JPH11317234A - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPH11317234A
JPH11317234A JP10373350A JP37335098A JPH11317234A JP H11317234 A JPH11317234 A JP H11317234A JP 10373350 A JP10373350 A JP 10373350A JP 37335098 A JP37335098 A JP 37335098A JP H11317234 A JPH11317234 A JP H11317234A
Authority
JP
Japan
Prior art keywords
fuel cell
air
reformer
air blower
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10373350A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Taguma
良行 田熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10373350A priority Critical patent/JPH11317234A/en
Publication of JPH11317234A publication Critical patent/JPH11317234A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell power generation system capable of stably supplying air to a fuel cell and a reformer for a wide range of the flow rate. SOLUTION: This fuel cell power generation system is provided with an air blower 10 for supplying air to a fuel cell 1 and a reformer 2; control valves 6 and 7 provided on an air supplying piping 4 of the fuel cell 1 and an air supplying piping 5 of the reformer 2, respectively, for controlling the flow rate according to a battery load; and an inverter 11 for controlling the rotation frequency of the air blower 10 according to the battery load so as to avoid surging. When the battery load is in a range between a rating load and a partial load, control of air supply to the fuel cell 1 and the reformer 2 is performed by controlling the rotation frequency of the air blower 10 with specified opening of the control valves 6 and 7, and when the battery load is in a range between the partial load and a minimum load, the control of air supply to the fuel cell 1 and the reformer 2 is performed by controlling the opening of the control valves 6 and 7 with the specified rotation frequency of the air blower 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃料電池発電シ
ステムに関し、特に燃料電池の負荷に応じた空気流量の
制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation system, and more particularly to control of an air flow rate according to a load of a fuel cell.

【0002】[0002]

【従来の技術】燃料電池発電システムは、従来の汽力発
電に比べ高効率が期待できること、環境保全性がよい等
の利点があり、実用化を目指して近年盛んに開発が進め
られている。燃料電池発電システムは、空気極、燃料極
及び電解質層からなる燃料電池と、天然ガス等の炭化水
素系燃料を改質して燃料電池の燃料極に水素リッチガス
を供給する改質器とを備えている。また、燃料電池の空
気極に対し酸化剤として空気を、さらに改質器に対し燃
焼用として空気を供給するための空気供給源が設置され
ている。いわゆるオンサイト用として、数百kw程度の
比較的小容量のシステムの場合、燃料電池が数百mmA
q程度の圧力で動作する常圧タイプが一般的に採用さ
れ、この場合空気供給源には空気ブロワが適用される。
2. Description of the Related Art Fuel cell power generation systems have advantages such as higher efficiency than conventional steam power generation and good environmental preservation, and have been actively developed in recent years for practical use. The fuel cell power generation system includes a fuel cell including an air electrode, a fuel electrode, and an electrolyte layer, and a reformer that reforms a hydrocarbon-based fuel such as natural gas and supplies a hydrogen-rich gas to the fuel electrode of the fuel cell. ing. Further, an air supply source is provided for supplying air as an oxidant to the air electrode of the fuel cell and for combustion for the reformer. In the case of a so-called on-site system having a relatively small capacity of about several hundreds of kW, the fuel cell has a capacity of several hundred mmA.
A normal pressure type operating at a pressure of about q is generally adopted, and in this case, an air blower is applied to an air supply source.

【0003】このような燃料電池発電システムにおいて
は、部分負荷の効率を向上させることなどを目的とし
て、燃料電池の負荷に応じて燃料や空気の量を変化させ
ることが一般に行われる。この具体的な従来の方法とし
て、例えば日本産業機械工業会発行昭和59年5月「オ
ンサイト型燃料電池の技術調査報告書」第53〜54ペ
ージの燃料電池システム系統図に示す方法があり、その
概要を図3に示す。図3において、1は燃料極1a、空
気極1bを有する燃料電池、2は炭化水素系燃料(この
例では天然ガス)を改質して、燃料電池1の燃料極1a
に水素を多く含む改質ガスを供給する改質器で、改質反
応部2aとバーナ部2bとで構成される。3は燃料電池
1の空気極1b及び改質器2のバーナ部2bへ空気を供
給する空気ブロワ、4は空気ブロワ3から燃料電池1の
空気極1bへ空気を供給するための燃料電池空気供給配
管、5は空気ブロワ3から改質器2のバーナ部2bへ空
気を供給するための改質器空気供給配管、8は燃料電池
1の空気極1bへの供給空気と同空気極1bからの排出
空気とを熱交換させる熱交換器である。6は燃料電池空
気供給配管4の途中に設けた燃料電池空気調節弁、7は
改質器空気供給配管5の途中に設けた改質器空気調節
弁、9はこれらの調節弁6、7の開度ヲ調節するコント
ローラである。
In such a fuel cell power generation system, the amount of fuel or air is generally changed in accordance with the load of the fuel cell for the purpose of improving the efficiency of the partial load. As a specific conventional method, for example, there is a method shown in the fuel cell system diagram on pages 53 to 54 of "Technical Investigation Report of On-Site Type Fuel Cell" published by Japan Industrial Machinery Manufacturers Association in May 1984. The outline is shown in FIG. 3, reference numeral 1 denotes a fuel cell having a fuel electrode 1a and an air electrode 1b, and reference numeral 2 denotes a fuel electrode 1a of a fuel cell 1 which reforms a hydrocarbon fuel (natural gas in this example).
The reformer supplies a reformed gas containing a large amount of hydrogen to the fuel cell, and includes a reforming reaction section 2a and a burner section 2b. Reference numeral 3 denotes an air blower for supplying air to the air electrode 1b of the fuel cell 1 and the burner 2b of the reformer 2, and 4 denotes a fuel cell air supply for supplying air from the air blower 3 to the air electrode 1b of the fuel cell 1. A pipe 5 is a reformer air supply pipe for supplying air from the air blower 3 to the burner section 2b of the reformer 2, and 8 is a supply air to the air electrode 1b of the fuel cell 1 and a flow from the air electrode 1b. This is a heat exchanger that exchanges heat with the exhaust air. 6 is a fuel cell air control valve provided in the middle of the fuel cell air supply pipe 4, 7 is a reformer air control valve provided in the middle of the reformer air supply pipe 5, and 9 is a control valve of these control valves 6 and 7. It is a controller that adjusts the opening degree.

【0004】つぎに、上記の様に構成された従来のシス
テムの動作について説明する。天然ガス等の炭化水素系
燃料が改質器2の反応部2aに投入され、その中で改質
反応が行われ、水素を主成分とする改質ガスに変換され
る。改質ガスは燃料電池1の燃料極1aに供給され、そ
こで反応に消費される。消費されたあとの残りの余剰燃
料は改質器2のバーナ部2bに送られる。バーナ部2b
では余剰燃料を燃焼させ、反応部2aに対し改質反応に
必要な熱を与える。空気ブロワ3からの空気の一部は、
燃料電池空気供給配管4を経て、さらに熱交換器8で予
熱されて燃料電池1の空気極1bに供給される。空気ブ
ロワ3からの残りの空気は、改質器空気供給配管5を経
て改質器2のバーナ部2bへ供給され、そこで燃焼用空
気として消費される。空気極1bにおいて反応に使われ
た残りの排出空気は熱交換器8を経て、バーナ部2bか
らの燃焼排ガスとともに大気へ放出される。燃料電池空
気供給配管4上に設けられた燃料電池空気調節弁6、改
質器空気供給配管5上に設けられた改質器空気調節弁7
は燃料電池1の負荷に応じてそれぞれの空気流量を適正
に調節するためのもので、負荷に応じた弁の開度指令が
コントローラ9より各調節弁に対して与えられる。部分
負荷条件時は、効率の向上、システム内での熱バランス
などの点から、燃料、空気の量を定格条件時よりも減ら
す必要があり、このため、コントローラ9より各々の調
節弁6、7に対し、負荷に応じた開度指令が与えられ
る。
Next, the operation of the conventional system configured as described above will be described. A hydrocarbon-based fuel such as natural gas is charged into the reaction section 2a of the reformer 2, in which a reforming reaction is performed, and is converted into a reformed gas containing hydrogen as a main component. The reformed gas is supplied to the fuel electrode 1a of the fuel cell 1, where it is consumed for the reaction. The remaining surplus fuel after consumption is sent to the burner section 2b of the reformer 2. Burner part 2b
Then, excess fuel is burned, and heat necessary for the reforming reaction is given to the reaction section 2a. Part of the air from the air blower 3 is
After passing through the fuel cell air supply pipe 4, it is further preheated by the heat exchanger 8 and supplied to the air electrode 1 b of the fuel cell 1. The remaining air from the air blower 3 is supplied to the burner section 2b of the reformer 2 via the reformer air supply pipe 5, where it is consumed as combustion air. The remaining exhaust air used for the reaction at the air electrode 1b passes through the heat exchanger 8 and is released to the atmosphere together with the combustion exhaust gas from the burner 2b. Fuel cell air control valve 6 provided on fuel cell air supply pipe 4, reformer air control valve 7 provided on reformer air supply pipe 5
Is for appropriately adjusting the air flow rate according to the load of the fuel cell 1, and a valve opening command corresponding to the load is given from the controller 9 to each control valve. Under partial load conditions, it is necessary to reduce the amount of fuel and air from those under rated conditions from the viewpoints of efficiency improvement, heat balance in the system, and the like. , An opening command corresponding to the load is given.

【0005】[0005]

【発明が解決しようとする課題】従来のシステムは、上
記に示したように、調節弁のみで空気流量を制御しよう
とするものであったが、この様な方法では、空気ブロワ
の特性上、空気流量を広い範囲で安定に制御することが
困難であるという問題点があった。即ち、一般の空気ブ
ロワは、低い流量域でサージングと呼ばれる不安定現象
を起こすため、流量の制御範囲がある値以上に限られる
という問題があった。また、空気ブロワの吐出側調節弁
を絞って空気流量を制御する方式では、あまり空気ブロ
ワ動力の低減にはならず、空気流量を絞っても、部分負
荷効率の向上には殆どつながらないという問題点もあっ
た。
As described above, the conventional system attempts to control the air flow rate only with the control valve, but in such a method, due to the characteristics of the air blower, There is a problem that it is difficult to stably control the air flow rate in a wide range. That is, since a general air blower causes an unstable phenomenon called surging in a low flow rate range, there is a problem that the flow rate control range is limited to a certain value or more. In addition, the method of controlling the air flow rate by restricting the discharge side control valve of the air blower does not significantly reduce the power of the air blower, and reducing the air flow rate hardly improves the partial load efficiency. There was also.

【0006】この発明は、上記のような課題を解決する
ためになされたもので、空気ブロワから燃料電池及び改
質器へ供給される空気の流量を燃料電池の負荷に応じ
て、広い範囲で安定に制御することができる燃料電池発
電システムを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the flow rate of air supplied from an air blower to a fuel cell and a reformer can be varied over a wide range according to the load of the fuel cell. It is an object of the present invention to provide a fuel cell power generation system capable of performing stable control.

【0007】[0007]

【課題を解決するための手段】この発明に係る燃料電池
発電システムは、燃料電池と、炭化水素系燃料を改質し
て上記燃料電池に水素ガスを供給する改質器と、上記燃
料電池と上記改質器に空気を供給する1つの空気ブロワ
と、上記空気ブロワから上記燃料電池に至る燃料電池空
気供給配管上又は、上記空気ブロワから上記改質器に至
る改質器空気供給配管上の少なくとも一方に設置され、
電池負荷に応じて流量を調節する調節弁と、サージング
を回避するように電池負荷に応じて上記空気ブロワの回
転数を制御する制御手段とを備え、定格負荷と部分負荷
との間における上記燃料電池および上記改質器への空気
供給量の調整は、上記調節弁の開度を一定とし、上記空
気ブロワの回転数の制御により行い、部分負荷と最低負
荷との間における上記燃料電池および上記改質器の空気
供給量の調整は、上記空気ブロワの回転数を一定とし、
上記調節弁の開度の制御により行うようにしたものであ
る。
A fuel cell power generation system according to the present invention comprises: a fuel cell; a reformer for reforming a hydrocarbon-based fuel to supply hydrogen gas to the fuel cell; One air blower for supplying air to the reformer, and on a fuel cell air supply pipe from the air blower to the fuel cell, or on a reformer air supply pipe from the air blower to the reformer Installed on at least one side,
A control valve for adjusting a flow rate according to a battery load, and control means for controlling a rotation speed of the air blower according to a battery load so as to avoid surging, wherein the fuel between a rated load and a partial load is provided. Adjustment of the amount of air supplied to the battery and the reformer is performed by controlling the number of rotations of the air blower while keeping the opening of the control valve constant, and the fuel cell and the fuel cell between a partial load and a minimum load are controlled. Adjustment of the air supply amount of the reformer, the rotation speed of the air blower is constant,
The control is performed by controlling the opening degree of the control valve.

【0008】[0008]

【発明の実施の形態】以下、この発明の実施の形態を図
について説明する。 実施の形態1.図1はこの発明の実施の形態1に係る燃
料電池発電システムを示す系統図であり、図において図
3に示した従来の燃料電池発電システムと同一または相
当部分には同一符号を付し、その説明を省略する。図1
において、10は回転数制御が可能な空気ブロワ、11
はこの空気ブロワ10の回転数を制御する例えばインバ
ータからなる制御手段(以下、インバータと記す)であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. FIG. 1 is a system diagram showing a fuel cell power generation system according to Embodiment 1 of the present invention. In the figure, the same or corresponding parts as those of the conventional fuel cell power generation system shown in FIG. Description is omitted. FIG.
, 10 is an air blower whose rotation speed can be controlled, 11
Is a control means (hereinafter referred to as an inverter) for controlling the number of revolutions of the air blower 10, for example, comprising an inverter.

【0009】次に、この実施の形態1による燃料電池発
電システムの動作を説明する。天然ガス等の炭化水素系
燃料が改質器2の改質反応部2aで改質ガスに変換さ
れ、改質ガスが燃料電池1の燃料極1aに導かれ、そこ
で反応に消費された残りの余剰燃料が改質器2のバーナ
部2bへ送られ燃焼に消費される。空気ブロワ10から
供給される空気の一部が、燃料電池空気供給配管4を経
て、熱交換器8で予熱されたあと燃料電池1の空気極1
bに供給され、空気ブロワ10からの残りの空気は、改
質器空気供給配管5を経て改質器2のバーナ部2bに燃
焼用として送られる。空気極1bで反応に使われた残り
の排出空気は熱交換器8を経て、バーナ部2bからの燃
焼排ガスとともに大気へ放出される。以上の動作は上述
した従来技術の動作と同じである。この実施の形態1で
は、燃料電池1及び改質器2への供給空気の流量の制御
が、燃料電池空気供給配管4、改質器空気供給配管5に
それぞれに設けた調節弁6、7の制御と、空気ブロワ1
0の回転数制御とを組合わせて行われる。
Next, the operation of the fuel cell power generation system according to Embodiment 1 will be described. A hydrocarbon-based fuel such as natural gas is converted into a reformed gas in a reforming reaction section 2a of the reformer 2, and the reformed gas is led to a fuel electrode 1a of the fuel cell 1, where the remaining fuel consumed in the reaction is used. Excess fuel is sent to the burner section 2b of the reformer 2 and consumed for combustion. After a part of the air supplied from the air blower 10 is preheated by the heat exchanger 8 through the fuel cell air supply pipe 4, the air electrode 1 of the fuel cell 1 is
b, and the remaining air from the air blower 10 is sent through the reformer air supply pipe 5 to the burner 2b of the reformer 2 for combustion. The remaining exhaust air used for the reaction at the air electrode 1b passes through the heat exchanger 8 and is discharged to the atmosphere together with the combustion exhaust gas from the burner 2b. The above operation is the same as the above-described operation of the related art. In the first embodiment, the control of the flow rate of the supply air to the fuel cell 1 and the reformer 2 is performed by controlling the control valves 6 and 7 provided in the fuel cell air supply pipe 4 and the reformer air supply pipe 5, respectively. Control and air blower 1
This is performed in combination with the rotation speed control of 0.

【0010】この制御方法の一例を図2を参照して説明
する。図2において、12は空気ブロワの特性曲線を示
すもので、13、14は空気ブロワ10の風圧(P)−
風量(Q)特性曲線上にシステムの運転動作点をプロッ
トしたものである。
An example of this control method will be described with reference to FIG. In FIG. 2, reference numeral 12 denotes a characteristic curve of the air blower, and reference numerals 13 and 14 denote a wind pressure (P)-of the air blower 10.
It is a plot of the operating point of the system on the airflow (Q) characteristic curve.

【0011】まず、システムの定格負荷条件において
は、空気ブロワ10は定格条件での必要風量、風圧を維
持するだけの回転数Nで運転される。空気ブロワ10
の回転数は、コントローラ9からインバータ11に対し
指令値が与えられ、それによりインバータ11に接続さ
れた空気ブロワ10の電導機の周波数が制御されて、所
要の値に維持される。この状態での空気ブロワ10の風
圧−風量特性曲線、及びシステムの空気系統の圧力損失
曲線が図の13、16であり、それぞれの曲線13、1
6が交叉するポイント(図2のA点〉が空気ブロワ10
の定格動作点となる。破線で示した曲線15は、空気ブ
ロワ10のサージング限界線であり、この曲線15から
左側のゾーン(低風量側)ではサージング発生の恐れが
あるため、曲線15の右側のゾーン(高風量側)に動作
点をもって来なければならない。定格動作点(A)は、
このサージング限界線15に対し、十分な余裕があり問
題ない。
[0011] First, in the rated load condition of the system, the air blower 10 is operated at a rotational speed N 1 of only maintains required air flow at rated conditions, the wind pressure. Air blower 10
The controller 9 gives a command value to the inverter 11 from the controller 9, whereby the frequency of the electric motor of the air blower 10 connected to the inverter 11 is controlled and maintained at a required value. In this state, the air pressure-air volume characteristic curve of the air blower 10 and the pressure loss curve of the air system of the system are 13 and 16 in FIG.
The point at which 6 crosses (point A in FIG. 2) is the air blower 10
Rated operating point. A curve 15 indicated by a broken line is a surging limit line of the air blower 10. Since a surging may occur in a zone on the left side (low air volume side) of the curve 15, a zone on a right side of the curve 15 (high air volume side). Operating point. The rated operating point (A)
There is sufficient margin for this surging limit line 15 and there is no problem.

【0012】次に部分負荷運転を行う場合、従来技術の
とおり調節弁6、7を絞ることのみで、風量をコントロ
ールした場合、空気ブロワ10の動作点が、回転数N
での特性曲線13上を低風量側に移動するために、サー
ジング域に入るか或は近づく可能性があった。従来技術
による部分負荷動作点の一例をBに示す。この発明に
よる方法では、まず負荷低減とともに調節弁6、7の開
度一定のまま空気ブロワ10の回転数を下げる。燃料電
池1及び改質器2へ必要な空気を供給できる最低の回転
数Nまでの範囲(図のA〜Xの範囲)は、空気ブロワ
10の回転数制御で対応する。それ以上の負荷低減に対
しては、空気ブロワ10の回転数を固定し、調節弁6、
7の開度を絞り空気流量を減少させる。調節弁6、7を
絞ることにより、システムの空気系統の圧力損失が増大
するので、動作点は、回転数N一定の特性曲線14上
を低風量側へ移動し、例えばB点に至る。空気ブロワ1
0は回転数によって、サージング限界が図の様に変化
し、低い回転数ほどサージング限界が狭く、逆に安定域
が広がる傾向にある。このため、同じ部分負荷空気流量
(Q)に於いても、従来技術では、サージング限界1
5の内側(B点)にあったものが、この発明による方
法ではサージング限界15の外側(B点)で安定に動作
させることができる。
Next, when the partial load operation is performed, the operating point of the air blower 10 is changed to the rotation speed N 1 when the air flow is controlled only by narrowing the control valves 6 and 7 as in the prior art.
In order to move on the characteristic curve 13 at the low air volume side, there is a possibility of entering or approaching a surging area. Shows an example of a conventional part load operating point B 1. In the method according to the present invention, first, the rotational speed of the air blower 10 is reduced while the opening of the control valves 6 and 7 is kept constant while the load is reduced. The fuel cell 1 and the range of the necessary air to the reformer 2 to the rotational speed N 2 lowest can supply (range A~X the figure), corresponding with the rotational speed control of the air blower 10. To further reduce the load, the rotation speed of the air blower 10 is fixed, and the control valve 6,
The opening of 7 is throttled to reduce the air flow rate. By throttling the control valve 6, the pressure loss of the air system of the system is increased, the operating point, the upper rotational speed N 2 constant characteristic curve 14 moved to the low air volume side, for example, reaches the point B. Air blower 1
In the case of 0, the surging limit changes as shown in the figure depending on the number of revolutions. The lower the number of revolutions, the narrower the surging limit, and conversely, the stable region tends to be widened. For this reason, at the same partial load air flow rate (Q 2 ), in the related art, the surging limit is 1
Those 5 had the inside (point B) is able to stably operate outside (B point) of the surging limit 15 in the process of this invention.

【0013】本発明によれば、例えば図のB点をシステ
ムの最低負荷条件相当とした場合、空気ブロワ10の動
作点はA←→X←→Bの各点の間を安定に移動する。ま
た、図の18、19は、上述した回転数N,Nにそ
れぞれ対応する空気ブロワ10の動力(L)−風量
(Q)の特性曲線である。先に述べた空気ブロワ10の
風圧(P)−風量(Q)特性曲線上にプロットしたA、
X、B、B点が、それぞれ曲線18、19上のa、
x、b、bに対応する。これに示す様に、従来技術だ
と部分負荷条件時に於いても空気ブロワ動力は定格時に
比べさほど低下しないのに比し、この発明による方法で
は、部分負荷時の空気ブロワ動力を大幅に低減させるこ
とが可能で、その分システムの部分負荷効率を向上させ
ることが可能である。部分負荷運転を空気ブロワ10の
回転数制御のみで行い、調節弁を使用しない方法も考え
られるが、低負荷領域では空気ブロワ10の吐出圧力が
低下するので、燃料電池1用と改質器2用にバランス良
く空気を供給することが困難であり、実用は難しい。
According to the present invention, for example, when the point B in the figure corresponds to the minimum load condition of the system, the operating point of the air blower 10 moves stably between the points A ← → X ← → B. 18 and 19 are characteristic curves of the power (L) -air flow (Q) of the air blower 10 corresponding to the above-mentioned rotation speeds N 1 and N 2 , respectively. A, which is plotted on the air pressure (P) -air volume (Q) characteristic curve of the air blower 10 described above,
X, B, and B 1 points correspond to a, a on curves 18 and 19, respectively.
x, b, corresponding to b 1. As shown, in the prior art, the air blower power under the partial load condition does not decrease much as compared with the rated load, whereas the method according to the present invention significantly reduces the air blower power under the partial load condition. It is possible to improve the partial load efficiency of the system accordingly. Although a method in which the partial load operation is performed only by controlling the rotation speed of the air blower 10 and the control valve is not used is conceivable, the discharge pressure of the air blower 10 decreases in a low load region. It is difficult to supply air in a well-balanced manner, and practical use is difficult.

【0014】なお、上記実施の形態1では、部分負荷に
おける空気流量制御を、空気ブロワ10の回転数制御に
よる負荷領域と、調節弁6、7の制御による負荷領域に
分ける例を示したが、必ずしもこの様に分ける必要がな
く、負荷低減とともに空気ブロワ10の回転数制御と調
節弁6、7の制御を併用しても良く、上記実施の形態1
と同じ効果を奏する。この方法による動作点移動の一例
を図2の20に示す。要は、空気ブロワ10の回転数制
御と調節弁6、7の制御を組合せることが重要であり、
それにより本発明の目的が達せられる。
In the first embodiment, an example is shown in which the air flow rate control at the partial load is divided into a load area by controlling the rotation speed of the air blower 10 and a load area by controlling the control valves 6 and 7. It is not always necessary to divide in this way, and the control of the rotation speed of the air blower 10 and the control of the control valves 6 and 7 may be used together with the reduction of the load.
Has the same effect as. An example of the operation point movement by this method is shown in FIG. In short, it is important to combine the control of the rotation speed of the air blower 10 and the control of the control valves 6 and 7.
Thereby, the object of the present invention is achieved.

【0015】また、上記実施の形態1では、燃料電池空
気供給配管4上と改質器空気供給配管5上の両方に調節
弁6、7を設けるものとしているが、必ずしも両方に調
節弁を設ける必要はなく、いずれか一方にのみ調節弁を
設けても良い。例えば、改質器2に要求される空気供給
圧力が、燃料電池1に要求される空気供給圧力よりも高
い場合、改質器空気供給配管5上の調節弁7は必ずしも
必要ではなく省略できる。この場合、負荷の変化に際
し、改質器2への空気流量の制御は基本的に空気ブロワ
10の回転数制御で行い、燃料電池1への空気流量制御
は、調節弁6の制御により行う。逆の場合も同様であ
る。
In the first embodiment, the control valves 6 and 7 are provided on both the fuel cell air supply pipe 4 and the reformer air supply pipe 5, but the control valves are not necessarily provided on both. It is not necessary, and a control valve may be provided in only one of them. For example, when the air supply pressure required for the reformer 2 is higher than the air supply pressure required for the fuel cell 1, the control valve 7 on the reformer air supply pipe 5 is not always necessary and can be omitted. In this case, when the load changes, the air flow to the reformer 2 is basically controlled by controlling the rotation speed of the air blower 10, and the air flow to the fuel cell 1 is controlled by controlling the control valve 6. The same applies to the opposite case.

【0016】[0016]

【発明の効果】以上の様に、この発明によれば、燃料電
池と、炭化水素系燃料を改質して上記燃料電池に水素ガ
スを供給する改質器と、上記燃料電池と上記改質器に空
気を供給する1つの空気ブロワと、上記空気ブロワから
上記燃料電池に至る燃料電池空気供給配管上又は、上記
空気ブロワから上記改質器に至る改質器空気供給配管上
の少なくとも一方に設置され、電池負荷に応じて流量を
調節する調節弁と、サージングを回避するように電池負
荷に応じて上記空気ブロワの回転数を制御する制御手段
とを備え、定格負荷と部分負荷との間における上記燃料
電池および上記改質器への空気供給量の調整は、上記調
節弁の開度を一定とし、上記空気ブロワの回転数の制御
により行い、部分負荷と最低負荷との間における上記燃
料電池および上記改質器の空気供給量の調整は、上記空
気ブロワの回転数を一定とし、上記調節弁の開度の制御
により行うようにしたので、燃料電池と改質器に対し広
い流量範囲で安定に空気を供給することができる効果を
奏する。
As described above, according to the present invention, a fuel cell, a reformer for reforming a hydrocarbon-based fuel and supplying hydrogen gas to the fuel cell, the fuel cell and the reformer One air blower for supplying air to the fuel cell, and at least one on a fuel cell air supply pipe from the air blower to the fuel cell or on a reformer air supply pipe from the air blower to the reformer. A control valve installed to control the flow rate according to the battery load, and control means for controlling the rotation speed of the air blower according to the battery load so as to avoid surging. The adjustment of the amount of air supplied to the fuel cell and the reformer in the above is performed by controlling the number of rotations of the air blower while keeping the opening of the control valve constant, and adjusting the fuel supply between a partial load and a minimum load. Battery and above The air supply amount of the reformer is adjusted by controlling the opening of the control valve while keeping the rotation speed of the air blower constant. Is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1に係る燃料電池発電
システムを示す系統図である。
FIG. 1 is a system diagram showing a fuel cell power generation system according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1に係る燃料電池発電
システムにおける空気ブロワの特性曲線の一例を示す特
性図である。
FIG. 2 is a characteristic diagram showing an example of a characteristic curve of an air blower in the fuel cell power generation system according to Embodiment 1 of the present invention.

【図3】 従来の燃料電池発電システムを示す系統図で
ある。 1 燃料電池本体、1a 燃料極、1b 空気極、2
改質器、4 燃料電池空気供給配管、5 改質器空気供
給配管、6 燃料電池空気調節弁、7 改質器空気調節
弁、10 空気ブロワ、11 インバータ。
FIG. 3 is a system diagram showing a conventional fuel cell power generation system. 1 fuel cell body, 1a fuel electrode, 1b air electrode, 2
Reformer, 4 fuel cell air supply pipe, 5 reformer air supply pipe, 6 fuel cell air control valve, 7 reformer air control valve, 10 air blower, 11 inverter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池と、炭化水素系燃料を改質して
上記燃料電池に水素ガスを供給する改質器と、上記燃料
電池と上記改質器に空気を供給する1つの空気ブロワ
と、上記空気ブロワから上記燃料電池に至る燃料電池空
気供給配管上又は、上記空気ブロワから上記改質器に至
る改質器空気供給配管上の少なくとも一方に設置され、
電池負荷に応じて流量を調節する調節弁と、サージング
を回避するように電池負荷に応じて上記空気ブロワの回
転数を制御する制御手段とを備え、定格負荷と部分負荷
との間における上記燃料電池および上記改質器への空気
供給量の調整は、上記調節弁の開度を一定とし、上記空
気ブロワの回転数の制御により行い、部分負荷と最低負
荷との間における上記燃料電池および上記改質器の空気
供給量の調整は、上記空気ブロワの回転数を一定とし、
上記調節弁の開度の制御により行うようにしたことを特
徴とする燃料電池発電システム。
1. A fuel cell, a reformer for reforming a hydrocarbon-based fuel and supplying hydrogen gas to the fuel cell, and one air blower for supplying air to the fuel cell and the reformer. Installed on at least one of a fuel cell air supply pipe from the air blower to the fuel cell or a reformer air supply pipe from the air blower to the reformer,
A control valve for adjusting a flow rate according to a battery load, and control means for controlling a rotation speed of the air blower according to a battery load so as to avoid surging, wherein the fuel between a rated load and a partial load is provided. Adjustment of the amount of air supplied to the battery and the reformer is performed by controlling the number of rotations of the air blower while keeping the opening of the control valve constant, and the fuel cell and the fuel cell between a partial load and a minimum load are controlled. Adjustment of the air supply amount of the reformer, the rotation speed of the air blower is constant,
A fuel cell power generation system, wherein the control is performed by controlling the opening of the control valve.
JP10373350A 1998-12-28 1998-12-28 Fuel cell power generation system Pending JPH11317234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10373350A JPH11317234A (en) 1998-12-28 1998-12-28 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10373350A JPH11317234A (en) 1998-12-28 1998-12-28 Fuel cell power generation system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1001503A Division JP2922209B2 (en) 1989-01-06 1989-01-06 Fuel cell power generation system

Publications (1)

Publication Number Publication Date
JPH11317234A true JPH11317234A (en) 1999-11-16

Family

ID=18502014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10373350A Pending JPH11317234A (en) 1998-12-28 1998-12-28 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH11317234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890673B2 (en) 2001-07-04 2005-05-10 Hitachi, Ltd. Hydrogen producing apparatus and power generating system using it
KR100903598B1 (en) 2007-11-26 2009-06-18 주식회사 효성 Branching supply system for fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890673B2 (en) 2001-07-04 2005-05-10 Hitachi, Ltd. Hydrogen producing apparatus and power generating system using it
KR100903598B1 (en) 2007-11-26 2009-06-18 주식회사 효성 Branching supply system for fluid

Similar Documents

Publication Publication Date Title
JP5888245B2 (en) Fuel cell power generation system and control method for fuel cell power generation system
US5527632A (en) Hydrocarbon fuelled fuel cell power system
JP2922209B2 (en) Fuel cell power generation system
JPH11317234A (en) Fuel cell power generation system
JP4667902B2 (en) Cogeneration system
JPS6229869B2 (en)
JP3738888B2 (en) FUEL CELL POWER GENERATION DEVICE HAVING RAW FUEL SWITCHING FACILITY AND METHOD
JP2020123544A (en) Fuel cell system
JP2671523B2 (en) Operation control method for fuel cell power generator
JP3930426B2 (en) Fuel cell combined power generation system
JPS6332868A (en) Fuel cell power generating system
JPH0660896A (en) Fuel cell type power generation device and method for operation thereof
JPH10144335A (en) Fuel cell apparatus and driving method therefor
JP2007234311A (en) Fuel cell system
JPH06105619B2 (en) Control method of fuel cell power generation system
JPS6180763A (en) Control system for fuel cell power generation system
JPH0316750B2 (en)
JPH01112671A (en) Operating method for fuel cell power plant
JPS6180765A (en) Control method for fuel cell power generation system
JPH0722045A (en) Method for controlling fuel cell power generating system
JPH088107B2 (en) Flow control method for internal reforming fuel cell
JPH0360402A (en) Fuel cell power generating plant
KR20200072200A (en) Control method for supplying hydrogen to fuel cell
JP2022169092A (en) Cooling system for fuel cell
JPH04345766A (en) Heat supplying power generating system for fuel cell power generating plant