JPH11311139A - Air-fuel ratio control system for multi-cylinder internal combustion engine - Google Patents

Air-fuel ratio control system for multi-cylinder internal combustion engine

Info

Publication number
JPH11311139A
JPH11311139A JP11044852A JP4485299A JPH11311139A JP H11311139 A JPH11311139 A JP H11311139A JP 11044852 A JP11044852 A JP 11044852A JP 4485299 A JP4485299 A JP 4485299A JP H11311139 A JPH11311139 A JP H11311139A
Authority
JP
Japan
Prior art keywords
temperature
air
catalyst
fuel ratio
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11044852A
Other languages
Japanese (ja)
Other versions
JP3627561B2 (en
Inventor
Iku Otsuka
郁 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP04485299A priority Critical patent/JP3627561B2/en
Publication of JPH11311139A publication Critical patent/JPH11311139A/en
Application granted granted Critical
Publication of JP3627561B2 publication Critical patent/JP3627561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To realize the early activation of a catalyst by suspending a supply of fuel to partial cylinders in time of starting a multi-cylinder engine. SOLUTION: This air-fuel ratio control system is equipped with an exhaust emission control catalyzer 5 set up in an exhaust passage 3 of an engine 1 with a plurality of cylinders, a starting time air-fuel ratio control means 20 driving a partial cylinders out of plural cylinders at a rich side, while controlling an air-fuel ratio so as to drive other cylinders at a lean side, an exhaust temperature sensor 11 as a catalyzer temperature detecting means detecting a temperature in the exhaust emission control catalyzer 5, and a lean starting control means 20 driving the whole cylinder at the rich side by the starting time air-fuel ratio control means 20 till a temperature in the exhaust emission control catalyzer 5 detected by the exhaust temperature sensor 11 in cold-starting of the engine 1, reaches the specified temperature, and from the time when the temperature of the exhaust emission control catalyzer 5 exceeds the specified temperature, starting the lean driving of the partial cylinders by the starting time air-fuel ratio control means 20, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多気筒内燃機関の空
燃比制御装置に関し、特に、機関始動時に一部の気筒へ
の燃料供給を休止し、かつ触媒の早期活性化を実現する
多気筒内燃機関の空燃比制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control system for a multi-cylinder internal combustion engine, and more particularly to a multi-cylinder internal combustion engine which suspends fuel supply to some cylinders at the time of engine start and realizes early activation of a catalyst. The present invention relates to an air-fuel ratio control device for an engine.

【0002】[0002]

【従来の技術】従来から、多気筒内燃機関の冷間始動時
に、一部の気筒への燃料噴射を休止(Fuel Cut)し、
該気筒から排出される排気ガスを酸素濃度の高い燃料分
を含まない2次空気として触媒コンバータへ供給し、触
媒によるHC、COの酸化反応を促進させ、触媒の早期
活性化を図った制御が行われている。
2. Description of the Related Art Conventionally, during a cold start of a multi-cylinder internal combustion engine, fuel injection to some of the cylinders is stopped (Fuel Cut).
The exhaust gas discharged from the cylinder is supplied to the catalytic converter as secondary air containing no fuel having a high oxygen concentration to promote the oxidation reaction of HC and CO by the catalyst, thereby achieving early activation of the catalyst. Is being done.

【0003】例えば、特開平7−83148号公報に
は、多気筒内燃機関において、機関の冷間始動時に、多
気筒の内、一部の気筒を空燃比がリッチとなるリッチ運
転し、他の気筒を空燃比がリーンとなるように燃料噴射
量を減量またはフューエルカットを実行してリーン運転
するとともに、リッチ運転する気筒に対しては点火時期
を遅角補正し、リーン運転する気筒に対しては点火時期
を進角補正する制御を各気筒交互に行うことにより、良
好なアイドル安定性を確保しつつ触媒の早期活性化を促
進する技術が開示されている。
For example, Japanese Patent Application Laid-Open No. 7-83148 discloses that in a multi-cylinder internal combustion engine, when the engine is cold started, some of the multi-cylinders are operated in a rich manner in which the air-fuel ratio becomes rich, The fuel injection amount is reduced or the fuel cut is performed so that the air-fuel ratio of the cylinder becomes lean, and the lean operation is performed. Discloses a technique for promoting early activation of a catalyst while ensuring good idle stability by alternately performing control to advance an ignition timing in each cylinder.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記特
開平7−83148号公報に開示された多気筒内燃機関
の制御装置は、機関の冷間始動時に、一部の気筒でリー
ン運転するので、排気系が冷却されてしまい、触媒の活
性開始温度、換言すれば触媒の反応促進温度に到達する
までの時間が遅くなるという問題がある。
However, the control device for a multi-cylinder internal combustion engine disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 7-83148 operates lean in some of the cylinders when the engine is cold started. There is a problem in that the system is cooled, and the time required to reach the catalyst activation start temperature, in other words, the catalyst acceleration temperature, is delayed.

【0005】それゆえ、本発明は上記問題を解決し、機
関始動時に一部の気筒への燃料供給を休止し、かつ触媒
の早期活性化を実現する多気筒内燃機関の空燃比制御装
置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and has provided an air-fuel ratio control apparatus for a multi-cylinder internal combustion engine which stops fuel supply to some cylinders at the time of engine start and realizes early activation of a catalyst. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】上記問題を解決する本発
明による多気筒内燃機関の空燃比制御装置は、複数の気
筒を有する内燃機関の排気通路に配置された排気浄化触
媒と、前記内燃機関の冷間始動時に、前記複数の気筒の
内、一部の気筒をリッチ運転するとともに、他の気筒を
リーン運転するよう空燃比を制御する始動時空燃比制御
手段と、を備える多気筒内燃機関の空燃比制御装置にお
いて、前記排気浄化触媒の温度を検出する触媒温度検出
手段を備え、前記始動時空燃比制御手段は、前記内燃機
関の冷間始動時に、前記触媒温度検出手段により検出さ
れた前記排気浄化触媒の温度が所定温度に到達するまで
は、該所定温度に到達した以降に設定する空燃比よりリ
ッチに空燃比を設定する、ことを特徴とする。上記構成
により、排気浄化触媒の活性開始温度に到達するまでは
活性開始温度に到達した以降より空燃比がリッチとなる
ように各気筒での燃料噴射を実行するので、機関始動時
の空気量が減少し排気浄化触媒の空冷が回避される。本
発明による多気筒内燃機関の空燃比制御装置において、
前記内燃機関の冷間始動時に、前記触媒温度検出手段に
より検出された前記排気浄化触媒の温度が所定温度に到
達するまでは前記始動時空燃比制御手段により全気筒を
リッチ運転させ、該排気浄化触媒の温度が該所定温度を
超えてからは該始動時空燃比制御手段により一部の気筒
のリーン運転を開始させるリーン開始制御手段を備え
る。
According to the present invention, there is provided an air-fuel ratio control apparatus for a multi-cylinder internal combustion engine which solves the above-mentioned problems, comprising: an exhaust purification catalyst disposed in an exhaust passage of an internal combustion engine having a plurality of cylinders; At the time of a cold start, a multi-cylinder internal combustion engine including: a start-time air-fuel ratio control unit that controls an air-fuel ratio so as to perform a rich operation on some of the plurality of cylinders and perform a lean operation on the other cylinders. The air-fuel ratio control device further includes catalyst temperature detection means for detecting a temperature of the exhaust gas purification catalyst, wherein the starting air-fuel ratio control means detects the exhaust gas detected by the catalyst temperature detection means during a cold start of the internal combustion engine. Until the temperature of the purification catalyst reaches the predetermined temperature, the air-fuel ratio is set to be richer than the air-fuel ratio set after the temperature reaches the predetermined temperature. With the above configuration, fuel injection is performed in each cylinder until the activation start temperature of the exhaust purification catalyst is reached, so that the air-fuel ratio becomes richer after reaching the activation start temperature. This reduces the air cooling of the exhaust purification catalyst. In the air-fuel ratio control device for a multi-cylinder internal combustion engine according to the present invention,
At the time of cold start of the internal combustion engine, all cylinders are operated by the start-time air-fuel ratio control means until the temperature of the exhaust gas purification catalyst detected by the catalyst temperature detection means reaches a predetermined temperature. A lean start control means for starting the lean operation of some of the cylinders by the start-time air-fuel ratio control means after the temperature exceeds the predetermined temperature.

【0007】上記構成により、排気浄化触媒の活性開始
温度に到達するまでは暖機を行うため全気筒で燃料増量
噴射し活性開始温度に到達してからは一部気筒をリッチ
運転するとともに他の気筒をリーン運転することを開始
するので、機関始動開始から排気浄化触媒を暖機完了さ
せるまでの時間を短縮する。本発明による多気筒内燃機
関の空燃比制御装置において、前記始動時空燃比制御手
段は、前記内燃機関の運転状態に応じてリーン運転する
気筒の数を徐々に増加する。
[0007] With the above configuration, in order to perform warm-up until the activation start temperature of the exhaust purification catalyst is reached, fuel is injected in an increased amount in all cylinders. Since the lean operation of the cylinder is started, the time from the start of the engine to the completion of the warm-up of the exhaust purification catalyst is reduced. In the air-fuel ratio control device for a multi-cylinder internal combustion engine according to the present invention, the start-time air-fuel ratio control means gradually increases the number of cylinders that perform a lean operation according to the operating state of the internal combustion engine.

【0008】上記始動時空燃比制御手段により、活性開
始温度に到達してから複数の気筒のリーン運転を同時に
開始せずに、リーン運転する気筒の数を徐々に増加する
ので、排気浄化触媒への急激な2次空気の流入による排
気浄化触媒の温度低下を防止し、機関始動開始から排気
浄化触媒を暖機完了させるまでの時間を短縮する。本発
明による多気筒内燃機関の空燃比制御装置において、前
記始動時空燃比制御手段は、前記触媒温度検出手段によ
り検出された前記排気浄化触媒の温度が目標温度に到達
したとき、リーン運転する気筒の数を減らす。
The starting air-fuel ratio control means gradually increases the number of lean-operated cylinders without simultaneously starting lean operation of a plurality of cylinders after the activation start temperature is reached. A temperature drop of the exhaust purification catalyst due to a rapid inflow of secondary air is prevented, and the time from the start of the engine to the completion of warm-up of the exhaust purification catalyst is reduced. In the air-fuel ratio control device for a multi-cylinder internal combustion engine according to the present invention, the start-time air-fuel ratio control means includes: a control unit that controls a lean operation of the cylinder when the temperature of the exhaust gas purification catalyst detected by the catalyst temperature detection means reaches a target temperature. Reduce the number.

