the vibration provided by the exciter and propagated on the artery into an electric signal. A calibration sphygmomanometer for measuring absolute values of systolic blood pressure and diastolic blood pressure, filter means for a detection signal from the non-invasive sensor, and A / D conversion for digitizing the filtered detection signal A processor which is programmed to execute a phase detection process required for blood pressure calculation on the digitized detection signal by calculation, a signal processed detection signal and a measurement value from the calibration sphygmomanometer. and blood pressure calculating means for calculating the blood pressure continuously in vivo in a non-invasive manner, the position
Real and imaginary component phase shifts obtained by phase detection
Is a non-invasive continuous sphygmomanometer characterized by comprising a display means for displaying the ., Since the phase detection processing required for blood pressure calculation is executed by the processor, hardware required for phase detection is not required. It is possible to provide an excellent non-invasive continuous sphygmomanometer with low cost, small size, high reliability, high accuracy, and excellent performance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 体表から生体内の動脈を振動させる励振
器と、前記励振器により与えられ動脈上を伝搬した振動
を電気信号に変換する非観血センサと、最高血圧と最低
血圧の絶対値を測定するキャリブレーション用血圧計
と、前記非観血センサに接続されて検出信号をディジタ
ル化するA/D変換器と、ディジタル化された検出信号
に対して血圧算出に必要なフィルタ処理と位相検波処理
を演算によって実行するようにプログラムされたプロセ
ッサと、信号処理された検出信号と前記キャリプレーシ
ョン用血圧計からの測定値により非観血で連続的に生体
内の血圧を算出する血圧算出手段を備えたことを特徴と
する非観血連続血圧計。
1. An exciter for vibrating an artery in a living body from a body surface, a non-invasive sensor for converting a vibration given by the exciter and propagated on an artery into an electric signal, and an absolute value of a systolic blood pressure and a diastolic blood pressure. A calibration sphygmomanometer for measuring a value, an A / D converter connected to the non-invasive sensor for digitizing a detection signal, and a filtering process required for blood pressure calculation on the digitized detection signal. A processor programmed to execute the phase detection process by calculation, and a blood pressure for continuously calculating the in-vivo blood pressure in a non-invasive manner from the signal-processed detection signal and the measurement value from the calibration sphygmomanometer A non-invasive continuous sphygmomanometer comprising a calculating means.
【請求項2】 体表から生体内の動脈を振動させる励振
器と、前記励振器により与えられ動脈上を伝搬した振動
を電気信号に変換する非観血センサと、最高血圧と最低
血圧の絶対値を測定するキャリブレーション用血圧計
と、前記非観血センサからの検出信号に対するフィルタ
手段と、フィルタ処理が施された検出信号をディジタル
化するA/D変換器と、ディジタル化された検出信号に
対して血圧算出に必要な位相検波処理を演算によって実
行するようにプログラムされたプロセッサと、信号処理
された検出信号と前記キャリブレーション用血圧計から
の測定値により非観血で連続的に生体内の血圧を算出す
る血圧算出手段を備えたことを特徴とする非観血連続血
圧計。
2. An exciter for vibrating an artery in a living body from a body surface, a non-invasive sensor for converting the vibration applied by the exciter and propagated on the artery into an electric signal, and an absolute systolic blood pressure and a diastolic blood pressure. A calibration sphygmomanometer for measuring a value, filter means for a detection signal from the non-invasive sensor, an A / D converter for digitizing the filtered detection signal, and a digitized detection signal And a processor programmed to execute a phase detection process required for blood pressure calculation by calculation, and a non-invasive continuous generation by a signal-processed detection signal and a measurement value from the calibration sphygmomanometer. A non-invasive continuous sphygmomanometer comprising a blood pressure calculating means for calculating a blood pressure in the body.
JP10146669A 1998-04-20 1998-05-13 Non-invasive continuous blood pressure monitor Expired - Fee Related JP3037266B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP10146669A JP3037266B2 (en) 1998-05-13 1998-05-13 Non-invasive continuous blood pressure monitor
US09/290,394 US6358212B1 (en) 1998-04-20 1999-04-13 Noninvasive continuous blood pressure measuring apparatus and a method of noninvasively measuring continuous blood pressure
CA002268691A CA2268691C (en) 1998-04-20 1999-04-14 A noninvasive continuous blood pressure measuring apparatus and a method of noninvasively measuring continuous blood pressure
EP99107592A EP0951863B1 (en) 1998-04-20 1999-04-15 Method and apparatus for noninvasive continuous blood pressure measurement
AT99107592T ATE394990T1 (en) 1998-04-20 1999-04-15 METHOD AND DEVICE FOR NON-INVASIVE CONTINUOUS BLOOD PRESSURE MEASUREMENT
DE69938689T DE69938689D1 (en) 1998-04-20 1999-04-15 Method and apparatus for non-invasive continuous blood pressure measurement
TW088106234A TW410151B (en) 1998-04-20 1999-04-19 A noninvasive continuous blood pressure measuring apparatus and a method of noninvasively measuring continuous blood pressure
KR1019990013952A KR100340830B1 (en) 1998-04-20 1999-04-20 A noninvasive continuous blood pressure measuring apparatus and a method of noninvasively measuring continuous blood pressure
CNA2004100589686A CN1589735A (en) 1998-04-20 1999-04-20 Noninvasive continuous blood pressure measuring apparatus and method of noninvasively measuring continuous blood pressure
CNB991050460A CN1172629C (en) 1998-04-20 1999-04-20 Noninvasive continuous blood pressure measuring apparatus and method of noninvasively measuring continuous blood pressure
US10/057,910 US6743178B2 (en) 1998-04-20 2002-01-29 Noninvasive continuous blood pressure measuring apparatus and a method of noninvasively measuring continuous blood pressure
US10/721,076 US6966879B2 (en) 1998-04-20 2003-11-26 Noninvasive continuous blood pressure measuring apparatus and a method of noninvasively measuring continuous blood pressure
US10/721,066 US20040106873A1 (en) 1998-04-20 2003-11-26 Noninvasive continuous blood measuring apparatus and a method of noninvasively measuring continuous blood pressure
US10/721,083 US6802815B2 (en) 1998-04-20 2003-11-26 Noninvasive continuous blood pressure measuring apparatus and a method of noninvasively measuring continuous blood pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10146669A JP3037266B2 (en) 1998-05-13 1998-05-13 Non-invasive continuous blood pressure monitor

Publications (2)

Publication Number Publication Date
JPH11318839A true JPH11318839A (en) 1999-11-24
JP3037266B2 JP3037266B2 (en) 2000-04-24

Family

ID=15412944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10146669A Expired - Fee Related JP3037266B2 (en) 1998-04-20 1998-05-13 Non-invasive continuous blood pressure monitor

Country Status (1)

Country Link
JP (1) JP3037266B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014226604A (en) * 2013-05-21 2014-12-08 住友電気工業株式会社 Water treatment equipment and water treatment method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118045A (en) * 1989-08-11 1991-05-20 Picker Internatl Inc Magnetic resonance imaging system
JPH04250135A (en) * 1990-07-18 1992-09-07 Rudolf A Hatschek Blood pressure measuring apparatus and method
JPH08256998A (en) * 1995-03-27 1996-10-08 Nippon Colin Co Ltd Living body information monitoring device
JPH09506024A (en) * 1994-04-15 1997-06-17 バイタル・インサイト,インコーポレーテッド Apparatus and method for measuring induced perturbations to determine physiological parameters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118045A (en) * 1989-08-11 1991-05-20 Picker Internatl Inc Magnetic resonance imaging system
JPH04250135A (en) * 1990-07-18 1992-09-07 Rudolf A Hatschek Blood pressure measuring apparatus and method
JPH09506024A (en) * 1994-04-15 1997-06-17 バイタル・インサイト,インコーポレーテッド Apparatus and method for measuring induced perturbations to determine physiological parameters
JPH08256998A (en) * 1995-03-27 1996-10-08 Nippon Colin Co Ltd Living body information monitoring device

Also Published As

Publication number Publication date
JP3037266B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
EP1641389B1 (en) Apparatus and method for measuring hemodynamic parameters
JP2798721B2 (en) Pressure pulse wave detector
JPH11142425A (en) Flow velocity measuring device and ultrasonograph
US7097621B2 (en) Filter for use with pulse-wave sensor and pulse wave analyzing apparatus
US6669646B1 (en) Arteriosclerosis evaluating apparatus
JP3218890B2 (en) Blood pressure measurement device
EP1302165A1 (en) Pulse-wave-characteristic-point determining apparatus, and pulse-wave-propagation-velocity-related-information obtaining apparatus employing the pulse-wave-characteristic-point determining apparatus
JP3037266B2 (en) Non-invasive continuous blood pressure monitor
Lee et al. Digital envelope detector for blood pressure measurement using an oscillometric method
JP3468705B2 (en) Non-invasive continuous blood pressure monitor
JP3533122B2 (en) Pulse wave monitor
JP2003290159A (en) Blood pressure analyzing device
JP2981208B1 (en) Non-invasive continuous blood pressure monitor
JP3037265B2 (en) Non-invasive continuous blood pressure monitor
JP2006304965A (en) Ultrasonic diagnostic apparatus
JP3870373B2 (en) Frequency characteristic calibration method and frequency characteristic calibration apparatus for medical pressure measurement apparatus
JP2000107139A (en) Continuous hemomanometer
JP3046275B2 (en) Non-invasive continuous blood pressure monitor
US20200390348A1 (en) System and Method for Calculating Cardiac Pulse Transit or Arrival Time Information
JP3654802B2 (en) Blood pressure measurement device
US6425872B1 (en) System for measuring physical parameter utilizing vibration transmission
JPWO2010134233A1 (en) Blood vessel age estimation device and blood vessel age estimation method
Naqvi et al. Noninvasive method for determining blood pressure and contours of arterial and volume pulses
KR100648414B1 (en) Electric Blood Pressure Measurement System With A Compensation Device of Error Rate
JPS6096233A (en) Ultrasonic blood flow measuring apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees