JPH11316060A - Refrigerating/air conditioning apparatus - Google Patents

Refrigerating/air conditioning apparatus

Info

Publication number
JPH11316060A
JPH11316060A JP1012499A JP1012499A JPH11316060A JP H11316060 A JPH11316060 A JP H11316060A JP 1012499 A JP1012499 A JP 1012499A JP 1012499 A JP1012499 A JP 1012499A JP H11316060 A JPH11316060 A JP H11316060A
Authority
JP
Japan
Prior art keywords
heat
heat storage
refrigerant
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1012499A
Other languages
Japanese (ja)
Other versions
JP3360637B2 (en
Inventor
Yoshihiro Sumida
嘉裕 隅田
Fumitake Unezaki
史武 畝崎
Tomohiko Kasai
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP01012499A priority Critical patent/JP3360637B2/en
Publication of JPH11316060A publication Critical patent/JPH11316060A/en
Application granted granted Critical
Publication of JP3360637B2 publication Critical patent/JP3360637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To uniformly store heat in a heat storage tank, and effectively store heat even when a heat transfer medium is altered by preventing deterioration of heat storage efficiency due to a non-azeotropic mixture refrigerant in a heat storage type refrigerating/air conditioning apparatus. SOLUTION: Cold heat or hot heat produced in a heat source apparatus is stored in a heat storage material in a heat storage tank 10 through a heat storage heat exchanger 11, and the stored cold heat or hot heat is supplied to an indoor heat exchanger 5 being a load apparatus. A non-azeotropic mixture refrigerant is used as a heat transfer medium in the heat source apparatus to positively or negatively change over a flow direction of a refrigerant in the heat storage heat exchanger 11. The changeover of the positive or negative flow direction of the refrigerant is performed under temperature of the refrigerant, pressure of the refrigerant, a heat storage state of the heat storage material, and a predetermined time interval all detected by a temperature detector 25. Further, the heat storage heat exchanger 11 is constructed such that it has such pressure loss as a temperature change width of the refrigerant in the heat storage heat exchanger 11 becoming a predetermined value or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷熱または温熱を
蓄熱する蓄熱槽を備えた冷凍空調装置に係わり、特に熱
伝達媒体として非共沸混合冷媒を用いた場合の、蓄熱槽
内に設けられた蓄熱熱交換器の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating air conditioner having a heat storage tank for storing cold or hot heat, and more particularly to a refrigerating air conditioner provided in a heat storage tank when a non-azeotropic mixed refrigerant is used as a heat transfer medium. And improvement of the heat storage heat exchanger.

【0002】[0002]

【従来の技術】従来より、冷房負荷のピーク時における
電力需要の軽減およびオフピーク時における電力需要の
拡大を図る手段として、冷房負荷のオフピーク時に蓄熱
槽に冷熱を蓄え、ピーク時にはその冷熱を冷房運転に活
用する蓄熱式の冷凍空調装置の開発が進んでいる。
2. Description of the Related Art Conventionally, as a means for reducing power demand at the time of a cooling load peak and expanding power demand at an off-peak time, cold energy is stored in a heat storage tank at the time of a cooling load off-peak, and the cold heat is used for cooling operation at a peak time. The development of regenerative refrigeration and air-conditioning systems for use in air conditioning is in progress.

【0003】図30は、例えば特公平8−250824
0号公報に示された従来の冷凍空調装置を示す冷媒回路
図である。図において、1は圧縮機、2は冷房時と暖房
時の冷媒の流れを切換える四方弁、3は室外熱交換器、
4は第1膨張弁、5は室内熱交換器であり、これらは配
管で接続されて冷凍サイクルを構成している。11は蓄
熱槽10内に設置された蓄熱熱交換器であり、その入口
側配管は第2膨張弁20を介して、室外熱交換器3と第
1膨張弁4の間の配管に接続されている。また、蓄熱熱
交換器11の出口側配管は、第1電磁弁21によって室
内熱交換器5と四方弁2の間の配管に接続されるととも
に、第2電磁弁22によって第1膨張弁4と室外熱交換
器3の間の配管に接続されている。そして、第1電磁弁
21と第2電磁弁22によって、蓄熱運転と蓄熱利用冷
房運転の冷媒回路が切換え可能に構成されている。ま
た、室外熱交換器3と第1膨張弁4の間の配管には第3
電磁弁23が設けられている。さらにこの冷凍空調装置
内には、冷媒として単一冷媒であるフロンR22が封入
されている。
FIG. 30 shows, for example, Japanese Patent Publication No. 8-250824.
It is a refrigerant circuit diagram which shows the conventional refrigerating air-conditioner shown in No. 0 publication. In the figure, 1 is a compressor, 2 is a four-way valve for switching the flow of refrigerant during cooling and heating, 3 is an outdoor heat exchanger,
Reference numeral 4 denotes a first expansion valve, and reference numeral 5 denotes an indoor heat exchanger, which are connected by piping to form a refrigeration cycle. Reference numeral 11 denotes a heat storage heat exchanger installed in the heat storage tank 10, and its inlet side pipe is connected to a pipe between the outdoor heat exchanger 3 and the first expansion valve 4 via a second expansion valve 20. I have. The outlet pipe of the heat storage heat exchanger 11 is connected to the pipe between the indoor heat exchanger 5 and the four-way valve 2 by a first solenoid valve 21, and is connected to the first expansion valve 4 by a second solenoid valve 22. It is connected to a pipe between the outdoor heat exchangers 3. The first electromagnetic valve 21 and the second electromagnetic valve 22 are configured so that the refrigerant circuit for the heat storage operation and the cooling operation using the heat storage can be switched. Also, a third pipe is provided between the outdoor heat exchanger 3 and the first expansion valve 4.
An electromagnetic valve 23 is provided. Further, Freon R22, which is a single refrigerant, is sealed in the refrigeration air conditioner.

【0004】図31は、図30に示した蓄熱式の冷凍空
調装置に係わる蓄熱槽10の構成を詳しく示す図であ
り、図31(a)は上面図、図31(b)は縦断面図で
ある。蓄熱熱交換器11は、図31に示すように垂直方
向に蛇行した伝熱管で構成されており、蓄熱運転時の圧
力損失を低減するために、複数、例えば4本の伝熱管を
並列に接続し、さらに伝熱管として平滑管が用いられて
いる。また伝熱管の蛇行のピッチはほぼ等間隔である。
さらに蓄熱熱交換器11の入口部には複数の伝熱管に冷
媒を分配するディストリビュータ12が設けられてお
り、また出口部には複数の伝熱管からの冷媒を合流させ
るヘッダー13が設けられている。蓄熱槽10の内部は
水で満たされており、蓄熱運転時には、蓄熱熱交換器1
1で水を冷却氷化し、伝熱管の表面に氷を付着生成させ
て蓄熱槽10内に冷熱を蓄えるように構成されている。
FIG. 31 is a diagram showing in detail the configuration of the heat storage tank 10 relating to the heat storage type refrigerating and air-conditioning apparatus shown in FIG. 30. FIG. 31 (a) is a top view, and FIG. It is. The heat storage heat exchanger 11 is composed of heat transfer tubes meandering in the vertical direction as shown in FIG. 31, and a plurality of, for example, four heat transfer tubes are connected in parallel in order to reduce pressure loss during the heat storage operation. In addition, a smooth tube is used as a heat transfer tube. The meandering pitches of the heat transfer tubes are substantially equal.
Further, a distributor 12 for distributing the refrigerant to the plurality of heat transfer tubes is provided at an inlet of the heat storage heat exchanger 11, and a header 13 for joining the refrigerant from the plurality of heat transfer tubes is provided at an outlet. . The inside of the heat storage tank 10 is filled with water, and during the heat storage operation, the heat storage heat exchanger 1
In step 1, the water is cooled and iced, and ice is deposited on the surface of the heat transfer tube to store cold heat in the heat storage tank 10.

【0005】次に、上記のように構成された従来の冷凍
空調装置の蓄熱運転時および蓄熱利用冷房運転時の動作
について説明する。蓄熱運転時は、第1電磁弁21を
開、第2電磁弁22を閉、第3電磁弁23を閉とする。
また、第2膨張弁20は適当な開度になるように制御さ
れている。この蓄熱運転時の冷媒の流れは、図30中の
実線矢印で示すように、圧縮機1で吐出された高温高圧
の冷媒蒸気は四方弁2を経て室外熱交換器3で凝縮液化
し、第2膨張弁20で低圧に減圧されて蓄熱熱交換器1
1に流入する。蓄熱熱交換器11に流入した冷媒は、蓄
熱槽10内の水から熱を奪って蒸発する。この際、蓄熱
熱交換器11は複数の平滑管を並列に接続した伝熱管で
構成されているため、蒸発時の圧力損失は非常に小さ
く、蒸発温度もほぼ一定となる。このため蓄熱熱交換器
11の伝熱管表面には均一な厚さで氷が付着生成する。
蓄熱熱交換器11で蒸発した冷媒は、第1電磁弁21お
よび四方弁2を通って圧縮機1に戻る。
Next, the operation of the conventional refrigeration and air-conditioning apparatus having the above-described configuration during the heat storage operation and the heat storage cooling operation will be described. During the heat storage operation, the first solenoid valve 21 is opened, the second solenoid valve 22 is closed, and the third solenoid valve 23 is closed.
Further, the second expansion valve 20 is controlled to have an appropriate opening. As shown by solid arrows in FIG. 30, the flow of the refrigerant during the heat storage operation is as follows. 2 The heat storage heat exchanger 1 is decompressed to a low pressure by the expansion valve 20
Flow into 1. The refrigerant flowing into the heat storage heat exchanger 11 evaporates by removing heat from the water in the heat storage tank 10. At this time, since the heat storage heat exchanger 11 is constituted by a heat transfer tube in which a plurality of smooth tubes are connected in parallel, the pressure loss during evaporation is very small, and the evaporation temperature is substantially constant. Therefore, ice adheres to the surface of the heat transfer tube of the heat storage heat exchanger 11 with a uniform thickness.
The refrigerant evaporated in the heat storage heat exchanger 11 returns to the compressor 1 through the first solenoid valve 21 and the four-way valve 2.

【0006】蓄熱利用冷房運転時は、第1電磁弁21を
閉、第2電磁弁22を開、第3電磁弁23を閉とする。
この時の冷媒の流れは、図30中の破線矢印で示すよう
に、圧縮機1で吐出された高温高圧の冷媒蒸気は四方弁
2を経て室外熱交換器3で凝縮液化し、第2膨張弁20
を通って蓄熱熱交換器11に流入する。なお、この運転
時は第2膨張弁20の開度を全開としている。蓄熱熱交
換器11に流入した高圧の液冷媒は、蓄熱槽10内の氷
でさらに冷却され、過冷却度が増大して流出する。この
過冷却度が増大した液冷媒は第2電磁弁22を通って第
1膨張弁4で低圧に減圧され、室内熱交換器5に流入し
て蒸発し、四方弁2を通って圧縮機1に戻る。
[0006] During the cooling operation using heat storage, the first solenoid valve 21 is closed, the second solenoid valve 22 is opened, and the third solenoid valve 23 is closed.
The flow of the refrigerant at this time is as shown by the dashed arrow in FIG. 30, and the high-temperature and high-pressure refrigerant vapor discharged from the compressor 1 is condensed and liquefied in the outdoor heat exchanger 3 through the four-way valve 2 and the second expansion. Valve 20
Through the heat storage heat exchanger 11. During this operation, the opening degree of the second expansion valve 20 is fully opened. The high-pressure liquid refrigerant that has flowed into the heat storage heat exchanger 11 is further cooled by ice in the heat storage tank 10 and flows out with an increased degree of supercooling. The liquid refrigerant having an increased degree of supercooling is reduced to a low pressure by the first expansion valve 4 through the second solenoid valve 22, flows into the indoor heat exchanger 5 and evaporates, passes through the four-way valve 2, and evaporates. Return to

【0007】暖房運転時は、四方弁2を切換え、第1電
磁弁21,第2電磁弁22を閉、第3電磁弁23を開に
する。そして蓄熱槽10を介さないで冷凍サイクルを構
成する。
[0007] During the heating operation, the four-way valve 2 is switched, the first solenoid valve 21 and the second solenoid valve 22 are closed, and the third solenoid valve 23 is opened. Then, a refrigeration cycle is configured without using the heat storage tank 10.

【0008】[0008]

【発明が解決しようとする課題】上記のような従来の冷
凍空調装置では、冷媒として蒸発時に温度変化の生じな
いフロンR22のような単一冷媒を用いているため、蓄
熱熱交換器11を複数の平滑管を並列に接続した伝熱管
で構成して圧力損失を低減することにより、蓄熱運転時
にほぼ一定の蒸発温度を得ることができ、この結果、蓄
熱熱交換器11の伝熱管表面には均一な厚さで氷が付着
生成し、効率の良い蓄熱運転が可能となる。
In the above-mentioned conventional refrigeration and air-conditioning apparatus, since a single refrigerant such as Freon R22, which does not change in temperature during evaporation, is used as the refrigerant, a plurality of heat storage heat exchangers 11 are used. By reducing the pressure loss by configuring the heat transfer tubes connected in parallel with the smoothing tubes, it is possible to obtain a substantially constant evaporation temperature during the heat storage operation. As a result, the surface of the heat transfer tubes of the heat storage heat exchanger 11 Ice adheres and is generated with a uniform thickness, and efficient heat storage operation becomes possible.

【0009】ところが、近年地球環境保護の意識が高ま
っており、フロンR22はオゾン層破壊係数が高く、オ
ゾン層破壊係数の低い冷媒を用いることが熱望されてい
る。そこで例えばフロンR407Cはオゾン層破壊係数
がゼロであるが、その性質はフロンR22のような単一
冷媒とは多少異なり、フロンR32/R125/R13
4aが23/25/52重量%で構成されている非共沸
混合冷媒である。蒸発時に温度変化の生じる非共沸混合
冷媒を用いると、蓄熱運転時の蓄熱熱交換器内の蒸発温
度は一定にはならず、蒸発温度が低い蓄熱熱交換器入口
部では氷は厚くなり、蒸発温度が高い蓄熱熱交換器出口
部では氷が生成されなくなる。この結果、蓄熱熱交換器
の伝熱管表面に生成される氷厚が不均一となり、蓄熱運
転時の効率が低下したり、蓄熱槽全体としては充分な製
氷量が得られなかったりするという問題があった。ま
た、蒸発温度が最も低い蓄熱熱交換器入口部の氷厚は最
も厚くなるため、この部分の氷が融合して伝熱管や蓄熱
槽の変形や破損を引き起こすという問題もあった。
However, in recent years, awareness of protecting the global environment has been increasing, and it is desired to use a refrigerant having a high ozone depletion coefficient and a low ozone depletion coefficient for Freon R22. Thus, for example, Freon R407C has an ozone depletion potential of zero, but its properties are slightly different from a single refrigerant such as Freon R22, and Freon R32 / R125 / R13.
4a is a non-azeotropic mixed refrigerant composed of 23/25/52% by weight. If a non-azeotropic mixed refrigerant that changes in temperature during evaporation is used, the evaporation temperature in the heat storage heat exchanger during heat storage operation will not be constant, and the ice will become thicker at the heat storage heat exchanger inlet where the evaporation temperature is low, Ice is not generated at the outlet of the heat storage heat exchanger where the evaporation temperature is high. As a result, the thickness of ice generated on the surface of the heat transfer tube of the heat storage heat exchanger becomes uneven, and the efficiency during the heat storage operation is reduced, and a sufficient amount of ice is not obtained in the entire heat storage tank. there were. In addition, since the ice thickness at the inlet of the heat storage heat exchanger having the lowest evaporation temperature is the thickest, there is also a problem that the ice in this portion is fused to cause deformation or breakage of the heat transfer tube or the heat storage tank.

【0010】本発明は、上記のような問題を解決するた
めになされたもので、冷媒として蒸発過程で温度変化の
生じる非共沸混合冷媒を用い、効率よく蓄熱槽に蓄熱で
き、しかも信頼性の高い冷凍空調装置を得ることを目的
とする。さらに、熱伝達媒体として1つの非共沸混合冷
媒を用いるのみではなく、他の非共沸混合冷媒や蒸発過
程で温度変化の生じない共沸冷媒や単一冷媒を用いて
も、装置構成を変更せずに、効率よく蓄熱槽に蓄熱でき
る冷凍空調装置を得ることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and uses a non-azeotropic mixed refrigerant whose temperature changes during the evaporation process as a refrigerant, and can efficiently store heat in a heat storage tank. It is intended to obtain a refrigeration and air-conditioning system with high performance. Furthermore, not only one non-azeotropic mixed refrigerant is used as the heat transfer medium, but also other non-azeotropic mixed refrigerants or azeotropic refrigerants or single refrigerants that do not change in temperature during the evaporation process can be used to configure the apparatus. It is an object of the present invention to obtain a refrigeration / air-conditioning apparatus that can efficiently store heat in a heat storage tank without changing the temperature.

【0011】[0011]

【課題を解決するための手段】本発明に係わる冷凍空調
装置は、非共沸混合冷媒を熱伝達媒体として用いて冷熱
または温熱を生成する熱源装置と、蓄熱熱交換器および
蓄熱材を有し前記熱源装置で生成した冷熱または温熱を
前記蓄熱熱交換器を介して前記蓄熱材に蓄熱する蓄熱槽
と、前記蓄熱槽に蓄熱された冷熱または温熱が供給され
る負荷装置とを備える冷凍空調装置において、前記蓄熱
熱交換器内での前記非共沸混合冷媒の流れ方向を正逆に
切換え可能としたものである。
SUMMARY OF THE INVENTION A refrigerating air conditioner according to the present invention has a heat source device for generating cold or warm heat using a non-azeotropic refrigerant mixture as a heat transfer medium, a heat storage heat exchanger and a heat storage material. A refrigeration / air-conditioning apparatus comprising: a heat storage tank that stores cold or warm heat generated by the heat source device in the heat storage material via the heat storage heat exchanger; and a load device to which the cold or warm heat stored in the heat storage tank is supplied. , The flow direction of the non-azeotropic mixed refrigerant in the heat storage heat exchanger can be switched between forward and reverse.

【0012】また、本発明に係わる冷凍空調装置は、蓄
熱熱交換器を流れる非共沸混合冷媒の温度を検知する温
度検知器を設け、前記温度検知器の出力値に応じて前記
蓄熱熱交換器内での前記非共沸混合冷媒の流れ方向を切
換えるように構成したものである。
The refrigeration and air-conditioning apparatus according to the present invention further includes a temperature detector for detecting a temperature of the non-azeotropic mixed refrigerant flowing through the heat storage heat exchanger, and the heat storage heat exchange is performed in accordance with an output value of the temperature detector. The flow direction of the non-azeotropic mixed refrigerant in the vessel is switched.

【0013】また、本発明に係わる冷凍空調装置は、蓄
熱熱交換器を流れる非共沸混合冷媒の圧力を検知する圧
力検知器を設け、前記圧力検知器の出力値に応じて前記
蓄熱熱交換器内での前記非共沸混合冷媒の流れ方向を切
換えるように構成したものである。
The refrigeration / air-conditioning apparatus according to the present invention further includes a pressure detector for detecting the pressure of the non-azeotropic mixed refrigerant flowing through the heat storage heat exchanger, and the heat storage heat exchange is performed in accordance with an output value of the pressure detector. The flow direction of the non-azeotropic mixed refrigerant in the vessel is switched.

【0014】また、本発明に係わる冷凍空調装置は、蓄
熱熱交換器内での非共沸混合冷媒の流れ方向を所定の時
間間隔で切換えるように構成したものである。
The refrigeration / air-conditioning apparatus according to the present invention is configured such that the flow direction of the non-azeotropic mixed refrigerant in the heat storage heat exchanger is switched at predetermined time intervals.

【0015】また、本発明に係わる冷凍空調装置は、蓄
熱槽内の蓄熱材の蓄熱状態を検知する検知器を設け、前
記検知器の検知結果に応じて前記蓄熱熱交換器内での非
共沸混合冷媒の流れ方向を切換えるように構成したもの
である。
Further, the refrigeration / air-conditioning apparatus according to the present invention is provided with a detector for detecting the heat storage state of the heat storage material in the heat storage tank. The flow direction of the boiling mixed refrigerant is switched.

【0016】また、本発明に係わる冷凍空調装置は、非
共沸混合冷媒を熱伝達媒体として用いて冷熱または温熱
を生成する熱源装置と、蓄熱熱交換器および蓄熱材を有
し前記熱源装置で生成した冷熱または温熱を前記蓄熱熱
交換器を介して前記蓄熱材に蓄熱する蓄熱槽と、前記蓄
熱槽に蓄熱された冷熱または温熱が供給される負荷装置
とを備える冷凍空調装置において、前記蓄熱熱交換器の
出口部の伝熱特性を入口部の伝熱特性よりも高くしたも
のである。
Further, a refrigeration / air-conditioning apparatus according to the present invention has a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, and a heat storage heat exchanger and a heat storage material. The refrigerating air conditioner, comprising: a heat storage tank configured to store the generated cold or hot heat in the heat storage material via the heat storage heat exchanger; and a load device to which the cold or hot heat stored in the heat storage tank is supplied. The heat transfer characteristics at the outlet of the heat exchanger are higher than those at the inlet.

【0017】また、本発明に係わる冷凍蓄熱装置は、蓄
熱熱交換器の出口部の管径を入口部の管径より小さくす
ることにより、前記蓄熱熱交換器の出口部の伝熱特性を
入口部の伝熱特性よりも高くしたものである。
Further, in the refrigeration heat storage device according to the present invention, the heat transfer characteristic at the outlet of the heat storage heat exchanger is reduced by making the pipe diameter at the outlet of the heat storage heat exchanger smaller than the pipe diameter at the inlet. It is higher than the heat transfer characteristics of the part.

【0018】また、本発明に係わる冷凍蓄熱装置は、蓄
熱熱交換器の入口部で非共沸混合冷媒を複数の流路に分
岐するとともに、前記蓄熱熱交換器の出口部の流路数を
入口部の流路数より少なくし、前記出口部の流路の断面
積の合計を前記入口部の流路の断面積の合計よりも小さ
くしたことにより、前記蓄熱熱交換器の出口部の伝熱特
性を入口部の伝熱特性よりも高くしたものである。
Further, in the refrigeration heat storage device according to the present invention, the non-azeotropic mixed refrigerant is branched into a plurality of flow paths at the inlet of the heat storage heat exchanger, and the number of flow paths at the outlet of the heat storage heat exchanger is reduced. By reducing the number of flow paths at the inlet, and making the total cross-sectional area of the flow path at the outlet smaller than the total cross-sectional area of the flow path at the inlet, the power transfer at the outlet of the heat storage heat exchanger is achieved. The heat characteristics are higher than the heat transfer characteristics at the inlet.

【0019】また、本発明に係わる冷凍空調装置は、非
共沸混合冷媒を熱伝達媒体として用いて冷熱または温熱
を生成する熱源装置と、蓄熱熱交換器および蓄熱材を有
し前記熱源装置で生成した冷熱または温熱を前記蓄熱熱
交換器を介して前記蓄熱材に蓄熱する蓄熱槽と、前記蓄
熱槽に蓄熱された冷熱または温熱が供給される負荷装置
とを備える冷凍空調装置において、前記蓄熱熱交換器の
入口部の伝熱管と出口部の伝熱管を熱的に接触させたも
のである。
A refrigeration / air-conditioning apparatus according to the present invention includes a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a heat storage heat exchanger and a heat storage material. The refrigerating air conditioner, comprising: a heat storage tank configured to store the generated cold or hot heat in the heat storage material via the heat storage heat exchanger; and a load device to which the cold or hot heat stored in the heat storage tank is supplied. The heat transfer tube at the inlet and the heat transfer tube at the outlet of the heat exchanger are brought into thermal contact.

【0020】また、本発明に係わる冷凍空調装置は、非
共沸混合冷媒を熱伝達媒体として用いて冷熱または温熱
を生成する熱源装置と、蓄熱熱交換器および蓄熱材を有
し前記熱源装置で生成した冷熱または温熱を前記蓄熱熱
交換器を介して前記蓄熱材に蓄熱する蓄熱槽と、前記蓄
熱槽に蓄熱された冷熱または温熱が供給される負荷装置
とを備える冷凍空調装置において、前記蓄熱熱交換器内
での非共沸混合冷媒の流路を複数設け、隣合う前記流路
で前記非共沸混合冷媒の流れ方向が逆になるように前記
流路を配置したものである。
A refrigeration / air-conditioning apparatus according to the present invention has a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, and a heat storage heat exchanger and a heat storage material. In a refrigeration air-conditioning apparatus comprising: a heat storage tank for storing the generated cold heat or hot heat in the heat storage material via the heat storage heat exchanger; and a load device to which the cold or hot heat stored in the heat storage tank is supplied. In the heat exchanger, a plurality of non-azeotropic mixed refrigerant flow paths are provided, and the flow paths are arranged so that the flow direction of the non-azeotropic mixed refrigerant is opposite in the adjacent flow paths.

【0021】また、本発明に係わる冷凍空調装置は、非
共沸混合冷媒を熱伝達媒体として用いて冷熱または温熱
を生成する熱源装置と、蓄熱熱交換器および蓄熱材を有
し前記熱源装置で生成した冷熱または温熱を前記蓄熱熱
交換器を介して前記蓄熱材に蓄熱する蓄熱槽と、前記蓄
熱槽に蓄熱された冷熱または温熱が供給される負荷装置
とを備える冷凍空調装置において、前記蓄熱熱交換器を
複数本の伝熱管を並設して構成し、隣合う前記伝熱管で
前記非共沸混合冷媒の流れ方向が逆になるように前記伝
熱管を配置するとともに、前記隣合う伝熱管の少なくと
も2本づつを熱的に接触させたものである。
A refrigeration / air-conditioning apparatus according to the present invention comprises a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, and a heat storage heat exchanger and a heat storage material. The refrigerating air conditioner, comprising: a heat storage tank configured to store the generated cold or hot heat in the heat storage material via the heat storage heat exchanger; and a load device to which the cold or hot heat stored in the heat storage tank is supplied. A heat exchanger is constituted by arranging a plurality of heat transfer tubes in parallel, and the heat transfer tubes are arranged so that the flow direction of the non-azeotropic mixed refrigerant is reversed in the adjacent heat transfer tubes, and At least two heat tubes are in thermal contact with each other.

【0022】また、本発明に係わる冷凍空調装置は、非
共沸混合冷媒を熱伝達媒体として用いて冷熱または温熱
を生成する熱源装置と、蓄熱熱交換器および蓄熱材を有
し前記熱源装置で生成した冷熱または温熱を前記蓄熱熱
交換器を介して前記蓄熱材に蓄熱する蓄熱槽と、前記蓄
熱槽に蓄熱された冷熱または温熱が供給される負荷装置
とを備える冷凍空調装置において、前記蓄熱熱交換器は
伝熱管を鉛直方向または水平方向に蛇行させて配設する
ものとし、前記蓄熱熱交換器の入口部の蛇行のピッチを
出口部よりも大きくしたものである。
A refrigeration / air-conditioning apparatus according to the present invention comprises a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a heat storage heat exchanger and a heat storage material. The refrigerating air conditioner, comprising: a heat storage tank configured to store the generated cold or hot heat in the heat storage material via the heat storage heat exchanger; and a load device to which the cold or hot heat stored in the heat storage tank is supplied. In the heat exchanger, the heat transfer tubes are arranged in a meandering manner in the vertical or horizontal direction, and the meandering pitch at the inlet of the heat storage heat exchanger is larger than that at the outlet.

【0023】また、本発明に係わる冷凍空調装置は、非
共沸混合冷媒を熱伝達媒体として用いて冷熱または温熱
を生成する熱源装置と、蓄熱熱交換器および蓄熱材を有
し前記熱源装置で生成した冷熱または温熱を前記蓄熱熱
交換器を介して前記蓄熱材に蓄熱する蓄熱槽と、前記蓄
熱槽に蓄熱された冷熱または温熱が供給される負荷装置
とを備える冷凍空調装置において、前記蓄熱熱交換器
を、前記非共沸混合冷媒の前記蓄熱熱交換器内での温度
上昇を打ち消すような冷媒圧力損失を有するものとし、
前記蓄熱熱交換器内の前記非共沸混合冷媒の温度を概略
一定としたものである。
The refrigeration / air-conditioning apparatus according to the present invention includes a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a heat storage heat exchanger and a heat storage material. The refrigerating air conditioner, comprising: a heat storage tank configured to store the generated cold or hot heat in the heat storage material via the heat storage heat exchanger; and a load device to which the cold or hot heat stored in the heat storage tank is supplied. The heat exchanger has a refrigerant pressure loss that cancels a rise in temperature of the non-azeotropic mixed refrigerant in the heat storage heat exchanger,
The temperature of the non-azeotropic mixed refrigerant in the heat storage heat exchanger is substantially constant.

【0024】また、本発明に係わる冷凍空調装置は、非
共沸混合冷媒を熱伝達媒体として用いて冷熱または温熱
を生成する熱源装置と、蓄熱熱交換器および蓄熱材を有
し前記熱源装置で生成した冷熱または温熱を前記蓄熱熱
交換器を介して前記蓄熱材に蓄熱する蓄熱槽と、前記蓄
熱槽に蓄熱された冷熱または温熱が供給される負荷装置
とを備える冷凍空調装置において、前記非共沸混合冷媒
の前記蓄熱熱交換器内での温度変化幅が所定値以下とな
るような冷媒圧力損失を有するように前記蓄熱熱交換器
を構成したものである。
A refrigeration / air-conditioning apparatus according to the present invention comprises a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, and a heat storage heat exchanger and a heat storage material. In a refrigeration air-conditioning apparatus comprising: a heat storage tank that stores the generated cold or hot heat in the heat storage material via the heat storage heat exchanger; and a load device to which the cold or hot heat stored in the heat storage tank is supplied. The heat storage heat exchanger is configured to have a refrigerant pressure loss such that a temperature change width of the azeotropic mixed refrigerant in the heat storage heat exchanger is equal to or less than a predetermined value.

【0025】また、本発明に係わる冷凍空調装置は、熱
伝達媒体を用いて冷熱または温熱を生成する熱源装置
と、蓄熱熱交換器および蓄熱材を有し前記熱源装置で生
成した冷熱または温熱を前記蓄熱熱交換器を介して前記
蓄熱材に蓄熱する蓄熱槽と、前記蓄熱槽に蓄熱された冷
熱または温熱が供給される負荷装置とを備える冷凍空調
装置において、前記熱伝達媒体として非共沸混合冷媒を
用いたときと、単一冷媒または共沸冷媒または前記非共
沸混合冷媒とは異なる非共沸混合冷媒を用いたときのい
ずれにおいても、前記蓄熱熱交換器内での前記熱伝達媒
体の温度変化幅が所定値以下となるような冷媒圧力損失
を有するように前記蓄熱熱交換器を構成したものであ
る。
A refrigeration / air-conditioning apparatus according to the present invention has a heat source device for generating cold or hot heat using a heat transfer medium, and has a heat storage heat exchanger and a heat storage material, and cools or heats generated by the heat source device. In a refrigeration / air-conditioning apparatus including a heat storage tank that stores heat in the heat storage material via the heat storage heat exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank, a non-azeotropic heat transfer medium is used as the heat transfer medium. When the mixed refrigerant is used, and when the single refrigerant or the azeotropic refrigerant or the non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant is used, the heat transfer in the heat storage heat exchanger is performed. The heat storage heat exchanger is configured to have a refrigerant pressure loss such that a temperature change width of the medium is equal to or less than a predetermined value.

【0026】また、本発明に係わる冷凍空調装置は、熱
熱交換器内の熱伝達媒体の温度変化幅を所定値以下とな
るようにした時の前記所定値を、3.5℃としたことを
特徴とするものである。
Further, in the refrigeration / air-conditioning apparatus according to the present invention, the predetermined value when the temperature change width of the heat transfer medium in the heat heat exchanger is set to a predetermined value or less is set to 3.5 ° C. It is characterized by the following.

【0027】また、本発明に係わる冷凍空調装置は、非
共沸混合冷媒を熱伝達媒体として用いて冷熱または温熱
を生成する熱源装置と、蓄熱熱交換器および蓄熱材を有
し前記熱源装置で生成した冷熱または温熱を前記蓄熱熱
交換器を介して前記蓄熱材に蓄熱する蓄熱槽と、前記蓄
熱槽に蓄熱された冷熱または温熱が供給される負荷装置
とを備える冷凍空調装置において、前記蓄熱熱交換器入
口部での前記非共沸混合冷媒の温度と前記蓄熱材の温度
との温度差を入口部温度差とし、前記蓄熱熱交換器出口
部での前記非共沸混合冷媒の温度と前記蓄熱材の温度と
の温度差を出口部温度差として、前記入口部温度差と前
記出口部温度差の割合が所定範囲となるような冷媒圧力
損失を有するように前記蓄熱熱交換器を構成したもので
ある。
A refrigeration / air-conditioning apparatus according to the present invention comprises a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, and a heat storage heat exchanger and a heat storage material. In a refrigeration air-conditioning apparatus comprising: a heat storage tank for storing the generated cold heat or hot heat in the heat storage material via the heat storage heat exchanger; and a load device to which the cold or hot heat stored in the heat storage tank is supplied. The temperature difference between the temperature of the non-azeotropic mixed refrigerant at the inlet of the heat exchanger and the temperature of the heat storage material is regarded as the temperature difference at the inlet, and the temperature of the non-azeotropic mixed refrigerant at the outlet of the heat storage heat exchanger. The heat storage heat exchanger is configured to have a refrigerant pressure loss such that a temperature difference between the temperature of the heat storage material and an outlet temperature difference is a ratio of the inlet temperature difference and the outlet temperature difference within a predetermined range. It was done.

【0028】また、本発明による冷凍空調装置は、熱伝
達媒体を用いて冷熱または温熱を生成する熱源装置と、
蓄熱熱交換器および蓄熱材を有し前記熱源装置で生成し
た冷熱または温熱を前記蓄熱熱交換器を介して前記蓄熱
材に蓄熱する蓄熱槽と、前記蓄熱槽に蓄熱された冷熱ま
たは温熱が供給される負荷装置とを備える冷凍空調装置
において、前記熱伝達媒体として非共沸混合冷媒を用い
たときと、単一冷媒または共沸冷媒または前記非共沸混
合冷媒とは異なる非共沸混合冷媒を用いたときのいずれ
においても、前記蓄熱熱交換器入口部での前記熱伝達媒
体の温度と前記蓄熱材の温度との温度差を入口部温度差
とし、前記蓄熱熱交換器出口部での前記熱伝達媒体の温
度と前記蓄熱材の温度との温度差を出口部温度差とし、
前記入口部温度差と前記出口部温度差の割合が所定範囲
となるような冷媒圧力損失を有するように前記蓄熱熱交
換器を構成したものである。
The refrigeration / air-conditioning apparatus according to the present invention further comprises a heat source device for generating cold or warm heat using a heat transfer medium;
A heat storage tank that has a heat storage heat exchanger and a heat storage material and stores the cold or hot heat generated by the heat source device in the heat storage material via the heat storage heat exchanger; and the cold or hot heat stored in the heat storage tank is supplied. And a non-azeotropic mixed refrigerant different from a single refrigerant or an azeotropic refrigerant or the non-azeotropic mixed refrigerant when a non-azeotropic mixed refrigerant is used as the heat transfer medium. In any case, the temperature difference between the temperature of the heat transfer medium at the inlet of the heat storage heat exchanger and the temperature of the heat storage material is defined as the temperature difference at the inlet, and at the outlet of the heat storage heat exchanger. Outlet temperature difference between the temperature of the heat transfer medium and the temperature of the heat storage material,
The heat storage heat exchanger is configured to have a refrigerant pressure loss such that a ratio between the inlet temperature difference and the outlet temperature difference is within a predetermined range.

【0029】また、本発明による冷凍空調装置は、蓄熱
熱交換器入口部での熱伝達媒体の温度と蓄熱材の温度と
の温度差である入口部温度差と、前記蓄熱熱交換器出口
部での前記熱伝達媒体の温度と前記蓄熱材の温度との温
度差である出口部温度差のうち、大きい方の値をΔTma
x 、小さい方の値をΔTmin としたとき、温度差の割合
ΔTmin /ΔTmax が、 ΔTmin /ΔTmax > 0.5 を満足するような冷媒圧力損失を有するように前記蓄熱
熱交換器を構成したものである。
The refrigeration / air-conditioning apparatus according to the present invention further comprises an inlet temperature difference which is a temperature difference between the temperature of the heat transfer medium and the temperature of the heat storage material at the inlet of the heat storage heat exchanger, and the outlet of the heat storage heat exchanger. Outlet temperature difference, which is the difference between the temperature of the heat transfer medium and the temperature of the heat storage material at
x, when the smaller value is ΔTmin, the heat storage heat exchanger is configured so that the temperature difference ratio ΔTmin / ΔTmax has a refrigerant pressure loss satisfying ΔTmin / ΔTmax> 0.5. is there.

【0030】また、本発明による冷凍空調装置は、蓄熱
材の融解潜熱を利用して冷熱を蓄熱するものとし、蓄熱
熱交換器入口部での蓄熱材の温度と前記蓄熱熱交換器出
口部での前記蓄熱材の温度として、前記蓄熱材の凝固温
度を用いることを特徴とするものである。
In the refrigeration / air-conditioning apparatus according to the present invention, cold heat is stored by utilizing the latent heat of fusion of the heat storage material. The solidification temperature of the heat storage material is used as the temperature of the heat storage material.

【0031】また、本発明による冷凍空調装置は、蓄熱
熱交換器の冷媒圧力損失が0のときの熱源装置の運転効
率からの運転効率低下が所定値以下になるような冷媒圧
力損失を有するように前記蓄熱熱交換器を構成したもの
である。
Further, the refrigeration / air-conditioning apparatus according to the present invention has a refrigerant pressure loss such that a decrease in operating efficiency from an operating efficiency of the heat source device when the refrigerant pressure loss of the heat storage heat exchanger is zero is equal to or less than a predetermined value. The heat storage heat exchanger is configured as follows.

【0032】[0032]

【発明の実施の形態】実施の形態1.図1は本発明の実
施の形態1による冷凍空調装置を示す冷媒回路図であ
る。この冷凍空調装置は、例えば冷房機能と暖房機能と
蓄熱機能を有する構成である。図において、1は圧縮
機、2は冷房時と暖房時の冷媒の流れを切換える第1四
方弁、3は室外熱交換器、4は第1膨張弁、5は室内熱
交換器であり、これらは配管で接続されて冷凍サイクル
を構成している。11は蓄熱槽10内に設置された蓄熱
熱交換器であり、この蓄熱熱交換器11の両端の配管に
は、第2四方弁24を接続しており、この第2四方弁2
4を切換えることによって、蓄熱熱交換器11内の冷媒
の流れ方向を正逆に切換え可能としている。また蓄熱熱
交換器11の入口側配管は第2膨張弁20を介して、室
外熱交換器3と第1膨張弁4の間の配管に接続してい
る。また蓄熱熱交換器11の出口側配管は第1電磁弁2
1によって室内熱交換器5と第1四方弁2の間の配管に
接続するとともに、第2電磁弁22によって第1膨張弁
4と室外熱交換器3の間の配管に接続している。この第
1電磁弁21と第2電磁弁22を切換えることにより、
蓄熱利用冷房運転と蓄熱運転とで、蓄熱熱交換器11の
出口側配管を第1膨張弁4への流れと第1四方弁2への
流れとに切換え可能としている。また、室外熱交換器3
と第1膨張弁4の間の配管には第3電磁弁23を設けて
いる。この冷凍空調装置内には、熱伝達媒体(以下、冷
媒と記す)として非共沸混合冷媒であるフロンR407
Cが封入されている。25は第2膨張弁20と第2四方
弁24の間の配管に設けられた温度検知器であり、蓄熱
熱交換器11の入口部の冷媒温度を検知することができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 1 of the present invention. This refrigerating air conditioner has a configuration having, for example, a cooling function, a heating function, and a heat storage function. In the figure, 1 is a compressor, 2 is a first four-way valve for switching the flow of refrigerant during cooling and heating, 3 is an outdoor heat exchanger, 4 is a first expansion valve, and 5 is an indoor heat exchanger. Are connected by piping to form a refrigeration cycle. Reference numeral 11 denotes a heat storage heat exchanger installed in the heat storage tank 10, and a second four-way valve 24 is connected to the pipes at both ends of the heat storage heat exchanger 11.
By switching 4, the flow direction of the refrigerant in the heat storage heat exchanger 11 can be switched between forward and reverse. The inlet pipe of the heat storage heat exchanger 11 is connected to a pipe between the outdoor heat exchanger 3 and the first expansion valve 4 via the second expansion valve 20. The outlet pipe of the heat storage heat exchanger 11 is provided with the first solenoid valve 2.
1 connects the pipe between the indoor heat exchanger 5 and the first four-way valve 2, and connects the second solenoid valve 22 to the pipe between the first expansion valve 4 and the outdoor heat exchanger 3. By switching between the first solenoid valve 21 and the second solenoid valve 22,
The outlet-side piping of the heat storage heat exchanger 11 can be switched between the flow to the first expansion valve 4 and the flow to the first four-way valve 2 between the heat storage cooling operation and the heat storage operation. In addition, the outdoor heat exchanger 3
A third solenoid valve 23 is provided in a pipe between the first expansion valve 4 and the first expansion valve 4. In this refrigeration / air-conditioning apparatus, a non-azeotropic mixed refrigerant Freon R407 is used as a heat transfer medium (hereinafter, referred to as a refrigerant).
C is enclosed. Reference numeral 25 denotes a temperature detector provided in a pipe between the second expansion valve 20 and the second four-way valve 24, which can detect a refrigerant temperature at an inlet of the heat storage heat exchanger 11.

【0033】図2は、図1に示した蓄熱式の冷凍空調装
置に係わる蓄熱槽10の構成を詳しく示す図であり、図
2(a)は上面図、図2(b)は縦断面図である。蓄熱
熱交換器11は、図2に示すように垂直方向に蛇行した
伝熱管で構成されており、蓄熱運転時の圧力損失を低減
するために、複数、例えば4本の伝熱管を並列に接続
し、さらに伝熱管には平滑管を用いる。また伝熱管の蛇
行のピッチを等しく構成している。さらに蓄熱熱交換器
11の入口部および出口部にはそれぞれ複数の伝熱管に
冷媒を分配するディストリビュータ12が設けられてい
る。蓄熱槽10内は蓄熱材として例えば水で満たされて
おり、蓄熱運転時には、蓄熱熱交換器11で水を冷却氷
化し、伝熱管の表面に氷を付着生成させて蓄熱槽10内
に冷熱を蓄えるように構成している。
FIG. 2 is a diagram showing in detail the configuration of the heat storage tank 10 relating to the regenerative refrigerating air conditioner shown in FIG. 1, wherein FIG. 2 (a) is a top view and FIG. 2 (b) is a longitudinal sectional view. It is. The heat storage heat exchanger 11 is composed of heat transfer tubes meandering in the vertical direction as shown in FIG. 2, and a plurality of, for example, four heat transfer tubes are connected in parallel in order to reduce pressure loss during the heat storage operation. In addition, a smooth tube is used for the heat transfer tube. Further, the meandering pitch of the heat transfer tubes is configured to be equal. Further, a distributor 12 for distributing the refrigerant to a plurality of heat transfer tubes is provided at an inlet and an outlet of the heat storage heat exchanger 11, respectively. The heat storage tank 10 is filled with, for example, water as a heat storage material. During the heat storage operation, the water is cooled and iced by the heat storage heat exchanger 11, and ice is attached to the surface of the heat transfer tube to generate cold heat so that the heat is stored in the heat storage tank 10. It is configured to store.

【0034】次に上記のように構成された冷凍空調装置
の蓄熱運転時および蓄熱利用冷房運転時の動作について
説明する。ここで蓄熱運転とは、圧縮機1,凝縮器とし
て動作する室外熱交換器3,および第2膨張弁20で構
成される熱源装置によって生成される冷熱を、蒸発器と
して動作する蓄熱熱交換器11を介して蓄熱槽10に蓄
熱する運転のことである。また、蓄熱利用冷房運転と
は、蓄熱熱交換器11を凝縮器として動作させ、蓄熱槽
10に蓄熱した冷熱を負荷装置である室内熱交換器5に
供給する運転のことである。なお、蓄熱運転時の蓄熱熱
交換器11内の冷媒の流れが図1中の11aから11b
となる場合を蓄熱運転A、またこの逆に11bから11
aとなる場合を蓄熱運転Bと定義する。蓄熱運転時およ
び蓄熱利用冷房運転時には、第1四方弁2を実線で示す
ように接続する。
Next, the operation of the refrigeration / air-conditioning apparatus configured as described above during the heat storage operation and during the heat storage cooling operation will be described. Here, the heat storage operation refers to a heat storage heat exchanger that operates as an evaporator by using the cold generated by the heat source device including the compressor 1, the outdoor heat exchanger 3 that operates as a condenser, and the second expansion valve 20. This is an operation in which heat is stored in the heat storage tank 10 via the heat storage 11. In addition, the heat storage cooling operation is an operation in which the heat storage heat exchanger 11 is operated as a condenser and the cold stored in the heat storage tank 10 is supplied to the indoor heat exchanger 5 as a load device. The flow of the refrigerant in the heat storage heat exchanger 11 during the heat storage operation is changed from 11a to 11b in FIG.
Is the heat storage operation A, and vice versa.
The case of a is defined as the heat storage operation B. During the heat storage operation and the heat storage cooling operation, the first four-way valve 2 is connected as shown by a solid line.

【0035】蓄熱運転時において、第1電磁弁21を
開、第2電磁弁22を閉、第3電磁弁23を閉とする。
まず蓄熱運転開始時は、例えば蓄熱熱交換器11内の冷
媒の流れが11aから11bとなる蓄熱運転Aとなるよ
うに第2四方弁24を実線のように接続する。この蓄熱
運転A時の冷媒の流れは、図1中実線矢印で示すよう
に、圧縮機1で吐出された高温高圧の冷媒蒸気は第1四
方弁2を経て室外熱交換器3で凝縮液化する。そして、
第2膨張弁20で低圧に減圧されて第2四方弁24を通
って蓄熱熱交換器11に11aから流入する。蓄熱熱交
換器11に流入した冷媒は、蓄熱槽10内の水から熱を
奪って蒸発した後、蓄熱熱交換器11の11bから流出
し、第2四方弁24,第1電磁弁21,第1四方弁2を
通って圧縮機1に戻る。この時蓄熱熱交換器11内の水
は冷却され、伝熱管の表面に氷を付着生成させて蓄熱槽
10内に冷熱を蓄える。
During the heat storage operation, the first solenoid valve 21 is opened, the second solenoid valve 22 is closed, and the third solenoid valve 23 is closed.
First, at the start of the heat storage operation, the second four-way valve 24 is connected as indicated by a solid line so that, for example, the heat storage operation A in which the flow of the refrigerant in the heat storage heat exchanger 11 changes from 11a to 11b. As shown by the solid arrows in FIG. 1, the flow of the refrigerant during the heat storage operation A is such that the high-temperature and high-pressure refrigerant vapor discharged from the compressor 1 passes through the first four-way valve 2 and condenses and liquefies in the outdoor heat exchanger 3. . And
The pressure is reduced to a low pressure by the second expansion valve 20 and flows through the second four-way valve 24 into the heat storage heat exchanger 11 from 11a. The refrigerant that has flowed into the heat storage heat exchanger 11 evaporates by removing heat from the water in the heat storage tank 10, flows out of the heat storage heat exchanger 11 b, and flows out of the second four-way valve 24, the first solenoid valve 21, 1 Return to the compressor 1 through the four-way valve 2. At this time, the water in the heat storage heat exchanger 11 is cooled, and ice is deposited on the surface of the heat transfer tube to store cold heat in the heat storage tank 10.

【0036】この蓄熱運転A時の動作を圧力−エンタル
ピー線図上に示したものを図3に示す。図において、横
軸はエンタルピー、縦軸は圧力である。また図中a点は
圧縮機1出口、b点は室外熱交換器3出口、c点は蓄熱
熱交換器11の入口、dは蓄熱熱交換器11の出口を示
す。蓄熱熱交換器11は図2に示したように複数の平滑
管を並列に接続した伝熱管で構成されているため、蒸発
時に圧力損失は非常に小さく、単一冷媒を用いた場合に
は蒸発圧力もほぼ一定となる。ところが、本実施の形態
の冷凍空調装置では、冷媒として非共沸混合冷媒を用い
ているため、蒸発温度は蓄熱熱交換器11の入口部が最
も低く、蓄熱熱交換器11の出口部が最も高くなる。例
えば冷媒としてフロンR407Cを用いた場合は、図3
に示したようにc点の蓄熱熱交換器11の入口部が−6
℃となり、d点の蓄熱熱交換器11の出口部が−1℃と
なる。
FIG. 3 shows the operation during the heat storage operation A on a pressure-enthalpy diagram. In the figure, the horizontal axis is enthalpy and the vertical axis is pressure. In the figure, point a indicates the compressor 1 outlet, point b indicates the outdoor heat exchanger 3 outlet, point c indicates the inlet of the heat storage heat exchanger 11, and d indicates the outlet of the heat storage heat exchanger 11. As shown in FIG. 2, since the heat storage heat exchanger 11 is constituted by a heat transfer tube in which a plurality of smooth tubes are connected in parallel, the pressure loss during evaporation is very small. The pressure also becomes almost constant. However, in the refrigeration / air-conditioning apparatus of the present embodiment, since the non-azeotropic mixed refrigerant is used as the refrigerant, the evaporation temperature is lowest at the inlet of the heat storage heat exchanger 11 and lowest at the outlet of the heat storage heat exchanger 11. Get higher. For example, when Freon R407C is used as the refrigerant, FIG.
As shown in the figure, the inlet of the heat storage heat exchanger 11 at the point c is -6.
° C, and the outlet of the heat storage heat exchanger 11 at point d becomes -1 ° C.

【0037】この結果、蓄熱運転A時には、蓄熱熱交換
器11の伝熱管表面には均一な厚さで氷が付着生成せ
ず、蒸発温度の低い蓄熱熱交換器11の入口部の氷厚が
厚くなり、逆に蒸発温度の高い蓄熱熱交換器11の出口
部の氷厚が薄くなる。この状態で蓄熱運転Aが進行する
と、蓄熱熱交換器11の入口部に過大の氷が生成され、
蓄熱熱交換器11全体としては効率が低下し、蒸発温度
または蒸発圧力の低下が生じる。
As a result, in the heat storage operation A, ice does not adhere to the surface of the heat transfer tube of the heat storage heat exchanger 11 with a uniform thickness, and the ice thickness at the inlet of the heat storage heat exchanger 11 having a low evaporation temperature is reduced. On the contrary, the ice thickness at the outlet of the heat storage heat exchanger 11 having a high evaporation temperature becomes thin. When the heat storage operation A proceeds in this state, excessive ice is generated at the inlet of the heat storage heat exchanger 11,
The efficiency of the heat storage heat exchanger 11 as a whole decreases, and the evaporation temperature or the evaporation pressure decreases.

【0038】そこで、本実施の形態では、蓄熱運転の途
中で蓄熱熱交換器11の冷媒の流れ方向を逆にし、氷厚
の均一化を図っている。即ち、蓄熱熱交換器11の入口
部に設けた温度検知器25によって、蓄熱熱交換器11
の不均一着氷による効率低下を検知し、蓄熱運転Bに移
行する。この温度検知器25で検知される冷媒温度が所
定の値以下、例えば−7℃以下となった場合には、蓄熱
熱交換器11の入口側では十分に製氷された状態になっ
たと判断することができる。このため、第2四方弁24
を切換えて、蓄熱運転Bを実行する。この蓄熱運転B
は、第1電磁弁21、第2電磁弁22および第3電磁弁
23の開閉状態は、蓄熱運転Aと同様であり、第2四方
弁24を図1の点線に示すように切換えて行う。
Therefore, in the present embodiment, the direction of the flow of the refrigerant in the heat storage heat exchanger 11 is reversed during the heat storage operation so as to make the ice thickness uniform. That is, the heat storage heat exchanger 11 is provided by the temperature detector 25 provided at the inlet of the heat storage heat exchanger 11.
Then, a decrease in efficiency due to uneven icing is detected, and the operation proceeds to the heat storage operation B. When the refrigerant temperature detected by the temperature detector 25 becomes equal to or lower than a predetermined value, for example, equal to or lower than -7 ° C., it is determined that the ice has been sufficiently made on the inlet side of the heat storage heat exchanger 11. Can be. For this reason, the second four-way valve 24
And heat storage operation B is executed. This heat storage operation B
The opening and closing states of the first solenoid valve 21, the second solenoid valve 22, and the third solenoid valve 23 are the same as those in the heat storage operation A, and are performed by switching the second four-way valve 24 as shown by the dotted line in FIG.

【0039】蓄熱運転B時の冷媒の流れは、図1中一点
鎖線矢印で示すように、圧縮機1で吐出された高温高圧
の冷媒蒸気は第1四方弁2を経て室外熱交換器3で凝縮
液化し、第2膨張弁20で低圧に減圧されて第2四方弁
24を通って蓄熱熱交換器11の11bに流入する。蓄
熱熱交換器11を11bから11aに流れる冷媒は、蓄
熱槽10内の水から熱を奪って蒸発した後、第2四方弁
24,第1電磁弁21,第1四方弁2を通って圧縮機1
に戻る。
The flow of the refrigerant during the heat storage operation B is such that the high-temperature and high-pressure refrigerant vapor discharged from the compressor 1 passes through the first four-way valve 2 and passes through the outdoor heat exchanger 3 The condensed liquid is reduced to a low pressure by the second expansion valve 20 and flows into the heat storage heat exchanger 11b through the second four-way valve 24. Refrigerant flowing through the heat storage heat exchanger 11 from 11b to 11a takes heat from water in the heat storage tank 10 and evaporates. Machine 1
Return to

【0040】この蓄熱運転B時の蓄熱熱交換器11内の
冷媒の流れ方向は、図2の一点鎖線矢印で示すように、
実線矢印で示した蓄熱運転A時の流れと反対になる。図
4は蓄熱運転Aと蓄熱運転Bの蓄熱熱交換器11内の温
度分布を示すグラフで、横軸に蓄熱熱交換器の位置、縦
軸に温度(℃)を示す。図4の一点鎖線で示すように、
蓄熱運転B時における蓄熱熱交換器11内の温度変化は
蓄熱運転A時とは逆になる。この蓄熱運転B時には、蓄
熱運転A時に製氷量の少なかった部分の蒸発温度が低く
なって製氷量が増加し、逆に蓄熱運転A時に製氷量の多
かった部分の蒸発温度が高くなって製氷量が減少するた
め、蓄熱熱交換器11全体の製氷量が均一化する。
The flow direction of the refrigerant in the heat storage heat exchanger 11 during the heat storage operation B is as shown by the dashed line arrow in FIG.
The flow is opposite to the flow during the heat storage operation A indicated by the solid arrow. FIG. 4 is a graph showing the temperature distribution in the heat storage heat exchanger 11 in the heat storage operation A and the heat storage operation B. The horizontal axis indicates the position of the heat storage heat exchanger, and the vertical axis indicates the temperature (° C.). As shown by the dashed line in FIG.
The temperature change in the heat storage heat exchanger 11 during the heat storage operation B is opposite to that during the heat storage operation A. In the heat storage operation B, the evaporating temperature of the portion where the amount of ice making was small during the heat storage operation A becomes low and the ice making amount increases. Therefore, the amount of ice making of the entire heat storage heat exchanger 11 becomes uniform.

【0041】蓄熱利用冷房運転時は、第1電磁弁21を
閉、第2電磁弁22を開、第3電磁弁23を閉とする。
またこの時の第2四方弁24は、蓄熱熱交換器11内の
冷媒の流れが11aから11bとなるように設定されて
いる。この蓄熱運転時の冷媒の流れは、図1中破線矢印
で示すように、圧縮機1で吐出された高温高圧の冷媒蒸
気は第1四方弁2を経て室外熱交換器3で凝縮液化し、
第2膨張弁20を通って蓄熱熱交換器11に流入する。
なお、この運転時は第2膨張弁20の開度は全開として
いる。蓄熱熱交換器11を11aから11bに流れる高
圧の液冷媒は、蓄熱槽10内の氷によって、例えば40
℃から0℃程度に冷却され、過冷却度が増大して流出す
る。この過冷却度が増大した液冷媒は第2電磁弁22を
通って第1膨張弁4で低圧に減圧され、室内熱交換器5
に流入して蒸発し、第1四方弁2を通って圧縮機1に戻
る。
During the cooling operation using heat storage, the first solenoid valve 21 is closed, the second solenoid valve 22 is opened, and the third solenoid valve 23 is closed.
At this time, the second four-way valve 24 is set so that the flow of the refrigerant in the heat storage heat exchanger 11 changes from 11a to 11b. As shown by the dashed arrow in FIG. 1, the flow of the refrigerant during the heat storage operation is as follows.
It flows into the heat storage heat exchanger 11 through the second expansion valve 20.
During this operation, the degree of opening of the second expansion valve 20 is fully open. The high-pressure liquid refrigerant flowing through the heat storage heat exchanger 11 from 11 a to 11 b
It is cooled from about 0 ° C. to about 0 ° C. and flows out with an increased degree of supercooling. The liquid refrigerant having an increased degree of supercooling passes through the second solenoid valve 22 and is reduced in pressure to a low pressure by the first expansion valve 4, so that the indoor heat exchanger 5
And evaporates, and returns to the compressor 1 through the first four-way valve 2.

【0042】このように、本実施の形態では、第2四方
弁24を切換え、蓄熱熱交換器11内の冷媒の流れ方向
を逆にすることにより、冷媒として非共沸混合冷媒を用
いても、蓄熱熱交換器11内での非共沸混合冷媒の蒸発
温度の高温部分と低温部分とを逆転して、蓄熱熱交換器
11に均一な厚さの氷を生成でき、効率のよい蓄熱運転
が可能となる。また蓄熱熱交換器11の一部に過大な氷
が生成され、この部分の氷が融合して伝熱管や蓄熱槽1
0の変形や破損を引き起こすのを防止でき、信頼性の高
い冷凍空調装置が得られる。
As described above, in this embodiment, by switching the second four-way valve 24 and reversing the flow direction of the refrigerant in the heat storage heat exchanger 11, a non-azeotropic mixed refrigerant can be used as the refrigerant. By reversing the high temperature part and the low temperature part of the evaporation temperature of the non-azeotropic refrigerant mixture in the heat storage heat exchanger 11, ice of a uniform thickness can be generated in the heat storage heat exchanger 11, and the heat storage operation can be performed efficiently. Becomes possible. In addition, excessive ice is generated in a part of the heat storage heat exchanger 11, and the ice in this part fuses to form a heat transfer tube or the heat storage tank 1.
0 can be prevented from being deformed or damaged, and a highly reliable refrigeration / air-conditioning apparatus can be obtained.

【0043】また本実施の形態では、安価な温度検知器
25によって蓄熱熱交換器11に流入する冷媒温度を検
知して、この冷媒温度が所定の温度以下となった場合
に、第2四方弁24を切換えるので、確実に蓄熱熱交換
器11内の冷媒の流れ方向を逆に切換えることができ
る。また、冷媒温度の検知場所は蓄熱熱交換器11の入
口部に限るものではなく、第2四方弁24から、第1電
磁弁21と第2電磁弁22との分岐部までの配管に設け
て、蓄熱熱交換器11の出口部の温度を検知して切換え
るようにしてもよい。さらには、蓄熱槽10内の蓄熱熱
交換器11に温度検知器を設けて、蓄熱槽10内の冷媒
温度から蓄熱状態を検知し、この結果に応じて冷媒の流
れを切換えるように構成してもよい。
In the present embodiment, the temperature of the refrigerant flowing into the heat storage heat exchanger 11 is detected by the inexpensive temperature detector 25, and when the temperature of the refrigerant falls below a predetermined temperature, the second four-way valve is used. Since the switching of the heat exchanger 24 is performed, the flow direction of the refrigerant in the heat storage heat exchanger 11 can be reliably switched in the reverse direction. The location for detecting the refrigerant temperature is not limited to the inlet portion of the heat storage heat exchanger 11, but may be provided in a pipe from the second four-way valve 24 to a branch portion between the first solenoid valve 21 and the second solenoid valve 22. Alternatively, the temperature of the outlet of the heat storage heat exchanger 11 may be detected and switched. Furthermore, a temperature detector is provided in the heat storage heat exchanger 11 in the heat storage tank 10 to detect the heat storage state from the refrigerant temperature in the heat storage tank 10, and to switch the flow of the refrigerant according to the result. Is also good.

【0044】また蓄熱熱交換器11に流入する冷媒温度
を検知する代わりに、蓄熱熱交換器11の入口部に圧力
検知器を設け、この圧力検知器によって蓄熱熱交換器1
1を流れる冷媒の圧力を検知し、蓄熱熱交換器入口部の
冷媒温度を推算して冷媒の流れを切換えるように構成し
ても、確実に蓄熱熱交換器11内の冷媒の流れ方向を逆
に切換えることができる。圧力検知器の設置場所も蓄熱
熱交換器11の入口部に限らず、蓄熱熱交換器11の出
口部や、蓄熱槽10内の蓄熱熱交換器11に設けても、
上記と同様の効果を奏する。
Instead of detecting the temperature of the refrigerant flowing into the heat storage heat exchanger 11, a pressure detector is provided at the inlet of the heat storage heat exchanger 11, and the pressure detector is used to detect the pressure.
Even if the pressure of the refrigerant flowing through the heat storage heat exchanger 11 is detected and the refrigerant temperature at the inlet of the heat storage heat exchanger is estimated to switch the flow of the refrigerant, the flow direction of the refrigerant in the heat storage heat exchanger 11 is surely reversed. Can be switched to The installation location of the pressure detector is not limited to the inlet of the heat storage heat exchanger 11, and may be provided at the outlet of the heat storage heat exchanger 11 or at the heat storage heat exchanger 11 in the heat storage tank 10.
The same effect as described above is achieved.

【0045】また温度検知器や圧力検知器の代わりに、
蓄熱槽10内の氷の状態として例えば氷の厚さを検知す
る氷厚検知器を蓄熱槽10に設け、氷厚が所定の厚さに
なったことを検知したときに、第2四方弁24を切換え
るように制御してもよい。蓄熱槽10内の氷の状態を検
知することで、確実に蓄熱熱交換器11内の冷媒の流れ
方向を逆に切換えることができ、さらに氷が融合して伝
熱管や蓄熱槽10の変形や破損を引き起こすこともな
く、信頼性の高い冷凍空調装置が得られる。即ち、検知
器の検知結果から蓄熱槽10内の蓄熱状態を把握するこ
とができるなら、検知器の設置場所はどこでもよく、検
知対象とする状態量はなんでもよい。また本実施の形態
では蓄熱材として水を用い、蓄熱槽10に満たした水を
氷にして冷熱を蓄熱しているが、例えばエチレングリコ
ールやヘキサデカンなどの潜熱蓄熱材を蓄熱槽10に格
納しこれによって冷熱や温熱を蓄熱してもよい。
In place of the temperature detector and the pressure detector,
An ice thickness detector for detecting, for example, the thickness of ice as the state of ice in the heat storage tank 10 is provided in the heat storage tank 10, and when it is detected that the ice thickness has reached a predetermined thickness, the second four-way valve 24 May be controlled to be switched. By detecting the state of the ice in the heat storage tank 10, the flow direction of the refrigerant in the heat storage heat exchanger 11 can be reliably switched in the opposite direction. A highly reliable refrigeration / air-conditioning device can be obtained without causing breakage. That is, as long as the state of heat storage in the heat storage tank 10 can be grasped from the detection result of the detector, the detector may be installed anywhere and the state quantity to be detected may be any. Further, in this embodiment, water is used as the heat storage material, and the cold water is stored by using the water filled in the heat storage tank 10 as ice to store the cold heat. May be used to store cold or warm heat.

【0046】ただし、上記実施の形態で述べたように、
蓄熱材として水を用いるのが値段や取り扱いやすさの点
から望ましく、蓄熱状態検知手段として温度検知器25
を用い、温度検知器25を蓄熱熱交換器11の入口部に
設けると、蓄熱運転Aでも蓄熱運転Bでも蓄熱熱交換器
11の流入する冷媒の温度を検知することができ、また
配管に取りつけるだけでよいので、容易に実施できる。
However, as described in the above embodiment,
It is desirable to use water as the heat storage material in terms of cost and ease of handling, and the temperature detector 25 is used as the heat storage state detecting means.
When the temperature detector 25 is provided at the inlet of the heat storage heat exchanger 11, the temperature of the refrigerant flowing into the heat storage heat exchanger 11 can be detected in both the heat storage operation A and the heat storage operation B, and can be attached to the pipe. , It can be easily implemented.

【0047】また上記では蓄熱運転時にのみ蓄熱熱交換
器11内の冷媒の流れ方向を切換えているが、蓄熱利用
冷房運転時にも蓄熱熱交換器11内の冷媒の流れ方向を
切換えてもよい。蓄熱利用冷房運転時に冷媒の流れ方向
を切換えると、蓄熱槽10内で均一に氷が解け、安定し
て冷熱を供給できる。
In the above description, the flow direction of the refrigerant in the heat storage heat exchanger 11 is switched only during the heat storage operation. However, the flow direction of the refrigerant in the heat storage heat exchanger 11 may be switched also during the heat storage cooling operation. When the flow direction of the refrigerant is switched during the cooling operation using the heat storage, the ice is uniformly melted in the heat storage tank 10 and the cold heat can be supplied stably.

【0048】また上記では蓄熱槽10に冷熱を蓄熱する
構成について述べたが、熱源装置で生成した温熱を蓄熱
槽10に蓄熱する空調装置において、蓄熱熱交換器11
の冷媒の流れ方向を切換えるようにしても、上記と同
様、蓄熱槽10内に均一に温熱を蓄熱することができ
る。
In the above description, the configuration in which cold heat is stored in the heat storage tank 10 has been described. However, in the air conditioner in which the heat generated by the heat source device is stored in the heat storage tank 10, the heat storage heat exchanger 11
Even if the flow direction of the refrigerant is switched, the heat can be uniformly stored in the heat storage tank 10 in the same manner as described above.

【0049】また本実施の形態では、1台の室外熱交換
器に1台の室内熱交換器を接続した例で説明したが、こ
れに限ることはなく、1台の室外熱交換器に複数台の室
内熱交換器が接続された冷凍空調装置でも同様の効果を
発揮する。
In this embodiment, an example in which one indoor heat exchanger is connected to one outdoor heat exchanger is described. However, the present invention is not limited to this. A refrigeration and air-conditioning system to which two indoor heat exchangers are connected exhibits the same effect.

【0050】また本実施の形態では、冷凍空調装置の冷
媒としてオゾン層破壊係数がゼロのフロンR407Cを
用いた場合について説明したが、これに限るものではな
く、フロンR404Aや他の非共沸混合冷媒でもよい。
また地球温暖化防止の観点から、プロパンやブタン、ア
ンモニアなどの自然冷媒を用いた非共沸混合冷媒でも同
様の効果を発揮する。
Further, in this embodiment, the case where Freon R407C having a zero ozone layer destruction coefficient is used as the refrigerant of the refrigeration and air-conditioning apparatus has been described. However, the present invention is not limited to this. A refrigerant may be used.
Further, from the viewpoint of preventing global warming, a non-azeotropic mixed refrigerant using a natural refrigerant such as propane, butane, or ammonia exhibits the same effect.

【0051】実施の形態2.図5は本発明の実施の形態
2による冷凍空調装置を示す冷媒回路図である。図にお
いて、34は第4電磁弁、35は第5電磁弁、36は第
6電磁弁、37は第7電磁弁である。蓄熱熱交換器11
の入口側配管には第4電磁弁34と第5電磁弁35を設
け、蓄熱熱交換器11の出口側配管には第6電磁弁36
と第7電磁弁37を設けており、この電磁弁の開閉の組
合せによって、蓄熱運転時の冷媒の流れ方向を正逆に切
換え可能としている。なお、図1に示したものと同一の
構成部品には同一符号を付して、その重複する説明を省
略する。
Embodiment 2 FIG. 5 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 2 of the present invention. In the figure, 34 is a fourth solenoid valve, 35 is a fifth solenoid valve, 36 is a sixth solenoid valve, and 37 is a seventh solenoid valve. Heat storage heat exchanger 11
A fourth solenoid valve 34 and a fifth solenoid valve 35 are provided on the inlet side pipe, and a sixth solenoid valve 36 is provided on the outlet side pipe of the heat storage heat exchanger 11.
And the seventh electromagnetic valve 37, and the flow direction of the refrigerant during the heat storage operation can be switched between forward and reverse by a combination of opening and closing of the electromagnetic valve. Note that the same components as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted.

【0052】本実施の形態では、蓄熱運転初期の蓄熱運
転A時に第4電磁弁34を開、第5電磁弁35を閉、第
6電磁弁36を開、第7電磁弁37を閉として、蓄熱熱
交換器11内の冷媒の流れ方向を11aから11bの方
向とする。その後、所定の時間経過後に第4電磁弁34
を閉、第5電磁弁35を開、第6電磁弁36を閉、第7
電磁弁37を開として蓄熱運転Bに移行し、蓄熱熱交換
器11の冷媒の流れ方向を11bから11aの方向とす
る。このように、蓄熱熱交換器11内での非共沸混合冷
媒の流れ方向を正逆に切換可能としたことにより、蓄熱
熱交換器11内での非共沸混合冷媒の蒸発温度の高温部
分と低温部分とを逆転でき、蓄熱熱交換器11に氷を均
一に生成できる。
In the present embodiment, the fourth solenoid valve 34 is opened, the fifth solenoid valve 35 is closed, the sixth solenoid valve 36 is opened, and the seventh solenoid valve 37 is closed during the heat storage operation A at the beginning of the heat storage operation. The flow direction of the refrigerant in the heat storage heat exchanger 11 is defined as a direction from 11a to 11b. Thereafter, after a lapse of a predetermined time, the fourth solenoid valve 34
, The fifth solenoid valve 35 is opened, the sixth solenoid valve 36 is closed, the seventh
The electromagnetic valve 37 is opened to shift to the heat storage operation B, and the flow direction of the refrigerant in the heat storage heat exchanger 11 is set to the direction from 11b to 11a. As described above, since the flow direction of the non-azeotropic mixed refrigerant in the heat storage heat exchanger 11 can be switched between forward and reverse, a high temperature portion of the evaporation temperature of the non-azeotropic mixed refrigerant in the heat storage heat exchanger 11 can be obtained. And the low temperature part can be reversed, and ice can be uniformly generated in the heat storage heat exchanger 11.

【0053】本実施の形態では、蓄熱熱交換器11内の
冷媒の流れ方向の切換を、安価なタイマーにより制御し
ている。即ち例えば蓄熱運転時間が8時間の場合、蓄熱
運転Aを4時間、蓄熱運転Bを4時間と設定することに
より、温度検知器や圧力検知器を用いずに、安価にしか
も確実に、均一製氷を実現することができる。
In this embodiment, the switching of the flow direction of the refrigerant in the heat storage heat exchanger 11 is controlled by an inexpensive timer. That is, for example, when the heat storage operation time is 8 hours, by setting the heat storage operation A to 4 hours and the heat storage operation B to 4 hours, the uniform ice making can be performed inexpensively and surely without using a temperature detector or a pressure detector. Can be realized.

【0054】なお、蓄熱運転Aと蓄熱運転Bの運転時間
は同一である必要はなく、例えば蓄熱運転時間が8時間
の場合、蓄熱運転Aを5時間、蓄熱運転Bを3時間とし
たり、あるいは蓄熱運転Aを3時間、蓄熱運転Bを5時
間としてもよい。
The operation times of the heat storage operation A and the heat storage operation B do not need to be the same. For example, when the heat storage operation time is 8 hours, the heat storage operation A is set to 5 hours and the heat storage operation B is set to 3 hours. The heat storage operation A may be 3 hours, and the heat storage operation B may be 5 hours.

【0055】また蓄熱運転Aと蓄熱運転Bとの切換は、
一回に限るものではなく、蓄熱運転時間が8時間の場
合、蓄熱運転Aおよび蓄熱運転Bを2時間毎に切換える
ように制御すれば、より確実に均一製氷が実現できる。
Switching between the heat storage operation A and the heat storage operation B is as follows.
The operation is not limited to one time, and when the heat storage operation time is 8 hours, if the heat storage operation A and the heat storage operation B are controlled to be switched every two hours, uniform ice making can be realized more reliably.

【0056】実施の形態3.図6は本発明の実施の形態
3による冷凍空調装置を示す冷媒回路図である。図にお
いて、1は圧縮機、2は冷房時と暖房時の冷媒の流れを
切換える四方弁、3は室外熱交換器、4は第1膨張弁、
5は室内熱交換器であり、これらは配管で接続されて冷
凍サイクルを構成している。11は蓄熱槽10内に設置
された蓄熱熱交換器であり、その入口側配管は第2膨張
弁20を介して、室外熱交換器3と第1膨張弁4の間の
配管に接続している。また蓄熱熱交換器11の出口側配
管は、第1電磁弁21を介して室内熱交換器5と四方弁
2の間の配管に接続するとともに、第2電磁弁22を介
して第1膨張弁4と室外熱交換器3の間の配管に接続し
ている。この第1電磁弁21と第2電磁弁22を開閉す
ることにより、蓄熱利用冷房運転と蓄熱運転とで冷媒回
路を切換え可能に構成している。また室外熱交換器3と
第1膨張弁4の間の配管には第3電磁弁23を設けてい
る。さらにこの冷凍空調装置内には、冷媒として非共沸
混合冷媒であるフロンR407Cを封入している。
Embodiment 3 FIG. 6 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 3 of the present invention. In the figure, 1 is a compressor, 2 is a four-way valve for switching the flow of refrigerant during cooling and heating, 3 is an outdoor heat exchanger, 4 is a first expansion valve,
Reference numeral 5 denotes an indoor heat exchanger, which is connected by piping to form a refrigeration cycle. Reference numeral 11 denotes a heat storage heat exchanger installed in the heat storage tank 10, and its inlet side pipe is connected to a pipe between the outdoor heat exchanger 3 and the first expansion valve 4 via a second expansion valve 20. I have. The outlet pipe of the heat storage heat exchanger 11 is connected to a pipe between the indoor heat exchanger 5 and the four-way valve 2 via a first solenoid valve 21 and a first expansion valve via a second solenoid valve 22. 4 and a pipe between the outdoor heat exchanger 3. By opening and closing the first solenoid valve 21 and the second solenoid valve 22, the refrigerant circuit can be switched between the cooling operation using heat storage and the heat storage operation. A third solenoid valve 23 is provided in a pipe between the outdoor heat exchanger 3 and the first expansion valve 4. Further, Freon R407C, which is a non-azeotropic mixed refrigerant, is sealed in the refrigerating air conditioner.

【0057】蓄熱熱交換器11は、図31と同様に垂直
方向に蛇行した伝熱管で構成しており、蓄熱運転時の圧
力損失を低減するために、複数、例えば4本の伝熱管を
並列に接続し、また伝熱管には平滑管を用いる。さらに
蓄熱熱交換器11の中央部から上流側は外径6.35m
mの伝熱管11cを用い、中央部から下流側は外径4m
mの伝熱管11dを用いる。蓄熱槽10内は、蓄熱材と
して例えば水で満たされており、蓄熱運転時には、蓄熱
熱交換器11で水を冷却氷化し、伝熱管の表面に氷を付
着生成させて蓄熱槽10内に冷熱を蓄えるように構成し
ている。
The heat storage heat exchanger 11 is composed of heat transfer tubes meandering in the vertical direction as in FIG. 31, and a plurality of, for example, four heat transfer tubes are connected in parallel in order to reduce the pressure loss during the heat storage operation. And a smooth tube is used for the heat transfer tube. Further, the outside diameter is 6.35 m from the center of the heat storage heat exchanger 11 to the upstream side.
m heat transfer tube 11c, and the outer diameter is 4m from the center to the downstream side.
m heat transfer tubes 11d are used. The heat storage tank 10 is filled with, for example, water as a heat storage material. During the heat storage operation, the water is cooled and iced by the heat storage heat exchanger 11, and ice is attached to the surface of the heat transfer tube to generate cold heat. Is configured to be stored.

【0058】次に上記のように構成された冷凍空調装置
の蓄熱運転時および蓄熱利用冷房運転時の動作について
説明する。蓄熱運転時は、第1電磁弁21を開、第2電
磁弁22を閉、第3電磁弁23を閉とする。この蓄熱運
転時の冷媒の流れは、図6中実線矢印で示すように、圧
縮機1で吐出された高温高圧の冷媒蒸気は四方弁2を経
て室外熱交換器3で凝縮液化し、第2膨張弁20で低圧
に減圧されて蓄熱熱交換器11に流入する。蓄熱熱交換
器11に流入した冷媒は、蓄熱槽10内の水から熱を奪
って蒸発し、伝熱管表面には氷が付着生成する。この蓄
熱熱交換器11で蒸発した冷媒は、第1電磁弁21およ
び四方弁2を通って圧縮機1に戻る。
Next, the operation of the refrigeration / air-conditioning apparatus configured as described above during the heat storage operation and during the heat storage cooling operation will be described. During the heat storage operation, the first solenoid valve 21 is opened, the second solenoid valve 22 is closed, and the third solenoid valve 23 is closed. The flow of the refrigerant during the heat storage operation is as shown by the solid line arrow in FIG. The pressure is reduced to a low pressure by the expansion valve 20 and flows into the heat storage heat exchanger 11. The refrigerant that has flowed into the heat storage heat exchanger 11 removes heat from the water in the heat storage tank 10 and evaporates, and ice adheres to the surface of the heat transfer tube to generate. The refrigerant evaporated in the heat storage heat exchanger 11 returns to the compressor 1 through the first solenoid valve 21 and the four-way valve 2.

【0059】蓄熱熱交換器11内では蒸発時に温度変化
の生じるフロンR407Cが蒸発するため、蓄熱熱交換
器11の伝熱管温度は入口部が最も低くなり、冷媒の流
れ方向に徐々に上昇して、蓄熱熱交換器11の出口部が
最も高くなる。ところが本実施の形態では、蒸発温度の
高い蓄熱熱交換器11の出口側の伝熱管11dの管径
を、蒸発温度の低い入口側の伝熱管11cの管径よりも
小さくしているので、出口部の伝熱管内の冷媒流速が入
口部よりも増加し、冷媒熱伝達率も出口部の方が入口部
よりも増大する。このため蓄熱熱交換器11の出口部
は、フロンR407Cの蒸発温度変化により伝熱管温度
は上昇し、蓄熱槽10内の水温との温度差が小さくなる
ものの、伝熱特性が入口部よりも高いため、小さな温度
差でも氷が生成され、結果として、蓄熱熱交換器11全
体の氷厚は均一化する。
In the heat storage heat exchanger 11, the Freon R407C, whose temperature changes during evaporation, evaporates. Therefore, the temperature of the heat transfer tube of the heat storage heat exchanger 11 becomes lowest at the inlet and gradually rises in the flow direction of the refrigerant. The outlet of the heat storage heat exchanger 11 is highest. However, in the present embodiment, the diameter of the heat transfer tube 11d on the outlet side of the heat storage heat exchanger 11 having a high evaporation temperature is smaller than the diameter of the heat transfer tube 11c on the inlet side having a low evaporation temperature. The flow rate of the refrigerant in the heat transfer tube of the section is higher than that of the inlet, and the heat transfer coefficient of the refrigerant is higher at the outlet than at the inlet. Therefore, at the outlet of the heat storage heat exchanger 11, the temperature of the heat transfer tube rises due to the change in the evaporation temperature of the Freon R407C, and the temperature difference from the water temperature in the heat storage tank 10 becomes smaller, but the heat transfer characteristics are higher than the inlet. Therefore, ice is generated even with a small temperature difference, and as a result, the ice thickness of the entire heat storage heat exchanger 11 becomes uniform.

【0060】蓄熱利用冷房運転時は、第1電磁弁21を
閉、第2電磁弁22を開、第3電磁弁23を閉としてい
る。この蓄熱運転時の冷媒の流れは、図6中破線矢印で
示すように、圧縮機1で吐出された高温高圧の冷媒蒸気
は四方弁2を経て室外熱交換器3で凝縮液化し、第2膨
張弁20を通って蓄熱熱交換器11に流入する。なお、
この運転時は第2膨張弁20は全開としている。蓄熱熱
交換器11に流入した高圧の液冷媒は、蓄熱槽10内の
氷で例えば40℃程度から0℃程度に冷却され、過冷却
度が増大して流出する。この過冷却度が増大した液冷媒
は第2電磁弁22を通って第1膨張弁4で低圧に減圧さ
れ、室内熱交換器5に流入して蒸発し、四方弁2を通っ
て圧縮機1に戻る。この蓄熱利用冷房運転で蓄熱槽10
に生成されている氷を解氷して得た冷熱を負荷装置であ
る室外熱交換器5へ供給する際にも、蓄熱熱交換器11
の出口側の伝熱特性を入口側よりも高くしているので、
均一に解氷でき、冷熱を安定して供給できる。
During the cooling operation using heat storage, the first solenoid valve 21 is closed, the second solenoid valve 22 is opened, and the third solenoid valve 23 is closed. As shown by the dashed arrow in FIG. 6, the flow of the refrigerant during the heat storage operation is such that the high-temperature and high-pressure refrigerant vapor discharged from the compressor 1 is condensed and liquefied in the outdoor heat exchanger 3 through the four-way valve 2, It flows into the heat storage heat exchanger 11 through the expansion valve 20. In addition,
During this operation, the second expansion valve 20 is fully opened. The high-pressure liquid refrigerant that has flowed into the heat storage heat exchanger 11 is cooled from, for example, about 40 ° C. to about 0 ° C. by ice in the heat storage tank 10 and flows out with an increased degree of supercooling. The liquid refrigerant having an increased degree of supercooling is reduced to a low pressure by the first expansion valve 4 through the second solenoid valve 22, flows into the indoor heat exchanger 5 and evaporates, passes through the four-way valve 2, and evaporates. Return to In this cooling operation using heat storage, the heat storage tank 10
When supplying the cold heat obtained by melting the ice generated in the outdoor heat exchanger 5 as a load device, the heat storage heat exchanger 11
Because the heat transfer characteristics of the outlet side of the is higher than that of the inlet side,
Ice can be uniformly thawed and cold heat can be supplied stably.

【0061】このように本実施の形態では、蓄熱熱交換
器11の中央部から下流側の伝熱管の管径を、中央部か
ら上流側の伝熱管11cの管径よりも小さなものを用
い、蒸発温度の高い中央部から下流側の伝熱管11dの
伝熱特性を向上させているので、蒸発温度変化の生じる
非共沸混合冷媒を用いても、蒸発温度が高い出口部の製
氷量を増加して蒸発温度が低い入口部の製氷量と同程度
にすることができ、蓄熱熱交換器11にほぼ均一に氷を
生成できる。また冷熱の利用時にも、安定して冷熱を供
給できる。
As described above, in the present embodiment, the diameter of the heat transfer tubes downstream from the center of the heat storage heat exchanger 11 is smaller than the diameter of the heat transfer tubes 11c upstream from the center. Since the heat transfer characteristics of the heat transfer tube 11d on the downstream side from the central portion where the evaporation temperature is high are improved, the amount of ice making at the outlet portion where the evaporation temperature is high is increased even when a non-azeotropic mixed refrigerant that changes the evaporation temperature is used. As a result, the ice making amount can be made substantially equal to the ice making amount at the inlet portion having a low evaporation temperature, and ice can be generated almost uniformly in the heat storage heat exchanger 11. Also, when using cold heat, it is possible to stably supply cold heat.

【0062】なお上記実施の形態では、蓄熱熱交換器1
1の中央部から下流側の伝熱管の管径を、中央部から上
流側の伝熱管の管径よりも小さなものを用い、蒸発温度
の高い中央部から下流側の伝熱管の伝熱特性を向上させ
る例について説明したが、これに限るものではなく、蓄
熱熱交換器11の中央部から下流側の伝熱管に、中央部
から上流側の伝熱管よりも伝熱特性の高いものを用いて
もよい。例えば、蓄熱熱交換器11の伝熱管の管径は全
て同一のものを用い、中央部から上流側の伝熱管を平滑
管とし、中央部から下流側の伝熱管を内面溝付管とすれ
ば、簡単な構成で製氷量を均一化させることができる。
また、蓄熱熱交換器の材質を変えて、入口側はステンレ
スなどの伝熱特性の低いものを用い、出口側は銅などの
伝熱特性の高いものを用いて伝熱管を構成してもよい。
また、必ずしも中央部で分けて上流側と下流側の伝熱管
の伝熱特性を変えなくてもよく、3種類以上の伝熱特性
の異なる伝熱管を用い、下流側の伝熱特性が上流側の伝
熱特性よりも高くなるように構成すればよい。
In the above embodiment, the heat storage heat exchanger 1
The diameter of the heat transfer tube from the center to the downstream side is smaller than the diameter of the heat transfer tube from the center to the upstream side. Although an example of improving the heat transfer is described, the present invention is not limited to this, and a heat transfer tube having a higher heat transfer characteristic than the heat transfer tube from the center to the upstream is used for the heat transfer tube from the center to the downstream of the heat storage heat exchanger 11. Is also good. For example, if all the heat transfer tubes of the heat storage heat exchanger 11 have the same diameter, the upstream heat transfer tubes from the center are smooth tubes, and the downstream heat transfer tubes from the center are inner grooved tubes. The amount of ice can be made uniform with a simple configuration.
Further, by changing the material of the heat storage heat exchanger, the heat transfer tube may be formed by using a material having a low heat transfer characteristic such as stainless steel on the inlet side and using a material having a high heat transfer characteristic such as copper on the outlet side. .
In addition, it is not necessary to change the heat transfer characteristics of the heat transfer tubes on the upstream side and the downstream side separately at the center, and three or more types of heat transfer tubes having different heat transfer characteristics are used. It may be configured so as to be higher than the heat transfer characteristics.

【0063】実施の形態4.図7は本発明の実施の形態
4に係わる蓄熱槽を示す構成図である。蓄熱熱交換器1
1の入口部で非共沸混合冷媒を複数、例えば2つの流路
に分岐している。そして、蓄熱熱交換器11の中央部か
ら上流側の伝熱管11cは、2つの流路を並列に接続し
て構成され、この2つの流路は中央部で合流し、この中
央部から下流側の伝熱管11dは1つの流路で構成され
ている。なお、ここでは蓄熱槽10のみを示し、冷凍空
調装置を構成する他の各部分は、図6に示したものと同
様であり、その重複する説明を省略する。
Embodiment 4 FIG. 7 is a configuration diagram showing a heat storage tank according to Embodiment 4 of the present invention. Heat storage heat exchanger 1
The non-azeotropic refrigerant mixture is branched into a plurality of, for example, two flow paths at one inlet. The heat transfer tube 11c on the upstream side from the center of the heat storage heat exchanger 11 is configured by connecting two flow paths in parallel. The heat transfer tube 11d is composed of one flow path. Here, only the heat storage tank 10 is shown, and other parts constituting the refrigeration / air-conditioning apparatus are the same as those shown in FIG. 6, and the overlapping description will be omitted.

【0064】蓄熱運転時に蓄熱熱交換器11に流入した
冷媒は、まず2つに分岐され、2つの流路を並列に接続
した伝熱管11c内を流れ、蒸発する。この冷媒は、蓄
熱熱交換器11の概略中央部で合流し、伝熱管11dに
流入して蒸発する。従って、蒸発温度の高い蓄熱熱交換
器11の出口側の伝熱管11d内の冷媒流速は、蒸発温
度の低い入口側の伝熱管11cよりも大きくなり、冷媒
熱伝達率も出口部の方が入口部よりも増大する。このた
め蓄熱熱交換器11の出口部は、フロンR407Cの蒸
発温度変化により伝熱管温度は上昇し、蓄熱槽10内の
水温との温度差が小さくなるものの、伝熱特性が入口部
よりも高いため、小さな温度差でも氷が生成され、結果
として、蓄熱熱交換器11全体の氷厚は均一化する。
The refrigerant flowing into the heat storage heat exchanger 11 during the heat storage operation first branches into two, flows through the heat transfer tube 11c having two flow paths connected in parallel, and evaporates. The refrigerant merges at the approximate center of the heat storage heat exchanger 11, flows into the heat transfer tube 11d, and evaporates. Therefore, the flow rate of the refrigerant in the heat transfer tube 11d on the outlet side of the heat storage heat exchanger 11 having a high evaporation temperature is larger than that of the heat transfer tube 11c on the inlet side having a low evaporation temperature, and the heat transfer coefficient of the refrigerant at the outlet portion is lower than that of the inlet portion. More than parts. Therefore, at the outlet of the heat storage heat exchanger 11, the temperature of the heat transfer tube rises due to the change in the evaporation temperature of the Freon R407C, and the temperature difference from the water temperature in the heat storage tank 10 becomes smaller, but the heat transfer characteristics are higher than the inlet. Therefore, ice is generated even with a small temperature difference, and as a result, the ice thickness of the entire heat storage heat exchanger 11 becomes uniform.

【0065】このように本実施の形態では、蓄熱熱交換
器11の出口側の流路数を入口側の流路数より少なくし
て、蓄熱熱交換器11の出口部の流路の断面積の合計
が、入口部の流路の断面積の合計よりも小さくなるよう
に構成したので、蒸発温度の高い出口側の伝熱特性を蒸
発温度の低い入口側よりも向上でき、簡単な構成によっ
て、非共沸混合冷媒の蒸発温度が高い出口部の製氷量を
増加して蒸発温度が低い入口部の製氷量と同程度とし、
蓄熱槽10内での均一製氷を実現することができる。
As described above, in the present embodiment, the number of flow paths on the outlet side of the heat storage heat exchanger 11 is made smaller than the number of flow paths on the inlet side, and the cross-sectional area of the flow path at the outlet of the heat storage heat exchanger 11 Is smaller than the sum of the cross-sectional areas of the inlet passages, so that the heat transfer characteristics of the outlet side having a higher evaporation temperature can be improved as compared with the inlet side having a lower evaporation temperature. The amount of ice making at the outlet where the evaporation temperature of the non-azeotropic mixed refrigerant is high is increased to about the same as the amount of ice making at the inlet where the evaporation temperature is low,
It is possible to realize uniform ice making in the heat storage tank 10.

【0066】なお、本実施の形態では上流側の伝熱管1
1cを2本とし、下流側の伝熱管11dを1本とした
が、これに限るものではない。蓄熱熱交換器11の出口
部の伝熱特性を入口部の伝熱特性よりも高くするには、
出口部の流路の断面積の合計が、入口部の流路の断面積
の合計よりも小さくなるように構成すればよい。例え
ば、上流側の伝熱管11cを3本以上とし、下流側の伝
熱管11dを上流側よりも少なくしてもよい。また、蓄
熱熱交換器11の中央部で2つに分けて伝熱管で形成さ
れる流路の数を変えなくても、例えば上流側から下流側
へ徐々に伝熱管の本数を減らすように構成してもよい。
このとき上流側と下流側で伝熱管の管径を変えてもよい
が、蓄熱熱交換器11の出口部の流路の断面積の合計
が、入口部の流路の断面積の合計よりも小さくなるよう
に構成する。
In this embodiment, the heat transfer tubes 1 on the upstream side
Although the number of 1c is two and the number of the heat transfer tubes 11d on the downstream side is one, it is not limited to this. To make the heat transfer characteristic of the outlet of the heat storage heat exchanger 11 higher than that of the inlet,
What is necessary is just to comprise so that the total cross-sectional area of the flow path of an outlet part may become smaller than the total of cross-sectional area of the flow path of an inlet part. For example, the number of heat transfer tubes 11c on the upstream side may be three or more, and the number of heat transfer tubes 11d on the downstream side may be smaller than that on the upstream side. Also, without changing the number of flow passages formed by the heat transfer tubes in the central part of the heat storage heat exchanger 11 in two parts, for example, the number of heat transfer tubes is gradually reduced from the upstream side to the downstream side. May be.
At this time, the diameter of the heat transfer tube may be changed between the upstream side and the downstream side, but the total cross-sectional area of the flow path at the outlet of the heat storage heat exchanger 11 is larger than the total cross-sectional area of the flow path at the inlet. It is configured to be small.

【0067】実施の形態5.図8は本発明の実施の形態
5に係わる蓄熱熱交換器11を示す斜視図である。蓄熱
熱交換器11は2つの流路を並列に接続して構成され、
またこの2つの流路はそれぞれその概略中央部11eで
折り返し、さらに中央部から上流側の伝熱管11cと中
央部から下流側の伝熱管11dは熱的に接触するよう
に、例えばはんだ付けされている。図でははんだ付けし
た部分を斜線で示している。なお、ここでは蓄熱熱交換
器11のみを示し、冷凍空調装置を構成する他の各部分
は、図6に示したものと同様であり、その重複する説明
を省略する。なお、ここで2本の伝熱管が熱的に接触し
ているとは、2本の伝熱管の少なくとも一部が、直接、
または熱伝導率の高いものを介在させて接触することに
より、伝熱管同士が熱伝導しうる構成のことをいう。
Embodiment 5 FIG. 8 is a perspective view showing a heat storage heat exchanger 11 according to Embodiment 5 of the present invention. The heat storage heat exchanger 11 is configured by connecting two flow paths in parallel,
The two flow paths are turned back at the approximate center portion 11e, and the heat transfer tube 11c on the upstream side from the center portion and the heat transfer tube 11d on the downstream side from the center portion are soldered, for example, so as to be in thermal contact with each other. I have. In the figure, the soldered portions are indicated by oblique lines. Here, only the heat storage heat exchanger 11 is shown, and the other parts constituting the refrigeration / air-conditioning apparatus are the same as those shown in FIG. Here, the two heat transfer tubes being in thermal contact with each other means that at least a part of the two heat transfer tubes is directly
Alternatively, it refers to a configuration in which heat transfer tubes can conduct heat by contacting each other with a material having a high thermal conductivity.

【0068】蓄熱運転時に蓄熱熱交換器11に流入した
冷媒は、まず上流側の伝熱管11c内を流れ、蒸発す
る。この冷媒は、蓄熱熱交換器11の概略中央部11e
で折り返され、下流側の伝熱管11dに流入し、蒸発す
る。この構成では蒸発温度の低い上流側伝熱管11cと
蒸発温度の高い下流側伝熱管11dがはんだ付けされて
おり、熱的に接触しているため、蓄熱熱交換器11の伝
熱管の壁面温度は均一化する。この結果、蒸発時に温度
変化の生じる非共沸混合冷媒を用いても、蓄熱熱交換器
11全体に付着生成される氷厚は均一化する。
The refrigerant flowing into the heat storage heat exchanger 11 during the heat storage operation first flows through the upstream heat transfer tube 11c and evaporates. This refrigerant is stored in a substantially central portion 11e of the heat storage heat exchanger 11.
And flows into the downstream heat transfer tube 11d to evaporate. In this configuration, since the upstream heat transfer tube 11c having a low evaporation temperature and the downstream heat transfer tube 11d having a high evaporation temperature are soldered and in thermal contact, the wall surface temperature of the heat transfer tube of the heat storage heat exchanger 11 is Make uniform. As a result, even if a non-azeotropic mixed refrigerant that changes in temperature during evaporation is used, the thickness of ice adhered to the entire heat storage heat exchanger 11 and generated is uniform.

【0069】なお本実施の形態では、蒸発温度の低い上
流側伝熱管11cと蒸発温度の高い下流側伝熱管11d
の熱的な接触手段として伝熱管をはんだ付けする方法に
ついて説明したがこれに限ることはなく、伝熱管を単純
に接触させるだけでも伝熱管の管壁を伝導して熱が伝わ
るため、同様の効果を発揮する。また、必ずしも中央部
で折り返してその伝熱管の上流側と下流側とを熱的に接
触させる必要はなく、例えば複数の伝熱管に分岐して蓄
熱熱交換器11に流入する構成のものにおいて、異なる
伝熱管の上流側と下流側とを熱的に接触するように構成
してもよい。この時熱的に接触させる上流側と下流側の
伝熱管を流れる冷媒の流れ方向は、同一方向でも逆方向
でもよいが、逆方向のほうが伝熱管の壁面温度の均一化
を一層図ることができる。また図9に示すように、上流
側伝熱管11cと下流側伝熱管11dをアルミニウム製
または銅製の薄板40で部分的に熱的に接触させてもよ
い。さらに図10に示すように2組のアルミニウム製あ
るいは銅製の板材41a、41bを接合し、この間に2
つの冷媒流路を形成して、それぞれを上流側伝熱管11
cと下流側伝熱管11dとしてもよい。
In this embodiment, the upstream heat transfer tube 11c having a low evaporation temperature and the downstream heat transfer tube 11d having a high evaporation temperature are provided.
Although the method of soldering the heat transfer tubes as the thermal contact means has been described, the present invention is not limited to this. It is effective. In addition, it is not always necessary to turn the heat transfer tube at the center so that the upstream side and the downstream side of the heat transfer tube are in thermal contact with each other. You may comprise so that the upstream and downstream of different heat transfer tubes may be in thermal contact. At this time, the flow directions of the refrigerant flowing through the heat transfer tubes on the upstream side and the downstream side which are brought into thermal contact may be the same direction or the opposite directions. . Further, as shown in FIG. 9, the upstream heat transfer tube 11c and the downstream heat transfer tube 11d may be partially brought into thermal contact with a thin plate 40 made of aluminum or copper. Further, as shown in FIG. 10, two sets of aluminum or copper plates 41a and 41b are joined,
To form two refrigerant passages, each of which is connected to the upstream heat transfer tube 11.
c and the downstream heat transfer tube 11d.

【0070】このように本実施の形態では、蓄熱熱交換
器の入口部の伝熱管と出口部の伝熱管を熱的に接触させ
たものであるので、蒸発時に温度変化の生じる非共沸混
合冷媒を用いても、非共沸混合冷媒の蒸発温度の低温部
分と高温部分とを熱伝導させて伝熱管表面温度を均一化
するため、蓄熱熱交換器内での均一製氷が実現できる。
As described above, in the present embodiment, since the heat transfer tube at the inlet and the heat transfer tube at the outlet of the heat storage heat exchanger are in thermal contact with each other, non-azeotropic mixing in which a temperature change occurs during evaporation. Even if a refrigerant is used, the low-temperature portion and the high-temperature portion of the non-azeotropic refrigerant mixture are thermally conducted to make the heat transfer tube surface temperature uniform, so that uniform ice making in the heat storage heat exchanger can be realized.

【0071】実施の形態6.図11は本発明の実施の形
態6による冷凍空調装置を示す冷媒回路図である。蓄熱
熱交換器11は複数、例えば4つの伝熱管を並列に接続
して構成され、さらに冷媒の流れ方向が逆である伝熱管
11f(冷媒は図に向かって右方向に流れる)と伝熱管
11g(冷媒は図に向かって左方向に流れる)を交互に
蓄熱槽10内に配置している。そして隣合う伝熱管との
間にはある程度の間隔、例えば伝熱管の直径の2倍以上
の間隔を開けて配置している。なお、図6に示したもの
と同一の構成部品には同一符号を付して、その重複する
説明を省略する。
Embodiment 6 FIG. FIG. 11 is a refrigerant circuit diagram illustrating a refrigeration / air-conditioning apparatus according to Embodiment 6 of the present invention. The heat storage heat exchanger 11 is configured by connecting a plurality of, for example, four heat transfer tubes in parallel, and further includes a heat transfer tube 11f (a refrigerant flows rightward in the drawing) and a heat transfer tube 11g in which the flow direction of the refrigerant is opposite. (The refrigerant flows in the left direction as viewed in the figure) are alternately arranged in the heat storage tank 10. The heat transfer tubes are arranged with a certain distance between adjacent heat transfer tubes, for example, at least twice the diameter of the heat transfer tubes. The same components as those shown in FIG. 6 are denoted by the same reference numerals, and the description thereof will not be repeated.

【0072】蓄熱熱交換器11内では蒸発時に温度変化
の生じるフロンR407Cが蒸発するため、蓄熱熱交換
器11の伝熱管温度は入口部から出口部に向かうにした
がって徐々に上昇し、蓄熱熱交換器11の入口部分の氷
厚が厚く、出口部分の氷厚が薄くなる。ところが本実施
の形態では、冷媒の流れ方向が異なる伝熱管11fと伝
熱管11gを交互に蓄熱槽10内に配置し、伝熱管11
fの蒸発温度の高い入口部の隣に伝熱管11gの蒸発温
度の低い出口部を配置するように構成する。従って、図
12に示すように伝熱管11fに付着する氷の厚さが厚
い部分と、伝熱管11gに付着する氷の厚さが薄い部分
とが隣合い、また伝熱管11fに付着する氷の厚さが薄
い部分と、伝熱管11gに付着する氷の厚さが厚い部分
とが隣合うことになる。即ち、伝熱管11fと伝熱管1
1gの間の空間にはほぼ均一に氷が生成されていく。こ
のため、従来装置で生じるような伝熱管の入口部分で過
大に氷が生成され、この部分の氷が融合して伝熱管や蓄
熱槽の変形や破損を引き起こすことのを防止できる。
In the heat storage heat exchanger 11, Freon R407C, whose temperature changes during evaporation, evaporates, so that the temperature of the heat transfer tube of the heat storage heat exchanger 11 gradually rises from the inlet to the outlet, and the heat storage heat exchange is performed. The ice thickness at the inlet portion of the vessel 11 is large, and the ice thickness at the outlet portion is small. However, in the present embodiment, heat transfer tubes 11f and heat transfer tubes 11g having different flow directions of the refrigerant are alternately arranged in the heat storage tank 10, and the heat transfer tubes 11f
The outlet of the heat transfer tube 11g with a low evaporation temperature is arranged next to the inlet with a high evaporation temperature of f. Therefore, as shown in FIG. 12, a portion where the thickness of ice adhered to the heat transfer tube 11f is thick and a portion where the thickness of ice adhered to the heat transfer tube 11g is thin are adjacent to each other. The thin part and the thick ice attached to the heat transfer tube 11g are adjacent to each other. That is, the heat transfer tube 11f and the heat transfer tube 1
Ice is generated almost uniformly in the space between 1 g. For this reason, excessive ice is generated at the inlet portion of the heat transfer tube as in the conventional apparatus, and it is possible to prevent the ice in this portion from fusing and causing deformation or breakage of the heat transfer tube or the heat storage tank.

【0073】このように本実施の形態では、複数の伝熱
管を冷媒の流れ方向が互いに異なるように配置したの
で、冷媒としてフロンR407Cなどの非共沸混合冷媒
を用いたときに、一つの伝熱管の蒸発温度の低い入口部
とこれに並設される他の伝熱管の蒸発温度の高い出口部
が隣合うことになる。このため、氷厚の厚い伝熱管の隣
に氷厚の薄い伝熱管が配置されて、それぞれの伝熱管表
面に付着生成する氷が不均一であっても、伝熱管11f
と伝熱管11gの間の空間には均一に氷が付着生成する
ことになる。従って隣合う伝熱管に付着生成する氷同士
が融合して伝熱管や蓄熱槽の変形や破損を引き起こすの
を防止でき、信頼性の高い冷凍空調装置が得られる。
As described above, in this embodiment, a plurality of heat transfer tubes are arranged so that the flow directions of the refrigerants are different from each other. Therefore, when a non-azeotropic mixed refrigerant such as Freon R407C is used as the refrigerant, one transfer tube is used. The inlet portion of the heat pipe having a low evaporation temperature is adjacent to the outlet portion of another heat transfer tube having a high evaporation temperature provided in parallel with the inlet portion. For this reason, the heat transfer tubes having a small ice thickness are arranged next to the heat transfer tubes having a large ice thickness, and even if the ice generated on the surface of each heat transfer tube is not uniform, the heat transfer tubes 11f
Ice is uniformly attached to and generated in the space between the heat transfer tube 11g. Therefore, it is possible to prevent the ice generated by adhering to the adjacent heat transfer tubes from fusing together to cause deformation or breakage of the heat transfer tubes or the heat storage tank, and a highly reliable refrigeration / air-conditioning apparatus can be obtained.

【0074】実施の形態7.図13は本発明の実施の形
態7による冷凍空調装置を示す冷媒回路図である。蓄熱
熱交換器11は複数、例えば2本の伝熱管11f,11
gを並列に接続して構成し、また伝熱管11fと11g
を冷媒の流れ方向が逆になるように配置し、さらにこの
2本の伝熱管11fと11gを熱的に接触するようには
んだ付けしている。図でははんだ付けした部分を斜線で
示している。ここで2本の伝熱管が熱的に接触している
とは、2本の伝熱管の少なくとも一部が、直接、または
銅やアルミニウムなどの熱伝導率の高いものを介在させ
て接触することにより、伝熱管同士が熱伝導しうる構成
のことをいう。なお、図6に示したものと同一の構成部
品には同一符号を付して、その重複する説明を省略す
る。
Embodiment 7 FIG. 13 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 7 of the present invention. The heat storage heat exchanger 11 has a plurality of, for example, two heat transfer tubes 11f, 11
g are connected in parallel, and the heat transfer tubes 11f and 11g
Are arranged so that the flow directions of the refrigerant are reversed, and the two heat transfer tubes 11f and 11g are soldered so as to be in thermal contact with each other. In the figure, the soldered portions are indicated by oblique lines. Here, the two heat transfer tubes being in thermal contact means that at least a part of the two heat transfer tubes come into contact with each other directly or through a material having high thermal conductivity such as copper or aluminum. Means that the heat transfer tubes can conduct heat with each other. The same components as those shown in FIG. 6 are denoted by the same reference numerals, and the description thereof will not be repeated.

【0075】蓄熱運転時に蓄熱熱交換器11に流入した
フロンR407Cなどの非共沸混合冷媒は、伝熱管11
f,11g内を流れ、蒸発温度が上昇しながら蒸発す
る。本実施の形態では、冷媒の流れ方向の逆である2本
の伝熱管をはんだ付けし、特にその流れの入口部と出口
部が熱的に接触するようにはんだ付けしている。即ち、
伝熱管11fの蒸発温度の低い部分は、伝熱管11gの
蒸発温度の高い部分と熱的に接触し、また伝熱管11f
の蒸発温度の高い部分は、伝熱管11gの蒸発温度の低
い部分と熱的に接触している。このため蒸発時に入口部
と出口部で温度変化の生じる非共沸混合冷媒を用いて
も、蓄熱熱交換器11の伝熱管の壁面温度は均一化し、
その表面に付着生成する氷の厚さも均一になる。
The non-azeotropic mixed refrigerant such as Freon R407C that has flowed into the heat storage heat exchanger 11 during the heat storage operation
f, 11g, and evaporates while evaporating temperature rises. In the present embodiment, two heat transfer tubes whose flow directions are opposite to each other are soldered, and in particular, soldered so that the inlet and outlet of the flow are in thermal contact. That is,
The portion of the heat transfer tube 11f where the evaporation temperature is low is in thermal contact with the portion of the heat transfer tube 11g where the evaporation temperature is high, and the heat transfer tube 11f
The portion having a high evaporation temperature is in thermal contact with the portion having a low evaporation temperature of the heat transfer tube 11g. For this reason, even if a non-azeotropic mixed refrigerant having a temperature change at the inlet and outlet at the time of evaporation is used, the wall surface temperature of the heat transfer tubes of the heat storage heat exchanger 11 becomes uniform,
The thickness of the ice formed on the surface becomes uniform.

【0076】なお上記の実施の形態では、冷媒の流れ方
向の逆である伝熱管11fと11gの熱的な接触手段と
して伝熱管をはんだ付けする方法について説明したがこ
れに限ることはなく、伝熱管を単純に接触させるだけで
も同様の効果を発揮する。また図9と同様の構成とし、
伝熱管11fと伝熱管11gを部分的にアルミニウム製
または銅製の薄板で接続することにより熱的に接触させ
てもよい。さらに図10と同様の構成とし、2組のアル
ミニウム製または銅製の板材を接合し、この間に2つの
冷媒流路を形成して、一方を伝熱管11fとし、他方を
伝熱管11fと逆方向に流れる伝熱管11gとしてもよ
い。
In the above-described embodiment, the method of soldering the heat transfer tubes 11f and 11g, which is opposite to the flow direction of the refrigerant, as the thermal contact means, is not limited thereto. The same effect can be achieved by simply contacting the heat tubes. The configuration is the same as that of FIG.
The heat transfer tube 11f and the heat transfer tube 11g may be brought into thermal contact by partially connecting them with a thin plate made of aluminum or copper. Further, the structure is the same as that of FIG. 10, two sets of aluminum or copper plate members are joined, two refrigerant flow paths are formed therebetween, and one of the heat transfer tubes 11 f is used, and the other is in the opposite direction to the heat transfer tubes 11 f. The flowing heat transfer tube 11g may be used.

【0077】また、上記の実施の形態では、2本の伝熱
管11f,11gを並列に接続して蓄熱熱交換器11を
構成したものについて説明したが、これに限るものでは
ない。例えば熱的に接触させた1対の伝熱管11f,1
1gを間隔を開けて並列に複数配置して蓄熱熱交換器を
構成してもよい。また、3本以上でかつ偶数の伝熱管を
はんだ付けなどによって熱的に接触させるように構成し
てもよい。伝熱管を熱的に接触させることにより、伝熱
管の壁面温度の均一化を図っているので、一方向に流れ
る伝熱管と逆方向に流れる伝熱管の数は、同じであるの
が好ましい。
In the above-described embodiment, the heat storage heat exchanger 11 is described by connecting the two heat transfer tubes 11f and 11g in parallel. However, the present invention is not limited to this. For example, a pair of heat transfer tubes 11f, 1
A plurality of 1 g may be arranged in parallel at intervals to form a heat storage heat exchanger. Further, three or more heat transfer tubes may be thermally contacted by soldering or the like. Since the wall surfaces of the heat transfer tubes are made uniform by thermally contacting the heat transfer tubes, the number of heat transfer tubes flowing in one direction and the number of heat transfer tubes flowing in the opposite direction are preferably the same.

【0078】このように本実施の形態では、蓄熱熱交換
器11を複数本の伝熱管で構成し、冷媒の流れ方向が逆
である伝熱管を交互に配置し、この冷媒の流れ方向が逆
である少なくとも2本の伝熱管を熱的に接触させたもの
であるので、蒸発時に温度変化の生じる非共沸混合冷媒
を用いても、非共沸混合冷媒の蒸発温度の低温部分と高
温部分とを熱伝導させて伝熱管表面温度を均一化し、蓄
熱熱交換器内での均一製氷が実現できる。
As described above, in the present embodiment, the heat storage heat exchanger 11 is composed of a plurality of heat transfer tubes, and the heat transfer tubes in which the refrigerant flows in opposite directions are alternately arranged. Since at least two heat transfer tubes are in thermal contact with each other, even if a non-azeotropic mixed refrigerant that changes in temperature during evaporation is used, a low-temperature portion and a high-temperature portion of the evaporation temperature of the non-azeotropic mixed refrigerant are used. The heat transfer between the heat transfer tube and the heat transfer tube surface is made uniform, and uniform ice making in the heat storage heat exchanger can be realized.

【0079】実施の形態8.図14は本発明の実施の形
態8による冷凍空調装置を示す冷媒回路図である。蓄熱
熱交換器11は、伝熱管を例えば垂直方向に蛇行させて
配設したもので構成している。またこの伝熱管の蛇行の
ピッチは、蒸発温度の低い入口部で大きくし、蒸発温度
の高い出口部で小さくしている。なお、図6に示したも
のと同一の構成部品には同一符号を付して、その重複す
る説明を省略する。
Embodiment 8 FIG. FIG. 14 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 8 of the present invention. The heat storage heat exchanger 11 is configured by disposing heat transfer tubes in a meandering manner, for example, in a vertical direction. The meandering pitch of the heat transfer tubes is increased at the entrance where the evaporation temperature is low and is decreased at the exit where the evaporation temperature is high. The same components as those shown in FIG. 6 are denoted by the same reference numerals, and the description thereof will not be repeated.

【0080】蓄熱運転において、蓄熱熱交換器11内で
は蒸発時に温度変化の生じるフロンR407Cが蒸発す
るので、蓄熱熱交換器11の伝熱管温度は入口部から出
口部に向かうにしたがって徐々に上昇する。このため、
蓄熱熱交換器11の入口部に生成される氷厚が厚く、出
口部の氷厚が薄くなる。ところが本実施の形態では、蒸
発温度の低い入口部の伝熱管の蛇行のピッチを大きく
し、蒸発温度の高い出口部の伝熱管の蛇行のピッチを小
さくしている。即ち、伝熱管入口部分で過大に氷が生成
されても、この部分の製氷可能な空間は広いので、蛇行
によって隣合う伝熱管に生成される氷同士が融合して伝
熱管や蓄熱槽の変形や破損を引き起こすことを防止で
き、装置の信頼性が向上する。また、蓄熱熱交換器11
は、垂直方向に限らず水平方向に蛇行した伝熱管で構成
されていても同様であり、蒸発温度の低い入口部の氷の
生成する空間が、出口部の空間よりも大きくなるように
構成すればよい。
In the heat storage operation, since the CFC R407C, whose temperature changes during evaporation, evaporates in the heat storage heat exchanger 11, the heat transfer tube temperature of the heat storage heat exchanger 11 gradually increases from the inlet to the outlet. . For this reason,
The ice thickness generated at the inlet of the heat storage heat exchanger 11 is large, and the ice thickness at the outlet is small. However, in the present embodiment, the meandering pitch of the heat transfer tubes at the inlet portion having a low evaporation temperature is increased, and the meandering pitch of the heat transfer tubes at the outlet portion having a high evaporation temperature is reduced. In other words, even if ice is excessively generated at the inlet of the heat transfer tube, the ice-making space in this portion is large, so that the ice generated in the adjacent heat transfer tubes due to meandering fuses to deform the heat transfer tubes and the heat storage tank. Or damage can be prevented, and the reliability of the device is improved. The heat storage heat exchanger 11
The same applies to the case where the heat transfer tube is not limited to the vertical direction but is configured to meander in the horizontal direction.The space where the ice generated at the inlet with a low evaporation temperature is larger than the space at the outlet. I just need.

【0081】図15は本実施の形態の他の例による蓄熱
槽を示す上面図である。この蓄熱槽10は円筒形を成
し、垂直方向に蛇行した伝熱管を8本備えて蓄熱熱交換
器11を構成している。伝熱管それぞれの入口部は円筒
形の外周側に位置し、伝熱管それぞれの出口部は円筒形
の中心部分で合流するような構成である。図に示すよう
に、伝熱管の蛇行のピッチは外周側である入口部で大き
く構成し、中心部分である出口部に向かって徐々に小さ
くなるように構成している。このため、蒸発温度の低い
入口部の伝熱管において、蛇行によって隣合う伝熱管1
1h,11iの間隔が広くなり、蒸発温度の高い出口部
の伝熱管では狭くなっている。特にこの構成では、蓄熱
槽10を円筒形とし、伝熱管11h,11iのように1
つの伝熱管において蛇行している隣の伝熱管との間隔
を、入口部から出口部へと狭くしていると共に、伝熱管
11h,11jのように隣合う他の伝熱管との間隔も入
口部から出口部へと狭くなっている。即ち、入口部の伝
熱管の周囲の空間を、出口部の伝熱管の周囲の空間より
も大きくしたので、蒸発温度の低い入口部に生成される
氷厚が厚くなっても、この部分の氷が融合して伝熱管や
蓄熱槽の変形や破損を引き起こすことを防止でき、簡単
な構成で信頼性の高い冷凍空調装置が得られる。また、
本実施の形態では、蛇行のピッチを蓄熱熱交換器11の
入口部から出口部に向かって徐々に小さくしたものを示
したが、これに限るものではなく、段階的にピッチを変
えてもよい。例えば一本の伝熱管の中央部の1個所でピ
ッチを変えてもよいし、数個所でピッチを変えてもよ
い。
FIG. 15 is a top view showing a heat storage tank according to another example of the present embodiment. The heat storage tank 10 has a cylindrical shape and includes eight heat transfer tubes meandering in the vertical direction to constitute a heat storage heat exchanger 11. The inlet of each of the heat transfer tubes is located on the outer peripheral side of the cylindrical shape, and the outlet of each of the heat transfer tubes is configured to join at the center of the cylindrical shape. As shown in the drawing, the meandering pitch of the heat transfer tubes is configured to be large at the inlet portion on the outer peripheral side, and is gradually reduced toward the outlet portion at the center. For this reason, in the heat transfer tube at the inlet portion where the evaporation temperature is low, the adjacent heat transfer tube 1 is meandered.
The interval between 1h and 11i is widened, and narrowed in the heat transfer tube at the outlet part where the evaporation temperature is high. In particular, in this configuration, the heat storage tank 10 has a cylindrical shape, and the heat storage
In each of the heat transfer tubes, the interval between the meandering adjacent heat transfer tubes is narrowed from the inlet to the outlet, and the interval between the adjacent heat transfer tubes such as the heat transfer tubes 11h and 11j is also smaller than the inlet. From the exit to the exit. That is, since the space around the heat transfer tube at the inlet is made larger than the space around the heat transfer tube at the outlet, even if the ice thickness generated at the inlet with a low evaporation temperature becomes thicker, Can be prevented from causing deformation and breakage of the heat transfer tube and the heat storage tank, and a highly reliable refrigeration and air-conditioning apparatus with a simple configuration can be obtained. Also,
In the present embodiment, the meandering pitch is gradually reduced from the inlet to the outlet of the heat storage heat exchanger 11, but the pitch is not limited to this, and the pitch may be changed stepwise. . For example, the pitch may be changed at one location in the center of one heat transfer tube, or the pitch may be changed at several locations.

【0082】このように本実施の形態では、蓄熱熱交換
器11は、伝熱管を間隔を隔てて鉛直方向または水平方
向に蛇行するように形成するとともに、蓄熱時の入口部
の伝熱管の蛇行のピッチを出口部のピッチよりも大きく
したので、非共沸混合冷媒の蒸発温度の低温部分で製氷
空間を広くし蒸発温度の高温部分で製氷空間を狭くし
て、蒸発温度の低い入口部に生成される氷厚が厚くなっ
ても、この部分の氷が融合して伝熱管や蓄熱槽の変形や
破損を引き起こすことを防止でき、簡単な構成で信頼性
の高い冷凍空調装置が得られる。
As described above, in the present embodiment, the heat storage heat exchanger 11 is formed so that the heat transfer tubes meander vertically or horizontally at intervals and meander the heat transfer tubes at the inlet portion during heat storage. Pitch is larger than the pitch of the outlet, so the ice making space is widened at the low evaporating temperature of the non-azeotropic refrigerant, and the ice making space is narrowed at the high evaporating temperature. Even if the generated ice thickness is increased, it is possible to prevent the ice in this portion from fusing and causing deformation or breakage of the heat transfer tube or the heat storage tank, and a highly reliable refrigeration / air-conditioning apparatus with a simple configuration can be obtained.

【0083】実施の形態9.図16は本発明の実施の形
態9による冷凍空調装置を示す冷媒回路図である。本実
施の形態では、蓄熱熱交換器11の冷媒圧力損失を、非
共沸混合冷媒の蓄熱熱交換器11内での温度上昇を打ち
消す程度に大きくしている。具体的には例えば、蓄熱熱
交換器11を構成する伝熱管の管径を小さくしたり、並
列に接続する伝熱管数を削減したり、伝熱管の長さを長
くしたり、伝熱管を平滑管ではなく内面溝付管にした
り、また伝熱管の途中で絞りをつけたりすることで、冷
媒圧力損失を増大することができる。なお、図6に示し
たものと同一の構成部品には同一符号を付して、その重
複する説明を省略する。
Embodiment 9 FIG. FIG. 16 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 9 of the present invention. In the present embodiment, the refrigerant pressure loss of the heat storage heat exchanger 11 is made large enough to cancel the temperature rise of the non-azeotropic mixed refrigerant in the heat storage heat exchanger 11. Specifically, for example, the diameter of the heat transfer tubes constituting the heat storage heat exchanger 11 is reduced, the number of heat transfer tubes connected in parallel is reduced, the length of the heat transfer tubes is increased, and the heat transfer tubes are smoothed. Refrigerant pressure loss can be increased by using an inner grooved tube instead of a tube, or by using a throttle in the middle of the heat transfer tube. The same components as those shown in FIG. 6 are denoted by the same reference numerals, and the description thereof will not be repeated.

【0084】蓄熱運転時の動作を圧力−エンタルピー線
図上に示したものを図17に示す。図中a点が圧縮機1
の出口、b点が室外熱交換器3の出口、c点が蓄熱熱交
換器11の入口、dが蓄熱熱交換器11の出口を示す。
蓄熱熱交換器11は、図中一点鎖線で示すフロンR40
7Cの等温線と一致するように冷媒圧力損失を増大させ
ている。このため蓄熱熱交換器11内でのフロンR40
7Cの蒸発温度は概略一定となり、その表面に付着生成
する氷の厚みも均一化される。なお圧力一定のもとでの
フロンR407Cの蒸発温度変化は約5℃であり、蓄熱
熱交換器11の冷媒圧力損失を0.8kg/cm2 程度
とすることにより、蒸発温度は概略一定となる。ただ
し、この冷媒圧力損失の数値は、非共沸混合冷媒の種類
に応じて設定される数値である。
FIG. 17 shows the operation during the heat storage operation on a pressure-enthalpy diagram. The point a in the figure is the compressor 1
, The point b indicates the outlet of the outdoor heat exchanger 3, the point c indicates the inlet of the heat storage heat exchanger 11, and the point d indicates the outlet of the heat storage heat exchanger 11.
The heat storage heat exchanger 11 is a Freon R40 indicated by a chain line in the figure.
The refrigerant pressure loss is increased to match the 7C isotherm. For this reason, Freon R40 in the heat storage heat exchanger 11
The evaporation temperature of 7C is substantially constant, and the thickness of the ice adhered to the surface is also uniformed. The change in the evaporating temperature of Freon R407C under a constant pressure is about 5 ° C., and by setting the refrigerant pressure loss of the heat storage heat exchanger 11 to about 0.8 kg / cm 2 , the evaporating temperature becomes substantially constant. . However, the numerical value of the refrigerant pressure loss is a numerical value set according to the type of the non-azeotropic mixed refrigerant.

【0085】冷媒圧力損失を0.8kg/cm2 程度に
設定するには、例えば、製氷運転時の冷凍能力6400
kcal/hである冷凍空調装置において、従来の蓄熱
熱交換器を構成する伝熱管では、外径6.35mm、肉
厚0.47mm、総延長216mとし、1本あたり4.
5mの管長さの平滑管を48本程度並設することで、冷
媒圧力損失を0.1kg/cm2 程度に設定していたと
ころを、外径6.35mm、肉厚0.47mm、総延長
216mとし、1本あたり36mの管長さの平滑管を6
本程度並設することで冷媒圧力損失を0.8kg/cm
2 程度に設定できる。
To set the refrigerant pressure loss to about 0.8 kg / cm 2 , for example, a refrigeration capacity of 6400
In a refrigeration air conditioner of kcal / h, a heat transfer tube constituting a conventional heat storage heat exchanger has an outer diameter of 6.35 mm, a wall thickness of 0.47 mm, and a total extension of 216 m.
The refrigerant pressure loss was set to about 0.1 kg / cm 2 by arranging about 48 smooth pipes having a pipe length of 5 m in parallel, but the outer diameter was 6.35 mm, the wall thickness was 0.47 mm, and the total length was 216m and 6 smooth pipes with a length of 36m per pipe
0.8kg / cm of refrigerant pressure loss
Can be set to about 2 .

【0086】このように本実施の形態では、非共沸混合
冷媒の蓄熱熱交換器11内での温度上昇を打ち消すよう
な冷媒圧力損失を有するように蓄熱熱交換器11を構成
して、蓄熱熱交換器11内の冷媒の温度を概略一定とし
たので、蒸発時に温度変化の生じる非共沸混合冷媒を用
いても、蓄熱熱交換器11の構成によって伝熱管の壁面
温度は均一化するため、蓄熱槽10内での均一製氷を実
現できる。
As described above, in the present embodiment, the heat storage heat exchanger 11 is constructed so as to have a refrigerant pressure loss that cancels the rise in temperature of the non-azeotropic mixed refrigerant in the heat storage heat exchanger 11, and Since the temperature of the refrigerant in the heat exchanger 11 is substantially constant, even if a non-azeotropic mixed refrigerant that changes in temperature during evaporation is used, the wall surface temperature of the heat transfer tube is made uniform by the configuration of the heat storage heat exchanger 11. Thus, uniform ice making in the heat storage tank 10 can be realized.

【0087】実施の形態10.実施の形態9では、蓄熱
熱交換器11内の非共沸混合冷媒の温度を概略一定とす
ることにより均一製氷を実現し、効率の良い製氷運転を
実現したが、本実施の形態では蓄熱熱交換器11の冷媒
圧力損失を、蓄熱熱交換器11内での非共沸混合冷媒の
温度の変化幅が所定温度以下となるように設定する。特
に実施の形態9では、蓄熱効率に着目して蓄熱熱交換器
内での冷媒の温度変化を0になるように冷媒圧力損失を
設定したが、この設定では冷凍サイクルの運転効率が低
下する可能性がある。そこで、本実施の形態では、蓄熱
効率と共に冷凍サイクルの運転効率にも着目し、蓄熱熱
交換器内での冷媒の温度変化が0と同等の蓄熱効率が得
られ、かつ冷凍サイクルの運転効率の低下を防止できる
範囲になるように冷媒圧力損失を設定した。ここでは、
蓄熱材として水を用い、氷の状態で冷熱を蓄熱してお
り、非共沸混合冷媒の温度は氷を作るための温度、例え
ば−5℃付近になるように運転している。そして、この
非共沸混合冷媒の温度変化幅を、所定温度として例えば
3.5℃以下となるように、蓄熱熱交換器11の冷媒圧
力損失を設定している。
Embodiment 10 In the ninth embodiment, uniform ice making is realized by making the temperature of the non-azeotropic mixed refrigerant in the heat storage heat exchanger 11 approximately constant, and an efficient ice making operation is realized. The refrigerant pressure loss of the exchanger 11 is set so that the change width of the temperature of the non-azeotropic mixed refrigerant in the heat storage heat exchanger 11 is equal to or less than a predetermined temperature. Particularly, in the ninth embodiment, the refrigerant pressure loss is set such that the change in the temperature of the refrigerant in the heat storage heat exchanger becomes zero by focusing on the heat storage efficiency. However, this setting may reduce the operating efficiency of the refrigeration cycle. There is. Therefore, in the present embodiment, attention is paid not only to the heat storage efficiency but also to the operation efficiency of the refrigeration cycle, so that a change in the temperature of the refrigerant in the heat storage heat exchanger is equal to zero, and the heat storage efficiency is obtained. The refrigerant pressure loss was set so as to be in a range where the reduction could be prevented. here,
Water is used as the heat storage material, and cold heat is stored in the form of ice, and the non-azeotropic refrigerant is operated so as to have a temperature of about -5 ° C. for forming ice. The refrigerant pressure loss of the heat storage heat exchanger 11 is set so that the temperature change width of the non-azeotropic mixed refrigerant is, for example, 3.5 ° C. or less as a predetermined temperature.

【0088】図18は、蓄熱材として水を用い、氷の状
態で冷熱を蓄熱しており、非共沸混合冷媒の温度は氷を
作るための温度、例えば−5℃付近になるように運転し
た時の、蓄熱熱交換器11での温度変化幅[℃]と蓄熱
熱交換器11での製氷運転中の平均熱通過率[kcal
/m2 h℃]の関係を解析し求めた結果を示すグラフで
ある。なお、平均熱通過率は、下式で求められる値であ
り、平均熱通過率が大きいということは同じ温度差、同
じ伝熱面積で多量の伝熱量を得ることができ、伝熱効率
の良いことを示す。
FIG. 18 shows a case where water is used as a heat storage material and cold heat is stored in the form of ice, and the temperature of the non-azeotropic refrigerant mixture is set to a temperature for making ice, for example, around -5 ° C. Of the temperature change [° C.] in the heat storage heat exchanger 11 and the average heat transmission rate [kcal] during the ice making operation in the heat storage heat exchanger 11
/ M 2 h ° C.] is a graph showing the result obtained by analyzing the relationship. The average heat transfer rate is a value obtained by the following equation, and the fact that the average heat transfer rate is large means that a large amount of heat transfer can be obtained with the same temperature difference and the same heat transfer area, and that the heat transfer efficiency is good. Is shown.

【0089】[0089]

【数1】 (Equation 1)

【0090】蓄熱熱交換器11での温度変化幅は、蓄熱
熱交換器11の入口部と出口部との配管に温度検知器を
設け、この温度検知器によって蓄熱熱交換器11の入口
部および出口部での非共沸混合冷媒の温度を検知し、そ
の温度差を計算したものである。また、温度検知器で温
度を計測する代わりに圧力検知器を設けて圧力を検出
し、その圧力から算出した飽和温度を用いてもよい。図
18で示されるように、平均熱通過率は蓄熱熱交換器1
1での温度変化幅が3.5℃より大きくなると急激に低
下する。ところが、蓄熱熱交換器11での温度変化幅が
3.5℃以下の場合の平均熱通過率はほとんど変化せ
ず、温度変化幅が0℃、すなわち蓄熱熱交換器11内の
冷媒の温度変化がなく均一な製氷を実現できるときの平
均熱通過率とほぼ同一となっている。
The temperature change width of the heat storage heat exchanger 11 can be determined by providing a temperature detector at the pipe between the inlet and the outlet of the heat storage heat exchanger 11, and using the temperature detector to detect the temperature of the inlet and the heat storage heat exchanger 11. The temperature of the non-azeotropic mixed refrigerant at the outlet is detected, and the temperature difference is calculated. Instead of measuring the temperature with a temperature detector, a pressure detector may be provided to detect the pressure, and the saturation temperature calculated from the pressure may be used. As shown in FIG. 18, the average heat transmission rate is
When the temperature change width at 1 is larger than 3.5 ° C., the temperature rapidly decreases. However, when the temperature change width in the heat storage heat exchanger 11 is 3.5 ° C. or less, the average heat transfer rate hardly changes, and the temperature change width is 0 ° C., that is, the temperature change of the refrigerant in the heat storage heat exchanger 11. It is almost the same as the average heat transmission rate when uniform ice making can be realized without any problem.

【0091】蓄熱熱交換器11の入口部と出口部とで非
共沸混合冷媒の温度に変化があると、蓄熱材である水の
凝固温度と冷媒の温度との温度差が大きい箇所での氷の
成長が早くなる一方で、水の凝固温度と冷媒の温度との
温度差が小さい箇所での氷の成長が遅くなる。蓄熱熱交
換器11での温度変化幅が3.5℃よりも大きい場合、
例えば蓄熱熱交換器11の入口部での冷媒温度を−10
℃、出口部での冷媒温度を−5℃とし、温度変化幅が5
℃の場合、入口部での水の凝固温度と冷媒の温度との温
度差は10℃、出口部では5℃となる。冷媒の温度が直
線的に変化するとし、入口部での温度差の10℃に対す
る温度変化と、出口部での温度差5℃に対する温度変化
では、出口部の方が入口部よりも水の凝固温度と冷媒の
温度との温度差の変化割合が大きくなる。このことか
ら、氷の成長の早い部分と遅い部分での氷厚の差が激し
くなり、不均一の度合いの大きい製氷状態となる。従っ
て氷の成長が早く氷厚の大きい部分では伝熱管の間に生
成された氷が早期に融合するというブリッジングを生じ
る。このブリッジングによる伝熱効率の低下の影響が大
きくなって蓄熱熱交換器11での伝熱効率が低下し、製
氷運転の蓄熱効率が低下する。
When the temperature of the non-azeotropic mixed refrigerant changes at the inlet and outlet of the heat storage heat exchanger 11, the temperature difference between the solidification temperature of the heat storage material water and the temperature of the refrigerant is large. While the ice grows faster, the ice grows at a point where the temperature difference between the freezing temperature of the water and the temperature of the refrigerant is small. When the temperature change width in the heat storage heat exchanger 11 is larger than 3.5 ° C.,
For example, the refrigerant temperature at the inlet of the heat storage heat exchanger 11 is set to -10.
℃, the refrigerant temperature at the outlet is -5 ℃, the temperature change width is 5
In the case of ° C., the temperature difference between the solidification temperature of water at the inlet and the temperature of the refrigerant is 10 ° C., and 5 ° C. at the outlet. Assuming that the temperature of the refrigerant changes linearly, the temperature change at the inlet with respect to the temperature difference of 10 ° C. and the temperature change at the outlet with respect to the temperature difference of 5 ° C. show that the water at the outlet is more solidified than at the inlet. The rate of change of the temperature difference between the temperature and the temperature of the refrigerant increases. For this reason, the difference in ice thickness between the portion where the ice growth is fast and the portion where the ice growth is slow increases, and an ice-making state having a large degree of unevenness is obtained. Accordingly, bridging occurs where ice generated between the heat transfer tubes fuses early in a portion where ice growth is fast and the ice thickness is large. The effect of the decrease in the heat transfer efficiency due to the bridging increases, the heat transfer efficiency in the heat storage heat exchanger 11 decreases, and the heat storage efficiency in the ice making operation decreases.

【0092】一方、蓄熱熱交換器11での温度変化幅が
3.5℃以下の場合には、蓄熱熱交換器11の伝熱管表
面に生成される氷厚のばらつきの程度は小さく、ほぼ均
一に製氷されるため、各伝熱管周りの氷のブリッジング
は各伝熱管周りでほぼ同時に起こり、3.5℃よりも大
きい温度変化幅がある場合と比較すると、製氷運転のな
かでブリッジングの生じる時間が遅くなる。このためブ
リッジングによる伝熱効率の低下の影響が小さくなって
蓄熱熱交換器11での伝熱効率がよくなり、蓄熱効率の
よい製氷運転が実現できる。
On the other hand, when the temperature change width in the heat storage heat exchanger 11 is 3.5 ° C. or less, the degree of variation in the ice thickness generated on the heat transfer tube surface of the heat storage heat exchanger 11 is small and substantially uniform. Therefore, bridging of ice around each heat transfer tube occurs almost simultaneously around each heat transfer tube, and the bridging of the ice in the ice making operation is compared with the case where there is a temperature change width larger than 3.5 ° C. The time to occur is delayed. Therefore, the influence of the decrease in the heat transfer efficiency due to bridging is reduced, the heat transfer efficiency in the heat storage heat exchanger 11 is improved, and an ice making operation with a high heat storage efficiency can be realized.

【0093】なお、冷媒の温度が、蓄熱熱交換器11の
入口部11aで低く、蓄熱熱交換器11の出口部11b
で高くなる場合と、蓄熱熱交換器11の入口部11aで
高く、蓄熱熱交換器11の出口部11bで低くなる場合
の、いずれにおいても温度変化幅が同一であれば同様の
特性となり、上記と同様のことが言える。すなわち蓄熱
熱交換器11での冷媒の温度変化幅が3.5℃以下の場
合には、蓄熱効率のよい製氷運転を実現できる。図18
は蓄熱材として水を用い、非共沸混合冷媒の温度が−5
℃付近の特性であり、蓄熱熱交換器11の非共沸冷媒の
温度変化幅を3.5℃以下にするのが蓄熱効率の点から
望ましい。ところが、エチレングリコールなどの他の蓄
熱材を用いる場合には、冷媒の温度を蓄熱に適した温度
にする必要があり、その時の蓄熱熱交換器11での温度
変化幅と蓄熱熱交換器11の平均熱通過率の関係は図1
8とは少し異なる可能性がある。ただしその場合でも、
所定温度よりも大きくなると平均熱通過率が大きく低下
する傾向があるので、平均熱通過率が大きく低下する最
少の温度変化幅の値を所定温度とし、この所定温度以下
になるように蓄熱熱交換器11の冷媒圧力損失を設定す
ればよい。
The temperature of the refrigerant is low at the inlet 11a of the heat storage heat exchanger 11 and at the outlet 11b of the heat storage heat exchanger 11.
In both cases where the temperature change width is the same, the same characteristics are obtained when the temperature change width is the same. The same can be said. That is, when the temperature change width of the refrigerant in the heat storage heat exchanger 11 is 3.5 ° C. or less, an ice making operation with good heat storage efficiency can be realized. FIG.
Uses water as a heat storage material, and the temperature of the non-azeotropic refrigerant mixture is -5.
It is a characteristic in the vicinity of ° C., and it is desirable that the temperature change width of the non-azeotropic refrigerant in the heat storage heat exchanger 11 be 3.5 ° C. or less from the viewpoint of heat storage efficiency. However, when another heat storage material such as ethylene glycol is used, it is necessary to set the temperature of the refrigerant to a temperature suitable for heat storage. Figure 1 shows the relationship between the average heat transmission rates.
8 may be slightly different. However, in that case,
If the temperature exceeds the predetermined temperature, the average heat transmittance tends to decrease significantly.Therefore, the minimum temperature change width at which the average heat transmittance greatly decreases is defined as the predetermined temperature. What is necessary is just to set the refrigerant pressure loss of the vessel 11.

【0094】図19は、横軸に蓄熱熱交換器11での冷
媒圧力損失[kg/cm2 ]、縦軸にその冷媒圧力損失
がある場合、冷媒としてフロンR22とフロンR407
Cを用いた場合の蓄熱熱交換器11での温度変化(出口
温度−入口温度)[℃]を表すグラフである。ここで、
この特性は、冷媒の温度が、蓄熱材を水として氷の状態
で蓄熱する時の冷媒の温度である−5℃付近のものであ
る。図19から、冷媒にフロンR407Cを用いた場合
には、蓄熱熱交換器11での冷媒圧力損失を0.25k
g/cm2 以上に設定すると、蓄熱熱交換器11での温
度変化幅を3.5℃以下に設定できる。また、蓄熱熱交
換器11での冷媒圧力損失を0.6kg/cm2 より大
きくしても、蓄熱熱交換器11での冷媒の温度変化幅が
3.5℃以下となり、蓄熱効率のよい製氷運転を実現で
きるが、冷媒圧力損失を余りに大きくすると、製氷運転
中の冷凍サイクルの効率が低下してしまい、好ましくな
い。
In FIG. 19, when the refrigerant pressure loss [kg / cm 2 ] in the heat storage heat exchanger 11 is plotted on the horizontal axis and the refrigerant pressure loss is plotted on the vertical axis, Freon R22 and Freon R407 are used as refrigerants.
6 is a graph showing a temperature change (outlet temperature−inlet temperature) [° C.] in the heat storage heat exchanger 11 when C is used. here,
This characteristic is such that the temperature of the refrigerant is around −5 ° C., which is the temperature of the refrigerant when heat is stored in the form of ice using the heat storage material as water. From FIG. 19, when Freon R407C is used as the refrigerant, the refrigerant pressure loss in the heat storage heat exchanger 11 is 0.25 k
When it is set to g / cm 2 or more, the temperature change width in the heat storage heat exchanger 11 can be set to 3.5 ° C. or less. Also, even if the refrigerant pressure loss in the heat storage heat exchanger 11 is larger than 0.6 kg / cm 2 , the temperature change width of the refrigerant in the heat storage heat exchanger 11 becomes 3.5 ° C. or less, and ice making with good heat storage efficiency The operation can be realized, but if the refrigerant pressure loss is too large, the efficiency of the refrigeration cycle during the ice making operation decreases, which is not preferable.

【0095】ここで、蓄熱槽10への蓄熱効率の向上と
共に冷凍サイクルの運転効率も向上できる冷凍空調装置
について説明する。この時、冷媒としては、例えば非共
沸混合冷媒であるR407Cを使用するものとする。図
20は、横軸に蓄熱熱交換器11での冷媒圧力損失[k
g/cm2 ]、縦軸にその圧力損失がある場合の冷凍サ
イクルの運転効率を示す特性図である。なお、図20で
は蓄熱熱交換器11での平均熱通過率は一定値とし、前
述の圧力損失による平均熱通過率の変化は考慮していな
い。一般に冷凍空調装置の運転効率は、熱源装置である
圧縮機の運転効率がよいほどよくなるが、蒸発器である
蓄熱熱交換器11での圧力損失が大きくなると、圧縮機
の吸入圧力は低下し、圧縮機での圧縮比が大きくなる。
圧縮比が大きくなると、圧縮機の運転効率は低下し、冷
凍空調装置を構成する冷凍サイクルの運転効率も低下す
る。従って、冷凍サイクルを運転する場合に、圧縮機の
運転効率を考えると、蓄熱熱交換器11での冷媒圧力損
失はできるだけ小さい方が望ましい。図20に示される
ように、蓄熱熱交換器11での冷媒圧力損失が0のとき
の冷凍サイクルの運転効率と比較すると、冷媒圧力損失
が0.6kg/cm2 程度では運転効率が5%程度低下
している。すなわち冷凍サイクルの運転効率の低下を所
定値例えば5%に押さえるためには、0.6kg/cm
2 以下の冷媒圧力損失を有するように蓄熱熱交換器11
を構成するのが望ましい。ただし、この運転効率低下の
許容の程度を表わす所定値は、冷凍空調装置の利用状況
に応じて設定すればよい。冷凍サイクルの運転効率をも
っと良くしたい場合には、運転効率低下を3%程度に設
定して、蓄熱熱交換器11の冷媒圧力損失を0.6kg
/cm2 よりも小さい0.4kg/cm2 としてもよ
い。また、冷凍サイクルの運転効率をあまり重視してい
ない場合には、運転効率低下を8%程度に設定して、蓄
熱熱交換器11の冷媒圧力損失を0.6kg/cm2
りも大きい0.7kg/cm2 としてもよい。
Here, a refrigeration / air-conditioning apparatus that can improve the efficiency of heat storage in the heat storage tank 10 and the operating efficiency of the refrigeration cycle will be described. At this time, as the refrigerant, for example, R407C which is a non-azeotropic mixed refrigerant is used. FIG. 20 shows the refrigerant pressure loss [k in the heat storage heat exchanger 11 on the horizontal axis.
g / cm 2 ], and the vertical axis shows the operating efficiency of the refrigeration cycle when the pressure loss is present. In FIG. 20, the average heat transmittance in the heat storage heat exchanger 11 is a constant value, and the change in the average heat transmittance due to the above-described pressure loss is not taken into account. In general, the operating efficiency of the refrigeration / air-conditioning apparatus is improved as the operating efficiency of the compressor, which is a heat source device, is improved. The compression ratio in the compressor increases.
When the compression ratio increases, the operating efficiency of the compressor decreases, and the operating efficiency of the refrigeration cycle constituting the refrigeration air conditioner also decreases. Therefore, when operating the refrigeration cycle, it is desirable that the refrigerant pressure loss in the heat storage heat exchanger 11 be as small as possible in consideration of the operating efficiency of the compressor. As shown in FIG. 20, as compared with the operation efficiency of the refrigeration cycle when the refrigerant pressure loss in the heat storage heat exchanger 11 is 0, the operation efficiency is approximately 5% when the refrigerant pressure loss is approximately 0.6 kg / cm 2. Is declining. That is, in order to suppress the decrease in the operating efficiency of the refrigeration cycle to a predetermined value, for example, 5%, 0.6 kg / cm
The heat storage heat exchanger 11 has a refrigerant pressure loss of 2 or less.
It is desirable to configure However, the predetermined value indicating the allowable degree of the decrease in the operating efficiency may be set according to the usage status of the refrigeration and air conditioning system. In order to further improve the operation efficiency of the refrigeration cycle, the decrease in the operation efficiency is set to about 3%, and the refrigerant pressure loss of the heat storage heat exchanger 11 is set to 0.6 kg.
It may be less 0.4 kg / cm 2 than / cm 2. Further, when the operation efficiency of the refrigeration cycle is not given much importance, the decrease in the operation efficiency is set to about 8%, and the refrigerant pressure loss of the heat storage heat exchanger 11 is set to 0.1% which is larger than 0.6 kg / cm 2 . It may be 7 kg / cm 2 .

【0096】また、図21は横軸に蓄熱熱交換器11で
の冷媒圧力損失[kg/cm2 ]、縦軸にその冷媒圧力
損失がある場合の蓄熱熱交換器11の熱通過率を示す特
性図である。前に述べたように、蓄熱熱交換器11での
温度変化幅が3.5℃以下の方が蓄熱熱交換器11での
伝熱効率の良い運転を実現できる。このため、蓄熱熱交
換器11での伝熱効率を考えると、蓄熱熱交換器11で
の冷媒圧力損失は0.25kg/cm2 以上にするのが
好ましい。
In FIG. 21, the horizontal axis indicates the refrigerant pressure loss [kg / cm 2 ] in the heat storage heat exchanger 11, and the vertical axis indicates the heat passage rate of the heat storage heat exchanger 11 when the refrigerant pressure loss is present. It is a characteristic diagram. As described above, when the temperature change width in the heat storage heat exchanger 11 is equal to or less than 3.5 ° C., the operation with high heat transfer efficiency in the heat storage heat exchanger 11 can be realized. Therefore, considering heat transfer efficiency in the heat storage heat exchanger 11, it is preferable that the refrigerant pressure loss in the heat storage heat exchanger 11 be 0.25 kg / cm 2 or more.

【0097】図22は、横軸に蓄熱熱交換器11での冷
媒圧力損失[kg/cm2 ]、縦軸に冷凍サイクルの運
転効率を示す特性図である。この時の冷凍サイクルの運
転効率は、図20と図21に基づいて、蓄熱熱交換器1
1における平均熱通過率の変化を考慮したものである。
冷凍サイクルの運転効率低下を5%とすると、図22に
示した特性曲線から、蓄熱熱交換器11の冷媒圧力損失
は、0.25kg/cm2 以上でかつ0.6kg/cm
2 以下に設定することが好ましい。
FIG. 22 is a characteristic diagram showing the refrigerant pressure loss [kg / cm 2 ] in the heat storage heat exchanger 11 on the horizontal axis and the operating efficiency of the refrigeration cycle on the vertical axis. The operation efficiency of the refrigeration cycle at this time is based on FIG. 20 and FIG.
1 in consideration of the change in the average heat transmittance.
Assuming that the decrease in the operating efficiency of the refrigeration cycle is 5%, from the characteristic curve shown in FIG. 22, the refrigerant pressure loss of the heat storage heat exchanger 11 is 0.25 kg / cm 2 or more and 0.6 kg / cm 2.
It is preferably set to 2 or less.

【0098】以下、冷媒圧力損失を0.25kg/cm
2 以上でかつ0.6kg/cm2 以下に設定する構成を
具体的に示す。冷媒圧力損失を大きくするには、例えば
蓄熱熱交換器11を構成する伝熱管の管径を小さくした
り、並列に接続する伝熱管数を削減したり、伝熱管の長
さを長くしたり、伝熱管を平滑管ではなく内面溝付管に
したり、また伝熱管の途中で絞りをつけたりすればよ
い。例えば、製氷運転時の冷凍能力が6400kcal
/hである冷凍空調装置において、蓄熱熱交換器11の
伝熱管を外径6.35mm、肉厚0.47mm、総延長
216mの平滑管で構成する際、1本あたり11.4m
の管長さの平滑管を19本程度並設することで冷媒圧力
損失を0.25kg/cm2 程度に設定でき、1本あた
り36mの管長さの平滑管を6本程度並設することで冷
媒圧力損失を0.6kg/cm2 程度に設定できる。ま
た、その間の冷媒圧力損失にしようとすれば、1本あた
りの長さを11.4mから36mの間の長さの平滑管を
用い、総延長が216mとなるような本数を並設するよ
うに構成すればよい。
Hereinafter, the refrigerant pressure loss is set to 0.25 kg / cm
A configuration in which the value is set to 2 or more and 0.6 kg / cm 2 or less will be specifically described. To increase the refrigerant pressure loss, for example, reducing the diameter of the heat transfer tubes constituting the heat storage heat exchanger 11, reducing the number of heat transfer tubes connected in parallel, increasing the length of the heat transfer tubes, The heat transfer tube may be an inner grooved tube instead of a smooth tube, or a throttle may be provided in the middle of the heat transfer tube. For example, the refrigeration capacity during the ice making operation is 6400 kcal.
/ H, when the heat transfer tubes of the heat storage heat exchanger 11 are constituted by smooth tubes having an outer diameter of 6.35 mm, a wall thickness of 0.47 mm, and a total length of 216 m, each tube has 11.4 m.
The refrigerant pressure loss can be set to about 0.25 kg / cm 2 by arranging about 19 smooth pipes of the same length in parallel, and the refrigerant can be set by arranging about 6 smooth pipes of 36 m per pipe in parallel. Pressure loss can be set to about 0.6 kg / cm 2 . In order to reduce the refrigerant pressure loss during this period, use a smooth tube with a length between 11.4 m and 36 m per tube, and arrange the number of tubes so that the total length is 216 m. May be configured.

【0099】また、伝熱管として平滑管ではなく内面溝
付管を用いて、冷媒圧力損失を0.25kg/cm2
ら0.6kg/cm2 程度に設定する構成を具体的に示
す。例えば、製氷運転時の冷凍能力が6400kcal
/hである冷凍空調装置において、蓄熱熱交換器11の
伝熱管を外径6.35mm、肉厚0.47mm、総延長
172mの溝付管で構成する際、1本あたり9.1mの
管長さの溝付管を19本程度並設することで冷媒圧力損
失を0.25kg/cm2 程度に設定でき、1本あたり
24.6mの管長さの溝付管を7本程度並設することで
冷媒圧力損失を0.6kg/cm2 程度に設定できる。
また、その間の冷媒圧力損失にしようとすれば、1本あ
たりの長さを9.1mから24.6mの間の長さの内面
溝付管を用い、総延長が172mとなるような本数を並
設して構成すればよい。
[0099] Further, by using an internally grooved tube rather than a smooth tube as a heat transfer tube, specifically showing the configuration set to about 0.6 kg / cm 2 refrigerant pressure loss from 0.25 kg / cm 2. For example, the refrigeration capacity during the ice making operation is 6400 kcal.
/ H, when the heat transfer tubes of the heat storage heat exchanger 11 are constituted by grooved tubes having an outer diameter of 6.35 mm, a wall thickness of 0.47 mm, and a total length of 172 m, each tube length is 9.1 m. The refrigerant pressure loss can be set to about 0.25 kg / cm 2 by arranging about 19 grooved pipes in parallel, and about 7 grooved pipes with a pipe length of 24.6 m per pipe can be set. Thus, the refrigerant pressure loss can be set to about 0.6 kg / cm 2 .
In addition, in order to reduce the refrigerant pressure loss during this period, use a tube with an inner surface groove having a length between 9.1 m and 24.6 m per tube, and set the number of tubes such that the total extension becomes 172 m. What is necessary is just to arrange in parallel.

【0100】また、蓄熱熱交換器11を構成する伝熱管
の並列に接続する伝熱管数を削減したり、伝熱管の長さ
を長くしたり、伝熱管を平滑管ではなく内面溝付管にし
たりして、冷媒圧力損失を設定するのに限るものではな
く、他の構成によって冷媒圧力損失を設定してもよい。
例えば、伝熱管の管径を小さくしたり、伝熱管の途中で
絞りをつけたりすることで、冷媒圧力損失を大きく設定
することもできる。
Further, the number of heat transfer tubes connected in parallel to the heat transfer tubes constituting the heat storage heat exchanger 11 can be reduced, the length of the heat transfer tubes can be increased, or the heat transfer tubes can be formed into inner grooved tubes instead of smooth tubes. However, the present invention is not limited to setting the refrigerant pressure loss, and the refrigerant pressure loss may be set by another configuration.
For example, the refrigerant pressure loss can be set to be large by reducing the diameter of the heat transfer tube or reducing the diameter in the middle of the heat transfer tube.

【0101】このように本実施の形態では、非共沸混合
冷媒の蓄熱熱交換器11内での温度変化幅が所定温度以
下となるような冷媒圧力損失を有するように蓄熱熱交換
器11を構成したので、蒸発時に温度変化の生じる非共
沸混合冷媒を用いても、蓄熱熱交換器11の構成によっ
て伝熱管表面に生成される氷厚のばらつきの程度の小さ
い、ほぼ均一な製氷を実現でき、蓄熱効率のよい製氷運
転を実現できる。
As described above, in the present embodiment, the heat storage heat exchanger 11 is controlled so that the non-azeotropic mixed refrigerant has a refrigerant pressure loss such that the temperature change width in the heat storage heat exchanger 11 becomes equal to or less than the predetermined temperature. With this configuration, even if a non-azeotropic refrigerant mixture that changes in temperature during evaporation is used, the heat storage heat exchanger 11 realizes substantially uniform ice making with a small degree of variation in ice thickness generated on the heat transfer tube surface. It is possible to realize an ice making operation with good heat storage efficiency.

【0102】実施の形態11.実施の形態10では、熱
伝達媒体として1つの非共沸混合冷媒を用い、蓄熱熱交
換器11内の非共沸混合冷媒の温度の変化幅を所定温度
以下とすることで、蓄熱効率の良い製氷運転を実現し、
またさらに蓄熱熱交換器11の冷媒圧力損失を0.6k
g/cm2 以下にすることにより冷凍サイクルの運転効
率の低下を防止した。本実施の形態では、少なくとも1
つの非共沸混合冷媒に対すると共に、単一冷媒や共沸冷
媒や前記の非共沸混合冷媒とは異なる非共沸混合冷媒の
いずれか1つまたは複数に対して蓄熱熱交換器11内の
熱伝達媒体の温度の変化幅が所定温度以下になるように
蓄熱熱交換器11を構成した。
Embodiment 11 FIG. In the tenth embodiment, one non-azeotropic mixed refrigerant is used as the heat transfer medium, and the temperature change width of the non-azeotropic mixed refrigerant in the heat storage heat exchanger 11 is set to a predetermined temperature or less, so that the heat storage efficiency is improved. Realizing ice making operation,
Further, the refrigerant pressure loss of the heat storage heat exchanger 11 is reduced to 0.6 k.
By controlling the refrigeration cycle to not more than g / cm 2 , a decrease in the operation efficiency of the refrigeration cycle was prevented. In the present embodiment, at least one
Heat in the heat storage heat exchanger 11 with respect to one non-azeotropic mixed refrigerant and one or more of the single refrigerant, the azeotropic refrigerant, and the non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant. The heat storage heat exchanger 11 is configured such that the change width of the temperature of the transmission medium is equal to or less than a predetermined temperature.

【0103】現在、蓄熱機能を有する冷凍空調装置の多
くには単一冷媒であるフロンR22が用いられている。
しかしフロンR22はオゾン層破壊係数が高くオゾン層
保護のため2020年にフロンR22は全廃されること
が、1992年に締結されたモントリオール議定書によ
り定められている。従って現在フロンR22を用いてい
る蓄熱機能を有する冷凍空調装置は遅くとも2020年
には使用する熱伝達媒体を変更することが求められる。
その際、熱力学的性質が類似しており、オゾン層を破壊
しない非共沸混合冷媒であるフロンR407Cへの熱伝
達媒体の変更が多く実施されると考えられる。この変更
の際、熱伝達媒体の変更に対応して冷凍空調装置も新た
なものとするよりは、冷凍空調装置はそのままで、熱伝
達媒体の変更のみを行うレトロフィットの方がコスト面
で望ましい。レトロフィットを行う場合には、2つの熱
伝達媒体、例えばフロンR22とフロンR407Cのど
ちらも用いた運転が冷凍空調装置の構成を変更せずに行
われることになるので、蓄熱熱交換器11としてはどち
らの熱伝達媒体を用いても効率よく運転できることが求
められる。さらには、あらかじめ使用が考えられる熱伝
達媒体の全てに対して、効率よく運転できる冷凍空調装
置を構成しておくことは、非常に有効である。
At present, Freon R22, which is a single refrigerant, is used in many refrigeration and air conditioning systems having a heat storage function.
However, Freon R22 has a high ozone depletion potential, and the Montreal Protocol concluded in 1992 stipulates that Freon R22 be completely abolished in 2020 to protect the ozone layer. Therefore, a refrigeration / air-conditioning apparatus having a heat storage function that currently uses Freon R22 is required to change the heat transfer medium used by 2020 at the latest.
At that time, it is considered that the heat transfer medium is frequently changed to Freon R407C, which is a non-azeotropic refrigerant having similar thermodynamic properties and does not destroy the ozone layer. At the time of this change, a retrofit in which only the change of the heat transfer medium is performed while the refrigeration air conditioner is kept as it is is more preferable in terms of cost than a new refrigeration air conditioner corresponding to the change of the heat transfer medium. . When retrofitting is performed, the operation using both of the two heat transfer media, for example, Freon R22 and Freon R407C, is performed without changing the configuration of the refrigeration / air-conditioning apparatus. Is required to be able to operate efficiently with either heat transfer medium. Furthermore, it is very effective to configure a refrigeration / air-conditioning apparatus that can efficiently operate all the heat transfer media that can be used in advance.

【0104】また今日では、図23に示すように、現在
冷媒として単一冷媒のフロンR22を用い、室外ユニッ
ト30と室内ユニット31から構成される蓄熱機能を有
しない冷凍空調装置に、新たに蓄熱ユニット32を付加
して蓄熱機能を有する冷凍空調装置に変更することが多
く行われている。このような場合には現在は例えばフロ
ンR22を用いて冷凍空調装置の運転が行われ、製氷運
転などの蓄熱運転もフロンR22を用いて行われる。と
ころが、前記の2020年までには冷媒が非共沸混合冷
媒であるフロンR407Cに変更され、レトロフィット
を実施した後、製氷運転などの蓄熱運転を含む冷凍空調
装置の運転はフロンR407Cを用いて行われることに
なる。従って、新たに付加される蓄熱ユニット32内の
蓄熱熱交換器11では、冷媒として単一冷媒であるフロ
ンR22と非共沸混合冷媒であるフロンR407Cのど
ちらを用いても効率よく蓄熱運転できることが求められ
る。
Today, as shown in FIG. 23, a refrigeration and air-conditioning system that uses a single refrigerant, Freon R22, as a refrigerant and does not have a heat storage function composed of an outdoor unit 30 and an indoor unit 31 is newly provided. A refrigeration and air-conditioning system having a heat storage function by adding a unit 32 is often used. In such a case, the operation of the refrigerating air conditioner is currently performed using, for example, Freon R22, and the heat storage operation such as the ice making operation is also performed using Freon R22. However, by 2020, the refrigerant was changed to Freon R407C, which is a non-azeotropic mixed refrigerant, and after retrofitting, the operation of the refrigeration and air-conditioning system including the heat storage operation such as ice making operation was performed using Freon R407C. Will be done. Therefore, in the heat storage heat exchanger 11 in the newly added heat storage unit 32, it is possible to efficiently perform the heat storage operation using either the single refrigerant Freon R22 or the non-azeotropic refrigerant mixture Freon R407C as the refrigerant. Desired.

【0105】本実施の形態では、単一冷媒であるフロン
R22と非共沸混合冷媒であるフロンR407Cのどち
らにおいても、蓄熱熱交換器11での温度変化幅が所定
温度例えば3.5℃以下となるように蓄熱熱交換器11
での冷媒圧力損失を設定する。図19に示した蓄熱熱交
換器11での冷媒圧力損失[kg/cm2 ]と蓄熱熱交
換器11での温度変化[℃](出口温度−入口温度)の
関係を示すグラフには、単一冷媒であるフロンR22と
非共沸混合冷媒であるフロンR407Cの場合の関係を
示している。実施の形態10で述べたように、フロンR
407Cを用いた場合の蓄熱熱交換器11での冷媒圧力
損失が、0.25kg/cm2 以上でかつ0.6kg/
cm2 以下となるように設定すると、フロンR407C
を用いた時の蓄熱熱交換器11での温度変化幅が3.5
℃以下となり、蓄熱効率の良い製氷運転を行うことが可
能となる。一方、フロンR22を用いた場合の蓄熱熱交
換器11での冷媒圧力損失が、0.5kg/cm2 以下
となるように設定すると、フロンR22を用いた時の蓄
熱熱交換器11での温度変化幅が3.5℃以下となり、
蓄熱効率の良い製氷運転を行うことが可能となる。すな
わち、フロンR22とフロンR407Cいずれにおいて
も蓄熱熱交換器11での温度変化幅が3.5℃以下とす
るには、蓄熱熱交換器11での冷媒圧力損失が0.25
kg/cm2以上でかつ0.5kg/cm2 以下に設定
するとよい。このように蓄熱熱交換器11の冷媒圧力損
失を設定すると、フロンR22とフロンR407Cのい
ずれにおいても蓄熱熱交換器11での温度変化幅が3.
5℃以下となり、フロンR22とフロンR407Cのい
ずれを用いても蓄熱効率よく製氷運転を行うことが可能
となる。また、蓄熱熱交換器11の冷媒圧力損失をこの
範囲内に設定すると、図20に示すように冷凍サイクル
の運転効率もよい状態で維持できる。
In the present embodiment, in both Freon R22, which is a single refrigerant, and Freon R407C, which is a non-azeotropic refrigerant mixture, the temperature change width of the heat storage heat exchanger 11 is a predetermined temperature, for example, 3.5 ° C. or less. Heat storage heat exchanger 11
Set the refrigerant pressure loss at. The graph showing the relationship between the refrigerant pressure loss [kg / cm 2 ] in the heat storage heat exchanger 11 and the temperature change [° C.] (outlet temperature−inlet temperature) in the heat storage heat exchanger 11 shown in FIG. The relationship between Freon R22, which is one refrigerant, and Freon R407C, which is a non-azeotropic mixed refrigerant, is shown. As described in the tenth embodiment, Freon R
The refrigerant pressure loss in the heat storage heat exchanger 11 when using 407C is 0.25 kg / cm 2 or more and 0.6 kg / cm 2
If you set so that the cm 2 or less, freon R407C
The temperature change width in the heat storage heat exchanger 11 when using
° C or less, and an ice making operation with good heat storage efficiency can be performed. On the other hand, when the refrigerant pressure loss in the heat storage heat exchanger 11 when using Freon R22 is set to be 0.5 kg / cm 2 or less, the temperature in the heat storage heat exchanger 11 when using Freon R22 is used. The change width becomes 3.5 ° C or less,
It becomes possible to perform an ice making operation with good heat storage efficiency. That is, in order to make the temperature change width in the heat storage heat exchanger 11 3.5 ° C. or less in both Freon R22 and Freon R407C, the refrigerant pressure loss in the heat storage heat exchanger 11 is 0.25
It is preferable to set the pressure to not less than kg / cm 2 and not more than 0.5 kg / cm 2 . When the refrigerant pressure loss of the heat storage heat exchanger 11 is set as described above, the temperature change width of the heat storage heat exchanger 11 is 3.times. For both Freon R22 and Freon R407C.
The temperature is 5 ° C. or less, and the ice making operation can be performed with high heat storage efficiency using either Freon R22 or Freon R407C. When the refrigerant pressure loss of the heat storage heat exchanger 11 is set within this range, the operation efficiency of the refrigeration cycle can be maintained in a good state as shown in FIG.

【0106】蓄熱熱交換器11の冷媒圧力損失を0.2
5kg/cm2 以上でかつ0.5kg/cm2 以下に設
定する構成を具体的に示す。例えば、製氷運転時の冷凍
能力が6400kcal/hである冷凍空調装置におい
て、外径6.35mm、肉厚0.47mm、総延長21
6mの平滑管で構成する際、1本あたり11.4mの管
長さの平滑管を19本程度並設することで、冷媒圧力損
失を0.25kg/cm2 程度に設定でき、1本あたり
21.6mの管長さの平滑管を10本程度並設すること
で、冷媒圧力損失を0.5kg/cm2 程度に設定でき
る。また、その間の冷媒圧力損失にしようとすれば、1
本あたりの長さを11.4mから21.6mの間の長さ
の平滑管を用い、総延長が216mとなるような本数を
並設するように構成すればよい。また、内面溝付管で構
成したり、伝熱管の管径を小さくしたり、伝熱管の途中
に絞りをつけたりして、冷媒圧力損失を大きくして設定
してもよい。
The refrigerant pressure loss of the heat storage heat exchanger 11 is 0.2
A configuration in which the pressure is set to 5 kg / cm 2 or more and 0.5 kg / cm 2 or less will be specifically described. For example, in a refrigerating air conditioner having a refrigerating capacity of 6400 kcal / h during an ice making operation, an outer diameter is 6.35 mm, a wall thickness is 0.47 mm, and a total extension is 21 mm.
When a smooth pipe of 6 m is used, the refrigerant pressure loss can be set to about 0.25 kg / cm 2 by arranging about 19 smooth pipes each having a pipe length of 11.4 m, so that 21 pipes per pipe can be used. By arranging about 10 smooth pipes having a pipe length of 0.6 m in parallel, the refrigerant pressure loss can be set to about 0.5 kg / cm 2 . Also, if the refrigerant pressure loss during that period is attempted,
What is necessary is just to use a smooth tube with a length between 11.4 m and 21.6 m, and to arrange the number of tubes so that the total length is 216 m. Further, the refrigerant pressure loss may be set to be large by using an inner grooved tube, reducing the diameter of the heat transfer tube, or providing a restriction in the middle of the heat transfer tube.

【0107】なお、上記では、非共沸混合冷媒としてフ
ロンR407Cとし、単一冷媒としてフロンR22を用
い、フロンR22からフロンR407Cに冷媒を変更す
る場合について説明したが、これに限るものではない。
少なくとも2つの冷媒で、少なくともその一方の冷媒を
非共沸混合冷媒とし、他方の冷媒を単一冷媒または共沸
冷媒または一方の冷媒とは異なる非共沸混合冷媒とし、
それらの冷媒に対して、蓄熱熱交換器11での入口部と
出口部との冷媒の温度変化幅が所定値以下になるよう
に、蓄熱熱交換器11の冷媒圧力損失を有する構成とす
ればよい。例えば、2つの冷媒の一方の非共沸混合冷媒
として、フロンR404Aや他の非共沸混合冷媒を用い
てもよい。また地球温暖化防止の観点から、非共沸混合
冷媒としてプロパンやブタン、アンモニア、炭酸ガスな
どの自然冷媒を用いた非共沸混合冷媒を用いてもよい。
また、2つの冷媒の他方の冷媒、すなわち単一冷媒また
は共沸冷媒または前記一方の非共沸混合冷媒と異なる非
共沸混合冷媒として、例えばフロンR123、プロパン
やブタン、アンモニア、炭酸ガスなどの自然冷媒(単一
冷媒)、自然冷媒を用いた非共沸混合冷媒、フロンR4
10A(共沸冷媒)、フロンR404A(非共沸混合冷
媒)などを用いてもよい。また上記では、単一冷媒であ
るフロンR22から非共沸混合冷媒であるフロンR40
7Cに冷媒を変更する場合について説明したが、非共沸
混合冷媒から、単一冷媒または共沸冷媒または前記非共
沸混合冷媒とは異なる非共沸混合冷媒に冷媒を変更した
り、その逆の変更を行う場合にも、変更前の冷媒と変更
後の冷媒の両方に対して、蓄熱熱交換器11での入口部
と出口部との冷媒の温度変化幅が所定値以下になるよう
な冷媒圧力損失を有するように蓄熱熱交換器11を構成
すればよい。特に、地球温暖化防止の観点から、地球温
暖化作用の強いフロンR407C(非共沸混合冷媒)か
ら、単一冷媒であり、地球温暖化作用の低いプロパンや
ブタン、アンモニア、炭酸ガスなどの自然冷媒に変更す
る場合において、本実施の形態は有効である。
In the above description, the case where Freon R407C is used as the non-azeotropic mixed refrigerant and Freon R22 is used as the single refrigerant and the refrigerant is changed from Freon R22 to Freon R407C, but the present invention is not limited to this.
At least two refrigerants, at least one of the refrigerants is a non-azeotropic mixed refrigerant, and the other refrigerant is a single refrigerant or an azeotropic refrigerant or a non-azeotropic mixed refrigerant different from one refrigerant,
With respect to those refrigerants, if the configuration has a refrigerant pressure loss of the heat storage heat exchanger 11 so that the temperature change width of the refrigerant at the inlet part and the outlet part in the heat storage heat exchanger 11 becomes a predetermined value or less. Good. For example, Freon R404A or another non-azeotropic mixed refrigerant may be used as one non-azeotropic mixed refrigerant of the two refrigerants. Further, from the viewpoint of preventing global warming, a non-azeotropic mixed refrigerant using a natural refrigerant such as propane, butane, ammonia, or carbon dioxide may be used as the non-azeotropic mixed refrigerant.
Further, as the other refrigerant of the two refrigerants, that is, a single refrigerant or an azeotropic refrigerant or a non-azeotropic mixed refrigerant different from the one non-azeotropic mixed refrigerant, for example, Freon R123, propane or butane, ammonia, carbon dioxide gas, or the like Natural refrigerant (single refrigerant), non-azeotropic mixed refrigerant using natural refrigerant, Freon R4
10A (azeotropic refrigerant), Freon R404A (non-azeotropic refrigerant mixture) and the like may be used. In the above description, a single refrigerant, Freon R22, is replaced by a non-azeotropic refrigerant, Freon R40.
Although the case where the refrigerant is changed to 7C has been described, the refrigerant is changed from a non-azeotropic mixed refrigerant to a single refrigerant or an azeotropic refrigerant or a non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant, or vice versa. Is changed, the temperature change width of the refrigerant at the inlet and the outlet at the heat storage heat exchanger 11 becomes smaller than or equal to a predetermined value for both the refrigerant before the change and the refrigerant after the change. The heat storage heat exchanger 11 may be configured to have a refrigerant pressure loss. In particular, from the viewpoint of preventing global warming, CFC R407C (non-azeotropic mixed refrigerant), which has a strong global warming effect, is a single refrigerant, and has a low global warming effect, such as propane, butane, ammonia, and carbon dioxide. This embodiment is effective when changing to a refrigerant.

【0108】また、2つの冷媒に対するのみではなく、
将来使用されるであろう複数の冷媒に対して、蓄熱熱交
換器11での入口部と出口部との冷媒の温度変化幅が所
定値以下になるような冷媒圧力損失を有するように蓄熱
熱交換器11を構成すれば、冷媒の変更に速やかに対応
でき、常に蓄熱効率がよく、冷媒の選択性もでき、さら
に汎用性の高い冷凍空調装置が得られる。
Also, not only for the two refrigerants,
With respect to a plurality of refrigerants that will be used in the future, the heat storage heat so as to have a refrigerant pressure loss such that the temperature change width of the refrigerant at the inlet and the outlet in the heat storage heat exchanger 11 becomes a predetermined value or less. If the exchanger 11 is configured, it is possible to quickly respond to the change of the refrigerant, always provide good heat storage efficiency, select the refrigerant, and obtain a versatile refrigeration / air-conditioning apparatus.

【0109】次に、例えば、2つの冷媒、単一冷媒や共
沸冷媒と非共沸混合冷媒との間で途中で冷媒を変更する
レトロフィットを実施する場合に対応するための蓄熱熱
交換器について、冷媒圧力損失の設定範囲の中で、最適
な冷媒圧力損失を設定する方法を説明する。例えば非共
沸混合冷媒としてフロンR407C、単一冷媒としてR
22を用いるとすると、両方の冷媒を用いた時に蓄熱効
率のよい製氷運転を実現するためには、蓄熱運転中の蓄
熱熱交換器11での冷媒圧力損失が0.4kg/cm2
程度となるように設定すればよい。以下、蓄熱熱交換器
11での冷媒圧力損失を0.4kg/cm2 とした場合
の作用について説明する。図24、図25、図26は蓄
熱熱交換器11での冷媒圧力損失が0kg/cm2
0.8kg/cm2 、0.4kg/cm2 となるように
設定したときに、冷凍空調装置の冷媒としてフロンR2
2、フロンR407Cを用いた場合の蓄熱熱交換器11
内の温度分布を示すグラフであり、それぞれのグラフに
おいて横軸は蓄熱熱交換器内での位置を示し11aが入
口部、11bが出口部である。縦軸は温度を示してい
る。
Next, for example, a heat storage heat exchanger for implementing a retrofit in which the refrigerant is changed between two refrigerants, a single refrigerant, or an azeotropic refrigerant and a non-azeotropic mixed refrigerant on the way. The method for setting the optimum refrigerant pressure loss within the setting range of the refrigerant pressure loss will be described. For example, Freon R407C as a non-azeotropic mixed refrigerant and R as a single refrigerant
Assuming that the cooling medium 22 is used, the refrigerant pressure loss in the heat storage heat exchanger 11 during the heat storage operation must be 0.4 kg / cm 2 in order to realize an ice making operation with good heat storage efficiency when both refrigerants are used.
What is necessary is just to set so that it is about. Hereinafter, the operation when the refrigerant pressure loss in the heat storage heat exchanger 11 is set to 0.4 kg / cm 2 will be described. 24, 25 and 26 show that the refrigerant pressure loss in the heat storage heat exchanger 11 is 0 kg / cm 2 ,
0.8 kg / cm 2, when set to be 0.4 kg / cm 2, Freon R2 as a refrigerant for the refrigeration air conditioning system
2. Heat storage heat exchanger 11 using Freon R407C
In each graph, the horizontal axis indicates the position in the heat storage heat exchanger, 11a indicates the inlet, and 11b indicates the outlet. The vertical axis indicates the temperature.

【0110】蓄熱熱交換器11での冷媒圧力損失が0k
g/cm2 であるときには、図24にあるように冷媒に
フロンR22を用いたときには蓄熱熱交換器11での温
度変化がなく、伝熱管表面に生成される氷厚が均一とな
り効率のよい製氷運転が行える。逆に冷媒にフロンR4
07Cを用いたときには蓄熱熱交換器11での温度変化
幅が5℃と大きく、温度が低い部分で氷が厚く、温度が
高い部分で氷が薄くなることから伝熱管表面に生成され
る氷厚が不均一となり、早期にブリッジングを生じる。
従ってブリッジングによる伝熱効率の低下の影響が大き
くなり、蓄熱熱交換器11での伝熱効率が低下し、製氷
運転の効率が低下する。
The refrigerant pressure loss in the heat storage heat exchanger 11 is 0 k
When g / cm 2 , as shown in FIG. 24, when Freon R22 is used as the refrigerant, there is no temperature change in the heat storage heat exchanger 11, and the ice thickness generated on the heat transfer tube surface becomes uniform, so that efficient ice making is achieved. You can drive. Conversely, the refrigerant is Freon R4
When 07C is used, the temperature change width in the heat storage heat exchanger 11 is as large as 5 ° C., and ice is thicker in a low temperature portion and thin in a high temperature portion. Become uneven and bridging occurs early.
Therefore, the effect of the decrease in the heat transfer efficiency due to bridging increases, the heat transfer efficiency in the heat storage heat exchanger 11 decreases, and the efficiency of the ice making operation decreases.

【0111】蓄熱熱交換器11での冷媒圧力損失が0.
8kg/cm2 であるときには、図25にあるように冷
媒にフロンR407Cを用いたときには蓄熱熱交換器1
1での温度変化がほとんどなく、伝熱管表面に生成され
る氷厚が均一となり効率のよい製氷運転が行える。逆に
冷媒にフロンR22を用いたときには蓄熱熱交換器11
での温度変化幅が5.5℃程度で大きくなり、温度が低
い部分で氷が厚く、温度が高い部分で氷が薄くなること
から伝熱管表面に生成される氷厚が不均一となり、早期
にブリッジングを生じる。従ってブリッジングによる伝
熱効率の低下の影響が大きくなり、蓄熱熱交換器11で
の伝熱効率が低下し、製氷運転の効率が低下する。
The refrigerant pressure loss in the heat storage heat exchanger 11 is 0.
When the pressure is 8 kg / cm 2 , as shown in FIG. 25, when Freon R407C is used as the refrigerant, the heat storage heat exchanger 1
1, there is almost no temperature change, the ice thickness generated on the heat transfer tube surface becomes uniform, and an efficient ice making operation can be performed. Conversely, when Freon R22 is used as the refrigerant, the heat storage heat exchanger 11
The temperature change width becomes large at about 5.5 ° C, the ice becomes thicker in the low temperature part, and the ice becomes thinner in the high temperature part. Causes bridging. Therefore, the effect of the decrease in the heat transfer efficiency due to bridging increases, the heat transfer efficiency in the heat storage heat exchanger 11 decreases, and the efficiency of the ice making operation decreases.

【0112】蓄熱熱交換器11での冷媒圧力損失が0.
4kg/cm2 であるときには、図26にあるように冷
媒にフロンR22、フロンR407Cいずれを用いても
温度変化幅は2.5℃程度となる。この場合、フロンR
407C、フロンR22いずれにおいても蓄熱熱交換器
11での温度変化幅は3.5℃よりも小さく、冷媒とし
てフロンR22、フロンR407Cいずれを用いても、
伝熱管表面に生成される氷厚はほぼ均一となり、効率の
よい製氷運転を行える。上記のように、2つの冷媒を用
いる場合、蓄熱熱交換器11の入口部11aと出口部1
1bとの温度差が、2つの冷媒でほぼ同じになるような
冷媒圧力損失を有するようにすると、両方の冷媒を用い
た時の蓄熱効率をほぼ同一にでき、最適な冷凍空調装置
を構成することができる。
The refrigerant pressure loss in the heat storage heat exchanger 11 is 0.
When the pressure is 4 kg / cm 2 , the temperature change width is about 2.5 ° C. regardless of whether Freon R22 or Freon R407C is used as the refrigerant as shown in FIG. In this case, Freon R
The temperature change width in the heat storage heat exchanger 11 is smaller than 3.5 ° C. in any of 407C and Freon R22, and both Freon R22 and Freon R407C are used as refrigerants.
The ice thickness generated on the surface of the heat transfer tube becomes substantially uniform, and an efficient ice making operation can be performed. As described above, when two refrigerants are used, the inlet 11a and the outlet 1 of the heat storage heat exchanger 11 are used.
If the refrigerant has a refrigerant pressure loss such that the temperature difference from the refrigerant 1b is substantially the same between the two refrigerants, the heat storage efficiencies when both refrigerants are used can be made substantially the same, and an optimal refrigeration / air-conditioning apparatus can be configured. be able to.

【0113】以上のように、本実施の形態では、蓄熱熱
交換器11内での非共沸混合冷媒の温度の変化幅が所定
温度以下となると共に、単一冷媒または共沸冷媒または
前記非共沸混合冷媒とは異なる非共沸混合冷媒のいずれ
かを用いたときも、蓄熱熱交換器11内での冷媒の温度
の変化幅が所定温度以下となるような冷媒圧力損失を有
するように蓄熱熱交換器11を構成した。この構成によ
って、冷媒のレトロフィットとして、単一冷媒または共
沸冷媒または非共沸混合冷媒のいずれかから前記非共沸
混合冷媒とは異なる非共沸混合冷媒に冷媒を切り替えた
場合、あるいは非共沸混合冷媒から単一冷媒または共沸
冷媒または前記非共沸混合冷媒とは異なる非共沸混合冷
媒のいずれかに冷媒を切り替えた場合、どちらの場合に
おいても非共沸混合冷媒を用いた運転と、単一冷媒また
は共沸冷媒または前記非共沸混合冷媒とは異なる非共沸
混合冷媒のいずれかを用いた運転との、それぞれの運転
において、伝熱管表面に生成される氷厚のばらつきの程
度の小さい、ほぼ均一な製氷を実現でき、蓄熱効率のよ
い製氷運転を実現できる。
As described above, in the present embodiment, the variation range of the temperature of the non-azeotropic mixed refrigerant in the heat storage heat exchanger 11 becomes equal to or less than the predetermined temperature, and the single refrigerant, the azeotropic refrigerant, or the non-azeotropic refrigerant. When any one of the non-azeotropic mixed refrigerants different from the azeotropic mixed refrigerant is used, a change in the temperature of the refrigerant in the heat storage heat exchanger 11 has a refrigerant pressure loss such that the change width is equal to or less than a predetermined temperature. The heat storage heat exchanger 11 was configured. With this configuration, as a retrofit of the refrigerant, when the refrigerant is switched from a single refrigerant or an azeotropic refrigerant or a non-azeotropic mixed refrigerant to a non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant, or When the refrigerant is switched from an azeotropic mixed refrigerant to one of a single refrigerant or an azeotropic refrigerant or a non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant, a non-azeotropic mixed refrigerant is used in both cases. In the operation and the operation using either a single refrigerant or an azeotropic refrigerant or a non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant, the ice thickness generated on the heat transfer tube surface in each operation. An almost uniform ice making with a small degree of variation can be realized, and an ice making operation with good heat storage efficiency can be realized.

【0114】実施の形態12.実施の形態10では蓄熱
熱交換器11の冷媒圧力損失を、蓄熱熱交換器11内で
の非共沸混合冷媒の温度の変化幅が所定温度以下となる
ようにすることで、蓄熱効率のよい製氷運転を実現し
た。本実施の形態では、蓄熱熱交換器の入口部と出口部
とにおいて、蓄熱材の温度と非共沸混合冷媒の温度との
温度差を計算し、入口部温度差と出口部温度差の割合が
所定範囲になるように蓄熱熱交換器の冷媒圧力損失を設
定する。ここでは、蓄熱材として水を用い、水の融解潜
熱を利用して氷の状態で冷熱を蓄熱するものとする。そ
して、蓄熱熱交換器の入口部と出口部での蓄熱材の温度
は、凝固温度(0℃)で計算を行なうものとする。ま
た、非共沸混合冷媒としてフロンR407Cを用いる。
Embodiment 12 FIG. In the tenth embodiment, the refrigerant pressure loss of the heat storage heat exchanger 11 is set such that the variation width of the temperature of the non-azeotropic mixed refrigerant in the heat storage heat exchanger 11 is equal to or less than a predetermined temperature, thereby improving heat storage efficiency. Ice making operation was realized. In the present embodiment, at the inlet and outlet of the heat storage heat exchanger, the temperature difference between the temperature of the heat storage material and the temperature of the non-azeotropic mixed refrigerant is calculated, and the ratio of the inlet temperature difference and the outlet temperature difference is calculated. Is set to a predetermined range. Here, it is assumed that water is used as the heat storage material, and cold heat is stored in an ice state using the latent heat of melting of water. The temperature of the heat storage material at the inlet and outlet of the heat storage heat exchanger is calculated based on the solidification temperature (0 ° C.). In addition, Freon R407C is used as the non-azeotropic mixed refrigerant.

【0115】図27は、熱伝達媒体として非共沸混合冷
媒を用いた時の蓄熱熱交換器11内の位置に対する温度
変化を説明するグラフで、横軸に蓄熱熱交換器11内の
位置、縦軸に温度を示し、水の凝固温度(0℃)も共に
示している。このグラフに示すように、蓄熱熱交換器1
1内での非共沸混合冷媒の温度変化は蓄熱熱交換器11
で生じる冷媒圧力損失によって、圧力損失が小さい場合
には単調増加、または圧力損失が大きい場合には単調減
少となる。従って、水の凝固温度(0℃)と蓄熱熱交換
器11の入口部11aおよび出口部11bでの非共沸混
合冷媒の温度との温度差をとると、入口部温度差と出口
部温度差のどちらか一方が水の凝固温度(0℃)と非共
沸混合冷媒の温度差の最大値、どちらか他方が水の凝固
温度(0℃)と非共沸混合冷媒の温度差の最小値とな
る。水の凝固温度(0℃)と非共沸混合冷媒の温度差の
最大値をΔTmax 、水の凝固温度(0℃)と非共沸混合
冷媒の温度差の最小値をΔTmin とすると、本実施の形
態では、 ΔTmin /ΔTmax > 0.5 となるように蓄熱熱交換器11の冷媒圧力損失を設定す
る。
FIG. 27 is a graph for explaining the temperature change with respect to the position in the heat storage heat exchanger 11 when a non-azeotropic mixed refrigerant is used as the heat transfer medium. The horizontal axis indicates the position in the heat storage heat exchanger 11, The vertical axis shows the temperature, and also shows the solidification temperature of water (0 ° C.). As shown in this graph, the heat storage heat exchanger 1
1 changes in the temperature of the non-azeotropic mixed refrigerant in the heat storage heat exchanger 11.
Due to the refrigerant pressure loss occurring in the above, the pressure increases monotonically when the pressure loss is small, or monotonically decreases when the pressure loss is large. Therefore, when the temperature difference between the solidification temperature of water (0 ° C.) and the temperature of the non-azeotropic mixed refrigerant at the inlet 11 a and the outlet 11 b of the heat storage heat exchanger 11 is obtained, the difference between the inlet temperature and the outlet temperature is obtained. One of them is the maximum value of the difference between the freezing temperature of water (0 ° C) and the non-azeotropic mixed refrigerant, and the other is the minimum value of the difference between the freezing temperature of water (0 ° C) and the non-azeotropic mixed refrigerant. Becomes Assuming that the maximum value of the difference between the freezing temperature of water (0 ° C.) and the non-azeotropic mixed refrigerant is ΔTmax, and the minimum value of the difference between the freezing temperature of water (0 ° C.) and the non-azeotropic mixed refrigerant is ΔTmin, this embodiment In the embodiment, the refrigerant pressure loss of the heat storage heat exchanger 11 is set so that ΔTmin / ΔTmax> 0.5.

【0116】図28は、蓄熱材として水を用い、氷の状
態で冷熱を蓄熱しており、非共沸混合冷媒の温度は氷を
作るための温度、例えば−7℃付近になるように運転し
た時の、ΔTmin /ΔTmax と蓄熱熱交換器11での製
氷運転中の平均熱通過率[kcal/m2 h℃]の関係
を解析し求めた結果を示すグラフである。この特性は、
冷媒の種類や蓄熱するときの冷媒の温度が変わっても、
ほぼ同様の関係を示している。図28に示されるように
平均熱通過率はΔTmin /ΔTmax ≦0.5となると急
激に低下する一方で、ΔTmin /ΔTmax >0.5とな
る場合の平均熱通過率は、ΔTmin =ΔTmax 、すなわ
ち、蓄熱熱交換器11内の冷媒の温度が同一で均一な製
氷を実現できるときの平均熱通過率と同等となる。ΔT
min /ΔTmax ≦0.5とした場合には、水の凝固温度
と冷媒の温度差が最大となる地点(温度差がΔTmax と
なる地点)での氷の成長が早くなる一方で、水の凝固温
度と冷媒の温度差が最小となる地点(温度差がΔTmin
となる地点)での氷の成長が遅くなる。その上、温度差
がΔTmin となる地点付近での水の凝固温度(0℃)と
冷媒との温度差の変化割合が大きくなることから、氷の
成長の早い部分と遅い部分での差が激しくなり、不均一
の度合いの大きい製氷状態となる。従って氷の成長が早
く氷厚の大きい部分では伝熱管の間に生成された氷が早
期にブリッジングを生じ、このブリッジングによる伝熱
効率の低下の影響が大きくなり、蓄熱熱交換器11での
伝熱効率が低下し、製氷運転の蓄熱効率が低下する。
FIG. 28 shows a case in which water is used as a heat storage material and cold heat is stored in the form of ice, and the temperature of the non-azeotropic mixed refrigerant is set to a temperature for forming ice, for example, around -7 ° C. 6 is a graph showing the results obtained by analyzing the relationship between ΔTmin / ΔTmax and the average heat transmission rate [kcal / m 2 h ° C.] during the ice making operation in the heat storage heat exchanger 11 at the time of the above. This property is
Even if the type of refrigerant and the temperature of the refrigerant when storing heat change,
It shows almost the same relationship. As shown in FIG. 28, the average heat transmittance rapidly decreases when ΔTmin / ΔTmax ≦ 0.5, while the average heat transmittance when ΔTmin / ΔTmax> 0.5 is ΔTmin = ΔTmax, that is, The average heat transmission rate when the temperature of the refrigerant in the heat storage heat exchanger 11 is the same and uniform ice making can be realized. ΔT
When min / ΔTmax ≦ 0.5, ice growth at a point where the temperature difference between the water coagulation temperature and the refrigerant becomes maximum (a point where the temperature difference becomes ΔTmax) is accelerated, while water coagulation is accelerated. The point where the temperature difference between the temperature and the refrigerant becomes minimum (the temperature difference is ΔTmin
Ice growth slows down. In addition, since the rate of change in the temperature difference between the solidification temperature of water (0 ° C.) and the refrigerant near the point where the temperature difference becomes ΔTmin increases, the difference between the portion where the ice growth is fast and the portion where the ice growth is slow is large. And an ice-making state with a high degree of non-uniformity. Therefore, in a portion where the ice growth is fast and the ice thickness is large, the ice generated between the heat transfer tubes causes bridging at an early stage, and the influence of the decrease in the heat transfer efficiency due to the bridging becomes large, and the heat storage heat exchanger 11 The heat transfer efficiency decreases, and the heat storage efficiency of the ice making operation decreases.

【0117】一方、ΔTmin /ΔTmax >0.5とした
場合には、水の凝固温度(0℃)と冷媒との温度差の変
化割合が小さくなることから、蓄熱熱交換器11の伝熱
管表面に生成される氷厚のばらつきの程度は小さく、ほ
ぼ均一に製氷されるため、各伝熱管周りの氷のブリッジ
ングは各伝熱管周りでほぼ同時に起き、製氷運転のなか
でブリッジングの生じる時間が遅くなる。従ってブリッ
ジングによる伝熱効率の低下の影響が小さくなり、蓄熱
熱交換器11での伝熱効率がよくなり、蓄熱効率のよい
製氷運転が実現できる。
On the other hand, when ΔTmin / ΔTmax> 0.5, the rate of change of the temperature difference between the solidification temperature of water (0 ° C.) and the refrigerant becomes smaller, and therefore the surface of the heat transfer tube of the heat storage heat exchanger 11 is changed. The degree of variation in the ice thickness generated is small and ice is made almost uniformly, so the bridging of ice around each heat transfer tube occurs almost simultaneously around each heat transfer tube, and the time when bridging occurs in the ice making operation Slows down. Therefore, the influence of the decrease in heat transfer efficiency due to bridging is reduced, the heat transfer efficiency in the heat storage heat exchanger 11 is improved, and an ice making operation with high heat storage efficiency can be realized.

【0118】熱伝達媒体として例えばフロンR407
C、蓄熱材として水を用いる場合、蓄熱運転でのフロン
R407Cの入口温度は例えば−7℃程度で行なわれ
る。蓄熱熱交換器11での冷媒入口温度が−7℃である
場合、水の凝固温度(0℃)と非共沸混合冷媒の温度差
の最大値をΔTmax 、水の凝固温度(0℃)と非共沸混
合冷媒の温度差の最小値をΔTmin とし、ΔTmin /Δ
Tmax >0.5となるようにするためには、蓄熱熱交換
器11での冷媒出口温度が、 −14℃<冷媒出口温度<−3.5℃ であればよい。このように冷媒出口温度を設定するため
には、蓄熱熱交換器11での冷媒温度変化(出口温度−
入口温度)が、 −7℃<蓄熱熱交換器11での冷媒温度変化<+3.5
℃ となるように設定すればよい。図19によれば、このよ
うな蓄熱熱交換器11での冷媒温度変化を生じさせるに
は、蓄熱熱交換器11での冷媒圧力損失を0.25kg
/cm2 より大きく設定すればよいことがわかる。また
蓄熱熱交換器11での冷媒圧力損失を0.6kg/cm
2 以上大きくしても、蓄熱熱交換器11での冷媒温度変
化が−7℃より高い範囲内であれば、蓄熱熱交換器11
での伝熱効率のよい運転を実現できるが、冷媒圧力損失
を余りに大きくすると、製氷運転中の冷凍サイクルの運
転効率が低下してしまい、好ましくない。従ってフロン
R407Cを用いる場合には、蓄熱熱交換器11での冷
媒圧力損失を蓄熱熱交換器11での温度変化が3.5℃
の温度上昇となる0.25kg/cm2 より大きくかつ
0.6kg/cm2 以下に設定することにより、蓄熱熱
交換器11での温度変化がほぼ0℃と同等となり、かつ
冷凍サイクルの運転効率も良好に維持できる。冷媒圧力
損失を0.25kg/cm2 より大きくかつ0.6kg
/cm2 以下に設定するための蓄熱熱交換11の具体的
な構成は、実施の形態10と同様である。
As a heat transfer medium, for example, Freon R407
C, when water is used as the heat storage material, the inlet temperature of Freon R407C in the heat storage operation is, for example, about −7 ° C. When the refrigerant inlet temperature in the heat storage heat exchanger 11 is −7 ° C., the maximum value of the temperature difference between the freezing temperature of water (0 ° C.) and the non-azeotropic mixed refrigerant is ΔTmax, and the freezing temperature of water (0 ° C.) The minimum value of the temperature difference of the non-azeotropic mixed refrigerant is ΔTmin, and ΔTmin / Δ
In order to make Tmax> 0.5, the refrigerant outlet temperature in the heat storage heat exchanger 11 only needs to be −14 ° C. <refrigerant outlet temperature <−3.5 ° C. In order to set the refrigerant outlet temperature in this manner, the refrigerant temperature change in the heat storage heat exchanger 11 (the outlet temperature-
−7 ° C. <change in refrigerant temperature in the heat storage heat exchanger 11 <+3.5
The temperature may be set so as to be ℃. According to FIG. 19, in order to cause such a change in the refrigerant temperature in the heat storage heat exchanger 11, the refrigerant pressure loss in the heat storage heat exchanger 11 must be 0.25 kg.
It can be seen that the setting should be larger than / cm 2 . The refrigerant pressure loss in the heat storage heat exchanger 11 is 0.6 kg / cm.
Even if it is larger than two , if the change in the refrigerant temperature in the heat storage heat exchanger 11 is within a range higher than −7 ° C.,
However, if the refrigerant pressure loss is too large, the operation efficiency of the refrigeration cycle during the ice making operation decreases, which is not preferable. Therefore, when Freon R407C is used, the refrigerant pressure loss in the heat storage heat exchanger 11 is reduced by a temperature change of 3.5 ° C. in the heat storage heat exchanger 11.
By setting the temperature to be greater than 0.25 kg / cm 2 and 0.6 kg / cm 2 or less, the temperature change in the heat storage heat exchanger 11 becomes substantially equal to 0 ° C., and the operating efficiency of the refrigeration cycle Can also be maintained well. Refrigerant pressure loss greater than 0.25 kg / cm 2 and 0.6 kg
The specific configuration of the heat storage and heat exchange 11 for setting the temperature to / cm 2 or less is the same as that of the tenth embodiment.

【0119】以上のように本実施の形態では、水の凝固
温度(0℃)と非共沸混合冷媒の温度差の最大値をΔT
max 、水の凝固温度(0℃)と非共沸混合冷媒の温度差
の最小値をΔTmin とすると、ΔTmin /ΔTmax >
0.5となるように蓄熱熱交換器11の冷媒圧力損失を
有するように蓄熱熱交換器11を構成したので、蒸発時
に温度変化の生じる非共沸混合冷媒を用いても、蓄熱熱
交換器11の構成によって伝熱管表面に生成される氷厚
のばらつきの程度の小さい、ほぼ均一な製氷を実現で
き、効率のよい製氷運転を実現できる。
As described above, in the present embodiment, the maximum value of the difference between the freezing temperature of water (0 ° C.) and the temperature of the non-azeotropic mixed refrigerant is ΔT
max, and ΔTmin is the minimum value of the temperature difference between the freezing temperature of water (0 ° C.) and the non-azeotropic refrigerant mixture, ΔTmin / ΔTmax>
Since the heat storage heat exchanger 11 is configured to have the refrigerant pressure loss of the heat storage heat exchanger 11 so as to be 0.5, the heat storage heat exchanger can be used even if a non-azeotropic mixed refrigerant that changes in temperature during evaporation is used. According to the configuration of No. 11, it is possible to realize substantially uniform ice making with a small degree of variation in ice thickness generated on the heat transfer tube surface, and to realize an efficient ice making operation.

【0120】なお、上記の説明では、蓄熱熱交換器11
の入口部と出口部での蓄熱材の温度を水の凝固温度(0
℃)としたが、蓄熱熱交換器10の入口部近傍と出口部
近傍における蓄熱槽10内の水の温度を計測してその温
度を用いても良い。特に、蓄熱材として水とエチレング
リコールの混合液などを用いた場合には、混合液の濃度
によって凝固温度が変化するので、蓄熱熱交換器11の
入口部近傍と出口部近傍で蓄熱材の温度を計測し、計測
した蓄熱材の温度と熱伝達媒体の温度との温度差を計算
して用いる方が好ましい。この場合にも、その計算した
温度差を用い、入口部温度差と出口部温度差の割合が所
定範囲となるように、蓄熱熱交換器11の冷媒圧力損失
を設定すればよい。
In the above description, the heat storage heat exchanger 11
The temperature of the heat storage material at the inlet and outlet of the
° C), but the temperature of water in the heat storage tank 10 near the inlet and the outlet of the heat storage heat exchanger 10 may be measured and used. In particular, when a mixed solution of water and ethylene glycol is used as the heat storage material, the coagulation temperature changes depending on the concentration of the mixed solution. It is more preferable to measure and use the temperature difference between the measured temperature of the heat storage material and the temperature of the heat transfer medium. Also in this case, the refrigerant pressure loss of the heat storage heat exchanger 11 may be set using the calculated temperature difference so that the ratio between the inlet temperature difference and the outlet temperature difference is within a predetermined range.

【0121】また、上記説明では、冷熱を蓄熱槽に蓄熱
する場合についてのものであり、温熱を蓄熱する場合に
は温度などの数値は異なってくる。ただし、蓄熱熱交換
器の入口部での蓄熱材の凝固温度と冷媒温度との温度差
を入口部温度差とし、蓄熱熱交換器の出口部での蓄熱材
の凝固温度と冷媒温度との温度差を出口部温度差とした
とき、入口部温度差と出口部温度差の割合を所定範囲に
なるように蓄熱熱交換器の冷媒圧力損失を有するように
設定すれば、冷熱を蓄熱する場合でも温熱を蓄熱する場
合でも、蓄熱効率のよい蓄熱熱交換器を得ることができ
る。また、蓄熱熱交換器11の伝熱管の配置構成によっ
ては、蓄熱熱交換器11での入口部温度差と出口部温度
差の割合に対する蓄熱熱交換器11の平均熱通過率の関
係は図28とは少し異なる可能性がある。例えば、入口
部の伝熱管の間隔が疎であり、出口部の伝熱管の間隔が
密になっているものを用いる場合には、入口部温度差と
出口部温度差の割合が0.5より小さくても入口部での
ブリッジングは生じない。ただしその場合でも、割合の
所定範囲で平均熱通過率がほぼ一定となり、所定範囲外
では大きく低下する傾向があるので、この所定範囲にな
るように蓄熱熱交換器11の冷媒圧力損失を設定すれば
よい。
Further, in the above description, the case where cold heat is stored in the heat storage tank, and when hot heat is stored, numerical values such as temperature are different. However, the temperature difference between the solidification temperature of the heat storage material at the inlet of the heat storage heat exchanger and the refrigerant temperature is defined as the inlet temperature difference, and the temperature between the solidification temperature of the heat storage material at the outlet of the heat storage heat exchanger and the refrigerant temperature. If the difference is the outlet temperature difference, if the ratio of the inlet temperature difference and the outlet temperature difference is set to have a refrigerant pressure loss of the heat storage heat exchanger so as to be within a predetermined range, even when storing cold heat Even when storing heat, a heat storage heat exchanger having good heat storage efficiency can be obtained. In addition, depending on the arrangement of the heat transfer tubes of the heat storage heat exchanger 11, the relationship between the ratio of the temperature difference between the inlet portion and the outlet portion of the heat storage heat exchanger 11 to the average heat transmittance of the heat storage heat exchanger 11 is shown in FIG. May be slightly different. For example, when the interval between the heat transfer tubes at the inlet portion is sparse and the interval between the heat transfer tubes at the outlet portion is dense, the ratio of the temperature difference between the inlet portion and the outlet portion is less than 0.5. Bridging at the entrance does not occur even if it is small. However, even in such a case, the average heat transmission rate becomes substantially constant in a predetermined range of the ratio, and tends to decrease greatly outside the predetermined range. Therefore, the refrigerant pressure loss of the heat storage heat exchanger 11 must be set so as to be in the predetermined range. I just need.

【0122】実施の形態13.実施の形態12では、熱
伝達媒体として1つの非共沸混合冷媒を対象として、入
口温度差と出口温度差の割合を所定範囲とすることで蓄
熱運転の効率を良くできた。本実施の形態では、少なく
とも1つの非共沸混合冷媒を対象とすると共に、単一冷
媒や共沸冷媒や前記の非共沸混合冷媒とは異なる非共沸
混合冷媒のいずれか1つまたは複数の熱伝達媒体に対し
ても、蓄熱熱交換器11の入口温度差と出口温度差の割
合を所定範囲とするように蓄熱熱交換器11を構成し
た。これによって、複数の熱伝達媒体に対して蓄熱運転
の効率を良くでき、熱伝達媒体の変更に対応できる冷凍
空調装置を得るものである。ここでは実施の形態12と
同様、蓄熱材を水とし、蓄熱材の入口温度および出口温
度は水の凝固温度(0℃)を用いる。水の凝固温度(0
℃)と前記使用冷媒との温度差の最大値をΔTmax 、水
の凝固温度(0℃)と前記使用冷媒との温度差の最小値
をΔTmin とした時、 ΔTmin /ΔTmax >0.5 となるように蓄熱熱交換器11の冷媒圧力損失を設定す
る。この使用冷媒とは、少なくとも2つの冷媒であり、
その一方は非共沸混合冷媒であり、他方は、単一冷媒、
共沸冷媒、前記非共沸混合冷媒とは異なる非共沸混合冷
媒のいずれかである。この少なくとも2つの使用冷媒に
対して上記の関係が成立するように蓄熱熱交換器11の
冷媒圧力損失を設定する。
Embodiment 13 FIG. In the twelfth embodiment, the efficiency of the heat storage operation can be improved by setting the ratio of the inlet temperature difference and the outlet temperature difference to a predetermined range for one non-azeotropic mixed refrigerant as the heat transfer medium. In the present embodiment, at least one non-azeotropic mixed refrigerant is targeted, and one or more of a single refrigerant, an azeotropic refrigerant, and a non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant described above. The heat storage heat exchanger 11 was also configured such that the ratio of the inlet temperature difference and the outlet temperature difference of the heat storage heat exchanger 11 was within a predetermined range for the heat transfer medium described above. Thus, it is possible to obtain a refrigeration / air-conditioning apparatus capable of improving the efficiency of the heat storage operation for a plurality of heat transfer media and responding to the change of the heat transfer media. Here, as in Embodiment 12, water is used as the heat storage material, and the solidification temperature of water (0 ° C.) is used as the inlet temperature and the outlet temperature of the heat storage material. Solidification temperature of water (0
° C) and the used refrigerant, ΔTmax, and the minimum value of the temperature difference between the freezing temperature of water (0 ° C) and the used refrigerant is ΔTmin, ΔTmin / ΔTmax> 0.5. The refrigerant pressure loss of the heat storage heat exchanger 11 is set as described above. The used refrigerant is at least two refrigerants,
One is a non-azeotropic refrigerant mixture, the other is a single refrigerant,
Either an azeotropic refrigerant or a non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant. The refrigerant pressure loss of the heat storage heat exchanger 11 is set so that the above relationship is established for the at least two refrigerants.

【0123】例えば非共沸混合冷媒として、フロンR4
07Cを用い、単一冷媒、共沸冷媒、前記非共沸混合冷
媒とは異なる非共沸混合冷媒のいずれかとして単一冷媒
であるフロンR22を用いた場合、フロンR407Cを
用いて製氷運転を実施したときの蓄熱熱交換器11入口
での冷媒温度が例えば−7℃、フロンR22を用いて製
氷運転を実施したときの蓄熱熱交換器11入口での冷媒
温度が例えば−3.5℃である場合にはフロンR407
Cを用いた場合の蓄熱熱交換器11での温度変化(出口
温度−入口温度)が3.5℃より小さく、フロンR22
を用いた場合の蓄熱熱交換器11での温度変化(出口温
度−入口温度)が−3.5℃より大きくなるように蓄熱
熱交換器11での冷媒圧力損失を設定する。このように
冷媒圧力損失を設定することで、水の凝固温度(0℃)
と使用冷媒の温度差の最大値をΔTmax 、水の凝固温度
(0℃)と使用冷媒の温度差の最小値をΔTmin とする
と、フロンR22、フロンR407Cいずれにおいても
0.5<ΔTmin /ΔTmax の関係が満たされる。実施
の形態12で述べたようにこの関係が満たされると、フ
ロンR22およびフロンR407Cのいずれを用いても
効率よく蓄熱運転を行うことが可能となる。従ってレト
ロフィットを行いフロンR22からフロンR407Cに
切り換えても、フロンR22とフロンR407Cのどち
らを用いた運転においても効率のよい蓄熱運転が可能と
なる。
For example, as a non-azeotropic refrigerant, Freon R4
07C, a single refrigerant, an azeotropic refrigerant, when using a non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant, Freon R22 which is a single refrigerant, the ice making operation using Freon R407C. The refrigerant temperature at the inlet of the heat storage heat exchanger 11 is, for example, −7 ° C., and the refrigerant temperature at the inlet of the heat storage heat exchanger 11 is, for example, −3.5 ° C. when the ice making operation is performed using Freon R22. In some cases CFC R407
C, the temperature change (outlet temperature−inlet temperature) in the heat storage heat exchanger 11 is smaller than 3.5 ° C., and CFC R22
The refrigerant pressure loss in the heat storage heat exchanger 11 is set so that the change in temperature (outlet temperature-inlet temperature) in the heat storage heat exchanger 11 when using is larger than -3.5 ° C. By setting the refrigerant pressure loss in this way, the solidification temperature of water (0 ° C.)
When the maximum value of the temperature difference between the refrigerant and the refrigerant used is ΔTmax, and the minimum value of the temperature difference between the solidification temperature of water (0 ° C.) and the refrigerant used is ΔTmin, in both Freon R22 and Freon R407C, 0.5 <ΔTmin / ΔTmax. The relationship is satisfied. When this relationship is satisfied as described in the twelfth embodiment, the heat storage operation can be efficiently performed using either Freon R22 or Freon R407C. Therefore, even if the retrofit is performed to switch from Freon R22 to Freon R407C, efficient heat storage operation can be performed in operation using either Freon R22 or Freon R407C.

【0124】フロンR22とフロンR407Cを用いた
時に蓄熱熱交換器11での温度変化(出口温度−入口温
度)を上記で示した所定温度(フロンR22の場合には
−3.5℃より大、フロンR407Cの場合には3.5
℃より小)になるようにするためには、図19に基づい
て蓄熱熱交換器11での冷媒圧力損失を設定すればよ
い。図19に示した蓄熱熱交換器11での冷媒圧力損失
と冷媒圧力損失がある場合のフロンR22とフロンR4
07Cを用いた場合の蓄熱熱交換器11での温度変化の
関係より、蓄熱熱交換器11での冷媒圧力損失が0.2
5kg/cm2 より大きくかつ0.5kg/cm2 より
小さくなるように設定すると、フロンR407Cを用い
た場合の蓄熱熱交換器11での温度変化(出口温度−入
口温度)を3.5℃より小さく、フロンR22を用いた
場合の蓄熱熱交換器11での温度変化(出口温度−入口
温度)を−3.5℃より大きくでき、フロンR22とフ
ロンR407Cのいずれを用いても効率よく蓄熱運転を
行うことが可能となる。また、蓄熱熱交換器11の冷媒
圧力損失をこの範囲内に設定すると、図20に示すよう
に冷凍サイクルの運転効率もよい状態で維持できる。
The temperature change (outlet temperature−inlet temperature) in the heat storage heat exchanger 11 when using Freon R22 and Freon R407C is larger than the predetermined temperature (above −3.5 ° C. for Freon R22). 3.5 for Freon R407C
In this case, the refrigerant pressure loss in the heat storage heat exchanger 11 may be set based on FIG. The refrigerant pressure loss in the heat storage heat exchanger 11 shown in FIG.
From the relationship of the temperature change in the heat storage heat exchanger 11 when using 07C, the refrigerant pressure loss in the heat storage
If it is set to be larger than 5 kg / cm 2 and smaller than 0.5 kg / cm 2 , the temperature change (outlet temperature−inlet temperature) in the heat storage heat exchanger 11 when Freon R407C is used is reduced from 3.5 ° C. The temperature change (outlet temperature−inlet temperature) in the heat storage heat exchanger 11 when using Freon R22 can be made larger than −3.5 ° C., and the heat storage operation can be efficiently performed using either Freon R22 or Freon R407C. Can be performed. When the refrigerant pressure loss of the heat storage heat exchanger 11 is set within this range, the operation efficiency of the refrigeration cycle can be maintained in a good state as shown in FIG.

【0125】蓄熱熱交換器11の冷媒圧力損失を0.2
5kg/cm2 より大きくかつ0.5kg/cm2 より
小さく設定する構成を具体的に示す。例えば、製氷運転
時の冷凍能力が6400kcal/hである冷凍空調装
置において、外径6.35mm、肉厚0.47mm、総
延長216mの平滑管で構成する際、1本あたり11.
4mの管長さの平滑管を19本程度並設することで、冷
媒圧力損失を0.25kg/cm2 程度に設定でき、1
本あたり21.6mの管長さの平滑管を10本程度並設
することで、冷媒圧力損失を0.5kg/cm2 程度に
設定できる。また、その間の冷媒圧力損失にしようとす
れば、1本あたりの長さを11.4mから21.6mの
間の長さの平滑管を用い、総延長が216mとなるよう
な本数を並設するように構成すればよい。また、内面溝
付管で構成したり、伝熱管の管径を小さくしたり、伝熱
管の途中に絞りをつけたりして、冷媒圧力損失を大きく
して設定してもよい。
The pressure loss of the refrigerant in the heat storage heat exchanger 11 is set to 0.2
A configuration that is set to be larger than 5 kg / cm 2 and smaller than 0.5 kg / cm 2 will be specifically described. For example, in a refrigeration / air-conditioning apparatus having a refrigeration capacity of 6400 kcal / h during the ice making operation, when each of the refrigeration and air-conditioning units is constituted by a smooth tube having an outer diameter of 6.35 mm, a wall thickness of 0.47 mm, and a total length of 216 m, each tube has 11.1 mm.
By arranging about 19 smooth pipes each having a pipe length of 4 m, the refrigerant pressure loss can be set to about 0.25 kg / cm 2.
By arranging about 10 smooth pipes having a pipe length of 21.6 m per pipe, the refrigerant pressure loss can be set to about 0.5 kg / cm 2 . In order to reduce the refrigerant pressure loss during that time, use a smooth pipe with a length between 11.4m and 21.6m per pipe, and arrange a number of pipes so that the total length is 216m. What is necessary is just to comprise. Further, the refrigerant pressure loss may be set to be large by using an inner grooved tube, reducing the diameter of the heat transfer tube, or providing a restriction in the middle of the heat transfer tube.

【0126】なお、上記では、非共沸混合冷媒としてフ
ロンR407Cとし、単一冷媒としてフロンR22を用
い、フロンR22からフロンR407Cに冷媒を変更す
る場合について説明したが、これに限るものではない。
少なくとも2つの冷媒で、少なくともその一方の冷媒を
非共沸混合冷媒とし、他方の冷媒を単一冷媒または共沸
冷媒または一方の冷媒とは異なる非共沸混合冷媒とし、
それらの冷媒に対して、蓄熱熱交換器11での入口部温
度差と出口部温度差の割合が所定範囲になるような冷媒
圧力損失を有するように蓄熱熱交換器11を構成すれば
よい。例えば、2つの冷媒の一方の非共沸混合冷媒とし
て、フロンR404Aや他の非共沸混合冷媒を用いても
よい。また地球温暖化防止の観点から、非共沸混合冷媒
としてプロパンやブタン、アンモニア、炭酸ガスなどの
自然冷媒を用いた非共沸混合冷媒を用いてもよい。ま
た、2つの冷媒の他方の冷媒、すなわち単一冷媒または
共沸冷媒または前記一方の非共沸混合冷媒と異なる非共
沸混合冷媒として、例えばフロンR123、プロパンや
ブタン、アンモニア、炭酸ガスなどの自然冷媒(単一冷
媒)、自然冷媒を用いた非共沸混合冷媒、フロンR41
0A(共沸冷媒)、フロンR404A(非共沸混合冷
媒)などを用いてもよい。また上記では、単一冷媒であ
るフロンR22から非共沸混合冷媒であるフロンR40
7Cに冷媒を変更する場合について説明したが、非共沸
混合冷媒から、単一冷媒または共沸冷媒または前記非共
沸混合冷媒とは異なる非共沸混合冷媒に冷媒を変更した
り、その逆の変更を行う場合にも、変更前の冷媒と変更
後の冷媒の両方に対して、蓄熱熱交換器11での入口部
温度差と出口部温度差の割合が所定範囲になるようなに
冷媒圧力損失を有するように蓄熱熱交換器11を構成す
ればよい。特に、地球温暖化防止の観点から、地球温暖
化作用の強いフロンR407C(非共沸混合冷媒)か
ら、単一冷媒であり、地球温暖化作用の低いプロパンや
ブタン、アンモニア、炭酸ガスなどの自然冷媒に変更す
る場合において、本実施の形態は有効である。
In the above description, the case where Freon R407C is used as the non-azeotropic mixed refrigerant, Freon R22 is used as the single refrigerant, and the refrigerant is changed from Freon R22 to Freon R407C, but the present invention is not limited to this.
At least two refrigerants, at least one of the refrigerants is a non-azeotropic mixed refrigerant, and the other refrigerant is a single refrigerant or an azeotropic refrigerant or a non-azeotropic mixed refrigerant different from one refrigerant,
The heat storage heat exchanger 11 may be configured to have a refrigerant pressure loss such that the ratio between the inlet temperature difference and the outlet temperature difference in the heat storage heat exchanger 11 falls within a predetermined range. For example, Freon R404A or another non-azeotropic mixed refrigerant may be used as one non-azeotropic mixed refrigerant of the two refrigerants. Further, from the viewpoint of preventing global warming, a non-azeotropic mixed refrigerant using a natural refrigerant such as propane, butane, ammonia, or carbon dioxide may be used as the non-azeotropic mixed refrigerant. Further, as the other refrigerant of the two refrigerants, that is, a single refrigerant or an azeotropic refrigerant or a non-azeotropic mixed refrigerant different from the one non-azeotropic mixed refrigerant, for example, Freon R123, propane or butane, ammonia, carbon dioxide gas, or the like Natural refrigerant (single refrigerant), non-azeotropic mixed refrigerant using natural refrigerant, Freon R41
0A (azeotropic refrigerant), Freon R404A (non-azeotropic mixed refrigerant) and the like may be used. In the above description, a single refrigerant, Freon R22, is replaced by a non-azeotropic refrigerant, Freon R40.
Although the case where the refrigerant is changed to 7C has been described, the refrigerant is changed from a non-azeotropic mixed refrigerant to a single refrigerant or an azeotropic refrigerant or a non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant, or vice versa. Is changed so that the ratio between the inlet temperature difference and the outlet temperature difference in the heat storage heat exchanger 11 is within a predetermined range for both the refrigerant before the change and the refrigerant after the change. The heat storage heat exchanger 11 may be configured to have a pressure loss. In particular, from the viewpoint of preventing global warming, CFC R407C (non-azeotropic mixed refrigerant), which has a strong global warming effect, is a single refrigerant, and has a low global warming effect, such as propane, butane, ammonia, and carbon dioxide. This embodiment is effective when changing to a refrigerant.

【0127】また、2つの冷媒に対するのみではなく、
将来使用されるであろう複数の冷媒に対して、蓄熱熱交
換器11での入口部温度差と出口部温度差の割合が所定
範囲になるような冷媒圧力損失を有するように蓄熱熱交
換器11を構成すれば、冷媒の変更に速やかに対応で
き、常に蓄熱効率がよく、冷媒の選択性もでき、さらに
汎用性の高い冷凍空調装置が得られる。
Also, not only for the two refrigerants,
For a plurality of refrigerants that will be used in the future, the heat storage heat exchanger has a refrigerant pressure loss such that the ratio of the inlet temperature difference and the outlet temperature difference in the heat storage heat exchanger 11 falls within a predetermined range. With the configuration of 11, the refrigeration and air-conditioning apparatus which can quickly respond to the change of the refrigerant, always has good heat storage efficiency, can select the refrigerant, and has high versatility can be obtained.

【0128】以上のように本実施の形態では、蓄熱熱交
換器11を、水の凝固温度(0℃)と非共沸混合冷媒の
温度差の最大値をΔTmax 、水の凝固温度(0℃)と非
共沸混合冷媒の温度差の最小値をΔTmin としたとき、 ΔTmin /ΔTmax >0.5 とすると共に、単一冷媒、共沸冷媒、前記非共沸混合冷
媒とは異なる非共沸混合冷媒のいずれかを用いたとき
も、水の凝固温度(0℃)と前記使用冷媒の温度差の最
大値をΔTmax 、水の凝固温度(0℃)と前記使用冷媒
の温度差の最小値をΔTmin としたとき、 ΔTmin /ΔTmax >0.5 とするように構成したので、冷媒のレトロフィットとし
て、単一冷媒、共沸冷媒、非共沸混合冷媒のいずれかか
ら前記非共沸混合冷媒とは異なる非共沸混合冷媒に冷媒
を変更した場合、または非共沸混合冷媒から単一冷媒、
共沸冷媒、前記非共沸混合冷媒とは異なる非共沸混合冷
媒のいずれかに冷媒を変更した場合、どちらの場合にお
いても非共沸混合冷媒を用いた運転、または単一冷媒、
共沸冷媒、前記非共沸混合冷媒とは異なる非共沸混合冷
媒のいずれかを用いた運転、それぞれの運転において伝
熱管表面に生成される氷厚のばらつきの程度の小さい、
ほぼ均一な製氷を実現でき、効率のよい蓄熱運転を実現
できる。
As described above, in this embodiment, the heat storage heat exchanger 11 sets the maximum value of the difference between the freezing temperature of water (0 ° C.) and the non-azeotropic mixed refrigerant to ΔTmax, the freezing temperature of water (0 ° C.). ) And the minimum value of the temperature difference between the non-azeotropic mixed refrigerant is ΔTmin, ΔTmin / ΔTmax> 0.5, and a single refrigerant, an azeotropic refrigerant, and a non-azeotropic refrigerant different from the non-azeotropic mixed refrigerant. When any of the mixed refrigerants is used, the maximum value of the difference between the solidification temperature of water (0 ° C.) and the used refrigerant is ΔTmax, and the minimum value of the solidification temperature of water (0 ° C.) and the temperature difference between the used refrigerants. Is defined as ΔTmin, ΔTmin / ΔTmax> 0.5. Therefore, as a refrigerant retrofit, any one of a single refrigerant, an azeotropic refrigerant, and a non-azeotropic mixed refrigerant is used as the non-azeotropic mixed refrigerant. If the refrigerant is changed to a non-azeotropic mixed refrigerant different from the One refrigerant,
Azeotropic refrigerant, when the refrigerant is changed to any one of the non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant, the operation using the non-azeotropic mixed refrigerant in either case, or a single refrigerant,
Azeotropic refrigerant, the operation using any of the non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant, the degree of variation in the ice thickness generated on the heat transfer tube surface in each operation is small,
Almost uniform ice making can be realized, and efficient heat storage operation can be realized.

【0129】実施の形態14.実施の形態1〜実施の形
態13では、蓄熱槽10への蓄熱時および蓄熱利用時の
どちらにおいても、蓄熱槽10に貯留してある例えば水
などの蓄熱材に、非共沸混合冷媒を介して熱の受け渡し
を行うものについて説明した。これはいわゆる内融式蓄
熱槽と称されるものである。本実施の形態では、本発明
を外融式蓄熱槽に適用したものについて説明する。な
お、本実施の形態による冷凍空調装置は、例えば暖房機
能を有さず、冷房機能のみのものとする。
Embodiment 14 FIG. In the first to thirteenth embodiments, the heat storage material such as water stored in the heat storage tank 10 is supplied via the non-azeotropic mixed refrigerant to the heat storage material such as water stored in the heat storage tank 10 both when storing heat and when using heat storage. In the description, the heat transfer is performed. This is what is called an internal melting type heat storage tank. In this embodiment, a case in which the present invention is applied to an external fusion type heat storage tank will be described. The refrigeration / air-conditioning apparatus according to the present embodiment has, for example, only a cooling function without a heating function.

【0130】図29は本発明の実施の形態14による冷
凍空調装置を示す冷媒回路図である。図において、1は
圧縮機、3は室外熱交換器、4は膨張弁、10は蓄熱
槽、11は蓄熱槽10内に設置された蓄熱熱交換器であ
り、これらは配管で接続されて冷凍サイクルを構成して
いる。5は室内熱交換器であり、蓄熱槽10内に例えば
水をポンプ(P)で循環させることによって、蓄熱槽1
0に蓄熱した冷熱を利用する構成である。このように、
蓄熱利用時に直接蓄熱槽10の蓄熱熱交換器11の回り
に水などを循環させて、伝熱管の回りに付着生成した氷
を解氷して冷熱を得る構成のものを、外融式蓄熱槽と称
している。
FIG. 29 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 14 of the present invention. In the figure, 1 is a compressor, 3 is an outdoor heat exchanger, 4 is an expansion valve, 10 is a heat storage tank, 11 is a heat storage heat exchanger installed in the heat storage tank 10, and these are connected by piping and are frozen. Make up the cycle. Reference numeral 5 denotes an indoor heat exchanger which circulates, for example, water in the heat storage tank 10 by a pump (P), thereby
This is a configuration that uses cold heat stored in zero. in this way,
An external melting type heat storage tank which is configured such that water or the like is circulated directly around the heat storage heat exchanger 11 of the heat storage tank 10 at the time of using heat storage to melt ice formed around the heat transfer tube to obtain cold heat. It is called.

【0131】外融式蓄熱槽においても、蓄熱運転は内融
式蓄熱槽と同様の動作を行うので、蓄熱運転時に蓄熱熱
交換器11を流れる冷媒の流れ方向を正逆に切換えれ
ば、均一に蓄熱槽10内に氷を生成することができる。
以下、動作について詳しく説明する。蓄熱熱交換器11
の両端の配管には、四方弁24を接続しており、この四
方弁24を切換えることによって、蓄熱熱交換器11内
の冷媒の流れ方向を正逆に切換え可能としている。また
蓄熱熱交換器11の入口側配管を膨張弁4に接続し、出
口側配管を圧縮機1に接続している。25は膨張弁4と
四方弁24の間の配管に設けられた温度検知器であり、
蓄熱熱交換器11の入口部の冷媒温度を検知することが
できる。さらにこの冷凍空調装置内には、冷媒として非
共沸混合冷媒であるフロンR407Cが封入されてい
る。
Also in the externally-fused heat storage tank, the heat storage operation performs the same operation as that of the internally-fused heat storage tank. Therefore, if the flow direction of the refrigerant flowing through the heat storage heat exchanger 11 during the heat storage operation is switched between forward and reverse, the uniformity can be obtained. Ice can be generated in the heat storage tank 10.
Hereinafter, the operation will be described in detail. Heat storage heat exchanger 11
A four-way valve 24 is connected to the pipes at both ends of the heat storage heat exchanger 11. By switching the four-way valve 24, the flow direction of the refrigerant in the heat storage heat exchanger 11 can be switched between forward and reverse. The inlet pipe of the heat storage heat exchanger 11 is connected to the expansion valve 4, and the outlet pipe is connected to the compressor 1. 25 is a temperature detector provided in a pipe between the expansion valve 4 and the four-way valve 24;
The refrigerant temperature at the inlet of the heat storage heat exchanger 11 can be detected. Further, Freon R407C, which is a non-azeotropic mixed refrigerant, is sealed in the refrigeration air conditioner as a refrigerant.

【0132】蓄熱槽10内は蓄熱材として例えば水で満
たされており、蓄熱運転時には、蓄熱熱交換器11で水
を冷却氷化し、伝熱管の表面に氷を付着生成させて蓄熱
槽10内に冷熱を蓄えるように構成している。なお、蓄
熱運転時の蓄熱熱交換器11内の冷媒の流れが図29中
の11aから11bとなる場合を蓄熱運転A、またこの
逆に11bから11aとなる場合を蓄熱運転Bと定義す
る。
The heat storage tank 10 is filled with, for example, water as a heat storage material. During the heat storage operation, the water is cooled and iced by the heat storage heat exchanger 11, and ice is adhered to the surface of the heat transfer tube to generate and heat the heat storage tank 10. It is configured to store cold heat. The case where the flow of the refrigerant in the heat storage heat exchanger 11 during the heat storage operation changes from 11a to 11b in FIG. 29 is defined as the heat storage operation A, and the case where the flow changes from 11b to 11a in FIG. 29 is defined as the heat storage operation B.

【0133】蓄熱運転時において、例えば蓄熱熱交換器
11内の冷媒の流れが11aから11bとなる蓄熱運転
Aとなるように四方弁24を実線のように接続する。こ
の蓄熱運転A時の冷媒の流れは、図29中実線矢印で示
すように、圧縮機1で吐出された高温高圧の冷媒蒸気は
室外熱交換器3で凝縮液化し、膨張弁4で低圧に減圧さ
れて四方弁24を通って蓄熱熱交換器11に流入する。
蓄熱熱交換器11に流入した冷媒は、蓄熱槽10内の水
から熱を奪って蒸発した後、蓄熱熱交換器11から流出
し、四方弁24を通って圧縮機1に戻る。
At the time of the heat storage operation, for example, the four-way valve 24 is connected as shown by a solid line so as to perform the heat storage operation A in which the flow of the refrigerant in the heat storage heat exchanger 11 changes from 11a to 11b. As shown by solid arrows in FIG. 29, the refrigerant flow during the heat storage operation A is such that the high-temperature and high-pressure refrigerant vapor discharged from the compressor 1 is condensed and liquefied in the outdoor heat exchanger 3 and is reduced to a low pressure by the expansion valve 4. The pressure is reduced and flows into the heat storage heat exchanger 11 through the four-way valve 24.
The refrigerant flowing into the heat storage heat exchanger 11 evaporates by removing heat from the water in the heat storage tank 10, flows out of the heat storage heat exchanger 11, and returns to the compressor 1 through the four-way valve 24.

【0134】非共沸混合冷媒は、蓄熱熱交換器11内で
蒸発する際、温度変化が生じ、蓄熱熱交換器11の伝熱
管温度は冷媒の流れ方向に徐々に上昇する。この結果、
蓄熱運転A時には、蓄熱熱交換器11の伝熱管表面には
均一な厚さで氷が付着生成せず、蒸発温度の低い蓄熱熱
交換器11の入口部の氷厚が厚くなり、逆に蒸発温度の
高い蓄熱熱交換器11の出口部の氷厚が薄くなる。この
状態で蓄熱運転Aが進行すると、蓄熱熱交換器11の入
口部に過大の氷が生成され、蓄熱熱交換器11全体とし
ては効率が低下し、蒸発温度または蒸発圧力の低下が生
じる。
When the non-azeotropic mixed refrigerant evaporates in the heat storage heat exchanger 11, a temperature change occurs, and the heat transfer tube temperature of the heat storage heat exchanger 11 gradually increases in the refrigerant flow direction. As a result,
At the time of the heat storage operation A, ice does not adhere to the surface of the heat transfer tube of the heat storage heat exchanger 11 with a uniform thickness, and the ice thickness at the inlet portion of the heat storage heat exchanger 11 having a low evaporation temperature increases, and conversely, the evaporation occurs. The ice thickness at the outlet of the heat storage heat exchanger 11 having a high temperature is reduced. When the heat storage operation A proceeds in this state, excessive ice is generated at the inlet of the heat storage heat exchanger 11, the efficiency of the heat storage heat exchanger 11 as a whole decreases, and the evaporation temperature or the evaporation pressure decreases.

【0135】そこで、本実施の形態では、蓄熱運転の途
中で蓄熱熱交換器11の冷媒の流れ方向を逆にし、氷厚
の均一化を図っている。即ち、蓄熱熱交換器11の入口
部に設けた温度検知器25によって、蓄熱熱交換器11
の不均一着氷による効率低下を検知し、蓄熱運転Bに移
行する。この温度検知器25で検知される冷媒温度が所
定の値以下、例えば−7℃以下となった場合には、蓄熱
熱交換器11の入口側では十分に製氷された状態になっ
たと判断することができる。このため、四方弁24を切
換えて、蓄熱運転Bを実行する。この蓄熱運転Bは四方
弁24を図29の点線に示すように切換えて行う。
Therefore, in the present embodiment, the direction of the flow of the refrigerant in the heat storage heat exchanger 11 is reversed during the heat storage operation, so that the ice thickness is made uniform. That is, the heat storage heat exchanger 11 is provided by the temperature detector 25 provided at the inlet of the heat storage heat exchanger 11.
Then, a decrease in efficiency due to uneven icing is detected, and the operation proceeds to the heat storage operation B. When the refrigerant temperature detected by the temperature detector 25 becomes equal to or lower than a predetermined value, for example, equal to or lower than -7 ° C., it is determined that the ice has been sufficiently made on the inlet side of the heat storage heat exchanger 11. Can be. Therefore, the heat storage operation B is performed by switching the four-way valve 24. This heat storage operation B is performed by switching the four-way valve 24 as shown by the dotted line in FIG.

【0136】蓄熱運転B時の冷媒の流れは、図29中一
点鎖線矢印で示すように、圧縮機1で吐出された高温高
圧の冷媒蒸気は室外熱交換器3で凝縮液化し、膨張弁4
で低圧に減圧されて四方弁24を通って蓄熱熱交換器1
1bに流入する。蓄熱熱交換器11を11bから11a
に流れる冷媒は、蓄熱槽10内の水から熱を奪って蒸発
した後、四方弁24を通って圧縮機1に戻る。
The flow of the refrigerant during the heat storage operation B is such that the high-temperature and high-pressure refrigerant vapor discharged from the compressor 1 is condensed and liquefied in the outdoor heat exchanger 3 as indicated by the one-dot chain line arrow in FIG.
The pressure is reduced to a low pressure through the four-way valve 24 and the heat storage heat exchanger 1
1b. The heat storage heat exchanger 11 is changed from 11b to 11a.
Refrigerant evaporates by removing heat from the water in the heat storage tank 10 and returns to the compressor 1 through the four-way valve 24.