【0009】上記始動時空燃比制御手段により、排気浄
化触媒の温度が目標温度に到達したとき、リーン運転す
る気筒の数を減らすので、排気浄化触媒の過昇温による
劣化を防止する。本発明による多気筒内燃機関の空燃比
制御装置は、前記内燃機関から排出され前記排気浄化触
媒へ流入する排気ガスの空燃比が該排気浄化触媒の暖機
効率を略最高とするように、リーン運転する気筒から排
出される空気量(酸素量)に応じてリッチ運転する気筒
へ供給する燃料噴射量を補正する燃料噴射量補正手段を
備える。
When the temperature of the exhaust gas purification catalyst reaches the target temperature, the number of the cylinders to be operated in a lean operation is reduced by the starting air-fuel ratio control means, so that deterioration of the exhaust gas purification catalyst due to excessive temperature rise is prevented. The air-fuel ratio control device for a multi-cylinder internal combustion engine according to the present invention is provided with a lean air-fuel ratio such that the air-fuel ratio of exhaust gas discharged from the internal combustion engine and flowing into the exhaust purification catalyst substantially increases the warm-up efficiency of the exhaust purification catalyst. There is provided a fuel injection amount correcting means for correcting the fuel injection amount supplied to the richly operated cylinder in accordance with the amount of air (oxygen amount) discharged from the operated cylinder.

【0010】上記燃料噴射量補正手段により、排気浄化
触媒の暖機効率を略最高とする空燃比の排気ガスを排気
浄化触媒へ流入させるので、機関始動開始から排気浄化
触媒を暖機完了させるまでの時間を短縮する。なお、上
記リーン運転は内燃機関の燃料噴射量を減少する方法ま
たは燃料噴射を中止する方法で運転されることである。
Since the exhaust gas having an air-fuel ratio that maximizes the warm-up efficiency of the exhaust gas purifying catalyst flows into the exhaust gas purifying catalyst by the above fuel injection amount correcting means, from the start of the engine to the completion of the warm-up of the exhaust gas purifying catalyst. To shorten the time. Note that the lean operation is performed by a method of decreasing the fuel injection amount of the internal combustion engine or a method of stopping the fuel injection.

【0011】[0011]

【発明の実施の形態】以下、添付図面を参照しつつ本発
明の実施形態を詳細に説明する。図1は本発明による多
気筒内燃機関の空燃比制御装置の第1実施形態の概略構
成図である。図中、参照番号1は機関、2は吸気マニホ
ールド、3は排気マニホールド、4は燃料噴射弁、5は
排気マニホールド3内に配設され、機関1の始動時に早
期に活性化される排気浄化用の触媒コンバータ、6は排
気マニホルド3に接続された排気管、7は排気管6の途
中に設けられHC、CO、NOxの3成分を同時に浄化
する三元触媒を内蔵した主触媒としての触媒コンバー
タ、8は排気マニホールド3内の触媒コンバータ5上流
に配設され、機関1から排出された排気ガス中の酸素濃
度から空燃比を検出する第1空燃比センサ、9は排気管
6内の触媒コンバータ7下流に配設され、機関1から排
出され触媒コンバータ7を通過した排気ガス中の酸素濃
度から空燃比を検出する第2空燃比センサ、11は触媒
コンバータ5通過後の排気ガスの温度Texを検出する
排気温センサ、20は電子制御ユニット(ECU)であ
る。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a first embodiment of an air-fuel ratio control device for a multi-cylinder internal combustion engine according to the present invention. In the figure, reference numeral 1 denotes an engine, 2 denotes an intake manifold, 3 denotes an exhaust manifold, 4 denotes a fuel injection valve, and 5 denotes an exhaust manifold which is disposed in the exhaust manifold 3 and is activated early when the engine 1 starts. 6 is an exhaust pipe connected to the exhaust manifold 3, and 7 is a catalytic converter as a main catalyst which is provided in the middle of the exhaust pipe 6 and has a built-in three-way catalyst for purifying three components of HC, CO and NOx simultaneously. , 8 are a first air-fuel ratio sensor disposed upstream of the catalytic converter 5 in the exhaust manifold 3 to detect an air-fuel ratio from the oxygen concentration in the exhaust gas discharged from the engine 1, 9 is a catalytic converter in the exhaust pipe 6 A second air-fuel ratio sensor disposed downstream of the engine and detecting the air-fuel ratio based on the oxygen concentration in the exhaust gas discharged from the engine and passing through the catalytic converter; Exhaust gas temperature sensor for detecting the degree Tex, 20 is an electronic control unit (ECU).

【0012】電子制御ユニット(ECU)20は、例え
ばデジタルコンピュータからなり、機関1の冷間始動時
に機関1の複数の気筒の内、一部の気筒をリッチ運転す
るとともに他の気筒をリーン運転するよう空燃比を制御
する始動時空燃比制御手段を機能させるものである。E
CU20は、図示しない双方向性バスによって相互に接
続されたROM、RAM、B.(バッテリバックアッ
プ)RAM、CPU、入力ポートおよび出力ポートを具
備する。
The electronic control unit (ECU) 20 is composed of, for example, a digital computer, and performs a rich operation of some of the plurality of cylinders of the engine 1 and a lean operation of the other cylinders when the engine 1 is cold started. Thus, the starting air-fuel ratio control means for controlling the air-fuel ratio functions. E
The CU 20 includes a ROM, a RAM, and a B.C. (Battery backup) Equipped with RAM, CPU, input port and output port.

【0013】吸気マニホールド2は図示しない吸気管に
接続されており、吸気管の先端にはエアフローメータ
(図示せず)が配設されている。エアフローメータは吸
入空気量に比例したアナログの出力電圧を発生し、この
出力電圧はECU20内のA/D変換器(図示せず)を
介して入力ポートに入力される。機関1のウォータジャ
ケット(図示せず)に配設される水温センサ13は機関
1の冷却水温THWを検出し、その水温THWに比例し
たアナログ電圧をA/D変換器を介して入力ポートに入
力する。
The intake manifold 2 is connected to an intake pipe (not shown), and an air flow meter (not shown) is provided at the tip of the intake pipe. The air flow meter generates an analog output voltage proportional to the amount of intake air, and this output voltage is input to an input port via an A / D converter (not shown) in the ECU 20. A water temperature sensor 13 disposed on a water jacket (not shown) of the engine 1 detects a cooling water temperature THW of the engine 1 and inputs an analog voltage proportional to the water temperature THW to an input port via an A / D converter. I do.

【0014】機関1のディストリビュータ(図示せず)
には2つのクランク角センサ14A、14Bが設けら
れ、クランク角センサ14Aはクランク角に換算して7
20°CA毎の基準位置を検出して出力パルス信号を発
生し、クランク角センサ14Bはクランク角に換算して
30°CA毎の位置を検出して出力パルス信号を発生す
る。これらの出力パルス信号は入力ポートに入力され、
クランク角センサ14Bの出力パルス信号はCPUの割
込端子にも入力される。クランク角センサ14A、14
Bの出力パルス信号から、例えば機関1の回転数NEが
演算される。一方、出力ポートはECU20内の駆動回
路(図示せず)を介して燃料噴射弁4に接続されてい
る。燃料噴射弁4から吸気マニホルド2内へ噴射される
燃料噴射量は、空燃比が目標空燃比、本実施形態では理
論空燃比になるように燃料噴射弁4を駆動回路により開
弁する時間を可変することにより制御される。
The distributor of the engine 1 (not shown)
Are provided with two crank angle sensors 14A and 14B, and the crank angle sensor 14A
The crank angle sensor 14B detects the reference position at every 20 ° CA and generates an output pulse signal by detecting the position at every 30 ° CA in terms of the crank angle. These output pulse signals are input to the input port,
The output pulse signal of the crank angle sensor 14B is also input to an interrupt terminal of the CPU. Crank angle sensors 14A, 14
For example, the rotational speed NE of the engine 1 is calculated from the B output pulse signal. On the other hand, the output port is connected to the fuel injection valve 4 via a drive circuit (not shown) in the ECU 20. The amount of fuel injected from the fuel injection valve 4 into the intake manifold 2 varies the time during which the fuel injection valve 4 is opened by the drive circuit so that the air-fuel ratio becomes the target air-fuel ratio, in this embodiment, the stoichiometric air-fuel ratio. Is controlled by

【0015】なお、CPUの割込は、A/D変換器によ
るA/D変換終了時やクランク角センサ14Bの出力パ
ルス信号の受信時に発生する。A/D変換器を介して入
力ポートへ入力されたデジタルデータはA/D変換毎に
読取られRAMに格納される。機関1の回転数NEもク
ランク角センサ14Bの出力パルス信号がCPUの割込
端子に入力される毎に演算されRAMに格納される。つ
まり、RAMに格納される機関1のデータは絶えず更新
される。
The CPU interrupt occurs when A / D conversion by the A / D converter ends or when an output pulse signal from the crank angle sensor 14B is received. Digital data input to the input port via the A / D converter is read for each A / D conversion and stored in the RAM. The rotational speed NE of the engine 1 is also calculated and stored in the RAM every time the output pulse signal of the crank angle sensor 14B is input to the interrupt terminal of the CPU. That is, the data of the institution 1 stored in the RAM is constantly updated.

【0016】次に、ECU20により達成される本発明
による部分気筒停止制御のフローチャートを以下詳細に
説明する。図2は第1の部分気筒停止制御のフローチャ
ートである。本制御は図1に示す第1実施形態に適用さ
れる。また、本制御ルーチンは所定の周期、例えば10
0ms毎に実行される。先ず、ステップ201では、機
関1の水温THWが所定の温度範囲内(α<THW<
β)か否かを判別し、その判別結果がYESのときはス
テップ202へ進み、その判別結果がNOのときはステ
ップ205へ進む。ここで、αは0°Cにβは80°C
に設定され、水温THWが0°C以下の極低温下では機
関を搭載した車両のドライバビリティを重視するため部
分気筒停止制御を行わない。また、水温THWが80°
C以上の機関の暖機完了後では触媒コンバータ5も暖機
完了しているので部分気筒停止制御を行わない。
Next, a flowchart of the partial cylinder stop control according to the present invention, which is achieved by the ECU 20, will be described in detail. FIG. 2 is a flowchart of the first partial cylinder stop control. This control is applied to the first embodiment shown in FIG. This control routine is executed at a predetermined cycle, for example, 10 cycles.
It is executed every 0 ms. First, in step 201, the water temperature THW of the engine 1 falls within a predetermined temperature range (α <THW <
β) or not, and if the result of the determination is YES, the process proceeds to step 202; if the result of the determination is NO, the process proceeds to step 205. Here, α is 0 ° C and β is 80 ° C
When the water temperature THW is extremely low at 0 ° C. or lower, the partial cylinder stop control is not performed because the drivability of the vehicle equipped with the engine is emphasized. The water temperature THW is 80 °
After the completion of the warming-up of the engine C or higher, the catalytic converter 5 has also been warmed up, so that the partial cylinder stop control is not performed.

【0017】以下、図2以降の説明において、単に触媒
と記すものは触媒コンバータ5に内臓された触媒を示
す。ステップ202では、触媒コンバータ5から排出さ
れる触媒出ガスの排気温Texが第1の所定温度γ(γ
は例えば180°C)を以上となったか否かを判別し、
その判別結果がYESのときはステップ203へ進み、
その判別結果がNOのときはステップ205へ進む。こ
こで、γを180°Cとするのは、触媒の温度が略20
0°Cのときの触媒出ガスの排気温度が約180°Cと
推定されるからであり、触媒は約200°Cに到達する
と、触媒の各部分でHCを酸化させる排気浄化の反応を
開始するからである。ステップ203では、排気温Te
xが第2の所定温度η(ηは例えば700°C)を超え
たか否かを判別し、その判別結果がYESのときはステ
ップ205へ進み、その判別結果がNOのときはステッ
プ204へ進む。ここで、η=700°Cは触媒が十分
活性化されたとみなされるときの排気温度である。
Hereinafter, in the description of FIG. 2 and subsequent drawings, the term “catalyst” indicates a catalyst incorporated in the catalytic converter 5. In step 202, the exhaust gas temperature Tex of the catalyst output gas discharged from the catalytic converter 5 is reduced to a first predetermined temperature γ (γ
Is 180 ° C. or more, for example,
If the determination result is YES, the process proceeds to step 203,
When the determination result is NO, the process proceeds to Step 205. Here, γ is set to 180 ° C. because the temperature of the catalyst is approximately 20 ° C.
This is because the exhaust temperature of the gas discharged from the catalyst at 0 ° C. is estimated to be about 180 ° C. When the temperature of the catalyst reaches about 200 ° C., the exhaust gas purification reaction in which each part of the catalyst oxidizes HC starts. Because you do. In step 203, the exhaust gas temperature Te
It is determined whether or not x has exceeded a second predetermined temperature η (η is, for example, 700 ° C.). If the determination result is YES, the process proceeds to step 205, and if the determination result is NO, the process proceeds to step 204. . Here, η = 700 ° C. is the exhaust gas temperature when the catalyst is considered to be sufficiently activated.

【0018】ステップ201〜203の実行により、機
関の冷却水温THWがα<THW<βかつ排気温Tex
がγ≦Tex≦ηと判定されたとき、すなわち機関の暖
機が完了しておらず、かつ触媒が排気浄化の反応を開始
してから十分活性化されるまでの間と判定されたとき
に、ステップ204へ進み、部分気筒停止制御を実行す
る。一方、ステップ201〜203の実行により、機関
の冷却水温THWがTHW≦αまたはβ≦THWか、あ
るいは排気温TexがTex<γまたはη<Texと判
定されたとき、すなわち機関が極低温のときかまたは暖
機完了したとき、あるいは触媒が排気浄化の反応を開始
する前かまたは触媒が十分活性化されたと判定されたと
き、ステップ205へ進み、部分気筒停止制御を禁止す
る。
By executing steps 201 to 203, the cooling water temperature THW of the engine becomes α <THW <β and the exhaust gas temperature Tex
Is determined to be γ ≦ Tex ≦ η, that is, when it is determined that the warm-up of the engine has not been completed and that the catalyst has been activated from the start of the exhaust purification reaction until the catalyst is sufficiently activated. Then, the routine proceeds to step 204, where the partial cylinder stop control is executed. On the other hand, when the engine cooling water temperature THW is determined to be THW ≦ α or β ≦ THW or the exhaust temperature Tex is determined to be Tex <γ or η <Tex by executing steps 201 to 203, that is, when the engine is at an extremely low temperature. When the warm-up is completed, or before the catalyst starts the reaction for exhaust gas purification, or when it is determined that the catalyst has been sufficiently activated, the routine proceeds to step 205, and the partial cylinder stop control is prohibited.

【0019】図3は機関始動時の部分気筒停止と触媒温
度変化との関係を示す図である。横軸は機関の始動開始
からの経過時間を示し、縦軸は触媒コンバータ5内に設
けられた触媒の温度を示す。図3は機関がFI(First
Idling)放置、すなわち機関の始動開始後アイドル回転
数のまま放置されたときの触媒温度の変化の実験結果を
示す。曲線31は部分気筒停止制御を全く実行しない場
合の、曲線32は機関の始動開始から部分気筒停止制御
を実行し続けた場合の、曲線33は機関の始動開始から
時刻t1まで部分気筒停止制御を実行せずに時刻t1か
ら部分気筒停止制御を実行した場合の、それぞれの触媒
の温度変化を示す。この時刻t1は触媒が約200°C
の温度になり触媒の各部分でHCを酸化させる排気浄化
の反応を開始する時刻である。
FIG. 3 is a diagram showing the relationship between the partial cylinder stop when the engine is started and the catalyst temperature change. The horizontal axis indicates the elapsed time from the start of the start of the engine, and the vertical axis indicates the temperature of the catalyst provided in the catalytic converter 5. FIG. 3 shows that FI (First)
Idling) shows experimental results of a change in catalyst temperature when the engine is left, that is, when the engine is left at an idle speed after the start of the engine. A curve 31 indicates a case where the partial cylinder stop control is not performed at all, a curve 32 indicates a case where the partial cylinder stop control is continuously performed from the start of the engine, and a curve 33 indicates the partial cylinder stop control from the start of the engine to the time t1. This shows the temperature change of each catalyst when the partial cylinder stop control is executed from time t1 without being executed. At this time t1, the catalyst is about 200 ° C.
At which the exhaust gas purification reaction for oxidizing HC in each part of the catalyst is started.

【0020】曲線31と32を比較すると、部分気筒停
止制御を実行しない曲線31の方が部分気筒停止制御を
実行する曲線32より早くに200°Cの触媒温度に到
達することが判る。一方、触媒の温度が200°Cに到
達すると部分気筒停止制御を実行して2次空気を触媒へ
供給する方が所謂「後燃え」現象により触媒の温度が2
00°Cから急上昇し、触媒の50%浄化温度、すなわ
ち触媒の浄化反応が触媒の50%の部分で反応している
ときの触媒温度としての350°Cには曲線32の方が
曲線31より早くに到達することが判る。以下、触媒の
温度が後燃え現象により急上昇を開始する温度200°
Cを触媒の反応促進温度と呼ぶ。
Comparing the curves 31 and 32, it can be seen that the curve 31 not performing the partial cylinder stop control reaches the catalyst temperature of 200 ° C. earlier than the curve 32 performing the partial cylinder stop control. On the other hand, when the temperature of the catalyst reaches 200 ° C., it is more preferable to execute the partial cylinder stop control and supply the secondary air to the catalyst because of the so-called “afterburning” phenomenon.
Curve 32 is better than curve 31 at 350 ° C., which rises sharply from 00 ° C. and becomes 50% of the catalyst purification temperature, that is, the catalyst temperature when the purification reaction of the catalyst is reacting in the 50% portion of the catalyst. It turns out that it will arrive soon. Hereinafter, the temperature at which the temperature of the catalyst starts to rise sharply due to the afterburning phenomenon is 200 °.
C is called the catalyst acceleration temperature.

【0021】次に、曲線31、32および33を比較す
ると、200°Cの触媒温度に到達する時刻は曲線31
と33ともに同時であるが、曲線33は触媒温度200
°Cから急上昇し、触媒の50%浄化温度350°Cへ
曲線31、32より早くに到達することが判る。図4は
第2の部分気筒停止制御のフローチャートである。本制
御は図1に示す第1実施形態において排気温センサ11
が設けられてない実施形態に適用されるものである。本
制御では、機関から排出される排気ガスの温度を検出す
る排気温センサの代わりに、触媒温度を機関の始動開始
から機関へ吸入される空気量の積算値(以下、積算空気
量と記す)sumga から予測する。
Next, comparing curves 31, 32 and 33, the time when the catalyst temperature reaches 200 ° C. is represented by curve 31.
And 33 are simultaneous, but curve 33 shows a catalyst temperature of 200
It can be seen that the temperature rises sharply from ° C and reaches the 50% purification temperature 350 ° C of the catalyst earlier than the curves 31 and 32. FIG. 4 is a flowchart of the second partial cylinder stop control. This control is performed in the first embodiment shown in FIG.
Is applied to the embodiment in which is not provided. In this control, instead of an exhaust gas temperature sensor that detects the temperature of exhaust gas discharged from the engine, the catalyst temperature is used as an integrated value of the amount of air taken into the engine from the start of the engine (hereinafter, referred to as an integrated air amount). Predict from sumga.

【0022】本制御ルーチンは所定の周期、例えば10
0ms毎に実行される。先ず、ステップ401では、図
2のステップ201と同様に機関1の水温THWが所定
の温度範囲内(α<THW<β)か否かを判別し、その
判別結果がYESのときはステップ402へ進み、その
判別結果がNOのときはステップ407へ進む。ここ
で、積算空気量と触媒温度との関係を示すマップについ
て説明する。
This control routine has a predetermined period, for example, 10 cycles.
It is executed every 0 ms. First, at step 401, it is determined whether or not the water temperature THW of the engine 1 is within a predetermined temperature range (α <THW <β) as in step 201 of FIG. 2. If the determination result is YES, the process proceeds to step 402. The process proceeds to step 407 if the result of the determination is NO. Here, a map indicating the relationship between the integrated air amount and the catalyst temperature will be described.

【0023】図5は機関の積算空気量と触媒温度との関
係を示すマップである。図5において横軸は機関の始動
開始から機関へ吸入される積算空気量sumga を示し、縦
軸はsumga の変化に応じて変化する触媒温度の測定結果
による実験値を示す。sumga=εは触媒が部分的に排気
浄化の反応を開始する温度200°Cに到達した時の積
算空気量であり、sumga =κは触媒が十分活性化される
温度700°Cに到達した時の積算空気量である。この
ように実験値から求められた機関の積算空気量と触媒温
度との関係を示すマップはROMに格納される。
FIG. 5 is a map showing the relationship between the accumulated air amount of the engine and the catalyst temperature. In FIG. 5, the horizontal axis represents the integrated air amount sumga drawn into the engine from the start of the engine, and the vertical axis represents the experimental value based on the measurement result of the catalyst temperature that changes according to the change of the sumga. sumga = ε is the integrated air amount when the catalyst reaches a temperature of 200 ° C. at which the catalyst partially starts the exhaust gas purification reaction, and sumga = κ is the temperature when the temperature of the catalyst is sufficiently activated at 700 ° C. Is the integrated air amount. A map indicating the relationship between the accumulated air amount of the engine and the catalyst temperature obtained from the experimental values in this way is stored in the ROM.

【0024】再び図4のフローチャートに戻る。ステッ
プ402では、積算空気量 sumgaが触媒温度700°C
に相当する所定量κを超えたか否かを判別し、その判別
結果がYESのときは触媒が十分活性化される温度に到
達したとみなしてステップ408へ進み、その判別結果
がNOのときはステップ403へ進む。ステップ403
では、積算空気量 sumgaが触媒温度200°Cに相当す
る所定量ε以上となったか否かを判別し、その判別結果
がYESのときは触媒が部分的に排気浄化の反応を開始
する温度に到達したとみなしてステップ404へ進み、
その判別結果がNOのときはステップ407へ進む。
Returning to the flowchart of FIG. In step 402, the accumulated air amount sumga is changed to the catalyst temperature of 700 ° C.
It is determined whether or not the predetermined amount κ has been exceeded. If the result of the determination is YES, it is considered that the temperature has reached the temperature at which the catalyst is sufficiently activated, and the routine proceeds to step 408. If the result of the determination is NO, Proceed to step 403. Step 403
Then, it is determined whether or not the integrated air amount sumga has become equal to or more than a predetermined amount ε corresponding to the catalyst temperature of 200 ° C. If the determination result is YES, the temperature is set to the temperature at which the catalyst partially starts the exhaust purification reaction. Assuming that it has arrived, proceed to step 404,
When the determination result is NO, the process proceeds to step 407.

【0025】ステップ404では、部分気筒停止制御が
所定時間δ、例えば50秒だけ実行されたか否かを CFC
AT>δ(=500)から判別し、その判別結果がYES
のときはステップ407へ進み、その判別結果がNOの
ときはステップ405へ進む。ステップ405では、部
分気筒停止制御時間計測用のカウンタ CFCATに1を加算
してステップ406へ進む。
In step 404, it is determined whether or not the partial cylinder stop control has been executed for a predetermined time δ, for example, 50 seconds.
Judgment from AT> δ (= 500), and the judgment result is YES
If so, the process proceeds to step 407, and if the determination result is NO, the process proceeds to step 405. In step 405, 1 is added to the counter CFCAT for measuring the partial cylinder stop control time, and the flow advances to step 406.

【0026】ステップ401でNOと判別されたときや
ステップ403でNOと判別されたとき、ステップ40
7へ進みカウンタ CFCATを0にリセットする。このカウ
ンタCFCATを用いる理由は、図5で示した機関の積算空
気量 sumgaと触媒温度との関係は部分気筒停止制御を実
行していないときの全気筒運転時の実験結果を用いてい
るので、ε≦sumga ≦κの部分気筒停止制御の実行中は
sumgaから触媒温度を予測できないからである。
When NO is determined in step 401 or NO in step 403, step 40
Proceed to 7 to reset the counter CFCAT to 0. The reason for using this counter CFCAT is that the relationship between the accumulated air amount sumga of the engine and the catalyst temperature shown in FIG. 5 is based on the experimental result at the time of operating all cylinders when the partial cylinder stop control is not executed. During the partial cylinder stop control of ε ≦ sumga ≦ κ
This is because the catalyst temperature cannot be predicted from sumga.

【0027】ステップ401〜404の実行により、機
関の冷却水温THWがα<THW<βかつ積算空気量su
mga がε≦sumga ≦κと判定されたとき、すなわち機関
の暖機が完了しておらず、触媒が排気浄化の反応を開始
してから十分活性化されるまでの間であって、かつ部分
気筒停止制御時間 CFCATが CFCAT≦δと判定されたと
き、ステップ406へ進み、部分気筒停止制御を実行す
る。一方、ステップ401〜404の実行により、機関
の冷却水温THWがTHW≦αまたはβ≦THWか、あ
るいは積算空気量sumga がsumga <εまたはκ<sumga
のとき、すなわち機関が極低温のときか暖機完了したと
判定されたときか、あるいは触媒が排気浄化の反応を開
始する前かまたは触媒が十分活性化されたと判定された
とき、ステップ408へ進み、部分気筒停止制御を禁止
する。
By executing steps 401 to 404, the cooling water temperature THW of the engine becomes α <THW <β and the accumulated air amount su
When mga is determined to be ε ≦ sumga ≦ κ, that is, when the warm-up of the engine has not been completed, the period from the start of the exhaust purification reaction of the catalyst until the catalyst is sufficiently activated, and When it is determined that the cylinder stop control time CFCAT is CFCAT ≦ δ, the routine proceeds to step 406, where partial cylinder stop control is executed. On the other hand, by executing steps 401 to 404, the cooling water temperature THW of the engine is THW ≦ α or β ≦ THW, or the integrated air amount sumga is sumga <ε or κ <sumga.
, Ie, when it is determined that the engine is at a very low temperature or when the warm-up has been completed, or before the catalyst has started the exhaust purification reaction, or when it has been determined that the catalyst has been sufficiently activated, the process proceeds to step 408. Proceed and prohibit the partial cylinder stop control.

【0028】次に、部分気筒停止制御を実行する気筒の
数を機関の運転状態、例えば触媒の温度変化を考慮して
変更する実施形態について以下に説明する。図6は機関
始動時の段階的部分気筒停止制御と触媒温度変化との関
係を示す図である。図6は多気筒機関、例えば6気筒の
機関の始動時を示し、図中、曲線61は部分気筒停止を
実行しないときの触媒の温度変化を示し、曲線62は2
気筒を同時に停止したときの触媒の温度変化を示し、曲
線63は1気筒だけ停止したときの触媒の温度変化を示
し、曲線64は1気筒停止し所定時間経過後に2気筒を
停止したときの触媒の温度変化を示す。
Next, an embodiment in which the number of cylinders for executing the partial cylinder stop control is changed in consideration of the operating state of the engine, for example, a change in the temperature of the catalyst will be described below. FIG. 6 is a diagram showing the relationship between the stepwise partial cylinder stop control at the time of engine start and the catalyst temperature change. FIG. 6 shows a start of a multi-cylinder engine, for example, a six-cylinder engine. In the figure, a curve 61 shows a catalyst temperature change when partial cylinder stop is not performed, and a curve 62 shows 2
The curve 63 shows the temperature change of the catalyst when the cylinders are simultaneously stopped, the curve 63 shows the temperature change of the catalyst when only one cylinder is stopped, and the curve 64 shows the catalyst when the two cylinders are stopped after a lapse of a predetermined time. 3 shows the temperature change.

【0029】曲線62、63および64を比較すると、
時刻t1に触媒の温度が反応促進温度200°Cに到達
した後、曲線62の2気筒同時停止制御の場合は、時刻
t1から触媒へ過剰の2次空気が供給されるので、触媒
の温度は一定期間低下した後再び上昇し、やがて触媒の
50%浄化温度350°Cに到達する。曲線63の1気
筒停止制御の場合は、時刻t1からの触媒への2次空気
の供給により触媒の温度は短時間低下するものの即座に
再上昇する。しかしながら、曲線62の2気筒同時停止
制御と比して機関の始動を開始してから触媒の温度が5
0%浄化温度350°Cに到達するまでの時間は長くな
ることが判る。しかるに、曲線64の時刻t1に1気筒
を停止した後時刻t2に2気筒を停止するような段階的
気筒停止制御の場合は、時刻t1からの触媒への2次空
気の供給により触媒の温度は短時間低下するものの即座
に再上昇する。次いで触媒の温度が反応促進温度200
°Cを少し超えた、例えば220°Cに到達する時刻t
2から停止する気筒の数を増やして触媒へ供給する2次
空気の量を増量することにより触媒の温度が50%浄化
温度350°Cに到達するまでの時間は曲線62や63
の場合と比して短くなることが判る。
Comparing the curves 62, 63 and 64,
After the catalyst temperature reaches the reaction promoting temperature 200 ° C. at the time t1, in the case of the two-cylinder simultaneous stop control of the curve 62, the excess secondary air is supplied to the catalyst from the time t1. After decreasing for a certain period of time, it rises again and eventually reaches the catalyst 50% purification temperature of 350 ° C. In the case of the one-cylinder stop control of the curve 63, the supply of the secondary air to the catalyst from the time t1 causes the temperature of the catalyst to decrease for a short time, but immediately rise again. However, as compared with the two-cylinder simultaneous stop control of the curve 62, the catalyst temperature becomes 5 after starting the engine.
It can be seen that the time required to reach the 0% purification temperature of 350 ° C. becomes longer. However, in the case of stepwise cylinder stop control in which one cylinder is stopped at time t1 of the curve 64 and then two cylinders are stopped at time t2, the temperature of the catalyst is reduced by the supply of secondary air to the catalyst from time t1. It falls for a short time, but rises immediately. Next, the temperature of the catalyst is raised to a reaction promoting temperature of 200.
° C, for example, a time t when the temperature reaches 220 ° C.
By increasing the number of cylinders stopped from 2 and increasing the amount of secondary air supplied to the catalyst, the time required for the catalyst temperature to reach the 50% purification temperature of 350 ° C. is represented by curves 62 and 63.
It turns out that it becomes shorter compared with the case of.

【0030】次に、上述の段階的部分気筒停止制御をフ
ローチャートを用いて説明する。図7は第3の部分気筒
停止制御のフローチャートである。本制御は図1に示す
第1実施形態に適用される。また、本制御ルーチンは所
定の周期、例えば100ms毎に実行される。先ず、ス
テップ701では、図2のステップ201と同様に機関
1の水温THWが所定の温度範囲内(α<THW<β)
か否かを判別し、その判別結果がYESのときはステッ
プ702へ進み、その判別結果がNOのときはステップ
708へ進む。
Next, the above-described stepwise partial cylinder stop control will be described with reference to a flowchart. FIG. 7 is a flowchart of the third partial cylinder stop control. This control is applied to the first embodiment shown in FIG. This control routine is executed at a predetermined cycle, for example, every 100 ms. First, at step 701, the water temperature THW of the engine 1 falls within a predetermined temperature range (α <THW <β) as in step 201 of FIG.
It is determined whether or not this is the case. If the result of the determination is YES, the process proceeds to step 702, and if the result of the determination is NO, the process proceeds to step 708.

【0031】ステップ702では、触媒出ガスの排気温
Texが第2の所定温度η(ηは例えば700°C)を
超えたか否かを判別し、その判別結果がYESのときは
ステップ708へ進み、その判別結果がNOのときはス
テップ703へ進む。ここで、η=700°Cは触媒が
十分活性化されたとみなされるときの触媒出ガスの排気
温度である。ステップ703では、1気筒停止制御実行
中か否かをフラグにより判定し、YESと判定されたと
きはステップ704へ進み、NOと判定されたときはス
テップ706へ進む。
In step 702, it is determined whether or not the exhaust gas temperature Tex of the catalyst output gas has exceeded a second predetermined temperature η (η is, for example, 700 ° C.). If the determination result is YES, the process proceeds to step 708. If the determination result is NO, the process proceeds to step 703. Here, η = 700 ° C. is the exhaust gas exhaust gas temperature when the catalyst is considered to be sufficiently activated. In step 703, it is determined by a flag whether or not the one-cylinder stop control is being executed. When the determination is YES, the process proceeds to step 704, and when the determination is NO, the process proceeds to step 706.

【0032】ステップ704では、触媒出ガスの排気温
Texが第1の所定温度γ(γは例えば180°C)以
上となったか否かを判別し、その判別結果がYESのと
きはステップ705へ進み、その判別結果がNOのとき
はステップ708へ進む。ここで、γを180°Cとす
るのは、触媒の温度が略200°Cのときの触媒出ガス
の排気温度が約180°Cと推定されるからであり、触
媒は約200°Cに到達すると、触媒の各部分でHCを
酸化させる排気浄化の反応を開始するからである。
In step 704, it is determined whether or not the exhaust gas temperature Tex of the catalyst output gas has reached or exceeded a first predetermined temperature γ (γ is, for example, 180 ° C.). The process proceeds to step 708 when the result of the determination is NO. Here, the reason why γ is set to 180 ° C. is that the exhaust temperature of the exhaust gas of the catalyst when the temperature of the catalyst is approximately 200 ° C. is estimated to be approximately 180 ° C. This is because when it reaches, the exhaust gas purifying reaction that oxidizes HC is started in each part of the catalyst.

【0033】ステップ706では、排気温Texが第3
の所定温度δ(=220°C)を超えたか否かを判別
し、その判別結果がYESのときはステップ707へ進
み、その判別結果がNOのときは本ルーチンを終了す
る。ここで、第3の所定温度δ=220°Cは、時刻t
1から1気筒停止制御による2次空気供給により触媒の
浄化反応が開始された後触媒の温度が反応促進温度20
0°Cを少し超えたことを確認できる温度として設定し
たものである。
At step 706, the exhaust gas temperature Tex
Is determined to have exceeded the predetermined temperature δ (= 220 ° C.), the process proceeds to step 707 if the result of the determination is YES, and this routine ends if the result of the determination is NO. Here, the third predetermined temperature δ = 220 ° C. corresponds to time t
After the purification reaction of the catalyst is started by the supply of the secondary air by the one-to-one cylinder stop control, the temperature of the catalyst is reduced to the reaction promoting temperature 20.
The temperature is set as a temperature at which it can be confirmed that the temperature slightly exceeds 0 ° C.

【0034】ステップ701〜704および706の実
行により、機関の冷却水温THWがα<THW<βかつ
排気温Texがγ≦Tex≦δと判定されたとき、すな
わち機関の暖機が完了しておらず、かつ触媒が排気浄化
の反応を開始した後であって触媒の温度が反応促進温度
200°Cを少し超えるまでの間であると判定されたと
き、ステップ705へ進み、1気筒停止制御を実行し、
機関の冷却水温THWがα<THW<βかつ排気温Te
xがδ≦Tex≦ηと判定されたとき、すなわち機関の
暖機が完了しておらず、かつ触媒の温度が反応促進温度
200°C以上であって触媒が十分活性化されるまでの
間と判定されたとき、ステップ707へ進み、2気筒停
止制御を実行する。一方、ステップ701〜704およ
び706の実行により、機関の冷却水温THWがTHW
≦αまたはβ≦THWか、あるいは排気温TexがTe
x<γまたはη<Texと判定されたとき、すなわち機
関が極低温のときかまたは暖機完了したとき、あるいは
触媒が排気浄化の反応を開始する前かまたは触媒が十分
活性化されたと判定されたとき、ステップ708へ進
み、部分気筒停止制御を禁止する。
By executing steps 701 to 704 and 706, when it is determined that the cooling water temperature THW of the engine is α <THW <β and the exhaust temperature Tex is γ ≦ Tex ≦ δ, that is, the warm-up of the engine is completed. If it is determined that the temperature of the catalyst has just started to exceed the reaction accelerating temperature of 200 ° C. after the catalyst has started the reaction for purifying exhaust gas, the routine proceeds to step 705, where the control for stopping one cylinder is performed. Run,
The engine cooling water temperature THW is α <THW <β and the exhaust temperature Te
When x is determined to be δ ≦ Tex ≦ η, that is, until the warm-up of the engine is not completed and the temperature of the catalyst is 200 ° C. or higher and the catalyst is sufficiently activated. When it is determined that is, the routine proceeds to step 707, where two-cylinder stop control is executed. On the other hand, by executing steps 701 to 704 and 706, the cooling water temperature THW of the engine becomes THW.
≦ α or β ≦ THW or the exhaust temperature Tex is Te
When it is determined that x <γ or η <Tex, that is, when the engine is at a very low temperature or when the warm-up is completed, or before the catalyst starts the exhaust purification reaction, or it is determined that the catalyst is sufficiently activated. Then, the routine proceeds to step 708, where the partial cylinder stop control is prohibited.

【0035】上述の第3の部分気筒停止制御において、
停止する気筒の数を1気筒から2気筒へ増加する際に、
機関の運転状態として触媒の温度が反応促進温度を超え
て上昇したことを確認することを条件としたが、これに
代えて機関の運転状態として負荷を条件とし、機関の負
荷状態に応じて停止する気筒の数を変更してもよい。こ
の場合、機関の負荷が高負荷な程高トルクを必要とする
ので停止する気筒の数を少なく設定する。
In the third partial cylinder stop control described above,
When increasing the number of stopped cylinders from one cylinder to two cylinders,
The condition of the engine was to confirm that the temperature of the catalyst had risen above the reaction accelerating temperature.However, instead of this, the condition of the engine was a load and the operation was stopped according to the load condition of the engine. The number of cylinders to be used may be changed. In this case, since the higher the engine load, the higher the torque, the higher the load, the smaller the number of cylinders to be stopped.

【0036】また、図7を用いて上述した第3の部分気
筒停止制御は、排気温センサにより検出された触媒の推
定温度に基づき部分気筒停止制御を実行するものである
が、この第3の部分気筒停止制御は排気温センサに変え
て積算空気量から推定した触媒の温度に基づいて部分気
筒停止制御を実行してもよい。また、上述の第3の部分
気筒停止制御は6気筒機関において2気筒まで停止する
例で説明したが、例えば8気筒機関において3気筒まで
停止したり、12気筒機関において4気筒まで停止した
りするなど、停止する気筒の数は使用する機関に応じて
適宜選択できる。
The third partial cylinder stop control described above with reference to FIG. 7 executes the partial cylinder stop control based on the estimated temperature of the catalyst detected by the exhaust gas temperature sensor. In the partial cylinder stop control, the partial cylinder stop control may be executed based on the catalyst temperature estimated from the integrated air amount instead of the exhaust gas temperature sensor. In the third partial cylinder stop control described above, an example has been described in which a six-cylinder engine stops up to two cylinders. However, for example, an eight-cylinder engine stops up to three cylinders, or a twelve-cylinder engine stops up to four cylinders. For example, the number of cylinders to be stopped can be appropriately selected according to the engine used.

【0037】図8は本発明による多気筒内燃機関の空燃
比制御装置の第2実施形態の概略構成図である。図8に
示す第2実施形態の概略構成図は、排気温センサ12が
排気管6内の触媒コンバータ7の下流に配設された点を
除き図1に示す第1実施形態の概略構成図と同一であ
る。図9は第4の部分気筒停止制御のフローチャートで
ある。本制御は図8に示す第2実施形態に適用される。
第4の部分気筒停止制御は、第1触媒(S/C)が暖機
されてから第2触媒(M/C)が暖機されるまでの間、
部分気筒停止制御を実行する気筒の数が多過ぎると第1
触媒としてのスタート・キャタリスト(S/C)の温度
がOT(Over Temperature)を超え、その結果オーバー
ヒートして劣化する恐れがあるので、これを防止すべく
部分気筒停止制御を実行する気筒の数を最適制御しつつ
第2触媒としてのメイン・キャタリスト(M/C)が暖
機されるまで部分気筒停止制御を行うものでる。
FIG. 8 is a schematic block diagram of a second embodiment of the air-fuel ratio control apparatus for a multi-cylinder internal combustion engine according to the present invention. The schematic configuration diagram of the second embodiment shown in FIG. 8 is different from the schematic configuration diagram of the first embodiment shown in FIG. 1 except that the exhaust gas temperature sensor 12 is disposed downstream of the catalytic converter 7 in the exhaust pipe 6. Are identical. FIG. 9 is a flowchart of the fourth partial cylinder stop control. This control is applied to the second embodiment shown in FIG.
The fourth partial cylinder stop control is performed during a period from when the first catalyst (S / C) is warmed up to when the second catalyst (M / C) is warmed up.
If the number of cylinders for executing the partial cylinder stop control is too large, the first
The temperature of the start catalyst (S / C) as a catalyst may exceed OT (Over Temperature), resulting in the possibility of overheating and deterioration. , The partial cylinder stop control is performed until the main catalyst (M / C) as the second catalyst is warmed up.

【0038】本制御ルーチンは所定の周期、例えば10
0ms毎に実行される。先ず、ステップ901では、図
2のステップ201と同様に機関1の水温THWが所定
の温度範囲内(α<THW<β)か否かを判別し、その
判別結果がYESのときはステップ902へ進み、その
判別結果がNOのときはステップ911へ進む。ステッ
プ902では、部分気筒停止制御を実行中か否かをフラ
グにより判定し、YESと判定されたときはステップ9
06へ進み、NOと判定されたときはステップ903へ
進む。ステップ903では、第1触媒(S/C)出ガス
の第1排気温Tex1が第1の所定温度γ(=180°
C)以上となったか否かを判別し、その判別結果がYE
Sのときはステップ904へ進み、その判別結果がNO
のときはステップ911へ進む。ここで、γを180°
Cとするのは、第1触媒(S/C)の温度が略200°
Cのときの第1触媒出ガスの排気温度が約180°Cと
推定されるからであり、第1触媒は約200°Cに到達
すると、第1触媒の各部分でHCを酸化させる排気浄化
の反応を開始するからである。
This control routine has a predetermined period, for example, 10
It is executed every 0 ms. First, in step 901, it is determined whether or not the water temperature THW of the engine 1 is within a predetermined temperature range (α <THW <β), as in step 201 of FIG. 2. If the determination result is YES, the process proceeds to step 902. The process proceeds to step 911 when the determination result is NO. In step 902, it is determined by a flag whether or not the partial cylinder stop control is being executed.
The process proceeds to step 06, and if the determination is NO, the process proceeds to step 903. In step 903, the first exhaust gas temperature Tex1 of the first catalyst (S / C) output gas is reduced to a first predetermined temperature γ (= 180 °).
C) It is determined whether or not it is greater than or equal to
In the case of S, the process proceeds to step 904, and the determination result is NO
In the case of, the process proceeds to step 911. Where γ is 180 °
C means that the temperature of the first catalyst (S / C) is approximately 200 °.
This is because the exhaust temperature of the first catalyst exit gas at C is estimated to be about 180 ° C. When the first catalyst reaches about 200 ° C., the exhaust gas purification oxidizes HC in each part of the first catalyst. Is started.

【0039】ステップ904では、第2触媒(M/C)
の出ガスの第2排気温Tex2が第5の所定温度θ(=
600°C)を超えたか否かを判別し、その判別結果が
YESのときはステップ911へ進み、その判別結果が
NOのときはステップ905へ進む。ここで、θ=60
0°Cは第2触媒が十分活性化されたとみなされるとき
の第2触媒出ガスの排気温度である。
In step 904, the second catalyst (M / C)
The second exhaust gas temperature Tex2 of the outgoing gas becomes the fifth predetermined temperature θ (=
600 ° C.), the process proceeds to step 911 if the result of the determination is YES, and proceeds to step 905 if the result of the determination is NO. Here, θ = 60
0 ° C. is the exhaust temperature of the second catalyst exit gas when the second catalyst is considered to be sufficiently activated.

【0040】ステップ906では、第1排気温Tex1
が第3の所定温度δ(=220°C)を超えたか否かを
判別し、その判別結果がYESのときはステップ907
へ進み、その判別結果がNOのときはステップ904へ
進む。ここで、第3の所定温度δは時刻t1から1気筒
停止制御による2次空気供給により第1触媒の浄化反応
が開始されてから第1触媒の温度が上昇し始めたことを
確認できる温度として、例えば220°Cを設定する。
At step 906, the first exhaust gas temperature Tex1
Is greater than or equal to a third predetermined temperature δ (= 220 ° C.), and if the determination result is YES, step 907 is performed.
The process proceeds to step 904 when the determination result is NO. Here, the third predetermined temperature δ is a temperature at which it can be confirmed that the temperature of the first catalyst has started to rise after the purification reaction of the first catalyst has been started by the secondary air supply by the one-cylinder stop control from time t1. For example, 220 ° C. is set.

【0041】ステップ907では、第1触媒の出ガスの
第1排気温Tex1が第4の所定温度λ(=700°
C)を超えたか否かを判別し、その判別結果がYESの
ときはステップ904へ進み、その判別結果がNOのと
きはステップ910へ進む。ここで、η=700°Cは
第1触媒が十分活性化されたとみなされかつ第1触媒を
OTから保護できる温度のときの第1触媒出ガスの排気
温度である。
In step 907, the first exhaust gas temperature Tex1 of the gas output from the first catalyst is increased to a fourth predetermined temperature λ (= 700 °).
It is determined whether or not C) has been exceeded. If the result of the determination is YES, the process proceeds to step 904, and if the result of the determination is NO, the process proceeds to step 910. Here, η = 700 ° C. is the exhaust temperature of the first catalyst outgas when the first catalyst is considered to be sufficiently activated and the first catalyst can be protected from OT.

【0042】ステップ905では1気筒停止制御を実行
し、ステップ910では2気筒停止制御を実行し、ステ
ップ911では部分気筒停止制御を禁止する。図9を用
いて説明した第4の部分気筒停止制御は、第1および第
2排気温センサにより検出された第1および第2触媒の
各推定温度に基づき部分気筒停止制御を実行するもので
あるが、この第4の部分気筒停止制御はこれら排気温セ
ンサに代えて機関の積算空気量から推定した各触媒の温
度に基づいて第4の部分気筒停止制御と同様な制御を実
行してもよい。
At step 905, one cylinder stop control is executed, at step 910, two cylinder stop control is executed, and at step 911, partial cylinder stop control is prohibited. The fourth partial cylinder stop control described with reference to FIG. 9 executes the partial cylinder stop control based on the estimated temperatures of the first and second catalysts detected by the first and second exhaust gas temperature sensors. However, in the fourth partial cylinder stop control, control similar to the fourth partial cylinder stop control may be executed based on the temperature of each catalyst estimated from the integrated air amount of the engine instead of the exhaust gas temperature sensor. .

【0043】また、上述の第4の部分気筒停止制御は6
気筒機関において2気筒まで停止する例で説明したが、
例えば8気筒機関において3気筒まで停止したり、12
気筒機関において4気筒まで停止したりするなど、停止
する気筒の数は使用する機関に応じて適宜選択できる。
図10は多気筒機関の始動時における各触媒の温度変化
を示す図であり、(A)はS/Cの温度変化を示す図で
あり、(B)はM/Cの温度変化を示す図である。図1
0において横軸は時間を示し、縦軸は各触媒の温度を示
す。
The above-described fourth partial cylinder stop control is performed by
As described above, the cylinder engine stops up to two cylinders.
For example, in an eight-cylinder engine, it is stopped up to three cylinders,
The number of stopped cylinders, such as stopping up to four cylinders in a cylinder engine, can be appropriately selected according to the engine used.
FIG. 10 is a diagram showing a temperature change of each catalyst at the time of starting the multi-cylinder engine, (A) is a diagram showing a temperature change of S / C, and (B) is a diagram showing a temperature change of M / C. It is. FIG.
At 0, the horizontal axis indicates time, and the vertical axis indicates the temperature of each catalyst.

【0044】図10の(A)において、曲線101は前
述の第3の部分気筒停止制御を実行したときのS/Cの
温度変化を示し、曲線102はS/Cが過昇温(OT)
しないように前述の第4の部分気筒停止制御を実行した
ときのS/Cの温度変化を示し、曲線103は前述の第
3の部分気筒停止制御を実行しS/Cの暖機完了を確認
した後に部分気筒停止制御を禁止したときのS/Cの温
度変化を示し、曲線104は1気筒停止制御のみを実行
したときのS/Cの温度変化を示し、曲線105は、部
分気筒停止制御を全く行わないときのS/Cの温度変化
を示し、曲線106はS/Cが触媒の反応促進温度(2
00°C)に到達した後2気筒停止制御を実行したとき
のS/Cの温度変化を示す。
In FIG. 10A, a curve 101 indicates a change in S / C temperature when the above-described third partial cylinder stop control is executed, and a curve 102 indicates that the S / C has an excessively high temperature (OT).
The curve 103 shows the change in S / C temperature when the above-described fourth partial cylinder stop control is executed, and the curve 103 confirms the completion of warm-up of the S / C by executing the above-described third partial cylinder stop control. The curve 104 shows the S / C temperature change when the partial cylinder stop control is prohibited after the execution of the partial cylinder stop control, and the curve 105 shows the S / C temperature change when only the one cylinder stop control is executed. The curve 106 shows the change in S / C temperature when the reaction is not performed at all, and the curve 106 shows that the S / C is the catalyst promotion temperature (2
7 shows a change in S / C temperature when the two-cylinder stop control is executed after the temperature has reached 00 ° C).

【0045】一方、図10の(B)において、曲線11
2はS/CがOTしないように第4の部分気筒停止制御
を実行したときのM/Cの温度変化を示し、曲線113
は第3の部分気筒停止制御を実行しS/Cの暖機完了を
確認した後に部分気筒停止制御を禁止したときのM/C
の温度変化を示し、曲線115は部分気筒停止制御を全
く行わないときのM/Cの温度変化を示す。
On the other hand, in FIG.
Reference numeral 2 denotes a temperature change of the M / C when the fourth partial cylinder stop control is executed so that the S / C does not OT.
Is the M / C when the partial cylinder stop control is prohibited after executing the third partial cylinder stop control and confirming the completion of the warm-up of the S / C.
The curve 115 shows the temperature change of M / C when the partial cylinder stop control is not performed at all.

【0046】図11は触媒入ガスの空燃比と触媒温度と
の関係を示すマップである。図11において横軸は機関
から排出された排気ガスが第1触媒へ流入する直前の第
1触媒入ガスの空燃比を示し、縦軸は第1触媒の温度を
示す。図11から、第1触媒入ガスの空燃比が理論空燃
比(14.6)のとき、第1触媒の反応が最も活性化さ
れるので第1触媒の温度も最も高いことが判る。
FIG. 11 is a map showing the relationship between the air-fuel ratio of the gas entering the catalyst and the catalyst temperature. In FIG. 11, the horizontal axis indicates the air-fuel ratio of the first catalyst-entering gas immediately before the exhaust gas discharged from the engine flows into the first catalyst, and the vertical axis indicates the temperature of the first catalyst. From FIG. 11, it can be seen that when the air-fuel ratio of the first catalyst-input gas is the stoichiometric air-fuel ratio (14.6), the reaction of the first catalyst is most activated, and therefore the temperature of the first catalyst is also the highest.

【0047】したがって、部分気筒停止制御実行中の機
関へ供給する燃料噴射量は、第1触媒入ガスの空燃比が
理論空燃比になるように休止中の気筒の数、言い換える
なら休止気筒から排出される空気量(酸素量)に応じて
決定されることが第1触媒の早期活性化に必要である。
このため、部分気筒停止制御実行中に、休止せずに噴射
を実行する稼働気筒から機関へ供給する燃料噴射量を算
出するためには、稼働気筒の空燃比を休止中の気筒の数
に応じて次式のように算出することが必要である。8気
筒機関を例にとって下記のように算出された空燃比に応
じて燃料噴射量を算出し、燃料噴射を実行すれば、第1
触媒入ガスの空燃比は理論空燃比となり、第1触媒の早
期暖機が達成される。
Accordingly, the fuel injection amount supplied to the engine during the execution of the partial cylinder stop control is determined by the number of cylinders that are inactive so that the air-fuel ratio of the first catalyst input gas becomes the stoichiometric air-fuel ratio. It is necessary for the early activation of the first catalyst to be determined according to the amount of air (oxygen amount) to be performed.
Therefore, in order to calculate the fuel injection amount to be supplied to the engine from the working cylinder that performs injection without stopping during the execution of the partial cylinder stop control, the air-fuel ratio of the working cylinder is determined according to the number of the stopped cylinders. It is necessary to calculate as follows. Taking an eight-cylinder engine as an example, the fuel injection amount is calculated according to the air-fuel ratio calculated as described below, and the fuel injection is executed.
The air-fuel ratio of the gas entering the catalyst becomes the stoichiometric air-fuel ratio, and early warm-up of the first catalyst is achieved.

【0048】休止気筒が1つのとき稼働気筒の空燃比は
14.6×(7/8)=12.8に、休止気筒が2つの
とき稼働気筒の空燃比は14.6×(6/8)=11.
0に、休止気筒が3つのとき稼働気筒の空燃比は14.
6×(5/8)=9.1に、休止気筒が4つのとき稼働
気筒の空燃比は14.6×(4/8)=7.3に、それ
ぞれ設定する。
When there is one idle cylinder, the air-fuel ratio of the operating cylinder is 14.6 × (7/8) = 12.8. When there are two idle cylinders, the air-fuel ratio of the active cylinder is 14.6 × (6/8). ) = 11.
0, the air-fuel ratio of the operating cylinder is 14.
6 × (5/8) = 9.1, and the air-fuel ratio of the operating cylinder is set to 14.6 × (4/8) = 7.3 when there are four idle cylinders.

【0049】図12は第5の部分気筒停止制御のフロー
チャートである。本制御は図1に示す第1実施形態に適
用される。本制御は、部分気筒停止制御により第1触媒
が暖機されても排気系、例えば排気マニホルドが十分に
暖機されていない場合や排気マニホルドが暖機されてい
てもアイドル等により機関から排出される排気ガスの温
度が低い場合に、部分気筒停止制御を禁止してしまうと
第1触媒の熱が排気系に奪われ、第1触媒の温度低下を
招く恐れがある。これを防止するため、この第5の部分
気筒停止制御では、第1触媒の再冷却防止のため、第1
触媒出ガス温度が低下したとき、再び部分気筒停止制御
を実行するものである。本制御ルーチンは所定の周期、
例えば100ms毎に実行される。先ず、ステップ12
01では、図2のステップ201と同様に機関1の水温
THWが所定の温度範囲内(α<THW<β)か否かを
判別し、その判別結果がYESのときはステップ120
2へ進み、その判別結果がNOのときはステップ120
4へ進む。
FIG. 12 is a flowchart of the fifth partial cylinder stop control. This control is applied to the first embodiment shown in FIG. In this control, even when the first catalyst is warmed up by the partial cylinder stop control, the exhaust system, for example, when the exhaust manifold is not sufficiently warmed up, or even when the exhaust manifold is warmed up, the exhaust gas is discharged from the engine by idling or the like. If the partial cylinder stop control is prohibited when the temperature of the exhaust gas is low, the heat of the first catalyst is taken by the exhaust system, and the temperature of the first catalyst may decrease. In order to prevent this, in the fifth partial cylinder stop control, in order to prevent re-cooling of the first catalyst,
When the catalyst outlet gas temperature decreases, the partial cylinder stop control is executed again. This control routine has a predetermined cycle,
For example, it is executed every 100 ms. First, step 12
In step 01, it is determined whether the water temperature THW of the engine 1 is within a predetermined temperature range (α <THW <β) as in step 201 of FIG.
The process proceeds to step 120 if the result of the determination is NO.
Proceed to 4.

【0050】次いで、ステップ1202では、部分気筒
停止制御を実行中か否かをフラグにより判定し、部分気
筒停止制御を実行中と判定されたときはステップ120
5へ進み、部分気筒停止制御を禁止中と判定されたとき
はステップ1203へ進む。ステップ1203では、第
1触媒出ガスの排気温Texがκ1(κ1=500°
C)より大か否かを判別し、Tex>κ1のときはステ
ップ1204へ進み、Tex≦κ1のときはステップ1
208へ進む。ステップ1203で排気温Texがκ1
以下に低下したと判別されたときはステップ1208で
1気筒停止制御を実行して第1触媒の再冷却を防止す
る。
Next, in step 1202, it is determined by a flag whether or not the partial cylinder stop control is being executed. If it is determined that the partial cylinder stop control is being executed, step 120 is executed.
Then, if it is determined that the partial cylinder stop control is prohibited, the process proceeds to step 1203. In step 1203, the exhaust gas temperature Tex of the first catalyst outgas is κ1 (κ1 = 500 °).
C) It is determined whether or not the value is larger than C). If Tex> κ1, the process proceeds to step 1204, and if Tex ≦ κ1, step 1 is performed.
Proceed to 208. In step 1203, the exhaust gas temperature Tex is κ1
If it is determined that the temperature has decreased below, in step 1208, one cylinder stop control is executed to prevent re-cooling of the first catalyst.

【0051】ステップ1205では、1気筒停止制御を
実行中か否かをフラグにより判定し、1気筒停止制御を
実行中と判定されたときはステップ1206へ進み、1
気筒停止制御を実行中でなく2気筒停止制御を実行中と
判定されたときはステップ1209へ進む。ステップ1
206では、第1触媒出ガスの排気温Texがκ2(κ
2=700°C)より大か否かを判別し、Tex>κ2
のときはステップ1204へ進み、Tex≦κ2のとき
はステップ1207へ進む。ここで、κ2は1気筒停止
制御実行時に第1触媒(S/C)が過昇温(OT)とな
らないように設定される第1触媒出ガスの排気温度であ
る。
In step 1205, it is determined by a flag whether or not one cylinder stop control is being executed. If it is determined that one cylinder stop control is being executed, the routine proceeds to step 1206, where
When it is determined that the cylinder stop control is not being executed and the two-cylinder stop control is being executed, the process proceeds to step 1209. Step 1
In 206, the exhaust temperature Tex of the first catalyst outgas is κ2 (κ
2 = 700 ° C.), Tex> κ2
If it is, the process proceeds to step 1204, and if Tex ≦ κ2, the process proceeds to step 1207. Here, κ2 is the exhaust temperature of the first catalyst output gas set such that the first catalyst (S / C) does not become excessively hot (OT) when the one-cylinder stop control is executed.

【0052】ステップ1207では、第1触媒出ガスの
排気温Texがκ3(κ3=600°C)より大か否か
を判別し、Tex>κ3のときはステップ1208へ進
み、Tex≦κ3のときはステップ1209へ進む。ス
テップ1207で排気温Texがκ3以下に低下したと
判別されたときはステップ1210で2気筒停止制御を
実行して第1触媒の再冷却を防止する。
In step 1207, it is determined whether or not the exhaust gas temperature Tex of the first catalyst outlet gas is higher than κ3 (κ3 = 600 ° C.). If Tex> κ3, the process proceeds to step 1208, and if Tex ≦ κ3, Goes to step 1209. If it is determined in step 1207 that the exhaust gas temperature Tex has dropped to κ3 or less, in step 1210 two-cylinder stop control is executed to prevent re-cooling of the first catalyst.

【0053】ステップ1209では、第1触媒出ガスの
排気温Texがκ4(κ4=800°C)より大か否か
を判別し、Tex>κ4のときはステップ1208へ進
み、Tex≦κ4のときはステップ1210へ進む。こ
こで、κ4は2気筒停止制御実行時に第1触媒(S/
C)が過昇温(OT)とならないように設定される第1
触媒出ガスの排気温度である。
In step 1209, it is determined whether or not the exhaust gas temperature Tex of the first catalyst outlet gas is higher than κ4 (κ4 = 800 ° C.). If Tex> κ4, the process proceeds to step 1208, and if Tex ≦ κ4, Goes to step 1210. Here, κ4 is the value of the first catalyst (S /
C) is set so that overheating (OT) does not occur.
This is the exhaust temperature of the catalyst exit gas.

【0054】ステップ1204では、部分気筒停止制御
を禁止し、ステップ1208では1気筒停止制御を実行
し、ステップ1210では2気筒停止制御を実行する。
上述した実施形態において、触媒コンバータ5、7は、
電気加熱式触媒(EHC)を設けた触媒コンバータであ
ってもよい。また、上述した実施形態では、一部気筒の
燃料の噴射を中止する部分気筒停止制御により、リーン
運転を実行する例を示したが、本発明はこれに限定され
るものではない。本発明は燃料噴射量を減少して気筒か
ら排出される酸素量を多くすることでリーン運転を実行
してもよい。また、本発明は希薄燃焼内燃機関や筒内噴
射式内燃機関に適用してもよい。本発明はまた、上述し
た実施形態の他に、排気浄化触媒の温度が所定温度に到
達するまでは、複数気筒の内、一部の気筒を弱リーンと
するとともに、他の気筒をリッチとし、所定温度に到達
した以降には、前記一部の気筒を強リーンとすることを
許可する実施形態としてもよい。
In step 1204, partial cylinder stop control is prohibited. In step 1208, one cylinder stop control is executed. In step 1210, two cylinder stop control is executed.
In the embodiment described above, the catalytic converters 5, 7 are:
A catalytic converter provided with an electrically heated catalyst (EHC) may be used. Further, in the above-described embodiment, an example has been described in which the lean operation is executed by the partial cylinder stop control for stopping the injection of the fuel in the partial cylinder, but the present invention is not limited to this. In the present invention, the lean operation may be performed by reducing the fuel injection amount and increasing the amount of oxygen discharged from the cylinder. Further, the present invention may be applied to a lean burn internal combustion engine or a direct injection internal combustion engine. The present invention also provides, in addition to the above-described embodiments, some of the plurality of cylinders are made weakly lean and the other cylinders are made rich until the temperature of the exhaust purification catalyst reaches a predetermined temperature. After reaching a predetermined temperature, the embodiment may allow some of the cylinders to be made lean.

【0055】[0055]

【発明の効果】以上説明したように、本発明の多気筒内
燃機関の空燃比制御装置によれば、排気浄化触媒の活性
開始温度に到達するまでは暖機増量により全気筒から燃
料噴射し活性開始温度に到達してからは一部気筒による
リーン運転を開始するので、機関始動開始から排気浄化
触媒を暖機完了させるまでの時間を短縮でき、機関から
排出される排気エミッションの触媒による浄化を早期に
開始できる。
As described above, according to the air-fuel ratio control apparatus for a multi-cylinder internal combustion engine of the present invention, fuel is injected from all cylinders by increasing the warm-up amount until the activation start temperature of the exhaust purification catalyst is reached. After the start temperature is reached, lean operation with some cylinders is started, so the time from the start of the engine to the completion of warm-up of the exhaust purification catalyst can be shortened, and purification of exhaust emissions discharged from the engine by the catalyst can be reduced. Can start early.

【0056】また、本発明の多気筒内燃機関の空燃比制
御装置における始動時空燃比制御手段は、活性開始温度
に到達してから複数の気筒のリーン運転を同時に開始せ
ずに、リーン運転する気筒の数を徐々に増加するので、
排気浄化触媒への急激な2次空気の流入による排気浄化
触媒の温度低下を防止し、機関始動開始から排気浄化触
媒を暖機完了させるまでの時間を短縮できる。
Further, the starting air-fuel ratio control means in the air-fuel ratio control apparatus for a multi-cylinder internal combustion engine according to the present invention does not start the lean operation of a plurality of cylinders at the same time after reaching the activation start temperature, but performs the lean operation of the cylinder. Because the number of
It is possible to prevent the temperature of the exhaust purification catalyst from lowering due to a rapid inflow of secondary air into the exhaust purification catalyst, and to shorten the time from the start of the engine to the completion of warm-up of the exhaust purification catalyst.

【0057】また、本発明の多気筒内燃機関の空燃比制
御装置における始動時空燃比制御手段は、排気浄化触媒
の温度が目標温度に到達したとき、リーン運転する気筒
の数を減らすので、排気浄化触媒の過昇温による劣化を
防止できる。また、本発明の多気筒内燃機関の空燃比制
御装置における燃料噴射量補正手段は、排気浄化触媒の
暖機効率を略最高とする空燃比の排気ガスを排気浄化触
媒へ流入させるので、機関始動開始から排気浄化触媒を
暖機完了させるまでの時間を短縮できる。
Further, the starting air-fuel ratio control means in the air-fuel ratio control apparatus for a multi-cylinder internal combustion engine according to the present invention reduces the number of the lean-operated cylinders when the temperature of the exhaust gas purification catalyst reaches the target temperature. Deterioration due to excessive temperature rise of the catalyst can be prevented. Further, the fuel injection amount correcting means in the air-fuel ratio control apparatus for a multi-cylinder internal combustion engine according to the present invention causes the exhaust gas having the air-fuel ratio that makes the warm-up efficiency of the exhaust purification catalyst substantially the highest to flow into the exhaust purification catalyst. The time from the start to the completion of warm-up of the exhaust purification catalyst can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による多気筒内燃機関の空燃比制御装置
の第1実施形態の概略構成図である。
FIG. 1 is a schematic configuration diagram of a first embodiment of an air-fuel ratio control device for a multi-cylinder internal combustion engine according to the present invention.

【図2】第1の部分気筒停止制御のフローチャートであ
る。
FIG. 2 is a flowchart of a first partial cylinder stop control.

【図3】機関始動時の部分気筒停止と触媒温度変化との
関係を示す図である。
FIG. 3 is a diagram showing a relationship between a partial cylinder stop and a catalyst temperature change at the time of engine start.

【図4】第2の部分気筒停止制御のフローチャートであ
る。
FIG. 4 is a flowchart of a second partial cylinder stop control.

【図5】機関の積算空気量と触媒温度との関係を示すマ
ップである。
FIG. 5 is a map showing a relationship between an integrated air amount of an engine and a catalyst temperature.

【図6】機関始動時の段階的部分気筒停止制御と触媒温
度変化との関係を示す図である。
FIG. 6 is a diagram showing a relationship between a stepwise partial cylinder stop control and a catalyst temperature change at the time of engine start.

【図7】第3の部分気筒停止制御のフローチャートであ
る。
FIG. 7 is a flowchart of a third partial cylinder stop control.

【図8】本発明による多気筒内燃機関の空燃比制御装置
の第2実施形態の概略構成図である。
FIG. 8 is a schematic configuration diagram of a second embodiment of an air-fuel ratio control device for a multi-cylinder internal combustion engine according to the present invention.

【図9】第4の部分気筒停止制御のフローチャートであ
る。
FIG. 9 is a flowchart of a fourth partial cylinder stop control.

【図10】多気筒機関の始動時における各触媒の温度変
化を示す図であり、(A)はS/Cの温度変化を示す図
であり、(B)はM/Cの温度変化を示す図である。
10A and 10B are diagrams illustrating a temperature change of each catalyst at the time of starting the multi-cylinder engine, FIG. 10A is a diagram illustrating a temperature change of S / C, and FIG. 10B is a diagram illustrating a temperature change of M / C. FIG.

【図11】触媒入ガスの空燃比と触媒温度との関係を示
すマップである。
FIG. 11 is a map showing a relationship between an air-fuel ratio of a gas entering a catalyst and a catalyst temperature.

【図12】第5の部分気筒停止制御のフローチャートで
ある。
FIG. 12 is a flowchart of fifth partial cylinder stop control.

【符号の説明】 1…多気筒機関 2…吸気マニホルド 3…排気マニホルド 4…燃料噴射弁 5…第1触媒(S/C)コンバータ 6…排気管 7…第2触媒(M/C)コンバータ 8、9…空燃比センサ 11、12…排気温センサ 20…電子制御ユニット(ECU)[Description of Signs] 1 ... Multi-cylinder engine 2 ... Intake manifold 3 ... Exhaust manifold 4 ... Fuel injection valve 5 ... First catalyst (S / C) converter 6 ... Exhaust pipe 7 ... Second catalyst (M / C) converter 8 , 9 ... air-fuel ratio sensor 11, 12 ... exhaust temperature sensor 20 ... electronic control unit (ECU)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 45/00 312 F02D 45/00 312R ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 45/00 312 F02D 45/00 312R

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の気筒を有する内燃機関の排気通路
に配置された排気浄化触媒と、前記内燃機関の冷間始動
時に、前記複数の気筒の内、一部の気筒をリッチ運転す
るとともに、他の気筒をリーン運転するよう空燃比を制
御する始動時空燃比制御手段と、を備える多気筒内燃機
関の空燃比制御装置において、 前記排気浄化触媒の温度を検出する触媒温度検出手段を
備え、 前記始動時空燃比制御手段は、前記内燃機関の冷間始動
時に、前記触媒温度検出手段により検出された前記排気
浄化触媒の温度が所定温度に到達するまでは、該所定温
度に到達した以降に設定する空燃比よりリッチに空燃比
を設定する、ことを特徴とする多気筒内燃機関の空燃比
制御装置。
An exhaust purification catalyst disposed in an exhaust passage of an internal combustion engine having a plurality of cylinders, and performing a rich operation on some of the plurality of cylinders during a cold start of the internal combustion engine; An air-fuel ratio control device for a multi-cylinder internal combustion engine, comprising: a start-time air-fuel ratio control device for controlling an air-fuel ratio so as to perform a lean operation on another cylinder; anda catalyst temperature detection device for detecting a temperature of the exhaust purification catalyst. The start-time air-fuel ratio control means sets the temperature of the exhaust gas purification catalyst detected by the catalyst temperature detection means at the time of the cold start of the internal combustion engine after the temperature reaches the predetermined temperature until the temperature reaches the predetermined temperature. An air-fuel ratio control device for a multi-cylinder internal combustion engine, wherein the air-fuel ratio is set to be richer than the air-fuel ratio.
【請求項2】 前記内燃機関の冷間始動時に、前記触媒
温度検出手段により検出された前記排気浄化触媒の温度
が所定温度に到達するまでは前記始動時空燃比制御手段
により全気筒をリッチ運転させ、該排気浄化触媒の温度
が該所定温度を超えてからは該始動時空燃比制御手段に
より一部の気筒のリーン運転を開始させるリーン開始制
御手段を備えた請求項1に記載の多気筒内燃機関の空燃
比制御装置。
2. During a cold start of the internal combustion engine, all cylinders are made to perform a rich operation by the start-time air-fuel ratio control means until the temperature of the exhaust purification catalyst detected by the catalyst temperature detection means reaches a predetermined temperature. 2. The multi-cylinder internal combustion engine according to claim 1, further comprising a lean start control means for starting lean operation of some of the cylinders by the start-time air-fuel ratio control means after the temperature of the exhaust purification catalyst exceeds the predetermined temperature. Air-fuel ratio control device.
【請求項3】 前記始動時空燃比制御手段は、前記内燃
機関の運転状態に応じてリーン運転する気筒の数を徐々
に増加する請求項2に記載の多気筒内燃機関の空燃比制
御装置。
3. The air-fuel ratio control device for a multi-cylinder internal combustion engine according to claim 2, wherein the start-time air-fuel ratio control means gradually increases the number of cylinders that perform a lean operation in accordance with an operation state of the internal combustion engine.
【請求項4】 前記始動時空燃比制御手段は、前記触媒
温度検出手段により検出された前記排気浄化触媒の温度
が目標温度に到達したとき、リーン運転する気筒の数を
減らす請求項3に記載の多気筒内燃機関の空燃比制御装
置。
4. The engine according to claim 3, wherein the start-time air-fuel ratio control means reduces the number of the cylinders to be operated lean when the temperature of the exhaust gas purification catalyst detected by the catalyst temperature detection means reaches a target temperature. An air-fuel ratio control device for a multi-cylinder internal combustion engine.
【請求項5】 前記内燃機関から排出され前記排気浄化
触媒へ流入する排気ガスの空燃比が該排気浄化触媒の暖
機効率を略最高とするように、リーン運転する気筒から
排出される空気量に応じてリッチ運転する気筒へ供給す
る燃料噴射量を補正する燃料噴射量補正手段を備えた請
求項2乃至4の何れか1項に記載の多気筒内燃機関の空
燃比制御装置。
5. The amount of air discharged from a lean operating cylinder so that the air-fuel ratio of exhaust gas discharged from the internal combustion engine and flowing into the exhaust purification catalyst substantially increases the warm-up efficiency of the exhaust purification catalyst. The air-fuel ratio control device for a multi-cylinder internal combustion engine according to any one of claims 2 to 4, further comprising a fuel injection amount correction unit that corrects a fuel injection amount supplied to a cylinder that performs a rich operation according to the condition.
JP04485299A 1998-02-24 1999-02-23 Air-fuel ratio control apparatus for multi-cylinder internal combustion engine Expired - Fee Related JP3627561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04485299A JP3627561B2 (en) 1998-02-24 1999-02-23 Air-fuel ratio control apparatus for multi-cylinder internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4241798 1998-02-24
JP10-42417 1998-02-24
JP04485299A JP3627561B2 (en) 1998-02-24 1999-02-23 Air-fuel ratio control apparatus for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11311139A true JPH11311139A (en) 1999-11-09
JP3627561B2 JP3627561B2 (en) 2005-03-09

Family

ID=26382097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04485299A Expired - Fee Related JP3627561B2 (en) 1998-02-24 1999-02-23 Air-fuel ratio control apparatus for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP3627561B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1138897A2 (en) 2000-03-31 2001-10-04 Hitachi, Ltd. Emission control device for cylinder fuel injection engine
JP2006283663A (en) * 2005-03-31 2006-10-19 Toyota Industries Corp Exhaust emission control device for internal combustion engine
JP2011069281A (en) * 2009-09-25 2011-04-07 Honda Motor Co Ltd Control device for internal combustion engine
KR101234619B1 (en) 2006-04-20 2013-02-19 현대자동차주식회사 A exhaust system of v-type engine and control system and method thereof
JP2015214966A (en) * 2014-04-25 2015-12-03 トヨタ自動車株式会社 Internal combustion engine control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1138897A2 (en) 2000-03-31 2001-10-04 Hitachi, Ltd. Emission control device for cylinder fuel injection engine
US6865880B2 (en) 2000-03-31 2005-03-15 Hitachi, Ltd. Emission control device for cylinder fuel injection engine
US6957529B2 (en) 2000-03-31 2005-10-25 Hitachi, Ltd. Emission control device for cylinder fuel injection engine
JP2006283663A (en) * 2005-03-31 2006-10-19 Toyota Industries Corp Exhaust emission control device for internal combustion engine
KR101234619B1 (en) 2006-04-20 2013-02-19 현대자동차주식회사 A exhaust system of v-type engine and control system and method thereof
JP2011069281A (en) * 2009-09-25 2011-04-07 Honda Motor Co Ltd Control device for internal combustion engine
JP2015214966A (en) * 2014-04-25 2015-12-03 トヨタ自動車株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JP3627561B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
US6205776B1 (en) Air-fuel ration control system for multi-cylinder internal combustion engine
JP2008095542A (en) Control system of internal combustion engine
JP2009299638A (en) Catalyst warming-up control device
JP3602612B2 (en) Idle speed control device for internal combustion engine
JP2000008922A (en) Cylinder direct injection type spark-ignition engine
JP4557176B2 (en) Catalyst early warm-up control device for internal combustion engine
JP2007162489A (en) Control device for internal combustion engine with supercharger
JP2001041027A (en) Exhaust emission control device for internal combustion engine
JP2962127B2 (en) Control device for internal combustion engine
JPH11311139A (en) Air-fuel ratio control system for multi-cylinder internal combustion engine
JP3331758B2 (en) Temperature control device for exhaust gas purifier
JPH09317524A (en) Nitrogen oxide cleaning apparatus for internal combustion engine
JP3552617B2 (en) Exhaust gas purification device for internal combustion engine
JP3821241B2 (en) Internal combustion engine control device
JPH06257488A (en) Exhaust emission control device for multiple cylinder internal combustion engine
JP2996056B2 (en) Electrically heated catalytic converter
JP2884798B2 (en) Exhaust gas purification device for internal combustion engine
JP3509482B2 (en) Exhaust gas purification device for internal combustion engine
JP2003065027A (en) Control device for exhaust air temperature sensor for internal combustion engine
JP3772737B2 (en) Secondary combustion control method
JPH03225013A (en) Exhaust purifying device for internal combustion engine
JPH11343913A (en) Air-fuel ratio controller for internal combustion engine
JPH0893522A (en) Air-fuel ratio controller for internal combustion engine
JP3006367B2 (en) Exhaust gas purification device for internal combustion engine
JP3700221B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees