JPH11315301A - Production of hydrogen storage alloy powder and electrode using the hydrogen storage alloy powder - Google Patents

Production of hydrogen storage alloy powder and electrode using the hydrogen storage alloy powder

Info

Publication number
JPH11315301A
JPH11315301A JP10252247A JP25224798A JPH11315301A JP H11315301 A JPH11315301 A JP H11315301A JP 10252247 A JP10252247 A JP 10252247A JP 25224798 A JP25224798 A JP 25224798A JP H11315301 A JPH11315301 A JP H11315301A
Authority
JP
Japan
Prior art keywords
acid
hydrogen storage
storage alloy
alloy powder
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10252247A
Other languages
Japanese (ja)
Inventor
Yukihiro Kuribayashi
幸弘 栗林
Satoshi Shima
聡 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10252247A priority Critical patent/JPH11315301A/en
Publication of JPH11315301A publication Critical patent/JPH11315301A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a hydrogen storage alloy easy in production, high in initial characteristics, high in the capacity and having a long service life by treating alloy powder occluded with hydrogen with a soln. contg. at least one kind of organic acid contg. sulfuric acid or the salt thereof. SOLUTION: This hydrogen storage alloy is not particularly limited, the one used for a negative electrode can selectively be used properly and among them, generally, an LnNi5 series alloy is preferable. The hydrogen storage alloy powder is treated with a soln of organic acid or the salt thereof and is washed as necessary. As the organic acid, the one having a sulfur group is preferable, sulfonic acid, sulfinic acid, sulfenic acid are used and for example, it can suitably be selected from sulfamic acid, sulfanilic acid, sulfaminobenzoic acid, sulfosalicylic acid, sulfobenzoic acid and sulfoacetic acid. These organic acids contain isomers and can be used alone or as the mixture and among them, 5-sulfosalicyclic acid and 2-hydroxy-sulfobenzoic acid are preferable in particular.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル水素二次
電池の負電極に用いられる水素吸蔵合金粉末の製造方法
に関し、特に、負電極に用いることにより、高容量で初
期特性が高い上、内圧特性の良い、長寿命のニッケル水
素二次電池を得ることのできる水素吸蔵合金粉末の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy powder for use in a negative electrode of a nickel-metal hydride secondary battery. The present invention relates to a method for producing a hydrogen storage alloy powder capable of obtaining a long-life nickel-hydrogen secondary battery having excellent characteristics.

【0002】[0002]

【従来技術】水素を吸蔵・放出する水素吸蔵合金が発見
されて以来、それは、水素貯蔵手段にとどまらず電池等
にも応用されている。特にアルカリ二次電池は既に実用
化されており、用いる水素吸蔵合金も、次々に高容量化
及び長寿命化が図られてきた。即ち、当初に検討された
CaCu5 型結晶構造を有するLaNi5 合金は、La
の一部を、Ce、Pr、Ndその他の希土類元素に置換
し、Niの一部をA1、Co、Mn等の金属元素で置換
することによって高容量化及び長寿命化が図られてき
た。
2. Description of the Related Art Since the discovery of a hydrogen storage alloy that stores and releases hydrogen, it has been applied not only to hydrogen storage means but also to batteries and the like. In particular, alkaline secondary batteries have already been put to practical use, and the hydrogen storage alloys used have been successively increased in capacity and life. That is, the LaNi 5 alloy having the CaCu 5 type crystal structure initially studied is La
Is replaced by a rare earth element such as Ce, Pr, Nd or the like, and a part of Ni is replaced by a metal element such as A1, Co, Mn, etc., thereby achieving higher capacity and longer life.

【0003】Laの一部をCe、Pr、Nd等で置換し
た金属としては、ミッシュメタル(Mm)が市販されて
いる。ミッシュメタルは希土類元素の混合物であり、例
えば、Ce45重量%、La30重量%、Nd20重量
%、Pr5重量%等その他の希土類元素20重量%から
なる。ところが、このような水素吸蔵合金を電池用電極
として用いた場合には、電池の高容量化や長寿命化は図
れるものの初期特性が低下する。
As a metal in which La is partially substituted with Ce, Pr, Nd, etc., misch metal (Mm) is commercially available. The misch metal is a mixture of rare earth elements, and is composed of, for example, 20% by weight of other rare earth elements such as 45% by weight of Ce, 30% by weight of La, 20% by weight of Nd, and 5% by weight of Pr. However, when such a hydrogen storage alloy is used as an electrode for a battery, the capacity and the life of the battery can be increased, but the initial characteristics deteriorate.

【0004】初期特性は、一般に最大容量に達するまで
の充放電サイクルの数で表され、サイクル数が少ないほ
ど初期特性が高いとされる。通常、初期特性は1サイク
ル目の容量で評価される。しかしながら、初期特性の低
い電極を密閉化して電池とした場合には正極と負極のバ
ランスが崩れ、電池の容量や寿命を低下させるという欠
点があった。
[0004] The initial characteristics are generally represented by the number of charge / discharge cycles required to reach the maximum capacity, and the smaller the number of cycles, the higher the initial characteristics. Usually, the initial characteristics are evaluated by the capacity in the first cycle. However, when an electrode having low initial characteristics is sealed to form a battery, the balance between the positive electrode and the negative electrode is lost, and there is a disadvantage that the capacity and life of the battery are reduced.

【0005】そこで、上記の欠点を解決する為に、従来
から水素吸蔵合金を塩酸や硫酸等の鉱酸溶液やアルカリ
溶液(例えば、NaOH、KOH)で処理することが行
われてきた。しかしながら、アルカリ処理は、処理条件
を高濃度かつ高温にする必要があるのみならず、処理後
の水洗も困難となる上処理後の水素吸蔵合金に組成変化
を生じさせるので、電池用負電極の製造が煩雑になると
いう欠点があった。また、従来の鉱酸処理の場合には、
寿命、初期活性は改善されるものの、内圧特性及び保存
性について、実用の域に達しないという欠点があった。
Therefore, in order to solve the above-mentioned drawbacks, conventionally, a hydrogen storage alloy has been treated with a mineral acid solution such as hydrochloric acid or sulfuric acid or an alkaline solution (for example, NaOH or KOH). However, the alkali treatment not only requires the treatment conditions to be high concentration and high temperature, but also makes it difficult to wash after the treatment, and causes a change in the composition of the hydrogen storage alloy after the treatment. There was a disadvantage that the production became complicated. In the case of conventional mineral acid treatment,
Although the life and initial activity are improved, there is a drawback that the internal pressure characteristics and the preservability do not reach the practical range.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明者等
は、上記の欠点を解決するために負電極用水素吸蔵合金
粉末及びその製造方法について鋭意検討した結果、水素
吸蔵合金粉末をSを含む有機酸又はその塩の溶液を用い
て処理することにより、作業牲や取り扱い性が良好で安
定性に優れた水素吸蔵合金粉末を容易に得ることができ
ること及びその水素吸蔵合金粉末を用いることにより電
池用負電極を容易に製造することができるとともに、電
池の容量や寿命を低下させることなく、初期特性を向上
させることができることを見出し、本発明に到達した。
従って、本発明の目的は、製造が容易であると共に初期
特性が高い上、高容量・長寿命であり、内圧特性の良い
密閉式電池に好適な水素吸蔵合金粉末の製造方法及びそ
の方法で得られた水素吸蔵合金粉末を用いた電池用負電
極を提供することにある。
The inventors of the present invention have conducted intensive studies on a hydrogen storage alloy powder for a negative electrode and a method for producing the same in order to solve the above-mentioned drawbacks. As a result, the hydrogen storage alloy powder contains S. By treating with a solution of an organic acid or a salt thereof, it is possible to easily obtain a hydrogen storage alloy powder having good workability and handleability and excellent stability, and to obtain a battery by using the hydrogen storage alloy powder. The present inventors have found that it is possible to easily produce a negative electrode for use and to improve the initial characteristics without reducing the capacity and life of the battery, and have reached the present invention.
Accordingly, an object of the present invention is to provide a method for producing a hydrogen storage alloy powder which is easy to produce, has high initial characteristics, has a high capacity and long life, and is suitable for a sealed battery having good internal pressure characteristics, and a method for producing the same. To provide a negative electrode for a battery using the obtained hydrogen storage alloy powder.

【0007】[0007]

【課題を解決するための手段】本発明の上記の目的は、
水素吸蔵合金粉末を、少なくとも1種の、S(硫黄)を
含有する有機酸又はその塩の溶液で処理する工程を含む
ことを特徴とする水素吸蔵合金粉末の製造方法によって
達成された。
SUMMARY OF THE INVENTION The above objects of the present invention are as follows.
The present invention has been achieved by a method for producing a hydrogen storage alloy powder, comprising a step of treating the hydrogen storage alloy powder with at least one solution of an organic acid or a salt thereof containing S (sulfur).

【0008】[0008]

【発明の実施の形態】本発明の適用される水素吸蔵合金
は特に限定されるものでなく、負電極に用いられる公知
の水素吸蔵合金、例えばAB,AB2,AB5,2 B構造
を有する水素吸蔵合金の中から適宜選択して用いること
ができる。その中でも本発明では、AB5 構造を有する
一般的にLnNi5 系合金を用いることがよい。
The applied hydrogen storage alloy of the embodiment of the present invention is not limited in particular, known hydrogen storage alloy used in the negative electrode, for example AB, the AB 2, AB 5, A 2 B structure It can be appropriately selected and used from among the hydrogen storage alloys. Among them, in the present invention, it is generally preferable to use an LnNi 5 alloy generally having an AB 5 structure.

【0009】本発明では、特に、LnNi5 系合金のう
ち、電池容量、サイクル寿命特性の点でLax 1-x
a b で表される合金を用いることが好ましい。式中
のRはLa以外の希土類金属又は例えばCe、Pr、N
d、Sm、Yから選ばれる希土類金属の混合物であり、
特に、Ce、Pr、Ndから選ばれる少なくとも1種、
MはMn、A1、Co、Ti、Fe、Zr、Crから選
ばれる少なくとも1種でありxは0.2〜1、a+bは
4.0〜6.0、bは0<b≦2.0の正数であること
が好ましい。なお、式中の上記X,1−X,a,bは、
このような構造式中の各々の原子の含有比を示すが、R
がCeの場合は又はRがCeを含む混合物の場合、構造
式中のCe原子の含有比が全希土類元素中0.05〜
0.5であることが好ましい。Mの中でも、特に、Mn
−Al−Coの3成分を主体とする混合物がよい。
In the present invention, in particular, of the LnNi 5 -based alloys, La x R 1 -xN in terms of battery capacity and cycle life characteristics.
It is preferable to use an alloy represented by i a M b. R in the formula is a rare earth metal other than La or, for example, Ce, Pr, N
a mixture of rare earth metals selected from d, Sm, and Y;
In particular, at least one selected from Ce, Pr, and Nd;
M is at least one selected from Mn, A1, Co, Ti, Fe, Zr, and Cr, x is 0.2 to 1, a + b is 4.0 to 6.0, and b is 0 <b ≦ 2.0. Is preferably a positive number. Note that the above X, 1-X, a, b in the formula are:
The content ratio of each atom in such a structural formula is shown.
Is Ce or when R is a mixture containing Ce, the content ratio of Ce atoms in the structural formula is 0.05 to
It is preferably 0.5. Among M, in particular, Mn
A mixture mainly composed of three components of -Al-Co is preferable.

【0010】本発明においては、電池とした場合の初期
特性を良好とし、高容量・長寿命の水素吸蔵合金粉末を
製造するという観点から、水素吸蔵合金粉末を有機酸又
はその塩の溶液で処理し、必要に応じて水洗する。前記
有機酸は、硫黄基を有する有機酸が好ましく、該有機酸
としてはスルホン酸(R1 −S03 H)、スルフィン酸
(R1 −SO2 H)及びスルフェイン酸(R1 −SO
H)が挙げられる。但し、R1 は1価の脂肪族炭化水素
基(好ましくは炭素数1〜10のもの)、芳香族炭化水
素基、アミノ基等であり、これらはカルボキシル基、ア
ミノ基、水酸基、スルホン酸基等の親水基で置換されて
いてもよい。これらの有機酸の具体例としては、例え
ば、スルファミン酸、スルファニル酸、スルフアミノ安
息香酸、スルホサリチル酸、スルホ安息香酸、スルホ酢
酸の中から適宜選択することができる。これらの有機酸
は置換基の位置に関係なく用いることができ(即ち、異
性体を含む)、単独で用いても混合して用いても良い。
In the present invention, the hydrogen storage alloy powder is treated with a solution of an organic acid or a salt thereof from the viewpoint of improving the initial characteristics of a battery and producing a high capacity and long life hydrogen storage alloy powder. And wash as necessary. The organic acids are sulfur organic acids are preferred to have a group, a sulfonic acid (R 1 -S0 3 H) as the organic acid, sulfinic acid (R 1 -SO 2 H) and Surufein acid (R 1 -SO
H). Here, R 1 is a monovalent aliphatic hydrocarbon group (preferably having 1 to 10 carbon atoms), an aromatic hydrocarbon group, an amino group, etc., and these are a carboxyl group, an amino group, a hydroxyl group, a sulfonic acid group. And the like. Specific examples of these organic acids can be appropriately selected from, for example, sulfamic acid, sulfanilic acid, sulfaminobenzoic acid, sulfosalicylic acid, sulfobenzoic acid, and sulfoacetic acid. These organic acids can be used irrespective of the position of the substituent (that is, including isomers), and may be used alone or as a mixture.

【0011】本発明においては、これらの有機酸の中で
もスルホサリチル酸、スルファミン酸、スルホ酢酸を用
いることが、好ましい。特に5−スルホサリチル酸、2
−ハイドロキシ−スルホ安息香酸が好ましい。また、有
機酸の塩としては、上記有機酸のNa塩、K塩、Ca塩
等が挙げられ、特に、スルホサリチル酸、スルファミン
酸、スルホ酢酸のNa塩、K塩、Ca塩が好ましい。有
機酸又はその塩を溶解するために用いる溶媒としては、
水、エタノール等炭素数1〜5のアルコール、エーテ
ル、アセトン等のケトン類が挙げられるが、特に、有機
酸又はその塩を水溶液の状態で有するものであることが
好ましい。本発明では、後述するように、有機酸等を合
金に対し、0.01〜30重量部用いれば良い。
In the present invention, among these organic acids, it is preferable to use sulfosalicylic acid, sulfamic acid and sulfoacetic acid. In particular, 5-sulfosalicylic acid, 2
-Hydroxy-sulfobenzoic acid is preferred. Examples of the salt of the organic acid include Na salt, K salt, and Ca salt of the above-mentioned organic acid, and in particular, Na salt, K salt, and Ca salt of sulfosalicylic acid, sulfamic acid, and sulfoacetic acid are preferable. As a solvent used to dissolve the organic acid or a salt thereof,
Examples thereof include ketones such as water, ethanol and the like having 1 to 5 carbon atoms such as alcohol, ether, and acetone. In particular, an organic acid or a salt thereof having an aqueous solution is preferable. In the present invention, as described later, an organic acid or the like may be used in an amount of 0.01 to 30 parts by weight based on the alloy.

【0012】本発明におけるSを含有する有機酸又はそ
の塩(以下有機酸等とする)を用いる処理液の温度は、
室温〜100℃であることが好ましく、特に、20〜6
0℃であることが好ましい。また、密閉容器内で常圧〜
10kgf/cm2 以下の加圧条件下で処理を行うこと
が好ましい。高温で、又は冷却して処理を行うことは、
工業的に生産する為、設備コストがかかり過ぎるので経
済的でない。特に、冷却して処理を行うと処理時間が長
くかかり過ぎるので実用的でない。10kgf/cm2
を越えた圧力で処理すると電池容量が低下するので好ま
しくない。
In the present invention, the temperature of the processing solution using an organic acid containing S or a salt thereof (hereinafter referred to as an organic acid or the like) is as follows:
It is preferably room temperature to 100 ° C., particularly preferably 20 to 6 ° C.
Preferably it is 0 ° C. Also, normal pressure ~
The treatment is preferably performed under a pressure of 10 kgf / cm 2 or less. Processing at high temperature or with cooling is
Since it is produced industrially, the equipment cost is too high and it is not economical. In particular, it is not practical to perform the process by cooling, because the process time is too long. 10kgf / cm 2
If the pressure is exceeded, the battery capacity is undesirably reduced.

【0013】処理時間は何れの処理においても0.1〜
10時間であり、温度が高い場合は短く、低い場合には
時間を長くとるように適宜調節すれば良い。また、処理
浴中の有機酸等の濃度は特に限定されるものではない
が、処理する水素吸蔵合金100重量部に対して約0.
01〜30重量部(約0.01〜30重量%)とするこ
とが好ましく、特に約0.5〜10重量部とすることが
好ましく、有機酸量で0.01〜10重量%にした溶液
で処理するとよい。30重量部を超える濃度で処理する
と初期特性は改善されるが到達容量が低下する。0.0
1重量部未満では、有機酸等による処理効果が得られな
い場合がある。更にこのようにS含有有機酸で処理され
た合金粉末は、合金表面にNiリッチ層が形成され合金
の比表面積当たりの磁化を3emu/m2 以上の合金を
得ることができ、初期特性の改善が図られる。
[0013] The processing time is 0.1 to 0.1 in any processing.
The time is 10 hours, and may be appropriately adjusted so that the temperature is short when the temperature is high and long when the temperature is low. Further, the concentration of the organic acid or the like in the treatment bath is not particularly limited, but may be about 0.1 to 100 parts by weight of the hydrogen storage alloy to be treated.
A solution in which the content is preferably from 0.01 to 30 parts by weight (about 0.01 to 30% by weight), particularly preferably about 0.5 to 10 parts by weight, and 0.01 to 10% by weight of an organic acid. It is good to process with. When the treatment is performed at a concentration exceeding 30 parts by weight, the initial characteristics are improved, but the attainable capacity is reduced. 0.0
If the amount is less than 1 part by weight, the effect of treatment with an organic acid or the like may not be obtained. Further, the alloy powder treated with the S-containing organic acid as described above can form an Ni-rich layer on the surface of the alloy, and can obtain an alloy having a magnetization per specific surface area of 3 emu / m 2 or more, thereby improving the initial characteristics. Is achieved.

【0014】本発明によって得られた水素吸蔵合金を電
池用負電極として用いた場合に、初期特性が高くなるこ
とは、水素吸蔵合金の表面に出来ている酸化被膜が有機
酸等によって除去されることにより、合金と電解質溶液
との接触が良くなること、及び、有機酸等による処理に
より、合金粒子表面にNi分の多い層が形成されること
等のためであると推定される。
When the hydrogen storage alloy obtained by the present invention is used as a negative electrode for a battery, the initial characteristics are improved because an oxide film formed on the surface of the hydrogen storage alloy is removed by an organic acid or the like. This is presumed to be due to the fact that the contact between the alloy and the electrolyte solution is improved, and that a layer containing a large amount of Ni is formed on the surface of the alloy particles by treatment with an organic acid or the like.

【0015】本発明は、水素吸蔵合金として得られる組
成の金属混合物、例えば、前記した組成の金属元素の混
合物を、公知の高周波、アーク誘導炉等を用いて、真空
又はAr等の不活性ガス雰囲気下で、1,300〜1,
600℃で溶解・冷却することにより水素吸蔵合金を
得、これを、ボールミル、ジェットミル、パルベライザ
ー等を用いて粉砕し、好ましくは平均粒径5〜50μm
の電極用粉末とした後、S含有有機酸等の溶液に浸漬
し、攪拌することよって実施される。また、ロール急冷
法、アトマイズ法等の急冷法により得られた水素吸蔵合
金粉末を使用してもよい。
According to the present invention, a metal mixture having a composition obtained as a hydrogen-absorbing alloy, for example, a mixture of metal elements having the above-described composition is converted into a vacuum or an inert gas such as Ar using a known high-frequency, arc induction furnace or the like. Under the atmosphere, 1,300-1,
By melting and cooling at 600 ° C., a hydrogen storage alloy is obtained, which is pulverized using a ball mill, a jet mill, a pulverizer or the like, preferably having an average particle size of 5 to 50 μm.
The electrode powder is immersed in a solution of an S-containing organic acid or the like, followed by stirring. Further, a hydrogen storage alloy powder obtained by a quenching method such as a roll quenching method or an atomizing method may be used.

【0016】本発明の処理方法は特に限定されるもので
はなく、水素吸蔵合金を上記の溶液に浸漬する等の公知
の方法を用いて行えば良いが、処理を良好に行う観点か
ら、粉砕して粉末とした水素吸蔵合金を処理溶液に浸漬
することが好ましく、特に攪拌した場合には、得られた
粉末を用いた電極の初期特性を更に良好とすることがで
きる。
The treatment method of the present invention is not particularly limited, and may be carried out by a known method such as immersing the hydrogen storage alloy in the above-mentioned solution. It is preferable to immerse the hydrogen storage alloy in the form of a powder in the treatment solution. Particularly, when the hydrogen storage alloy is stirred, the initial characteristics of the electrode using the obtained powder can be further improved.

【0017】処理後水洗・乾燥し、次いでポリビニルア
ルコール、メチルセルロース、カルボキシメチルセルロ
ース、PTFE(4フッ化ポリエチレン)、高分子ラテ
ックス等の公知のバインダーを、合金100重量部に対
し0.1〜20重量部添加して混合し必要により、カー
ボン・グラファイト粉末、Ni又はCu粉末等の導電助
剤を0.5〜20重量部添加してペ一ストとする。該ぺ
ーストを発泡ニッケル多孔体やNi繊維体等の三次元導
電体、及びパンチングメタル等の二次元導電体等に均一
に充填し、真空乾燥した後加圧成形して、本発明の電池
用負電極を製造することができる。このような負極は、
公知のニッケル正極、ポリプロピレン等のセパレータ及
びKOH等の電解液と共に容器に組み込まれ、アルカリ
蓄電池として製造することができる。本発明では上記し
たように電極以外の用途として、ヒートポンプ等の貯蔵
手段としても用いることができる。
After the treatment, water washing and drying are performed, and then a known binder such as polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, PTFE (polytetrafluoroethylene), or polymer latex is added in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the alloy. If necessary, 0.5 to 20 parts by weight of a conductive auxiliary such as carbon graphite powder, Ni or Cu powder is added to form a paste. The paste is uniformly filled into a three-dimensional conductor such as a foamed nickel porous body or a Ni fiber body, and a two-dimensional conductor such as a punching metal, and then vacuum-dried and then pressure-formed to form a battery for the battery of the present invention. A negative electrode can be manufactured. Such a negative electrode,
A known nickel positive electrode, a separator such as polypropylene, and an electrolytic solution such as KOH are incorporated in a container, and can be manufactured as an alkaline storage battery. In the present invention, as described above, it can be used as a storage means such as a heat pump as an application other than the electrode.

【0018】[0018]

【発明の効果】本発明の方法により得られた水素吸蔵合
金粉末を、アルカリ蓄電池の負極に使用すれば、初期特
性に優れる上充電時に電池内圧が上昇しにくく、しかも
サイクル寿命の長い、密閉式蓄電池に好適な水素吸蔵合
金負電極を極めて簡便に製造することができる。
When the hydrogen storage alloy powder obtained by the method of the present invention is used for a negative electrode of an alkaline storage battery, it is excellent in initial characteristics, hardly raises the internal pressure of the battery at the time of charging, and has a long cycle life. A hydrogen storage alloy negative electrode suitable for a storage battery can be manufactured extremely easily.

【0019】[0019]

【実施例】以下、実施例によって本発明を更に詳述する
が、本発明はこれによって限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0020】実施例1〜16及び比較例1 ミッシュメタルとして、La61重量%、Ce7重量
%、Pr23重量%、Nd9重量%のMmを用い、Mm
1.00に対し、A1、Co、Mn、Niが原子比で各
々0.3、0.75、0.2及び3.75となるように
各元素を秤量し、それらをアルゴン雰囲気下の高周波溶
解炉で溶解し、水素吸蔵合金を得た。得られた水素吸蔵
合金を1020℃で5時間熱処理した後粉砕し、平均粒
径が32μmの水素吸蔵合金の粉末を得た。得られた合
金粉末を各々20g別々に採取し(16試料)、表1に
示した条件の50m1の有機酸水溶液で処理した後、各
試料について、濾過、水洗、及び真空乾燥を行った。磁化及び比表面積の測定 合金粉末の磁化は振動試料型磁力計(VSM)を用いて
測定した。比表面積は流動式比表面積自動測定装置を用
いて測定した。これらの結果を表1に表わした。アルカ
リ溶液処理や鉱酸溶液処理を施した合金粉末は比表面積
が2倍以上になるが有機酸処理ではほぼ同じ面積が得ら
れる。また、処理により磁化が高くなり、初期特性が向
上している。
Examples 1 to 16 and Comparative Example 1 As a misch metal, Mm of La 61% by weight, Ce 7% by weight, Pr 23% by weight and Nd 9% by weight was used.
The respective elements were weighed so that A1, Co, Mn, and Ni became 0.3, 0.75, 0.2, and 3.75, respectively, in atomic ratio with respect to 1.00, and were weighed under an argon atmosphere. Melting was performed in a melting furnace to obtain a hydrogen storage alloy. The obtained hydrogen storage alloy was heat-treated at 1020 ° C. for 5 hours and then pulverized to obtain a hydrogen storage alloy powder having an average particle diameter of 32 μm. 20 g of each of the obtained alloy powders was separately collected (16 samples), treated with a 50 ml organic acid aqueous solution under the conditions shown in Table 1, and then filtered, washed with water, and vacuum dried for each sample. Measurement of magnetization and specific surface area The magnetization of the alloy powder was measured using a vibrating sample magnetometer (VSM). The specific surface area was measured using a fluid type specific surface area automatic measuring device. The results are shown in Table 1. Although the specific surface area of the alloy powder subjected to the alkali solution treatment or the mineral acid solution treatment becomes twice or more, almost the same area can be obtained by the organic acid treatment. In addition, the magnetization is increased by the treatment, and the initial characteristics are improved.

【0021】開放系電池の作製 処理した粉末を各々4g採取し、3重量%のポリビニル
アルコール(平均重合度2,000、ケン化度98モル
%)水溶液1gを各々に加えて混合しペーストを得、全
く処理を施さない比較例1の場合と併せて17種類のぺ
一ストを調製した。得られた17種類のぺ一ストを、3
0mm×40mm×1.6mmで、多孔度が94〜96
容量%の発泡ニッケル多孔体内に均一に充填し、真空乾
燥した後、加圧成形して17種類の負電極を作製した。
4 g of each of the powders prepared and processed for the open battery was collected, and 1 g of a 3% by weight aqueous solution of polyvinyl alcohol (average degree of polymerization: 2,000, degree of saponification: 98 mol%) was added to each and mixed to obtain a paste. In addition, 17 kinds of pastes were prepared together with the case of Comparative Example 1 in which no treatment was performed. The 17 kinds of obtained lists are
0 mm × 40 mm × 1.6 mm, porosity of 94 to 96
After being uniformly filled in a foamed nickel porous material of volume%, vacuum-dried, and then pressure-formed, 17 types of negative electrodes were produced.

【0022】一方、公知の方法に従って作製された焼結
ニッケルを酸化ニッケル正電極とした。セパレーターと
してポリプロピレン系不織布を用い、上記の正電極を1
7種類の負電極(実施例1〜16及び、比較例1)と組
み合わせると共に、電解液として6モル濃度の水酸化カ
リウム水溶液を用いて、17種類の開放型ニッケル−水
素蓄電池を構成させた。尚、参照電極としては、充電済
みの正電極を用い、正電極からの影響がないように使用
した。
On the other hand, sintered nickel produced according to a known method was used as a nickel oxide positive electrode. Using a polypropylene-based non-woven fabric as a separator,
Seventeen types of open-type nickel-metal hydride batteries were formed by combining with seven types of negative electrodes (Examples 1 to 16 and Comparative Example 1) and using a 6 molar aqueous solution of potassium hydroxide as an electrolytic solution. As a reference electrode, a charged positive electrode was used so as not to be affected by the positive electrode.

【0023】容量及びサイクル性能の評価(1サイク
ル、5サイクル) 得られた各電池を用いて、20℃、0.3Cで5時間充
電すると共に、0.2Cで電池電圧が0.8Vになるま
で放電しこの条件を1サイクルとして条件を繰り返し、
1及び5サイクル目の容量を測定して初期活性性能を評
価した結果は表1に示した通りである。
Evaluation of capacity and cycle performance (1 cycle)
Le, using 5 cycles) each battery obtained, 20 ° C., which charges 5 hours at 0.3 C, then discharged until the battery voltage at 0.2C is 0.8V conditions this condition as one cycle repetition,
Table 1 shows the results of evaluating the initial activity performance by measuring the capacities at the first and fifth cycles.

【0024】[0024]

【表1】 濃度は対合金重量%であり、mAh はミリアンペア時間を
表す。
[Table 1] Concentrations are% by weight of alloy and mAh stands for milliamp hours.

【0025】実施例17及び比較例2〜5 表1の条件に代えて表2に示した条件で処理を行った他
は、実施例1〜16と全く同様にして磁化及び比表面積
を測定し、開放系電池を製作し、容量を測定して性能を
評価した。結果は、表2に示した通りである。なお、合
金20gに対し、50mlの酸、アルカリ溶液を用い
た。未処理に比較してスルホサリチル酸処理が最も初期
特性が向上している。
Example 17 and Comparative Examples 2 to 5 The magnetization and specific surface area were measured in exactly the same manner as in Examples 1 to 16 except that the treatment was carried out under the conditions shown in Table 2 instead of the conditions shown in Table 1. , An open battery was manufactured, and its capacity was measured to evaluate its performance. The results are as shown in Table 2. In addition, 50 ml of an acid or alkali solution was used for 20 g of the alloy. Sulfosalicylic acid treatment has the most improved initial properties as compared to untreated.

【0026】[0026]

【表2】 注記1;0.1重量%HCl水溶液とした。 注記2;ふっ酸(46%含有ふっ化水素酸)は、0.1N水溶液
に濃度調整した。 注記3;アルカリ処理は6.8N-KOH溶液 濃度は対合金重量%であり、mAh はミリアンペア時間を
表す。以上の結果は、本発明の有効性(初期特性)を実
証するものである。
[Table 2] Note 1: 0.1 wt% HCl aqueous solution was used. Note 2: The concentration of hydrofluoric acid (46% hydrofluoric acid) was adjusted to a 0.1N aqueous solution. Note 3: Alkaline treatment is for 6.8N-KOH solution. Concentration is% by weight of alloy, and mAh is milliamp hours. The above results demonstrate the effectiveness (initial characteristics) of the present invention.

【0027】密閉電池の製作及び評価 実施例15で得られた合金粉末90重量部に10重量部
のNi粉末を混合し、PTFE(4フッ化ポリエチレ
ン)の固形分が3重量%(混合粉末とPTFE固形分の
総和に対し)となるようにPTFEディスパージョンを
加えて混練し、シート状にしたものをニッケルエキスパ
ンドメタルの両側に圧着した。
Production and Evaluation of Sealed Battery 90 parts by weight of the alloy powder obtained in Example 15 were mixed with 10 parts by weight of Ni powder, and the solid content of PTFE (polytetrafluoroethylene) was 3% by weight (with the mixed powder). The PTFE dispersion was added and kneaded so as to obtain a PTFE solid content (based on the total PTFE solid content), and the mixture was formed into a sheet and pressed on both sides of a nickel expanded metal.

【0028】また、比較例として他の酸処理である塩酸
処理(濃度0.1重量%、液温50℃)またはふっ酸処
理(濃度0.1N、液温50℃)を、各々30分行った
もの、並びに、KOH水溶液(濃度6−8N、液温50
℃)で2時間アルカリ処理したもの、及び、全く処理し
なかったものを用いて、上記実施例と同じ方法で電極を
作製した。
As comparative examples, other acid treatments such as hydrochloric acid treatment (concentration of 0.1% by weight, liquid temperature of 50 ° C.) or hydrofluoric acid treatment (concentration of 0.1 N, liquid temperature of 50 ° C.) were performed for 30 minutes each. And KOH aqueous solution (concentration 6-8N, liquid temperature 50
(° C.) for 2 hours, and an electrode which was not treated at all was produced in the same manner as in the above example.

【0029】上記の方法で得られた電極シートを、各
々、幅33mm、長さ220mmに切断して負極とし
た。厚さは0.6mmである。この負極をポリプロピレ
ン不織布をセパレータとして介し、公知の焼結式ニッケ
ル正極と組み合わせて渦巻き状にし、サブCサイズの密
閉型電池を構成した。作製した電池を、20℃で、充
電:0.1C×15時間、放電:0.2C、1Vの条件
で充放電し、電池上部に取り付けた圧力センサで充電終
了時の電池内圧、電池容量及びサイクル寿命を調べた。
その結果を図1及び図2に示す。
Each of the electrode sheets obtained by the above method was cut into a width of 33 mm and a length of 220 mm to obtain a negative electrode. The thickness is 0.6 mm. This negative electrode was spirally combined with a known sintered nickel positive electrode with a polypropylene nonwoven fabric interposed therebetween as a separator to form a sub C size sealed battery. The prepared battery was charged and discharged at 20 ° C. under the conditions of charging: 0.1 C × 15 hours, discharging: 0.2 C, and 1 V, and the internal pressure of the battery at the end of charging, battery capacity, and The cycle life was examined.
The results are shown in FIGS.

【0030】図1及び図2から明らかなように、本実施
例の電極を用いた電池は、他の酸処理やアルカリ処理及
び未処理の電極を用いた電池に比べて充電末期の電池内
圧が低く、また充放電サイクルの繰り返しによる内圧上
昇も小さい。そのため、サイクル寿命についても本発明
の電極を用いた電池が比較例に比べて良好な結果を示す
ことが実証されている。
As is clear from FIGS. 1 and 2, the battery using the electrode of this embodiment has a higher internal pressure of the battery at the end of charging than the batteries using other acid-treated or alkali-treated and untreated electrodes. And the internal pressure rise due to repetition of the charge / discharge cycle is small. Therefore, it has been proved that the battery using the electrode of the present invention also shows a better cycle life than the comparative example.

【0031】従って、図1及び図2より、鉱酸処理及び
アルカリ処理の場合には、寿命や内圧の点で悪くなるこ
とがわかる。塩酸処理の場合には、初期特性は優れるが
密閉電池での内圧及び寿命が悪い。ふっ酸処理の場合に
は、寿命特性に優れている。内圧特性は良くない。アル
カリ処理の場合には、一定時間まではサイクル寿命の向
上や電池内圧上昇抑制に効果があるが、合金組成におけ
る不均質部分を除去しているのみで合金表面の水酸化物
層や酸化物層の除去がなされていないため、本発明の電
極よりも電池性能が劣ると考えられる。
Therefore, it can be seen from FIGS. 1 and 2 that the treatment with a mineral acid and the treatment with an alkali deteriorate the life and the internal pressure. In the case of the hydrochloric acid treatment, the initial characteristics are excellent, but the internal pressure and the life of the sealed battery are poor. In the case of hydrofluoric acid treatment, the life characteristics are excellent. Internal pressure characteristics are not good. In the case of alkali treatment, it is effective for improving the cycle life and suppressing the rise in battery internal pressure up to a certain time, but only removing the heterogeneous part in the alloy composition, the hydroxide layer or oxide layer on the alloy surface It is considered that the battery performance is inferior to the electrode of the present invention since no removal of the electrode was performed.

【0032】以上のように、本癸明の電極を用いれば、
初期特性に優れると共に、充放電の繰り返しによる電池
内圧の上昇が少なくサイクル寿命特性の優れた電池を提
供することができる。
As described above, if the electrodes of the present invention are used,
It is possible to provide a battery that has excellent initial characteristics, has a small increase in battery internal pressure due to repeated charging and discharging, and has excellent cycle life characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電池内圧力の充放電サイクル数依存性を、異な
った処理方法によって処理された水素吸蔵合金から得ら
れた各電極について表したグラフである。
FIG. 1 is a graph showing the dependence of the internal pressure of a battery on the number of charge / discharge cycles for each electrode obtained from a hydrogen storage alloy treated by different treatment methods.

【図2】電池容量の充放電サイクル数依存性を、異なっ
た処理方法によって処理された水素吸蔵合金から得られ
た各電極について表したグラフであり、1サイクル時の
容量を100(%)としたときの低下率を示したもので
ある。
FIG. 2 is a graph showing the dependence of the battery capacity on the number of charge / discharge cycles for each electrode obtained from a hydrogen storage alloy treated by different treatment methods, where the capacity per cycle is 100 (%); This is a graph showing the rate of decrease when the test is performed.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉末を、少なくとも1種の
Sを含む有機酸又はその塩の溶液で処理する工程を含む
ことを特徴とする水素吸蔵合金粉末の製造方法。
1. A method for producing a hydrogen storage alloy powder, comprising a step of treating the hydrogen storage alloy powder with a solution of at least one organic acid containing S or a salt thereof.
【請求項2】 Sを含む有機酸が、スルホン酸、スルフ
ィン酸及びスルフェイン酸から選ばれる少なくとも1種
の有機酸である請求項1に記載された水素吸蔵合金粉末
の製造方法。
2. The method for producing a hydrogen storage alloy powder according to claim 1, wherein the organic acid containing S is at least one organic acid selected from sulfonic acid, sulfinic acid and sulfinic acid.
【請求項3】 Sを含む有機酸又はその有機酸塩の総使
用量が、水素吸蔵合金100重量部に対して0.01〜
30重量部である請求項1又は2に記載された水素吸蔵
合金粉末の製造方法。
3. The total amount of the organic acid or organic acid salt containing S is 0.01 to 100 parts by weight of the hydrogen storage alloy.
3. The method for producing a hydrogen storage alloy powder according to claim 1, wherein the amount is 30 parts by weight.
【請求項4】 請求項1〜3の何れかに記載された製造
方法によって得られた水素吸蔵合金粉末を用いてなる電
極。
4. An electrode using the hydrogen storage alloy powder obtained by the production method according to claim 1.
JP10252247A 1997-09-08 1998-09-07 Production of hydrogen storage alloy powder and electrode using the hydrogen storage alloy powder Pending JPH11315301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10252247A JPH11315301A (en) 1997-09-08 1998-09-07 Production of hydrogen storage alloy powder and electrode using the hydrogen storage alloy powder

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP25923497 1997-09-08
JP10-73278 1998-03-06
JP9-259234 1998-03-06
JP7327898 1998-03-06
JP10252247A JPH11315301A (en) 1997-09-08 1998-09-07 Production of hydrogen storage alloy powder and electrode using the hydrogen storage alloy powder

Publications (1)

Publication Number Publication Date
JPH11315301A true JPH11315301A (en) 1999-11-16

Family

ID=27301183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10252247A Pending JPH11315301A (en) 1997-09-08 1998-09-07 Production of hydrogen storage alloy powder and electrode using the hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JPH11315301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308421A (en) * 2007-06-13 2008-12-25 Sony Corp Ionic compound, negative electrode, electrolyte, electrochemical device and battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308421A (en) * 2007-06-13 2008-12-25 Sony Corp Ionic compound, negative electrode, electrolyte, electrochemical device and battery

Similar Documents

Publication Publication Date Title
US6331367B1 (en) Alkaline storage battery hydrogen-absorbing alloy electrode and method for producing the same
JP3201247B2 (en) Sealed alkaline storage battery
US6790558B2 (en) Electrode alloy powder and method of producing the same
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
EP0944124A1 (en) Hydrogen-absorbing alloy for battery, method for producing the same, and alkaline storage battery using the same
JPH0479474B2 (en)
JPH11315301A (en) Production of hydrogen storage alloy powder and electrode using the hydrogen storage alloy powder
JPH10162820A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JP2002080925A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JP3279994B2 (en) Hydrogen storage alloy powder and negative electrode for alkaline storage battery
US6235130B1 (en) Hydrogen absorbing alloy powder and electrodes formed of the hydrogen absorbing alloy powder
JP2000234134A (en) Hydrogen storage alloy, and electrode using the same
JPH11131160A (en) Hydrogen storage alloy powder and electrode using it
JP4475720B2 (en) Method for producing hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH08333603A (en) Hydrogen storage alloy particle and its production
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JPH11329423A (en) Hydrogen storage alloy powder and hydrogen storage alloy electrode
JP2008269888A (en) Nickel-hydrogen storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP2005105356A (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and hermetically sealed-type nickel hydrogen storage battery
JPH10326613A (en) Electrode of hydrogen storage alloy
JP3454612B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH10228902A (en) Negative electrode for nickel-hydrogen storage battery
JPH0867936A (en) Powdery hydrogen occluding alloy and negative electrode using the same