【0137】この蓄熱運転B時の蓄熱熱交換器11内の
冷媒の流れ方向は、実線矢印で示した蓄熱運転A時の流
れと反対になる。これに伴って蓄熱運転B時における蓄
熱熱交換器11内の温度変化は蓄熱運転A時とは逆にな
るので、蓄熱運転B時には、蓄熱運転A時に製氷量の少
なかった部分の蒸発温度が低くなって製氷量が増加し、
逆に蓄熱運転A時に製氷量の多かった部分の蒸発温度が
高くなって製氷量が減少するため、蓄熱熱交換器11全
体の製氷量が均一化する。このように、蓄熱運転におい
て、蓄熱熱交換器内での非共沸混合冷媒の蒸発温度の高
温部分と低温部分とを逆転することによって、蓄熱熱交
換器に均一な厚さの氷を生成でき、効率の高い蓄熱運転
が可能となる。また蓄熱熱交換器の一部に過大な氷が生
成され、この部分の氷が融合して伝熱管や蓄熱槽の変形
や破損を引き起こすのを防止でき、信頼性の高い冷凍空
調装置が得られる。
The flow direction of the refrigerant in the heat storage heat exchanger 11 during the heat storage operation B is opposite to the flow during the heat storage operation A indicated by the solid line arrow. Accordingly, the temperature change in the heat storage heat exchanger 11 during the heat storage operation B is opposite to the temperature change during the heat storage operation A. Therefore, during the heat storage operation B, the evaporation temperature of the portion where the amount of ice is small during the heat storage operation A is low. And the amount of ice making increased,
Conversely, during the heat storage operation A, the evaporating temperature of the portion where the amount of ice making is large becomes high and the amount of ice making decreases, so that the amount of ice making of the entire heat storage heat exchanger 11 becomes uniform. As described above, in the heat storage operation, ice having a uniform thickness can be generated in the heat storage heat exchanger by reversing the high temperature part and the low temperature part of the evaporation temperature of the non-azeotropic mixed refrigerant in the heat storage heat exchanger. In addition, highly efficient heat storage operation can be performed. In addition, excessive ice is generated in a part of the heat storage heat exchanger, and the ice in this part can be prevented from fusing and causing deformation or breakage of the heat transfer tube or the heat storage tank, and a highly reliable refrigeration and air-conditioning device can be obtained. .

【0138】蓄熱利用冷房運転時は、ポンプ(P)によ
って例えば水を蓄熱槽10と室内熱交換器5を循環させ
る。即ち、蓄熱槽10では5℃程度の水を蓄熱熱交換器
11の回りに流し、蓄熱槽10内の氷を解氷して0℃程
度の水を得る。この低温の水で運ばれる冷熱を室内熱交
換器5で利用する。冷熱利用後、温度上昇した5℃程度
の水を再び蓄熱槽10に戻す。
During the cooling operation utilizing heat storage, for example, water is circulated between the heat storage tank 10 and the indoor heat exchanger 5 by the pump (P). That is, in the heat storage tank 10, water of about 5 ° C. is caused to flow around the heat storage heat exchanger 11, and the ice in the heat storage tank 10 is thawed to obtain water of about 0 ° C. The cold heat carried by the low-temperature water is used in the indoor heat exchanger 5. After utilizing the cold energy, the water whose temperature has increased by about 5 ° C. is returned to the heat storage tank 10 again.

【0139】このように、本実施の形態では、四方弁2
4を切換え、蓄熱熱交換器11内の冷媒の流れ方向を逆
にすることにより、冷媒として非共沸混合冷媒を用いて
も、蓄熱熱交換器11に均一な厚さの氷を生成でき、効
率のよい蓄熱運転が可能となる。また蓄熱熱交換器11
の一部に過大な氷が生成され、この部分の氷が融合して
伝熱管や蓄熱槽10の変形や破損を引き起こすのを防止
でき、信頼性の高い冷凍空調装置が得られる。
Thus, in the present embodiment, the four-way valve 2
By switching 4 and reversing the flow direction of the refrigerant in the heat storage heat exchanger 11, even if a non-azeotropic mixed refrigerant is used as the refrigerant, ice of a uniform thickness can be generated in the heat storage heat exchanger 11, Efficient heat storage operation becomes possible. The heat storage heat exchanger 11
Excessive ice is generated in a part of the heat transfer pipe, and the fusion of the ice in this part can be prevented from causing deformation and breakage of the heat transfer tube and the heat storage tank 10, so that a highly reliable refrigeration and air-conditioning apparatus can be obtained.

【0140】また本実施の形態では、安価な温度検知器
25によって蓄熱熱交換器11に流入する冷媒温度を検
知して、この冷媒温度が所定の温度以下となった場合
に、四方弁24を切換えるので、確実に蓄熱熱交換器1
1内の冷媒の流れ方向を逆に切換えることができる。ま
た、冷媒温度の検知場所は蓄熱熱交換器11の入口部に
限るものではなく、四方弁24から圧縮機1までの配管
に設けて、蓄熱熱交換器11の出口部の温度を検知して
切換えるようにしてもよい。さらには、蓄熱槽10内の
蓄熱熱交換器11に温度検知器を設けて、蓄熱槽10内
の冷媒温度から蓄熱状態を検知し、この結果に応じて冷
媒の流れを切換えるように構成してもよい。
Further, in the present embodiment, the temperature of the refrigerant flowing into the heat storage heat exchanger 11 is detected by the inexpensive temperature detector 25, and when the temperature of the refrigerant falls below the predetermined temperature, the four-way valve 24 is opened. Switching to ensure that the heat storage heat exchanger 1
The flow direction of the refrigerant in 1 can be reversed. Further, the detection location of the refrigerant temperature is not limited to the inlet of the heat storage heat exchanger 11, but is provided in a pipe from the four-way valve 24 to the compressor 1 to detect the temperature of the outlet of the heat storage heat exchanger 11. The switching may be performed. Furthermore, a temperature detector is provided in the heat storage heat exchanger 11 in the heat storage tank 10 to detect the heat storage state from the refrigerant temperature in the heat storage tank 10, and to switch the flow of the refrigerant according to the result. Is also good.

【0141】また蓄熱熱交換器11に流入する冷媒温度
を検知する代わりに、蓄熱熱交換器11の入口部に圧力
検知器を設け、この圧力検知器によって蓄熱熱交換器1
1を流れる冷媒の圧力を検知し、蓄熱熱交換器入口部の
冷媒温度を推算して冷媒の流れを切換えるように構成し
ても、確実に蓄熱熱交換器11内の冷媒の流れ方向を逆
に切換えることができる。圧力検知器の設置場所も蓄熱
熱交換器11の入口部に限らず、蓄熱熱交換器11の出
口部や、蓄熱槽10内の蓄熱熱交換器11に設けても、
上記と同様の効果を奏する。
Instead of detecting the temperature of the refrigerant flowing into the heat storage heat exchanger 11, a pressure detector is provided at the inlet of the heat storage heat exchanger 11, and the pressure detector uses the pressure detector.
Even if the pressure of the refrigerant flowing through the heat storage heat exchanger 11 is detected and the refrigerant temperature at the inlet of the heat storage heat exchanger is estimated to switch the flow of the refrigerant, the flow direction of the refrigerant in the heat storage heat exchanger 11 is surely reversed. Can be switched to The installation location of the pressure detector is not limited to the inlet of the heat storage heat exchanger 11, and may be provided at the outlet of the heat storage heat exchanger 11 or at the heat storage heat exchanger 11 in the heat storage tank 10.
The same effect as described above is achieved.

【0142】また温度検知器や圧力検知器の代わりに、
蓄熱槽10内の氷の状態として例えば氷の厚さを検知す
る氷厚検知器を蓄熱槽10に設け、氷厚が所定の厚さに
なったことを検知したときに、四方弁24を切換えるよ
うに制御してもよい。蓄熱槽10内の氷の状態を検知す
ることで、確実に蓄熱熱交換器11内の冷媒の流れ方向
を逆に切換えることができ、さらに氷が融合して伝熱管
や蓄熱槽10の変形や破損を引き起こすこともなく、信
頼性の高い冷凍空調装置が得られる。即ち、検知器の検
知結果から蓄熱槽10内の蓄熱状態を把握することがで
きるなら、検知器の設置場所はどこでもよく、検知対象
とする状態量はなんでもよい。また本実施の形態では蓄
熱材として水を用い、蓄熱槽10に満たした水を氷にし
て冷熱を蓄熱しているが、例えばエチレングリコールや
ヘキサデカンなどの潜熱蓄熱材を蓄熱槽10に格納しこ
れによって冷熱を蓄熱してもよい。
Further, instead of the temperature detector and the pressure detector,
An ice thickness detector that detects, for example, the thickness of ice as the state of ice in the heat storage tank 10 is provided in the heat storage tank 10, and when it is detected that the ice thickness has reached a predetermined thickness, the four-way valve 24 is switched. May be controlled as follows. By detecting the state of the ice in the heat storage tank 10, the flow direction of the refrigerant in the heat storage heat exchanger 11 can be reliably switched in the opposite direction. A highly reliable refrigeration / air-conditioning device can be obtained without causing breakage. That is, as long as the state of heat storage in the heat storage tank 10 can be grasped from the detection result of the detector, the detector may be installed anywhere and the state quantity to be detected may be any. In the present embodiment, water is used as the heat storage material, and the cold water is stored by using the water filled in the heat storage tank 10 as ice to store the cold heat. For example, a latent heat storage material such as ethylene glycol or hexadecane is stored in the heat storage tank 10. May be used to store cold heat.

【0143】ただし、上記実施の形態で述べたように、
蓄熱材として水を用いるのが値段や取り扱いやすさの点
から望ましく、蓄熱状態検知手段として温度検知器25
を用い、温度検知器25を蓄熱熱交換器11の入口部に
設けると、蓄熱運転Aでも蓄熱運転Bでも蓄熱熱交換器
11の流入する冷媒の温度を検知することができ、また
配管に取りつけるだけでよいので、容易に実施できる。
However, as described in the above embodiment,
It is desirable to use water as the heat storage material in terms of cost and ease of handling, and the temperature detector 25 is used as the heat storage state detecting means.
When the temperature detector 25 is provided at the inlet of the heat storage heat exchanger 11, the temperature of the refrigerant flowing into the heat storage heat exchanger 11 can be detected in both the heat storage operation A and the heat storage operation B, and can be attached to the pipe. , It can be easily implemented.

【0144】また上記では蓄熱槽10に冷熱を蓄熱する
構成について述べたが、熱源装置で生成した温熱を蓄熱
槽10に蓄熱する空調装置において、蓄熱熱交換器11
の冷媒の流れ方向を切換えるようにしても、上記と同
様、蓄熱槽10内に均一に温熱を蓄熱することができ
る。
In the above description, the configuration in which cold heat is stored in the heat storage tank 10 has been described. However, in an air conditioner in which the heat generated by the heat source device is stored in the heat storage tank 10, the heat storage heat exchanger 11 is used.
Even if the flow direction of the refrigerant is switched, the heat can be uniformly stored in the heat storage tank 10 in the same manner as described above.

【0145】また本実施の形態では、蓄熱槽を有する冷
凍空調装置として、1台の室外熱交換器と1台の室内熱
交換器を備えた最も簡単なものを示したが、これに限る
ことはなく、1台の室外熱交換器に複数台の室内熱交換
器が接続された冷凍空調装置でも同様の効果を発揮す
る。
In the present embodiment, the simplest refrigerator having one outdoor heat exchanger and one indoor heat exchanger has been described as a refrigerating and air-conditioning apparatus having a heat storage tank. However, the same effect can be obtained in a refrigeration / air-conditioning system in which a plurality of indoor heat exchangers are connected to one outdoor heat exchanger.

【0146】また本実施の形態では、冷凍空調装置の冷
媒としてオゾン層破壊係数がゼロのフロンR407Cを
用いた場合について説明したが、これに限るものではな
く、フロンR404Aや他の非共沸混合冷媒でもよい。
また地球温暖化防止の観点から、プロパンやブタン、ア
ンモニア、炭酸ガスなどの自然冷媒を用いた非共沸混合
冷媒でも同様の効果を発揮する。
Further, in the present embodiment, the case where Freon R407C having an ozone layer depletion coefficient of zero is used as the refrigerant of the refrigeration and air-conditioning apparatus has been described. However, the present invention is not limited to this. Freon R404A and other non-azeotropic mixtures A refrigerant may be used.
In addition, from the viewpoint of preventing global warming, non-azeotropic mixed refrigerants using natural refrigerants such as propane, butane, ammonia, and carbon dioxide exert the same effect.

【0147】また、このような外融式蓄熱槽において、
実施の形態2〜実施の形態13のいずれかに示したよう
な構成を適用しても、内融式蓄熱槽における効果と同様
の効果を奏する。
In such an external fusion type heat storage tank,
Even when the configuration as shown in any of Embodiments 2 to 13 is applied, the same effect as that of the internal melting type heat storage tank can be obtained.

【0148】[0148]

【発明の効果】以上のように本発明によれば、非共沸混
合冷媒を熱伝達媒体として用いて冷熱または温熱を生成
する熱源装置と、蓄熱熱交換器および蓄熱材を有し前記
熱源装置で生成した冷熱または温熱を前記蓄熱熱交換器
を介して前記蓄熱材に蓄熱する蓄熱槽と、前記蓄熱槽に
蓄熱された冷熱または温熱が供給される負荷装置とを備
える冷凍空調装置において、前記蓄熱熱交換器内での前
記非共沸混合冷媒の流れ方向を正逆に切換え可能とした
ことにより、蓄熱熱交換器内での非共沸混合冷媒の蒸発
温度の高温部分と低温部分とを逆転し、蓄熱熱交換器に
均一な厚さの氷を生成でき、効率の高い蓄熱運転が可能
となる。また蓄熱熱交換器の一部に過大な氷が生成さ
れ、この部分の氷が融合して伝熱管や蓄熱槽の変形や破
損を引き起こすのを防止でき、信頼性の高い冷凍空調装
置が得られる。
As described above, according to the present invention, a heat source device for generating cold or warm heat by using a non-azeotropic mixed refrigerant as a heat transfer medium, a heat storage heat exchanger and a heat storage material, In a refrigerating air-conditioning apparatus comprising: a heat storage tank that stores the cold or warm heat generated in the heat storage material via the heat storage heat exchanger; and a load device to which the cold or warm heat stored in the heat storage tank is supplied. By making it possible to switch the flow direction of the non-azeotropic mixed refrigerant in the heat storage heat exchanger forward and reverse, the high temperature part and the low temperature part of the evaporation temperature of the non-azeotropic mixed refrigerant in the heat storage heat exchanger Invert, ice of uniform thickness can be generated in the heat storage heat exchanger, and efficient heat storage operation becomes possible. In addition, excessive ice is generated in a part of the heat storage heat exchanger, and the ice in this part can be prevented from fusing and causing deformation or breakage of the heat transfer tube or the heat storage tank, and a highly reliable refrigeration and air-conditioning device can be obtained. .

【0149】また、本発明によれば、蓄熱熱交換器を流
れる非共沸混合冷媒の温度を検知する温度検知器を設
け、前記温度検知器の出力値に応じて前記蓄熱熱交換器
内での前記非共沸混合冷媒の流れ方向を切換えるように
構成したことにより、安価でかつ確実に冷媒の流れ方向
を切換えることができる冷凍空調装置が得られる。
Further, according to the present invention, a temperature detector for detecting the temperature of the non-azeotropic mixed refrigerant flowing through the heat storage heat exchanger is provided, and the temperature in the heat storage heat exchanger is changed according to the output value of the temperature detector. By switching the flow direction of the non-azeotropic refrigerant mixture, a refrigeration / air-conditioning apparatus that can reliably and inexpensively switch the flow direction of the refrigerant can be obtained.

【0150】また、本発明によれば、蓄熱熱交換器を流
れる非共沸混合冷媒の圧力を検知する圧力検知器を設
け、前記圧力検知器の出力値に応じて前記蓄熱熱交換器
内での前記非共沸混合冷媒の流れ方向を切換えるように
構成したことにより、確実に冷媒の流れ方向を切換える
ことができる冷凍空調装置が得られる。
Further, according to the present invention, a pressure detector for detecting the pressure of the non-azeotropic mixed refrigerant flowing through the heat storage heat exchanger is provided, and the pressure in the heat storage heat exchanger is changed according to the output value of the pressure detector. By switching the flow direction of the non-azeotropic mixed refrigerant described above, a refrigeration air conditioner capable of reliably switching the flow direction of the refrigerant can be obtained.

【0151】また、本発明によれば、蓄熱熱交換器内で
の非共沸混合冷媒の流れ方向を所定の時間間隔で切換え
るように構成したことにより、安価に冷媒の流れ方向を
切換えることができる冷凍空調装置が得られる。
Further, according to the present invention, the flow direction of the non-azeotropic mixed refrigerant in the heat storage heat exchanger is switched at predetermined time intervals, so that the flow direction of the refrigerant can be switched at low cost. A refrigeration and air-conditioning system that can be obtained.

【0152】また、本発明によれば、蓄熱槽内の蓄熱材
の蓄熱状態を検知する検知器を設け、前記検知器の検知
結果に応じて前記蓄熱熱交換器内での非共沸混合冷媒の
流れ方向を切換えるように構成したことにより、安価に
冷媒の流れ方向を切換えることができ、さらに、氷が融
合して伝熱管や蓄熱槽の変形や破損を引き起こすのを防
止でき、信頼性の高い冷凍空調装置が得られる。
Further, according to the present invention, a detector for detecting the heat storage state of the heat storage material in the heat storage tank is provided, and the non-azeotropic mixed refrigerant in the heat storage heat exchanger is provided according to the detection result of the detector. The flow direction of the refrigerant can be switched at low cost by changing the flow direction of the refrigerant, and furthermore, it is possible to prevent the fusion of the ice and to cause the heat transfer tube or the heat storage tank to be deformed or damaged, thereby improving the reliability. A high refrigeration air conditioner is obtained.

【0153】また、本発明によれば、非共沸混合冷媒を
熱伝達媒体として用いて冷熱または温熱を生成する熱源
装置と、蓄熱熱交換器および蓄熱材を有し前記熱源装置
で生成した冷熱または温熱を前記蓄熱熱交換器を介して
前記蓄熱材に蓄熱する蓄熱槽と、前記蓄熱槽に蓄熱され
た冷熱または温熱が供給される負荷装置とを備える冷凍
空調装置において、前記蓄熱熱交換器の出口部の伝熱特
性を入口部の伝熱特性よりも高くしたことにより、非共
沸混合冷媒の蒸発温度が高い出口部の製氷量を増加して
蒸発温度が低い入口部の製氷量と同程度とし、製氷量を
均一化できる冷凍空調装置が得られる。
Further, according to the present invention, a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a heat storage device having a heat storage heat exchanger and a heat storage material, Alternatively, in the refrigeration air conditioner including a heat storage tank that stores heat in the heat storage material via the heat storage heat exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank, the heat storage heat exchanger By making the heat transfer characteristics of the outlet part higher than that of the inlet part, the amount of ice making at the outlet part where the evaporation temperature of the non-azeotropic mixed refrigerant is high is increased, and the amount of ice making at the inlet part where the evaporation temperature is low is increased. A refrigeration / air-conditioning apparatus capable of making the ice making amount uniform can be obtained.

【0154】また、本発明によれば、蓄熱熱交換器の出
口部の管径を入口部の管径より小さくして、前記蓄熱熱
交換器の出口部の伝熱特性を入口部の伝熱特性よりも高
くしたことにより、簡単な構成で蒸発温度が高い出口部
の製氷量を増加させ、製氷量を均一化できる冷凍空調装
置が得られる。
According to the present invention, the pipe diameter at the outlet of the heat storage heat exchanger is made smaller than the pipe diameter at the inlet, and the heat transfer characteristic at the outlet of the heat storage heat exchanger is changed at the heat transfer at the inlet. By making the characteristics higher than the characteristics, it is possible to obtain a refrigeration / air-conditioning apparatus that can increase the amount of ice at the outlet having a high evaporation temperature with a simple configuration and can equalize the amount of ice.

【0155】また、本発明によれば、蓄熱熱交換器の入
口部で非共沸混合冷媒を複数の流路に分岐するととも
に、前記蓄熱熱交換器の出口部の流路数を入口部の流路
数より少なくし、前記出口部の流路の断面積の合計を前
記入口部の流路の断面積の合計よりも小さくして、前記
蓄熱熱交換器の出口部の伝熱特性を入口部の伝熱特性よ
りも高くしたことにより、簡単な構成で蒸発温度が高い
出口部の製氷量を増加させ、製氷量を均一化できる冷凍
空調装置が得られる。
According to the present invention, the non-azeotropic mixed refrigerant is branched into a plurality of flow paths at the inlet of the heat storage heat exchanger, and the number of flow paths at the outlet of the heat storage heat exchanger is reduced. Less than the number of channels, the sum of the cross-sectional areas of the outlet channels is smaller than the sum of the cross-sectional areas of the inlet channels, and the heat transfer characteristics of the outlet of the heat storage heat exchanger By making the heat transfer characteristics higher than the heat transfer characteristics of the section, it is possible to obtain a refrigeration / air-conditioning apparatus capable of increasing the amount of ice making at the outlet section having a high evaporation temperature with a simple configuration and making the amount of ice making uniform.

【0156】また、本発明によれば、非共沸混合冷媒を
熱伝達媒体として用いて冷熱または温熱を生成する熱源
装置と、蓄熱熱交換器および蓄熱材を有し前記熱源装置
で生成した冷熱または温熱を前記蓄熱熱交換器を介して
前記蓄熱材に蓄熱する蓄熱槽と、前記蓄熱槽に蓄熱され
た冷熱または温熱が供給される負荷装置とを備える冷凍
空調装置において、前記蓄熱熱交換器の入口部の伝熱管
と出口部の伝熱管を熱的に接触させたことにより、非共
沸混合冷媒の蒸発温度の低温部分と高温部分とを熱伝導
させて伝熱管表面温度を均一化し、その表面に付着生成
する氷を均一化できる冷凍空調装置が得られる。
Further, according to the present invention, a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a cold storage device having a heat storage heat exchanger and a heat storage material, and Alternatively, in the refrigeration air conditioner including a heat storage tank that stores heat in the heat storage material via the heat storage heat exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank, the heat storage heat exchanger By bringing the heat transfer tube at the inlet and the heat transfer tube at the outlet into thermal contact, heat conduction between the low temperature part and the high temperature part of the evaporation temperature of the non-azeotropic mixed refrigerant makes the heat transfer tube surface temperature uniform, A refrigeration / air-conditioning apparatus capable of equalizing ice formed on the surface can be obtained.

【0157】また、本発明によれば、非共沸混合冷媒を
熱伝達媒体として用いて冷熱または温熱を生成する熱源
装置と、蓄熱熱交換器および蓄熱材を有し前記熱源装置
で生成した冷熱または温熱を前記蓄熱熱交換器を介して
前記蓄熱材に蓄熱する蓄熱槽と、前記蓄熱槽に蓄熱され
た冷熱または温熱が供給される負荷装置とを備える冷凍
空調装置において、前記蓄熱熱交換器内での非共沸混合
冷媒の流路を複数設け、隣合う前記流路で前記非共沸混
合冷媒の流れ方向が逆になるように前記流路を配置した
ことにより、非共沸混合冷媒の蒸発温度の低温部分と高
温部分を隣合わせとし、氷厚の厚い伝熱管の隣に氷厚の
薄い伝熱管を配置して、伝熱管表面に付着生成する氷が
不均一であっても、氷が融合して伝熱管や蓄熱槽の変形
や破損を引き起こすのを防止でき、信頼性の高い冷凍空
調装置が得られる。
Further, according to the present invention, a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a cold storage device having a heat storage heat exchanger and a heat storage material, and Alternatively, in the refrigeration air conditioner including a heat storage tank that stores heat in the heat storage material via the heat storage heat exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank, the heat storage heat exchanger By providing a plurality of non-azeotropic mixed refrigerant flow paths in the inside, and by arranging the flow path so that the flow direction of the non-azeotropic mixed refrigerant in the adjacent flow path is reversed, the non-azeotropic mixed refrigerant The low-temperature part and high-temperature part of the evaporation temperature are placed next to each other, and the thin-walled heat transfer tube is placed next to the thick-walled heat transfer tube. Coalescence causes deformation and breakage of heat transfer tubes and heat storage tanks It prevents the highly reliable refrigerating and air-conditioning apparatus can be obtained.

【0158】また、本発明によれば、非共沸混合冷媒を
熱伝達媒体として用いて冷熱または温熱を生成する熱源
装置と、蓄熱熱交換器および蓄熱材を有し前記熱源装置
で生成した冷熱または温熱を前記蓄熱熱交換器を介して
前記蓄熱材に蓄熱する蓄熱槽と、前記蓄熱槽に蓄熱され
た冷熱または温熱が供給される負荷装置とを備える冷凍
空調装置において、前記蓄熱熱交換器を複数本の伝熱管
を並設して構成し、隣合う前記伝熱管で前記非共沸混合
冷媒の流れ方向が逆になるように前記伝熱管を配置する
とともに、前記隣合う伝熱管の少なくとも2本づつを熱
的に接触させたことにより、非共沸混合冷媒の蒸発温度
の低温部分と高温部分とを熱伝導させて伝熱管表面温度
を均一化し、その表面に付着生成する氷を均一化できる
冷凍空調装置が得られる。
Further, according to the present invention, a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a cold storage device having a heat storage heat exchanger and a heat storage material and generated by the heat source device Alternatively, in the refrigeration air conditioner including a heat storage tank that stores heat in the heat storage material via the heat storage heat exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank, the heat storage heat exchanger A plurality of heat transfer tubes are arranged side by side, and the heat transfer tubes are arranged so that the flow direction of the non-azeotropic mixed refrigerant is opposite in the adjacent heat transfer tubes, and at least the adjacent heat transfer tubes are arranged. The two pieces are brought into thermal contact with each other to conduct heat between the low-temperature part and the high-temperature part of the non-azeotropic refrigerant mixture to make the surface temperature of the heat transfer tube uniform and to make the ice generated on the surface uniform. Refrigeration and air conditioning system It is.

【0159】また、本発明によれば、非共沸混合冷媒を
熱伝達媒体として用いて冷熱または温熱を生成する熱源
装置と、蓄熱熱交換器および蓄熱材を有し前記熱源装置
で生成した冷熱または温熱を前記蓄熱熱交換器を介して
前記蓄熱材に蓄熱する蓄熱槽と、前記蓄熱槽に蓄熱され
た冷熱または温熱が供給される負荷装置とを備える冷凍
空調装置において、前記蓄熱熱交換器は伝熱管を鉛直方
向または水平方向に蛇行させて配設するものとし、前記
蓄熱熱交換器の入口部の蛇行のピッチを出口部よりも大
きくしたことにより、非共沸混合冷媒の蒸発温度の低温
部分で製氷空間を広くし蒸発温度の高温部分で製氷空間
を狭くして、簡単な構成で伝熱管表面に付着生成する氷
が不均一であっても、氷が融合して伝熱管や蓄熱槽の変
形や破損を引き起こすのを防止でき、信頼性の高い冷凍
空調装置が得られる。
Further, according to the present invention, there is provided a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, and a heat storage device having a heat storage heat exchanger and a heat storage material. Alternatively, in the refrigeration air conditioner including a heat storage tank that stores heat in the heat storage material via the heat storage heat exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank, the heat storage heat exchanger The heat transfer tubes are arranged in a meandering manner in the vertical or horizontal direction, and the meandering pitch of the inlet portion of the heat storage heat exchanger is made larger than that of the outlet portion, so that the evaporation temperature of the non-azeotropic mixed refrigerant is reduced. The ice making space is widened in the low temperature area and the ice making space is narrow in the high temperature area, so that even if the ice generated on the heat transfer tube surface is uneven with a simple configuration, the ice fuses and the heat transfer tube and heat storage Causes deformation and breakage of the tank To the can be prevented, high reliability refrigeration air conditioning system is obtained.

【0160】また、本発明によれば、非共沸混合冷媒を
熱伝達媒体として用いて冷熱または温熱を生成する熱源
装置と、蓄熱熱交換器および蓄熱材を有し前記熱源装置
で生成した冷熱または温熱を前記蓄熱熱交換器を介して
前記蓄熱材に蓄熱する蓄熱槽と、前記蓄熱槽に蓄熱され
た冷熱または温熱が供給される負荷装置とを備える冷凍
空調装置において、前記蓄熱熱交換器を、前記非共沸混
合冷媒の前記蓄熱熱交換器内での温度上昇を打ち消すよ
うな冷媒圧力損失を有するものとし、前記蓄熱熱交換器
内の前記非共沸混合冷媒の温度を概略一定としたことに
より、非共沸混合冷媒の不均一な蒸発温度を蓄熱熱交換
器の構成によって均一化でき、伝熱管表面に付着生成す
る氷を均一化できる冷凍空調装置が得られる。
Further, according to the present invention, a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a cold storage device having a heat storage heat exchanger and a heat storage material, and Alternatively, in the refrigeration air conditioner including a heat storage tank that stores heat in the heat storage material via the heat storage heat exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank, the heat storage heat exchanger It is assumed that the non-azeotropic mixed refrigerant has a refrigerant pressure loss that cancels the temperature rise in the heat storage heat exchanger, and the temperature of the non-azeotropic mixed refrigerant in the heat storage heat exchanger is substantially constant. By doing so, it is possible to obtain a refrigeration / air-conditioning apparatus which can make the non-uniform evaporation temperature of the non-azeotropic mixed refrigerant uniform by the configuration of the heat storage heat exchanger, and can make the ice generated on the heat transfer tube surface uniform.

【0161】また、本発明によれば、非共沸混合冷媒を
熱伝達媒体として用いて冷熱または温熱を生成する熱源
装置と、蓄熱熱交換器および蓄熱材を有し前記熱源装置
で生成した冷熱または温熱を前記蓄熱熱交換器を介して
前記蓄熱材に蓄熱する蓄熱槽と、前記蓄熱槽に蓄熱され
た冷熱または温熱が供給される負荷装置とを備える冷凍
空調装置において、前記非共沸混合冷媒の前記蓄熱熱交
換器内での温度変化幅が所定値以下となるような冷媒圧
力損失を有するように前記蓄熱熱交換器を構成したこと
により、ほぼ均一に蓄熱できる蓄熱効率の良い冷凍空調
装置が得られる。
Further, according to the present invention, a heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a cold storage device having a heat storage heat exchanger and a heat storage material, and Alternatively, in the refrigeration air-conditioning apparatus including a heat storage tank that stores heat in the heat storage material via the heat storage heat exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank, the non-azeotropic mixing is performed. Refrigeration and air conditioning with good heat storage efficiency that can store heat almost uniformly by configuring the heat storage heat exchanger so as to have a refrigerant pressure loss such that the temperature change width of the refrigerant in the heat storage heat exchanger is equal to or less than a predetermined value. A device is obtained.

【0162】また、本発明によれば、熱伝達媒体を用い
て冷熱または温熱を生成する熱源装置と、蓄熱熱交換器
および蓄熱材を有し前記熱源装置で生成した冷熱または
温熱を前記蓄熱熱交換器を介して前記蓄熱材に蓄熱する
蓄熱槽と、前記蓄熱槽に蓄熱された冷熱または温熱が供
給される負荷装置とを備える冷凍空調装置において、前
記熱伝達媒体として非共沸混合冷媒を用いたときと、単
一冷媒または共沸冷媒または前記非共沸混合冷媒とは異
なる非共沸混合冷媒を用いたときのいずれにおいても、
前記蓄熱熱交換器内での前記熱伝達媒体の温度変化幅が
所定値以下となるような冷媒圧力損失を有するように前
記蓄熱熱交換器を構成したことにより、冷媒のレトロフ
ィットとして、単一冷媒、共沸冷媒、非共沸混合冷媒の
いずれかから前記非共沸混合冷媒とは異なる非共沸混合
冷媒に冷媒を変更した場合、または非共沸混合冷媒から
単一冷媒、共沸冷媒、前記非共沸混合冷媒とは異なる非
共沸混合冷媒のいずれかに冷媒を変更した場合、どちら
の場合においても非共沸混合冷媒を用いた運転、あるい
は単一冷媒、共沸冷媒、前記非共沸混合冷媒とは異なる
非共沸混合冷媒のいずれかを用いた運転、それぞれの運
転においてほぼ均一に蓄熱でき蓄熱効率の良い冷凍空調
装置が得られる。
Further, according to the present invention, a heat source device for generating cold or hot heat using a heat transfer medium, and a heat storage heat exchanger and a heat storage material, wherein the cold or hot heat generated by the heat source device is stored in the heat storage device. In a refrigeration air conditioner including a heat storage tank that stores heat in the heat storage material via an exchanger, and a load device to which cold or warm heat stored in the heat storage tank is supplied, a non-azeotropic mixed refrigerant is used as the heat transfer medium. When used, both when using a single refrigerant or azeotropic refrigerant or non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant,
By configuring the heat storage heat exchanger so as to have a refrigerant pressure loss such that the temperature change width of the heat transfer medium in the heat storage heat exchanger is equal to or less than a predetermined value, a single retrofit of the refrigerant Refrigerant, azeotropic refrigerant, when the refrigerant is changed from any of the non-azeotropic mixed refrigerant to a non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant, or from a non-azeotropic mixed refrigerant to a single refrigerant, an azeotropic refrigerant When the refrigerant is changed to any one of the non-azeotropic mixed refrigerants different from the non-azeotropic mixed refrigerant, the operation using the non-azeotropic mixed refrigerant in either case, or a single refrigerant, an azeotropic refrigerant, In the operation using any one of the non-azeotropic mixed refrigerants different from the non-azeotropic mixed refrigerant, heat can be stored almost uniformly in each operation, and a refrigeration / air-conditioning apparatus with good heat storage efficiency can be obtained.

【0163】また、本発明によれば、蓄熱熱交換器内の
熱伝達媒体の温度変化幅を所定値以下となるようにした
時の前記所定値を、3.5℃としたことにより、ほぼ均
一に蓄熱でき、蓄熱効率の良い冷凍空調装置が得られ
る。
Further, according to the present invention, the predetermined value when the temperature change width of the heat transfer medium in the heat storage heat exchanger is set to a predetermined value or less is set to 3.5 ° C. A refrigeration / air-conditioning apparatus that can uniformly store heat and has high heat storage efficiency can be obtained.

【0164】また、本発明によれば、非共沸混合冷媒を
熱伝達媒体として用いて冷熱または温熱を生成する熱源
装置と、蓄熱熱交換器および蓄熱材を有し前記熱源装置
で生成した冷熱または温熱を前記蓄熱熱交換器を介して
前記蓄熱材に蓄熱する蓄熱槽と、前記蓄熱槽に蓄熱され
た冷熱または温熱が供給される負荷装置とを備える冷凍
空調装置において、前記蓄熱熱交換器入口部での前記非
共沸混合冷媒の温度と前記蓄熱材の温度との温度差を入
口部温度差とし、前記蓄熱熱交換器出口部での前記非共
沸混合冷媒の温度と前記蓄熱材の温度との温度差を出口
部温度差として、前記入口部温度差と前記出口部温度差
の割合が所定範囲となるような冷媒圧力損失を有するよ
うに前記蓄熱熱交換器を構成したことにより、ほぼ均一
に蓄熱でき蓄熱効率の良い冷凍空調装置が得られる。
Further, according to the present invention, a heat source device for generating cold or warm heat by using a non-azeotropic mixed refrigerant as a heat transfer medium, a cold heat generated by the heat source device having a heat storage heat exchanger and a heat storage material. Alternatively, in the refrigeration air conditioner including a heat storage tank that stores heat in the heat storage material via the heat storage heat exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank, the heat storage heat exchanger The temperature difference between the temperature of the non-azeotropic mixed refrigerant at the inlet and the temperature of the heat storage material is defined as the temperature difference at the inlet, and the temperature of the non-azeotropic mixed refrigerant at the outlet of the heat storage heat exchanger and the heat storage material By setting the temperature difference between the temperature and the outlet temperature difference, by configuring the heat storage heat exchanger so as to have a refrigerant pressure loss such that the ratio of the inlet temperature difference and the outlet temperature difference is within a predetermined range. , Heat can be stored almost uniformly Good refrigeration and air conditioning equipment of is obtained.

【0165】また、本発明によれば、熱伝達媒体を用い
て冷熱または温熱を生成する熱源装置と、蓄熱熱交換器
および蓄熱材を有し前記熱源装置で生成した冷熱または
温熱を前記蓄熱熱交換器を介して前記蓄熱材に蓄熱する
蓄熱槽と、前記蓄熱槽に蓄熱された冷熱または温熱が供
給される負荷装置とを備える冷凍空調装置において、前
記熱伝達媒体として非共沸混合冷媒を用いたときと、単
一冷媒または共沸冷媒または前記非共沸混合冷媒とは異
なる非共沸混合冷媒を用いたときのいずれにおいても、
前記蓄熱熱交換器入口部での前記熱伝達媒体の温度と前
記蓄熱材の温度との温度差を入口部温度差とし、前記蓄
熱熱交換器出口部での前記熱伝達媒体の温度と前記蓄熱
材の温度との温度差を出口部温度差とし、前記入口部温
度差と前記出口部温度差の割合が所定範囲となるような
冷媒圧力損失を有するように前記蓄熱熱交換器を構成し
たことにより、冷媒のレトロフィットとして、単一冷
媒、共沸冷媒、非共沸混合冷媒のいずれかから前記非共
沸混合冷媒とは異なる非共沸混合冷媒に冷媒を変更した
場合、または非共沸混合冷媒から単一冷媒、共沸冷媒、
前記非共沸混合冷媒とは異なる非共沸混合冷媒のいずれ
かに冷媒を変更した場合、どちらの場合においても非共
沸混合冷媒を用いた運転、あるいは単一冷媒、共沸冷
媒、前記非共沸混合冷媒とは異なる非共沸混合冷媒のい
ずれかを用いた運転、それぞれの運転において、ほぼ均
一に蓄熱でき、蓄熱効率の良い冷凍空調装置が得られ
る。
Further, according to the present invention, a heat source device for generating cold or warm heat using a heat transfer medium, and a heat storage heat exchanger and a heat storage material, wherein the cold or warm heat generated by the heat source device is stored in the heat storage device. In a refrigeration air conditioner including a heat storage tank that stores heat in the heat storage material via an exchanger, and a load device to which cold or warm heat stored in the heat storage tank is supplied, a non-azeotropic mixed refrigerant is used as the heat transfer medium. When used, both when using a single refrigerant or azeotropic refrigerant or non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant,
The temperature difference between the temperature of the heat transfer medium at the inlet of the heat storage heat exchanger and the temperature of the heat storage material is defined as an inlet temperature difference, and the temperature of the heat transfer medium at the outlet of the heat storage heat exchanger and the heat storage The temperature difference between the temperature of the material and the outlet temperature difference, the heat storage heat exchanger is configured to have a refrigerant pressure loss such that the ratio of the inlet temperature difference and the outlet temperature difference is within a predetermined range. As a refrigerant retrofit, when the refrigerant is changed from a single refrigerant, an azeotropic refrigerant, a non-azeotropic mixed refrigerant to a non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant, or non-azeotropic Single refrigerant, azeotropic refrigerant, mixed refrigerant,
When the refrigerant is changed to any one of the non-azeotropic mixed refrigerants different from the non-azeotropic mixed refrigerant, in either case, the operation using the non-azeotropic mixed refrigerant, or a single refrigerant, an azeotropic refrigerant, In the operation using any one of the non-azeotropic mixed refrigerants different from the azeotropic mixed refrigerant, in each operation, heat can be stored almost uniformly, and a refrigeration / air-conditioning apparatus with good heat storage efficiency can be obtained.

【0166】また、本発明によれば、蓄熱熱交換器入口
部での熱伝達媒体の温度と蓄熱材の温度との温度差であ
る入口部温度差と、前記蓄熱熱交換器出口部での前記熱
伝達媒体の温度と前記蓄熱材の温度との温度差である出
口部温度差のうち、大きい方の値をΔTmax 、小さい方
の値をΔTmin としたとき、温度差の割合ΔTmin /Δ
Tmax が、 ΔTmin /ΔTmax > 0.5 を満足するような冷媒圧力損失を有するように前記蓄熱
熱交換器を構成したことにより、ほぼ均一に蓄熱でき、
蓄熱効率の良い冷凍空調装置が得られる。
According to the present invention, the temperature difference between the inlet of the heat storage heat exchanger and the temperature difference between the temperature of the heat storage medium and the temperature at the outlet of the heat storage heat exchanger. Assuming that a larger value is ΔTmax and a smaller value is ΔTmin, a temperature difference ratio ΔTmin / Δ, of the outlet temperature difference which is the temperature difference between the temperature of the heat transfer medium and the temperature of the heat storage material.
By configuring the heat storage heat exchanger so that Tmax has a refrigerant pressure loss satisfying ΔTmin / ΔTmax> 0.5, heat can be stored almost uniformly,
A refrigeration / air-conditioning device with good heat storage efficiency can be obtained.

【0167】また、本発明によれば、蓄熱材の融解潜熱
を利用して冷熱を蓄熱するものとし、蓄熱熱交換器入口
部での蓄熱材の温度と前記蓄熱熱交換器出口部での前記
蓄熱材の温度として、前記蓄熱材の凝固温度を用いるこ
とにより、蓄熱材と熱伝達媒体の温度差を的確に把握す
ることが可能となり、ほぼ均一に蓄熱でき蓄熱効率の良
い冷凍空調装置が得られる。
Further, according to the present invention, cold heat is stored using the latent heat of fusion of the heat storage material, and the temperature of the heat storage material at the inlet of the heat storage heat exchanger and the temperature of the heat at the outlet of the heat storage heat exchanger. By using the solidification temperature of the heat storage material as the temperature of the heat storage material, it is possible to accurately grasp the temperature difference between the heat storage material and the heat transfer medium, and obtain a refrigeration / air-conditioning apparatus that can store heat almost uniformly and has high heat storage efficiency. Can be

【0168】また、本発明によれば、蓄熱熱交換器の冷
媒圧力損失が0のときの熱源装置の運転効率からの運転
効率低下が所定値以下になるような冷媒圧力損失を有す
るように前記蓄熱熱交換器を構成したことにより、冷凍
サイクルの運転効率の低下を防止でき、かつほぼ均一に
蓄熱でき蓄熱効率の良い冷凍空調装置が得られる。
Further, according to the present invention, the refrigerant pressure loss is set such that the decrease in operating efficiency from the operating efficiency of the heat source device when the refrigerant pressure loss of the heat storage heat exchanger is 0 is equal to or less than a predetermined value. With the configuration of the heat storage heat exchanger, it is possible to prevent a decrease in the operation efficiency of the refrigeration cycle, and to obtain a refrigeration / air-conditioning apparatus with high heat storage efficiency that can store heat almost uniformly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1による冷凍空調装置を
示す冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram illustrating a refrigeration / air-conditioning apparatus according to Embodiment 1 of the present invention.

【図2】 実施の形態1に係わる蓄熱槽を示す図であ
り、図2(a)は蓄熱槽の上面図、図2(b)は蓄熱槽
の縦断面図である。
FIG. 2 is a diagram showing a heat storage tank according to Embodiment 1, wherein FIG. 2 (a) is a top view of the heat storage tank and FIG. 2 (b) is a longitudinal sectional view of the heat storage tank.

【図3】 実施の形態1に係わる冷凍空調装置の蓄熱運
転時の動作状態を表す特性図である。
FIG. 3 is a characteristic diagram illustrating an operation state of the refrigerating air-conditioning apparatus according to Embodiment 1 during a heat storage operation.

【図4】 実施の形態1に係わる蓄熱熱交換器の温度分
布を示すグラフである。
FIG. 4 is a graph showing a temperature distribution of the heat storage heat exchanger according to the first embodiment.

【図5】 本発明の実施の形態2による冷凍空調装置を
示す冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 2 of the present invention.

【図6】 本発明の実施の形態3による冷凍空調装置を
示す冷媒回路図である。
FIG. 6 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 3 of the present invention.

【図7】 本発明の実施の形態4に係わる蓄熱槽を示す
構成図である。
FIG. 7 is a configuration diagram showing a heat storage tank according to Embodiment 4 of the present invention.

【図8】 本発明の実施の形態5に係わる蓄熱熱交換器
を示す斜視図である。
FIG. 8 is a perspective view showing a heat storage heat exchanger according to Embodiment 5 of the present invention.

【図9】 実施の形態5に係わる蓄熱熱交換器の他の構
成を示す斜視図である。
FIG. 9 is a perspective view showing another configuration of the heat storage heat exchanger according to the fifth embodiment.

【図10】 実施の形態5に係わる蓄熱熱交換器のさら
に他の構成を示す斜視図である。
FIG. 10 is a perspective view showing still another configuration of the heat storage heat exchanger according to the fifth embodiment.

【図11】 本発明の実施の形態6による冷凍空調装置
を示す冷媒回路図である。
FIG. 11 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 6 of the present invention.

【図12】 実施の形態6に係わる伝熱管の回りに付着
する氷を示す説明図である。
FIG. 12 is an explanatory diagram showing ice adhering around a heat transfer tube according to the sixth embodiment.

【図13】 本発明の実施の形態7による冷凍空調装置
を示す冷媒回路図である。
FIG. 13 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 7 of the present invention.

【図14】 本発明の実施の形態8による冷凍空調装置
を示す冷媒回路図である。
FIG. 14 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 8 of the present invention.

【図15】 実施の形態8に係わる蓄熱槽の他の構成を
示す上面図である。
FIG. 15 is a top view showing another configuration of the heat storage tank according to the eighth embodiment.

【図16】 本発明の実施の形態9による冷凍空調装置
を示す冷媒回路図である。
FIG. 16 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 9 of the present invention.

【図17】 実施の形態9に係わる冷凍空調装置の蓄熱
運転時の動作状態を表す特性図である。
FIG. 17 is a characteristic diagram illustrating an operation state of the refrigeration and air-conditioning apparatus according to Embodiment 9 during a heat storage operation.

【図18】 本発明の実施の形態10に係わる蓄熱熱交
換器での温度変化幅と蓄熱熱交換器の平均熱通過率との
関係を示すグラフである。
FIG. 18 is a graph showing a relationship between a temperature change width in the heat storage heat exchanger according to Embodiment 10 of the present invention and an average heat transmittance of the heat storage heat exchanger.

【図19】 実施の形態10に係わる蓄熱熱交換器での
冷媒圧力損失と蓄熱熱交換器での温度変化との関係を示
すグラフである。
FIG. 19 is a graph showing a relationship between a refrigerant pressure loss in the heat storage heat exchanger according to the tenth embodiment and a temperature change in the heat storage heat exchanger.

【図20】 実施の形態10に係わり、蓄熱熱交換器で
の冷媒圧力損失[kg/cm2 ]と冷凍サイクルの運転
効率の関係を示す特性図である。
FIG. 20 is a characteristic diagram showing a relationship between a refrigerant pressure loss [kg / cm 2 ] in a heat storage heat exchanger and an operation efficiency of a refrigeration cycle according to the tenth embodiment.

【図21】 実施の形態10に係わり、蓄熱熱交換器で
の冷媒圧力損失[kg/cm2 ]と蓄熱熱交換器の平均
熱通過率の関係を示す特性図である。
FIG. 21 is a characteristic diagram showing a relationship between a refrigerant pressure loss [kg / cm 2 ] in the heat storage heat exchanger and an average heat transmittance of the heat storage heat exchanger according to the tenth embodiment.

【図22】 実施の形態10に係わり、蓄熱熱交換器で
の冷媒圧力損失[kg/cm2 ]と蓄熱熱交換器の平均
熱通過率を考慮した冷凍サイクルの運転効率の関係を示
す特性図である。
FIG. 22 is a characteristic diagram showing a relationship between the refrigerant pressure loss [kg / cm 2 ] in the heat storage heat exchanger and the operating efficiency of the refrigeration cycle in consideration of the average heat transmittance of the heat storage heat exchanger according to the tenth embodiment. It is.

【図23】 本発明の実施の形態11に係わる冷凍空調
装置を示す冷媒回路図である。
FIG. 23 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 11 of the present invention.

【図24】 実施の形態11に係わり、冷媒圧力損失が
0kg/cm2 の場合の蓄熱熱交換器の冷媒温度分布を
示すグラフである。
FIG. 24 is a graph showing a refrigerant temperature distribution of the heat storage heat exchanger when the refrigerant pressure loss is 0 kg / cm 2 according to the eleventh embodiment.

【図25】 実施の形態11に係わり、冷媒圧力損失が
0.8kg/cm2の場合の蓄熱熱交換器の冷媒温度分
布を示すグラフである。
FIG. 25 is a graph showing a refrigerant temperature distribution of the heat storage heat exchanger when the refrigerant pressure loss is 0.8 kg / cm 2 according to the eleventh embodiment.

【図26】 実施の形態11に係わり、冷媒圧力損失が
0.4kg/cm2の場合の蓄熱熱交換器の冷媒温度分
布を示すグラフである。
FIG. 26 is a graph showing a refrigerant temperature distribution of the heat storage heat exchanger when the refrigerant pressure loss is 0.4 kg / cm 2 according to the eleventh embodiment.

【図27】 本発明の実施の形態12に係わる蓄熱熱交
換器の冷媒温度分布を示すグラフである。
FIG. 27 is a graph showing a refrigerant temperature distribution of the heat storage heat exchanger according to Embodiment 12 of the present invention.

【図28】 実施の形態12に係わる蓄熱熱交換器での
凝固温度と冷媒温度の温度差の変化割合と蓄熱熱交換器
の平均熱通過率との関係を示すグラフである。
FIG. 28 is a graph showing the relationship between the rate of change of the temperature difference between the solidification temperature and the refrigerant temperature in the heat storage heat exchanger according to Embodiment 12 and the average heat transfer rate of the heat storage heat exchanger.

【図29】 本発明の実施の形態14による冷凍空調装
置を示す冷媒回路図である。
FIG. 29 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 14 of the present invention.

【図30】 従来の冷凍空調装置を示す冷媒回路図であ
る。
FIG. 30 is a refrigerant circuit diagram showing a conventional refrigeration / air-conditioning apparatus.

【図31】 従来の冷凍空調装置に係わる蓄熱槽の構成
を示す図であり、図31(a)は上面図、図31(b)
は縦断面図である。
FIG. 31 is a view showing a configuration of a heat storage tank relating to a conventional refrigeration / air-conditioning apparatus, where FIG. 31 (a) is a top view and FIG. 31 (b)
Is a longitudinal sectional view.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 第1四方弁、3 室外熱交換器、4
第1膨張弁、5 室内熱交換器、10 蓄熱槽、11
蓄熱熱交換器、20 第2膨張弁、21 第1電磁弁、
22 第2電磁弁、23 第3電磁弁、24 第2四方
弁、25 温度検知器。
1 compressor, 2 first four-way valve, 3 outdoor heat exchanger, 4
1st expansion valve, 5 indoor heat exchanger, 10 heat storage tank, 11
Heat storage heat exchanger, 20 second expansion valve, 21 first solenoid valve,
22 second solenoid valve, 23 third solenoid valve, 24 second four-way valve, 25 temperature detector.

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 非共沸混合冷媒を熱伝達媒体として用い
て冷熱または温熱を生成する熱源装置と、蓄熱熱交換器
および蓄熱材を有し前記熱源装置で生成した冷熱または
温熱を前記蓄熱熱交換器を介して前記蓄熱材に蓄熱する
蓄熱槽と、前記蓄熱槽に蓄熱された冷熱または温熱が供
給される負荷装置とを備える冷凍空調装置において、前
記蓄熱熱交換器内での前記非共沸混合冷媒の流れ方向を
正逆に切換え可能としたことを特徴とする冷凍空調装
置。
1. A heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a heat storage device including a heat storage heat exchanger and a heat storage material, wherein the cold or warm heat generated by the heat source device is stored in the heat storage device. In a refrigeration / air-conditioning apparatus including a heat storage tank that stores heat in the heat storage material via an exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank, the non-shared heat exchanger in the heat storage heat exchanger A refrigeration / air-conditioning apparatus characterized in that the flow direction of a boiling mixed refrigerant can be switched between forward and reverse.
【請求項2】 蓄熱熱交換器を流れる非共沸混合冷媒の
温度を検知する温度検知器を設け、前記温度検知器の出
力値に応じて前記蓄熱熱交換器内での前記非共沸混合冷
媒の流れ方向を切換えるように構成したことを特徴とす
る請求項1記載の冷凍空調装置。
2. A temperature detector for detecting a temperature of a non-azeotropic mixed refrigerant flowing through a heat storage heat exchanger, wherein the non-azeotropic mixing in the heat storage heat exchanger is performed according to an output value of the temperature detector. 2. The refrigeration / air-conditioning apparatus according to claim 1, wherein a flow direction of the refrigerant is switched.
【請求項3】 蓄熱熱交換器を流れる非共沸混合冷媒の
圧力を検知する圧力検知器を設け、前記圧力検知器の出
力値に応じて前記蓄熱熱交換器内での前記非共沸混合冷
媒の流れ方向を切換えるように構成したことを特徴とす
る請求項1記載の冷凍空調装置。
3. A pressure detector for detecting a pressure of the non-azeotropic mixed refrigerant flowing through the heat storage heat exchanger, wherein the non-azeotropic mixing in the heat storage heat exchanger is performed according to an output value of the pressure detector. 2. The refrigeration / air-conditioning apparatus according to claim 1, wherein a flow direction of the refrigerant is switched.
【請求項4】 蓄熱熱交換器内での非共沸混合冷媒の流
れ方向を所定の時間間隔で切換えるように構成したこと
を特徴とする請求項1記載の冷凍空調装置。
4. The refrigeration / air-conditioning apparatus according to claim 1, wherein the flow direction of the non-azeotropic mixed refrigerant in the heat storage heat exchanger is switched at predetermined time intervals.
【請求項5】 蓄熱槽内の蓄熱材の蓄熱状態を検知する
検知器を設け、前記検知器の検知結果に応じて前記蓄熱
熱交換器内での非共沸混合冷媒の流れ方向を切換えるよ
うに構成したことを特徴とする請求項1記載の冷凍空調
装置。
5. A detector for detecting a heat storage state of a heat storage material in a heat storage tank, wherein a flow direction of a non-azeotropic mixed refrigerant in the heat storage heat exchanger is switched according to a detection result of the detector. The refrigeration / air-conditioning apparatus according to claim 1, wherein
【請求項6】 非共沸混合冷媒を熱伝達媒体として用い
て冷熱または温熱を生成する熱源装置と、蓄熱熱交換器
および蓄熱材を有し前記熱源装置で生成した冷熱または
温熱を前記蓄熱熱交換器を介して前記蓄熱材に蓄熱する
蓄熱槽と、前記蓄熱槽に蓄熱された冷熱または温熱が供
給される負荷装置とを備える冷凍空調装置において、前
記蓄熱熱交換器の出口部の伝熱特性を入口部の伝熱特性
よりも高くしたことを特徴とする冷凍空調装置。
6. A heat source device that generates cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, and includes a heat storage heat exchanger and a heat storage material, wherein the cold or warm heat generated by the heat source device is stored in the heat storage device. In a refrigeration / air-conditioning apparatus including a heat storage tank that stores heat in the heat storage material via an exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank, heat transfer at an outlet of the heat storage heat exchanger A refrigeration / air-conditioning system characterized in that the characteristics are higher than the heat transfer characteristics at the inlet.
【請求項7】 蓄熱熱交換器の出口部の管径を入口部の
管径より小さくすることにより、前記蓄熱熱交換器の出
口部の伝熱特性を入口部の伝熱特性よりも高くしたこと
を特徴とする請求項6記載の冷凍空調装置。
7. The heat transfer characteristic at the outlet of the heat storage heat exchanger is made higher than the heat transfer characteristic at the inlet by making the pipe diameter at the outlet of the heat storage heat exchanger smaller than the pipe diameter at the inlet. The refrigeration / air-conditioning apparatus according to claim 6, wherein:
【請求項8】 蓄熱熱交換器の入口部で非共沸混合冷媒
を複数の流路に分岐するとともに、前記蓄熱熱交換器の
出口部の流路数を入口部の流路数より少なくし、前記出
口部の流路の断面積の合計を前記入口部の流路の断面積
の合計よりも小さくしたことにより、前記蓄熱熱交換器
の出口部の伝熱特性を入口部の伝熱特性よりも高くした
ことを特徴とする請求項6記載の冷凍空調装置。
8. The non-azeotropic mixed refrigerant is branched into a plurality of flow paths at an inlet of the heat storage heat exchanger, and the number of flow paths at the outlet of the heat storage heat exchanger is made smaller than the number of flow paths at the inlet. By making the sum of the cross-sectional areas of the flow passages of the outlet portion smaller than the sum of the cross-sectional areas of the flow passages of the inlet portion, the heat transfer characteristics of the outlet portion of the heat storage heat exchanger are changed to the heat transfer characteristics of the inlet portion. 7. The refrigeration and air-conditioning apparatus according to claim 6, wherein the refrigeration and air-conditioning apparatus is set higher.
【請求項9】 非共沸混合冷媒を熱伝達媒体として用い
て冷熱または温熱を生成する熱源装置と、蓄熱熱交換器
および蓄熱材を有し前記熱源装置で生成した冷熱または
温熱を前記蓄熱熱交換器を介して前記蓄熱材に蓄熱する
蓄熱槽と、前記蓄熱槽に蓄熱された冷熱または温熱が供
給される負荷装置とを備える冷凍空調装置において、前
記蓄熱熱交換器の入口部の伝熱管と出口部の伝熱管を熱
的に接触させたことを特徴とする冷凍空調装置。
9. A heat source device that generates cold or hot heat using a non-azeotropic mixed refrigerant as a heat transfer medium, and has a heat storage heat exchanger and a heat storage material and uses the cold or hot heat generated by the heat source device as the heat storage heat. In a refrigeration / air-conditioning apparatus including a heat storage tank that stores heat in the heat storage material via an exchanger, and a load device that is supplied with cold or hot heat stored in the heat storage tank, a heat transfer tube at an inlet of the heat storage heat exchanger And a heat transfer tube at an outlet portion in thermal contact.
【請求項10】 非共沸混合冷媒を熱伝達媒体として用
いて冷熱または温熱を生成する熱源装置と、蓄熱熱交換
器および蓄熱材を有し前記熱源装置で生成した冷熱また
は温熱を前記蓄熱熱交換器を介して前記蓄熱材に蓄熱す
る蓄熱槽と、前記蓄熱槽に蓄熱された冷熱または温熱が
供給される負荷装置とを備える冷凍空調装置において、
前記蓄熱熱交換器内での非共沸混合冷媒の流路を複数設
け、隣合う前記流路で前記非共沸混合冷媒の流れ方向が
逆になるように前記流路を配置したことを特徴とする冷
凍空調装置。
10. A heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, and comprising a heat storage heat exchanger and a heat storage material, wherein the cold or hot heat generated by the heat source device is stored in the heat storage device. In a refrigeration air-conditioning apparatus including a heat storage tank that stores heat in the heat storage material via an exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank,
A plurality of non-azeotropic mixed refrigerant flow paths in the heat storage heat exchanger are provided, and the flow paths are arranged such that the flow direction of the non-azeotropic mixed refrigerant is opposite in the adjacent flow paths. Refrigeration and air conditioning equipment.
【請求項11】 非共沸混合冷媒を熱伝達媒体として用
いて冷熱または温熱を生成する熱源装置と、蓄熱熱交換
器および蓄熱材を有し前記熱源装置で生成した冷熱また
は温熱を前記蓄熱熱交換器を介して前記蓄熱材に蓄熱す
る蓄熱槽と、前記蓄熱槽に蓄熱された冷熱または温熱が
供給される負荷装置とを備える冷凍空調装置において、
前記蓄熱熱交換器を複数本の伝熱管を並設して構成し、
隣合う前記伝熱管で前記非共沸混合冷媒の流れ方向が逆
になるように前記伝熱管を配置するとともに、前記隣合
う伝熱管の少なくとも2本づつを熱的に接触させたこと
を特徴とする冷凍空調装置。
11. A heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, and comprising a heat storage heat exchanger and a heat storage material, wherein the cold or warm heat generated by the heat source device is stored in the heat storage device. In a refrigeration air-conditioning apparatus including a heat storage tank that stores heat in the heat storage material via an exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank,
The heat storage heat exchanger is configured by arranging a plurality of heat transfer tubes in parallel,
The heat transfer tubes are arranged so that the flow direction of the non-azeotropic refrigerant mixture is opposite in the adjacent heat transfer tubes, and at least two of the adjacent heat transfer tubes are thermally contacted. Refrigeration air conditioner.
【請求項12】 非共沸混合冷媒を熱伝達媒体として用
いて冷熱または温熱を生成する熱源装置と、蓄熱熱交換
器および蓄熱材を有し前記熱源装置で生成した冷熱また
は温熱を前記蓄熱熱交換器を介して前記蓄熱材に蓄熱す
る蓄熱槽と、前記蓄熱槽に蓄熱された冷熱または温熱が
供給される負荷装置とを備える冷凍空調装置において、
前記蓄熱熱交換器は伝熱管を鉛直方向または水平方向に
蛇行させて配設するものとし、前記蓄熱熱交換器の入口
部の蛇行のピッチを出口部よりも大きくしたことを特徴
とする冷凍空調装置。
12. A heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a heat storage device including a heat storage heat exchanger and a heat storage material, wherein the cold or warm heat generated by the heat source device is stored in the heat storage device. In a refrigeration air-conditioning apparatus including a heat storage tank that stores heat in the heat storage material via an exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank,
The refrigeration and air conditioning system is characterized in that the heat storage heat exchanger is provided with heat transfer tubes meandering in a vertical or horizontal direction, and the meandering pitch at the inlet of the heat storage heat exchanger is larger than that at the outlet. apparatus.
【請求項13】 非共沸混合冷媒を熱伝達媒体として用
いて冷熱または温熱を生成する熱源装置と、蓄熱熱交換
器および蓄熱材を有し前記熱源装置で生成した冷熱また
は温熱を前記蓄熱熱交換器を介して前記蓄熱材に蓄熱す
る蓄熱槽と、前記蓄熱槽に蓄熱された冷熱または温熱が
供給される負荷装置とを備える冷凍空調装置において、
前記蓄熱熱交換器を、前記非共沸混合冷媒の前記蓄熱熱
交換器内での温度上昇を打ち消すような冷媒圧力損失を
有するものとし、前記蓄熱熱交換器内の前記非共沸混合
冷媒の温度を概略一定としたことを特徴とする冷凍空調
装置。
13. A heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a heat storage device including a heat storage heat exchanger and a heat storage material, wherein the cold or warm heat generated by the heat source device is stored in the heat storage device. In a refrigeration air-conditioning apparatus including a heat storage tank that stores heat in the heat storage material via an exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank,
The heat storage heat exchanger has a refrigerant pressure loss that cancels the temperature rise of the non-azeotropic mixed refrigerant in the heat storage heat exchanger, and the non-azeotropic mixed refrigerant in the heat storage heat exchanger A refrigeration / air-conditioning apparatus characterized in that the temperature is substantially constant.
【請求項14】 非共沸混合冷媒を熱伝達媒体として用
いて冷熱または温熱を生成する熱源装置と、蓄熱熱交換
器および蓄熱材を有し前記熱源装置で生成した冷熱また
は温熱を前記蓄熱熱交換器を介して前記蓄熱材に蓄熱す
る蓄熱槽と、前記蓄熱槽に蓄熱された冷熱または温熱が
供給される負荷装置とを備える冷凍空調装置において、
前記非共沸混合冷媒の前記蓄熱熱交換器内での温度変化
幅が所定値以下となるような冷媒圧力損失を有するよう
に前記蓄熱熱交換器を構成したことを特徴とする冷凍空
調装置。
14. A heat source device for generating cold or hot heat using a non-azeotropic mixed refrigerant as a heat transfer medium, and a heat storage device including a heat storage heat exchanger and a heat storage material, wherein the cold or hot heat generated by the heat source device is stored in the heat storage device. In a refrigeration air-conditioning apparatus including a heat storage tank that stores heat in the heat storage material via an exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank,
A refrigeration air conditioner wherein the heat storage heat exchanger is configured to have a refrigerant pressure loss such that a temperature change width of the non-azeotropic mixed refrigerant in the heat storage heat exchanger is equal to or less than a predetermined value.
【請求項15】 熱伝達媒体を用いて冷熱または温熱を
生成する熱源装置と、蓄熱熱交換器および蓄熱材を有し
前記熱源装置で生成した冷熱または温熱を前記蓄熱熱交
換器を介して前記蓄熱材に蓄熱する蓄熱槽と、前記蓄熱
槽に蓄熱された冷熱または温熱が供給される負荷装置と
を備える冷凍空調装置において、前記熱伝達媒体として
非共沸混合冷媒を用いたときと、単一冷媒または共沸冷
媒または前記非共沸混合冷媒とは異なる非共沸混合冷媒
を用いたときのいずれにおいても、前記蓄熱熱交換器内
での前記熱伝達媒体の温度変化幅が所定値以下となるよ
うな冷媒圧力損失を有するように前記蓄熱熱交換器を構
成したことを特徴とする冷凍空調装置。
15. A heat source device for generating cold or warm heat using a heat transfer medium, a heat storage heat exchanger and a heat storage material, wherein the cold or warm heat generated by the heat source device is passed through the heat storage heat exchanger. In a refrigeration / air-conditioning apparatus including a heat storage tank that stores heat in a heat storage material and a load device to which cold or warm heat stored in the heat storage tank is supplied, when a non-azeotropic mixed refrigerant is used as the heat transfer medium, In any case where one refrigerant or an azeotropic refrigerant or a non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant is used, the temperature change width of the heat transfer medium in the heat storage heat exchanger is equal to or less than a predetermined value. A refrigerating and air-conditioning apparatus, wherein the heat storage heat exchanger is configured to have a refrigerant pressure loss as follows.
【請求項16】 蓄熱熱交換器内の熱伝達媒体の温度変
化幅を所定値以下となるようにした時の前記所定値を、
3.5℃としたことを特徴とする請求項14または請求
項15に記載の冷凍空調装置。
16. The predetermined value when the temperature change width of the heat transfer medium in the heat storage heat exchanger is set to a predetermined value or less,
The refrigeration / air-conditioning apparatus according to claim 14 or 15, wherein the temperature is 3.5 ° C.
【請求項17】 非共沸混合冷媒を熱伝達媒体として用
いて冷熱または温熱を生成する熱源装置と、蓄熱熱交換
器および蓄熱材を有し前記熱源装置で生成した冷熱また
は温熱を前記蓄熱熱交換器を介して前記蓄熱材に蓄熱す
る蓄熱槽と、前記蓄熱槽に蓄熱された冷熱または温熱が
供給される負荷装置とを備える冷凍空調装置において、
前記蓄熱熱交換器入口部での前記非共沸混合冷媒の温度
と前記蓄熱材の温度との温度差を入口部温度差とし、前
記蓄熱熱交換器出口部での前記非共沸混合冷媒の温度と
前記蓄熱材の温度との温度差を出口部温度差として、前
記入口部温度差と前記出口部温度差の割合が所定範囲と
なるような冷媒圧力損失を有するように前記蓄熱熱交換
器を構成したことを特徴とする冷凍空調装置。
17. A heat source device for generating cold or warm heat using a non-azeotropic mixed refrigerant as a heat transfer medium, a heat storage heat exchanger and a heat storage material, wherein the cold or warm heat generated by the heat source device is stored in the heat storage device. In a refrigeration air-conditioning apparatus including a heat storage tank that stores heat in the heat storage material via an exchanger, and a load device that is supplied with cold or warm heat stored in the heat storage tank,
The temperature difference between the temperature of the non-azeotropic mixed refrigerant at the inlet of the heat storage heat exchanger and the temperature of the heat storage material is defined as an inlet temperature difference, and the temperature of the non-azeotropic mixed refrigerant at the outlet of the heat storage heat exchanger. The heat storage heat exchanger such that the temperature difference between the temperature and the temperature of the heat storage material is defined as the outlet temperature difference, and the refrigerant pressure loss is such that the ratio of the inlet temperature difference and the outlet temperature difference is within a predetermined range. A refrigeration and air-conditioning system characterized by comprising:
【請求項18】 熱伝達媒体を用いて冷熱または温熱を
生成する熱源装置と、蓄熱熱交換器および蓄熱材を有し
前記熱源装置で生成した冷熱または温熱を前記蓄熱熱交
換器を介して前記蓄熱材に蓄熱する蓄熱槽と、前記蓄熱
槽に蓄熱された冷熱または温熱が供給される負荷装置と
を備える冷凍空調装置において、前記熱伝達媒体として
非共沸混合冷媒を用いたときと、単一冷媒または共沸冷
媒または前記非共沸混合冷媒とは異なる非共沸混合冷媒
を用いたときのいずれにおいても、前記蓄熱熱交換器入
口部での前記熱伝達媒体の温度と前記蓄熱材の温度との
温度差を入口部温度差とし、前記蓄熱熱交換器出口部で
の前記熱伝達媒体の温度と前記蓄熱材の温度との温度差
を出口部温度差とし、前記入口部温度差と前記出口部温
度差の割合が所定範囲となるような冷媒圧力損失を有す
るように前記蓄熱熱交換器を構成したことを特徴とする
冷凍空調装置。
18. A heat source device for generating cold or warm heat using a heat transfer medium, a heat storage heat exchanger and a heat storage material, wherein the cold or warm heat generated by the heat source device is supplied to the heat storage device via the heat storage heat exchanger. In a refrigerating and air-conditioning apparatus including a heat storage tank that stores heat in a heat storage material and a load device to which cold or warm heat stored in the heat storage tank is supplied, when a non-azeotropic mixed refrigerant is used as the heat transfer medium, The temperature of the heat transfer medium at the inlet of the heat storage heat exchanger and the temperature of the heat storage material, regardless of whether one refrigerant or an azeotropic refrigerant or a non-azeotropic mixed refrigerant different from the non-azeotropic mixed refrigerant is used. The temperature difference between the temperature and the inlet portion temperature difference, the temperature difference between the temperature of the heat transfer medium and the temperature of the heat storage material at the heat storage heat exchanger outlet portion as the outlet portion temperature difference, the inlet portion temperature difference and The ratio of the outlet temperature difference is within a predetermined range. A refrigeration / air-conditioning apparatus characterized in that the heat storage heat exchanger is configured to have a refrigerant pressure loss as described below.
【請求項19】 蓄熱熱交換器入口部での熱伝達媒体の
温度と蓄熱材の温度との温度差である入口部温度差と、
前記蓄熱熱交換器出口部での前記熱伝達媒体の温度と前
記蓄熱材の温度との温度差である出口部温度差のうち、
大きい方の値をΔTmax 、小さい方の値をΔTmin とし
たとき、温度差の割合ΔTmin /ΔTmax が、 ΔTmin /ΔTmax > 0.5 を満足するような冷媒圧力損失を有するように前記蓄熱
熱交換器を構成したことを特徴とする請求項17または
請求項18記載の冷凍空調装置。
19. An inlet temperature difference, which is a temperature difference between the temperature of the heat transfer medium and the temperature of the heat storage material at the inlet of the heat storage heat exchanger;
Outlet temperature difference between the temperature of the heat transfer medium and the temperature of the heat storage material at the outlet of the heat storage heat exchanger,
Assuming that the larger value is ΔTmax and the smaller value is ΔTmin, the heat storage heat exchanger is such that the temperature difference ratio ΔTmin / ΔTmax has a refrigerant pressure loss satisfying ΔTmin / ΔTmax> 0.5. 19. The refrigeration / air-conditioning apparatus according to claim 17, wherein:
【請求項20】 蓄熱槽は、蓄熱材の融解潜熱を利用し
て冷熱を蓄熱するものとし、蓄熱熱交換器入口部での蓄
熱材の温度と前記蓄熱熱交換器出口部での前記蓄熱材の
温度として、前記蓄熱材の凝固温度を用いることを特徴
とする請求項17または請求項18または請求項19記
載の冷凍空調装置。
20. The heat storage tank stores cold heat by utilizing latent heat of fusion of the heat storage material, wherein the temperature of the heat storage material at an inlet of the heat storage heat exchanger and the heat storage material at an outlet of the heat storage heat exchanger. 20. The refrigeration / air-conditioning apparatus according to claim 17, wherein a solidification temperature of the heat storage material is used as the temperature.
【請求項21】 蓄熱熱交換器の冷媒圧力損失が0のと
きの熱源装置の運転効率からの運転効率低下が所定値以
下になるような冷媒圧力損失を有するように前記蓄熱熱
交換器を構成したことを特徴とする請求項13ないし請
求項20のいずれか1項に記載の冷凍空調装置。
21. The heat storage heat exchanger is configured to have a refrigerant pressure loss such that a decrease in operating efficiency from an operating efficiency of the heat source device when the refrigerant pressure loss of the heat storage heat exchanger is 0 is equal to or less than a predetermined value. The refrigeration / air-conditioning apparatus according to any one of claims 13 to 20, wherein:
JP01012499A 1998-03-02 1999-01-19 Refrigeration air conditioner Expired - Fee Related JP3360637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01012499A JP3360637B2 (en) 1998-03-02 1999-01-19 Refrigeration air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-49753 1998-03-02
JP4975398 1998-03-02
JP01012499A JP3360637B2 (en) 1998-03-02 1999-01-19 Refrigeration air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002220734A Division JP2003050059A (en) 1998-03-02 2002-07-30 Freezing air conditioner

Publications (2)

Publication Number Publication Date
JPH11316060A true JPH11316060A (en) 1999-11-16
JP3360637B2 JP3360637B2 (en) 2002-12-24

Family

ID=26345332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01012499A Expired - Fee Related JP3360637B2 (en) 1998-03-02 1999-01-19 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP3360637B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047413A (en) * 2010-08-27 2012-03-08 Sanyo Electric Co Ltd Auger type ice-making machine
JP2012063085A (en) * 2010-09-16 2012-03-29 Sanyo Electric Co Ltd Reverse cell type ice maker
EP2623896A4 (en) * 2010-09-30 2016-03-09 Panasonic Corp Heat storage device and air conditioner with the heat storage device
CN105588360A (en) * 2015-06-30 2016-05-18 青岛海信日立空调系统有限公司 Heat accumulation outdoor unit, heat pump system and control method of heat accumulation outdoor unit and heat pump system
CN112714850A (en) * 2018-09-28 2021-04-27 三菱电机株式会社 Refrigeration cycle device
EP4317840A4 (en) * 2021-03-31 2024-04-17 Daikin Ind Ltd Heat pump device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047413A (en) * 2010-08-27 2012-03-08 Sanyo Electric Co Ltd Auger type ice-making machine
JP2012063085A (en) * 2010-09-16 2012-03-29 Sanyo Electric Co Ltd Reverse cell type ice maker
EP2623896A4 (en) * 2010-09-30 2016-03-09 Panasonic Corp Heat storage device and air conditioner with the heat storage device
CN105588360A (en) * 2015-06-30 2016-05-18 青岛海信日立空调系统有限公司 Heat accumulation outdoor unit, heat pump system and control method of heat accumulation outdoor unit and heat pump system
CN105588360B (en) * 2015-06-30 2018-09-25 青岛海信日立空调系统有限公司 A kind of accumulation of heat outdoor unit, heat pump system and its control method
CN112714850A (en) * 2018-09-28 2021-04-27 三菱电机株式会社 Refrigeration cycle device
JPWO2020066004A1 (en) * 2018-09-28 2021-08-30 三菱電機株式会社 Refrigeration cycle equipment
CN112714850B (en) * 2018-09-28 2022-06-07 三菱电机株式会社 Refrigeration cycle device
EP4317840A4 (en) * 2021-03-31 2024-04-17 Daikin Ind Ltd Heat pump device

Also Published As

Publication number Publication date
JP3360637B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
JP5203702B2 (en) Refrigerant heat storage and cooling system with enhanced heat exchange function
RU2738989C2 (en) Improved thawing by reversible cycle in vapor compression refrigeration systems, based on material with phase transition
JP5327308B2 (en) Hot water supply air conditioning system
JPWO2014061132A1 (en) Air conditioner
KR100381634B1 (en) Refrigerator
JP5829761B2 (en) Air conditioner
JP3360637B2 (en) Refrigeration air conditioner
JP2013083439A5 (en)
JP2000249420A (en) Ice thermal storage device and ice thermal storage refrigerator
JP2003050059A (en) Freezing air conditioner
JP2001330280A (en) Ice thermal storage unit
JP2012237518A (en) Air conditioner
JPH08152162A (en) Internally melting type ice heat storage tank
JP7283016B2 (en) vapor compressor
JP2005164231A (en) Heat exchanger device
JP4399309B2 (en) Ice heat storage device
JP2001124372A (en) Ice storage device
JP2003202135A (en) Regenerative air-conditioning device
JP2010216778A (en) Refrigerating cycle device
JP2006342994A (en) Ice heat storage air conditioner
JP3427628B2 (en) Ice storage device
JP3297467B2 (en) Thermal storage type air conditioner
JPH07208774A (en) Ice heat accumulating device
JP2000274748A (en) Air-conditioning device having heat storage unit
JP3639422B2 (en) Air conditioner with ice heat storage unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees