JPH11310188A - Device for reducing friction resistance of ship - Google Patents

Device for reducing friction resistance of ship

Info

Publication number
JPH11310188A
JPH11310188A JP10119125A JP11912598A JPH11310188A JP H11310188 A JPH11310188 A JP H11310188A JP 10119125 A JP10119125 A JP 10119125A JP 11912598 A JP11912598 A JP 11912598A JP H11310188 A JPH11310188 A JP H11310188A
Authority
JP
Japan
Prior art keywords
air
air blower
seawater
chlorine gas
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10119125A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
和男 佐藤
Yoshiaki Takahashi
義明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10119125A priority Critical patent/JPH11310188A/en
Publication of JPH11310188A publication Critical patent/JPH11310188A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the closure of an air spitting part due to the clinging of marine animals and vegetables. SOLUTION: A compressor 11 is connected via an air feed pipe 12 to an air blow-off device 3 placed on a bottom plate 2. The air feed pipe 12 is provided with an ejector 17. A chloride gas generator 18, in which an anode 29 and a cathode 30 connected to a dc power supply 28 are provided within an electrolytic vessel 22, is installed on a hull 1. A water feed pipe 23 having a seawater pump 24 and an overflow pipe 26 are connected to the electrolytic vessel 22 to change seawater 20. The section 22a of the electrolytic vessel 22 in which the anode 29 is present is connected to the ejector 17 via a chloride gas pipe 21. Chloride gas 19 generated by the electrolysis of the seawater 20 is mixed into pressurized air 14 fed to the air blow-off device 3 from the compressor 11, and is spit out of the air blow-off device 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は航行時に船体表面に
作用する摩擦抵抗を低減できるようにするための船舶の
摩擦抵抗低減装置に関するもので、特に、微小気泡を発
生させるための空気吹き出し器への海生生物の蓄積を抑
制することのできる船舶の摩擦抵抗低減装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for reducing frictional resistance of a ship for reducing frictional resistance acting on a hull surface during navigation, and more particularly to an air blower for generating microbubbles. The present invention relates to a device for reducing frictional resistance of a ship which can suppress the accumulation of marine organisms.

【0002】[0002]

【従来の技術】船舶の航行時には、流体としての海水の
粘性のために船体の周りに海水による境界層が形成され
るが、この境界層の中では、海水の流速は船体表面が零
で船体表面から離れるに従い急激に大きく変化する傾向
にあり、船体の表面に海水の摩擦抵抗が作用し船体抵抗
の大きな要素の一つとなっている。
2. Description of the Related Art During the navigation of a ship, a boundary layer of seawater is formed around the hull due to the viscosity of seawater as a fluid. In this boundary layer, the flow velocity of the seawater is zero and the hull surface is zero. It tends to change drastically as the distance from the surface increases, and seawater frictional resistance acts on the surface of the hull, which is one of the major factors of hull resistance.

【0003】そのため、近年、上記船体の表面に作用す
る摩擦抵抗を減少させて推進性能を向上させるための研
究が進められており、その対策の一つとして、船体表面
から微小気泡(マイクロバブル)を噴出させ、船体の浸
水部(没水部)表面の境界層内に微小気泡を送り込んで
船体の浸水部表面を微小気泡で覆うことにより船体表面
に作用する摩擦抵抗を低減することを狙ったマイクロバ
ブル推進法の研究が進められている。
[0003] Therefore, in recent years, studies have been made to improve the propulsion performance by reducing the frictional resistance acting on the surface of the hull, and as one of the measures, micro-bubbles (micro-bubbles) are generated from the hull surface. And blow the microbubbles into the boundary layer of the submerged part (submerged part) of the hull to cover the submerged surface of the hull with the microbubbles, thereby reducing the frictional resistance acting on the hull surface. Research on the microbubble propulsion method is ongoing.

【0004】マイクロバブル推進法を具現化するための
一手段として、図3(イ)(ロ)にその一例の概略を示
す如く、船底外板2に穿設した開口部5に、多数の空気
吹き出し口(細孔)7を所要のピッチで穿設してなる多
孔板6をボルト8により取り付けて空気吹き出し部4を
形成し、且つ、該空気吹き出し部4の周囲を取り囲むよ
うに空気溜めケーシング9を上記船底外板2の内側に水
密に取り付けて構成してなる空気吹き出し器3を、船体
1の船首部船底1aの所要位置に多数配設し、更に、該
各空気吹き出し器3に、甲板上に設置されて電動機10
により駆動されるようにした空気送給装置としてのコン
プレッサー11を、閉止弁13を備えた空気送給パイプ
12を介して接続して、上記コンプレッサー11で発生
させた加圧空気14を空気吹き出し器3に送るようにし
て、該加圧空気14を空気吹き出し器3の空気吹き出し
部4から水中に吹き出させ、発生させた微小気泡で船体
1の船底表面を覆うようにした摩擦抵抗低減装置が提案
されている。なお、15は、上記コンプレッサー11に
空気を導くため、先端に吸気口16を設けた吸気パイプ
を示す。
As one means for realizing the microbubble propulsion method, as shown in FIG. 3 (a) and (b), an example of the outline thereof is shown in FIG. An air reservoir 4 is formed by attaching a perforated plate 6 having blowout ports (pores) 7 at a required pitch by bolts 8 to form an air blowout portion 4 and surrounding the air blowout portion 4. A number of air blowers 3 which are constructed by attaching water-tight 9 to the inside of the bottom shell 2 are arranged at required positions on the bow bottom 1a of the hull 1 and each of the air blowers 3 The electric motor 10 installed on the deck
A compressor 11 as an air supply device driven by a compressor is connected via an air supply pipe 12 provided with a shut-off valve 13, and the compressed air 14 generated by the compressor 11 is blown out by an air blower. 3, a frictional resistance reducing device is proposed in which the pressurized air 14 is blown out into the water from the air blowing portion 4 of the air blowing device 3 to cover the bottom surface of the hull 1 with the generated microbubbles. Have been. Reference numeral 15 denotes an intake pipe provided with an intake port 16 at the tip for guiding air to the compressor 11.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記空気吹
き出し器3の空気吹き出し部4は船底すなわち船体1の
没水部に設置されているため、船舶を港湾に停泊させて
いるとき等には、空気吹き出し部4から加圧空気14を
吹き出させるようにしないことから海水が空気吹き出し
口7から空気吹き出し器3の内部に浸入する可能性があ
り、貝類や藻類等の海生生物が空気吹き出し器3の内側
の表面に付着すると共に蓄積して空気吹き出し部4を閉
塞させてしまうことが考えられる。したがって、定期的
に空気吹き出し器3に付着した海生生物を掻き取って除
去しなければならない、という問題が惹起される。
However, since the air blowing portion 4 of the air blowing device 3 is installed at the bottom of the ship, that is, at the submerged portion of the hull 1, when the ship is anchored at a port, etc. Since the pressurized air 14 is not blown out from the air blowout unit 4, seawater may enter the air blower 3 from the air blowout port 7, and marine organisms such as shellfish and algae may be blown out by the air blower. It is conceivable that the air blowing portion 4 adheres to and accumulates on the inner surface of the inside 3 and closes the air blowing portion 4. Therefore, a problem arises in that marine organisms attached to the air blower 3 must be periodically scraped and removed.

【0006】そこで、本発明は、空気吹き出し器に付着
した海生生物を掻き取ることなく、空気吹き出し器の内
部に塩素ガスを吹き込むことによって海生生物の忌避す
る状態を作り、海生生物の付着、蓄積を抑制して、空気
吹き出し部が閉塞してしまわないようにしようとするも
のである。
Therefore, the present invention provides a state in which marine organisms are repelled by blowing chlorine gas into the air blower without scraping marine organisms attached to the air blower. The purpose is to suppress the adhesion and accumulation and prevent the air blowing portion from being closed.

【0007】因に、船舶に予め塩素ガスボンベを搭載し
て、塩素ガスを空気吹き出し器3へ導くことも考えられ
るが、この場合、多数の塩素ガスボンベを搭載しなけれ
ばならない。
It is conceivable that a chlorine gas cylinder is mounted on a ship in advance and the chlorine gas is led to the air blower 3, but in this case, a large number of chlorine gas cylinders must be mounted.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するために、船体外板の所要位置に、加圧空気を吹き
出させるための空気吹き出し部と該空気吹き出し部を取
り囲むように上記船体外板内側に取り付けた空気溜めケ
ーシングとからなる空気吹き出し器を多数配設し、該空
気吹き出し器に、閉止弁を備えた空気送給パイプを介し
て空気送給装置を接続し、該空気送給装置で発生させた
加圧空気を空気吹き出し器を通して水中に吹き出させる
ことにより微小気泡を発生させるようにしてある船舶の
摩擦抵抗低減装置において、上記空気送給パイプの中間
位置に、上記加圧空気に塩素ガスを混入させるための混
合器を設け、且つ該混合器に、海水を電気分解して塩素
ガスを発生させるための塩素ガス発生装置を接続した構
成とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an air blower for blowing out pressurized air at a required position on a hull outer panel, and an air blower for surrounding the air blower. A large number of air blowers each including an air reservoir casing attached to the inside of the hull outer panel are provided, and an air feeder is connected to the air blowers via an air feed pipe provided with a shutoff valve. In a device for reducing frictional resistance of a ship in which micro-bubbles are generated by blowing pressurized air generated by a feeder into water through an air blower, the above-mentioned air-supply pipe is provided at an intermediate position. A mixer for mixing chlorine gas into compressed air is provided, and a chlorine gas generator for electrolyzing seawater to generate chlorine gas is connected to the mixer.

【0009】塩素ガス発生装置で海水が電気分解される
ことにより発生させられた塩素ガスが混合器に導かれ、
該混合器において、空気送給装置で発生させられて空気
吹き出し器に送給される加圧空気に混入される。したが
って、空気吹き出し器に導かれる加圧空気には塩素が含
まれるようになり、この塩素によって、空気吹き出し器
の内部および空気吹き出し部に海生生物が付着・生育・
伸長することを事前に防止できるようになる。
[0009] Chlorine gas generated by electrolysis of seawater in a chlorine gas generator is led to a mixer,
In the mixer, it is mixed with the pressurized air generated by the air supply device and supplied to the air blower. Therefore, chlorine is contained in the pressurized air led to the air blower, and this chlorine causes marine organisms to adhere, grow and grow inside the air blower and in the air blowout portion.
The extension can be prevented in advance.

【0010】又、混合器よりも下流に位置する空気送給
パイプに、空気吹き出し器に導かれる加圧空気中の塩素
濃度を測るための塩素濃度センサを設け、且つ該塩素濃
度センサで計測した塩素濃度が設定値を超えたときに塩
素ガス発生装置での海水の電気分解を停止させるように
制御するための制御装置を設けた構成とすることによ
り、空気吹き出し器に導かれる塩素ガスの濃度を制御す
ることができるようになり、加圧空気中の塩素濃度が所
定の値を越えることのないように制御して、過剰な塩素
が水分と反応して酸化力を有する液体を生じて、腐食等
の船体への悪影響を及ぼす虞を少ないものとすることが
できる。
Further, a chlorine concentration sensor for measuring the chlorine concentration in the pressurized air guided to the air blower is provided in the air supply pipe located downstream of the mixer, and the chlorine concentration sensor measures the chlorine concentration. Concentration of chlorine gas guided to the air blower by providing a control device for controlling the electrolysis of seawater in the chlorine gas generator to stop when the chlorine concentration exceeds the set value Can be controlled, the chlorine concentration in the pressurized air is controlled so as not to exceed a predetermined value, excess chlorine reacts with moisture to produce a liquid having oxidizing power, It is possible to reduce a possibility of adversely affecting the hull such as corrosion.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本発明の船舶の摩擦抵抗低減装置の
実施の一形態を示すもので、図3(イ)(ロ)に示した
と同様に、船体1の船首部船底1aの所要位置となる船
底外板2に、空気吹き出し部4と空気溜めケーシング9
とからなる空気吹き出し器3を多数配設すると共に、該
各空気吹き出し器3に、電動機10により駆動されるコ
ンプレッサー11が空気送給パイプ12を介して接続し
てある船舶の摩擦抵抗低減装置において、上記空気送給
パイプ12の中間位置に、空気吹き出し器3に導かれる
加圧空気14に塩素ガス19を混入させるための混合器
としてのエジェクタ17を設け、且つ該エジェクタ17
に、海水20を電気分解して塩素ガス19を発生させる
ための塩素ガス発生装置18を塩素ガスパイプ21を介
して接続した構成とする。
FIG. 1 shows an embodiment of the apparatus for reducing frictional resistance of a ship according to the present invention. As shown in FIGS. 3 (a) and 3 (b), a required position of a bow bottom 1a of a hull 1 is shown. An air blowing section 4 and an air reservoir casing 9
And a compressor 11 driven by a motor 10 is connected to each air blower 3 via an air supply pipe 12 to reduce the frictional resistance of a ship. An ejector 17 as a mixer for mixing chlorine gas 19 into the pressurized air 14 guided to the air blower 3 is provided at an intermediate position of the air supply pipe 12.
Further, a chlorine gas generator 18 for electrolyzing seawater 20 to generate chlorine gas 19 is connected via a chlorine gas pipe 21.

【0013】上記塩素ガス発生装置18は、下部のみが
連通するようにして2つの区画22a,22bが分割形
成されるようにした箱形の電気分解槽22の一側面下部
に、海水ポンプ24を備えて下端を船底に設けた取水口
25と接続した給水パイプ23の上端を接続すると共
に、上記電気分解槽22の他側面上部に、船底に設けた
排水口27と連通するオーバーフローパイプ26を接続
して、電気分解槽22内に一定量の海水20が溜まるよ
うにすると共に、海水ポンプ24の駆動により電気分解
槽22内の海水20が順次入れ替えられるようにし、更
に、上記電気分解槽22の各分割区画22aと22bに
陽極29と陰極30の2つの電極を配設すると共に該電
極間に直流電源28を接続して、海水20の電気分解に
より陽極29で塩素ガス19が発生させられるように
し、更に又、電気分解槽22の陽極29側区画22aの
上端部に上記塩素ガスパイプ21を接続するようにし
て、発生させられた塩素ガス19がエジェクタ17に導
かれるようにしてある。なお、海水20の電気分解の
際、陰極30で発生させられる水素ガス31は、陰極3
0側区画22bの上端部に接続したパージパイプ32を
通して大気へパージさせるようにしてある。
The chlorine gas generator 18 is provided with a seawater pump 24 on the lower part of one side of a box-shaped electrolysis tank 22 in which two sections 22a and 22b are divided so that only the lower part communicates. An upper end of a water supply pipe 23 having a lower end connected to an intake 25 provided at the bottom of the ship is connected, and an overflow pipe 26 communicating with a drain 27 provided at the bottom of the ship is connected to the upper part of the other side of the electrolysis tank 22. Then, a certain amount of seawater 20 is stored in the electrolysis tank 22, and the seawater 20 in the electrolysis tank 22 is sequentially replaced by driving the seawater pump 24. Two electrodes, an anode 29 and a cathode 30, are provided in each of the divided sections 22a and 22b, and a DC power supply 28 is connected between the electrodes. The chlorine gas pipe 21 is connected to the upper end of the anode 29 side section 22a of the electrolysis tank 22, and the generated chlorine gas 19 is guided to the ejector 17. It is like that. The hydrogen gas 31 generated at the cathode 30 during the electrolysis of the seawater 20 is supplied to the cathode 3
The air is purged to the atmosphere through a purge pipe 32 connected to the upper end of the 0-side section 22b.

【0014】更に、コンプレッサー11を駆動する電動
機10と、塩素ガス発生装置18の直流電源28と、給
水パイプ23の海水ポンプ24は、発動、停止が同期さ
せられるようにしてある。その他は図3に示したと同様
であり、同一のものには同一の符号が付してある。
Further, the motor 10 for driving the compressor 11, the DC power supply 28 of the chlorine gas generator 18, and the seawater pump 24 of the water supply pipe 23 are started and stopped synchronously. The other components are the same as those shown in FIG. 3, and the same components are denoted by the same reference numerals.

【0015】船舶の航行時に、電動機10の駆動でコン
プレッサー11が駆動されると、該コンプレッサー11
で発生させられた加圧空気14は空気送給パイプ12を
通して各空気吹き出し器3に導かれ、空気吹き出し部4
から水中に吹き出されて微小気泡を発生させるようにな
る。このとき、上記電動機10の駆動と同期して塩素ガ
ス発生装置18の直流電源28が起動されるため、電気
分解槽22内で海水20の電気分解が行われることにな
って、陽極29側の区画22a内に塩素ガス19が発生
させられる。発生させられた塩素ガス19は、上記加圧
空気14が空気送給パイプ12に設けたエジェクタ17
を通過する際に発生する吸引力によって、塩素ガスパイ
プ21を通してエジェクタ17に導かれ、該エジェクタ
17内において空気吹き出し器3に導かれる加圧空気1
4に混入されるようになる。この際、上記電動機10の
駆動と同期して、海水ポンプ24も駆動されることか
ら、電気分解槽22内の海水20が順次入れ替えられる
ことによって、電気分解槽22内の海水20中の塩素イ
オン濃度を高いレベルに維持することができるので、高
濃度の塩素ガス19を連続して発生させることができ
る。
When the compressor 11 is driven by the drive of the electric motor 10 during the navigation of the ship, the compressor 11
The pressurized air 14 generated by the air blower 4 is guided to each air blower 3 through the air supply pipe 12,
Blows out into the water to generate microbubbles. At this time, since the DC power supply 28 of the chlorine gas generator 18 is started in synchronization with the driving of the electric motor 10, the seawater 20 is electrolyzed in the electrolysis tank 22, and the anode 29 side Chlorine gas 19 is generated in the section 22a. The generated chlorine gas 19 is supplied to the ejector 17 provided in the air supply pipe 12 by the pressurized air 14.
The pressurized air 1 guided to the ejector 17 through the chlorine gas pipe 21 by the suction force generated when the air passes through the air blower 3 in the ejector 17
4 will be mixed. At this time, since the seawater pump 24 is also driven in synchronization with the drive of the electric motor 10, the seawater 20 in the electrolysis tank 22 is sequentially replaced, so that the chlorine ion in the seawater 20 in the electrolysis tank 22 is changed. Since the concentration can be maintained at a high level, the chlorine gas 19 having a high concentration can be continuously generated.

【0016】したがって、空気吹き出し器3の空気吹き
出し部4から、常に濃度の高い塩素を含む加圧空気14
が吹き出されることになるので、この塩素により、停泊
時に空気吹き出し部4を通して空気吹き出し器3の内部
に海水とともに侵入する海生生物が、空気吹き出し器3
の内部あるいは空気吹き出し部4に付着・生育・伸長す
ることを防ぐことができる。このため、空気吹き出し器
3に海生生物が蓄積することはなく、空気吹き出し器3
を、多大な労力を要する海生生物掻き取り作業を必要と
しないメンテナンスフリーなものとすることができる。
又、加圧空気14に混ぜて空気吹き出し器3に導く塩素
ガス19は、海水から得たものを海水に返す形となるの
で、環境汚染の心配はない。
Therefore, the compressed air 14 containing chlorine having a high concentration is always supplied from the air blowing section 4 of the air blowing device 3.
The marine organisms that enter the air blower 3 together with the seawater through the air blower 4 at the time of berth due to the chlorine are blown out by the chlorine.
Can be prevented from adhering, growing, and extending to the inside of the inside or the air blowing portion 4. Therefore, no marine organisms accumulate in the air blower 3 and the air blower 3
Can be maintenance-free without the need for marine organism scraping work requiring a great deal of labor.
Further, since the chlorine gas 19 which is mixed with the pressurized air 14 and guided to the air blowing device 3 is obtained by returning seawater to seawater, there is no concern about environmental pollution.

【0017】次に、図2は本発明の他の実施の形態を示
すもので、図1に示したと同様な構成において、空気送
給パイプ12のエジェクタ17よりも下流位置に、空気
吹き出し器3に導かれる加圧空気14中の塩素の濃度を
測る塩素濃度センサ33を設けると共に、該塩素濃度セ
ンサ33によって計測される加圧空気14中の塩素濃度
の値が所定の設定値よりも高くなったときに、塩素ガス
発生装置18の直流電源28及び海水ポンプ24を停止
し、その後、塩素濃度の値が所定の設定値以下となった
ときに再び上記直流電源28及び海水ポンプ24を発動
させるための制御装置34を設けたものである。その
他、図1と同一のものには同一符号が付してある。
FIG. 2 shows another embodiment of the present invention. In the same construction as shown in FIG. 1, an air blower 3 is provided at a position downstream of the ejector 17 of the air supply pipe 12. A chlorine concentration sensor 33 for measuring the concentration of chlorine in the pressurized air 14 guided to the compressor, and the value of the chlorine concentration in the pressurized air 14 measured by the chlorine concentration sensor 33 becomes higher than a predetermined set value. At this time, the DC power supply 28 and the seawater pump 24 of the chlorine gas generator 18 are stopped, and thereafter, when the value of the chlorine concentration falls below a predetermined set value, the DC power supply 28 and the seawater pump 24 are activated again. Control device 34 is provided. In addition, the same components as those in FIG. 1 are denoted by the same reference numerals.

【0018】本実施の形態によれば、空気吹き出し器3
に導かれる加圧空気14中の塩素濃度を所定の値以下に
抑えることができて、過剰な塩素が水分と反応して酸化
力を有する液体となり、船体1に対して腐食等の悪影響
を及ぼすようになる虞を抑制することができる。
According to the present embodiment, the air blower 3
The chlorine concentration in the pressurized air 14 guided to the air can be suppressed to a predetermined value or less, and the excess chlorine reacts with moisture to become a liquid having an oxidizing power, and adversely affects the hull 1 such as corrosion. It is possible to suppress the possibility of occurrence.

【0019】なお、本発明は上記実施の形態のみに限定
されるものではなく、塩素ガス発生装置18の電気分解
槽22としては任意の形状のものを採用し得ること、
又、強制的に海水20の排出を行うことができるように
すれば任意の位置に配設してよいこと、更に取水口25
は没水部であれば船底以外の船側等に配してもよいこ
と、更に又、混合器としてはエジェクタ17以外でも、
強制的に加圧空気14に塩素ガス19を混入させる形式
のものであればよいこと、電動機10と直流電源28と
海水ポンプ24の発動及び停止は同期させることが望ま
しいが、同期させなくてもよいこと、その他、本発明の
要旨を逸脱しない範囲内において種々変更を加え得るこ
とは勿論である。
It should be noted that the present invention is not limited to only the above embodiment, and that the electrolysis tank 22 of the chlorine gas generator 18 may have any shape.
Further, if the seawater 20 can be forcibly discharged, it may be disposed at an arbitrary position.
If it is a submerged part, it may be arranged on the ship side etc. other than the ship bottom. Further, as a mixer other than the ejector 17,
It is preferable that the chlorine gas 19 is forcibly mixed into the pressurized air 14, and the activation and stop of the electric motor 10, the DC power supply 28, and the seawater pump 24 are desirably synchronized. Of course, various modifications can be made without departing from the spirit of the present invention.

【0020】[0020]

【発明の効果】以上述べた如く、本発明によれば、次の
如き優れた効果を発揮する。 (1) 船体外板の所要位置に、加圧空気を吹き出させるた
めの空気吹き出し部と該空気吹き出し部を取り囲むよう
に上記船体外板内側に取り付けた空気溜めケーシングと
からなる空気吹き出し器を多数配設し、該空気吹き出し
器に、閉止弁を備えた空気送給パイプを介して空気送給
装置を接続し、該空気送給装置で発生させた加圧空気を
空気吹き出し器を通して水中に吹き出させることにより
微小気泡を発生させるようにしてある船舶の摩擦抵抗低
減装置において、上記空気送給パイプの中間位置に、上
記加圧空気に塩素ガスを混入させるための混合器を設
け、且つ該混合器に、海水を電気分解して塩素ガスを発
生させるための塩素ガス発生装置を接続した構成として
あるので、海水の電気分解により発生させた塩素ガスを
加圧空気に混入させて空気吹き出し器から吹き出させる
ことができることにより、空気吹き出し器内部および空
気吹き出し部に海生生物が付着・生育・伸長することを
防ぎ、空気吹き出し部の閉塞を防止することができる。
したがって、空気吹き出し器を、海生生物除去のための
掻き取り作業を必要としないメンテナンスフリーなもの
とすることができる。 (2) 海水の電気分解により塩素ガスを無尽蔵に作り出す
ことができるため、塩素ガスを作り出すための費用が安
価であり、又、海水から得られる塩素ガスを海水中に返
すことになるので、環境汚染の心配がない。 (3) 混合器よりも下流に位置する空気送給パイプに、空
気吹き出し器に導かれる加圧空気中の塩素濃度を測るた
めの塩素濃度センサを設け、且つ該塩素濃度センサで計
測した塩素濃度が設定値を超えたときに塩素ガス発生装
置での海水の電気分解を停止させるように制御するため
の制御装置を設けた構成とすることにより、加圧空気中
の塩素濃度を所定の値以下に抑えるようにして、過剰な
塩素ガスが水分と反応して酸化力のある液体を生じて、
船体に腐食等の悪影響を及ぼす虞を抑制することができ
る。
As described above, according to the present invention, the following excellent effects are exhibited. (1) At a required position on the hull outer panel, there are provided a number of air blowers each including an air blowing section for blowing pressurized air and an air reservoir casing attached to the inside of the hull outer panel so as to surround the air blowing section. The air blower is connected to an air blower via an air blower equipped with a shut-off valve, and the pressurized air generated by the air blower is blown into water through the air blower. In the apparatus for reducing frictional resistance of a marine vessel in which micro bubbles are generated by performing the mixing, a mixer for mixing chlorine gas into the pressurized air is provided at an intermediate position of the air supply pipe; The vessel is connected to a chlorine gas generator for electrolyzing seawater to generate chlorine gas, so the chlorine gas generated by seawater electrolysis is mixed into the pressurized air. By being able to blow out from the air blower, it is possible to prevent marine organisms from adhering, growing and extending inside the air blower and the air blowout portion, and to prevent the air blowout portion from being blocked.
Therefore, the air blower can be made maintenance-free and does not require a scraping operation for removing marine organisms. (2) Since chlorine gas can be produced indefinitely by electrolysis of seawater, the cost of producing chlorine gas is low, and chlorine gas obtained from seawater is returned to seawater. No risk of contamination. (3) A chlorine concentration sensor for measuring the chlorine concentration in the pressurized air guided to the air blower is provided on the air supply pipe located downstream of the mixer, and the chlorine concentration measured by the chlorine concentration sensor is provided. The control unit for controlling to stop the electrolysis of seawater in the chlorine gas generator when exceeds the set value, the chlorine concentration in the pressurized air is less than a predetermined value The excess chlorine gas reacts with the moisture to produce an oxidizing liquid,
The possibility of adverse effects such as corrosion on the hull can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の船舶の摩擦抵抗低減装置の実施の一形
態を示す概略切断側面図である。
FIG. 1 is a schematic sectional side view showing an embodiment of a frictional resistance reducing device for a ship according to the present invention.

【図2】本発明の他の実施の形態を示す概略切断側面図
である。
FIG. 2 is a schematic sectional side view showing another embodiment of the present invention.

【図3】これまでに提案されている船舶の摩擦抵抗低減
装置の一例を示すもので、(イ)は概略切断側面図、
(ロ)は空気吹き出し器の拡大切断側面図である。
FIG. 3 shows an example of a device for reducing frictional resistance of a ship that has been proposed so far, in which (a) is a schematic cut-away side view,
(B) is an enlarged cut side view of the air blowing device.

【符号の説明】[Explanation of symbols]

2 船底外板(船体外板) 3 空気吹き出し器 4 空気吹き出し部 9 空気溜めケーシング 11 コンプレッサー(空気送給装置) 12 空気送給パイプ 13 閉止弁 14 加圧空気 17 エジェクタ(混合器) 18 塩素ガス発生装置 19 塩素ガス 20 海水 21 塩素ガスパイプ 33 塩素濃度センサ 34 制御装置 2 Ship bottom shell (hull shell) 3 Air blower 4 Air blower 9 Air reservoir casing 11 Compressor (air feeder) 12 Air feed pipe 13 Shut off valve 14 Pressurized air 17 Ejector (Mixer) 18 Chlorine gas Generator 19 Chlorine gas 20 Seawater 21 Chlorine gas pipe 33 Chlorine concentration sensor 34 Controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 船体外板の所要位置に、加圧空気を吹き
出させるための空気吹き出し部と該空気吹き出し部を取
り囲むように上記船体外板内側に取り付けた空気溜めケ
ーシングとからなる空気吹き出し器を多数配設し、該空
気吹き出し器に、閉止弁を備えた空気送給パイプを介し
て空気送給装置を接続し、該空気送給装置で発生させた
加圧空気を空気吹き出し器を通して水中に吹き出させる
ことにより微小気泡を発生させるようにしてある船舶の
摩擦抵抗低減装置において、上記空気送給パイプの中間
位置に、上記加圧空気に塩素ガスを混入させるための混
合器を設け、且つ該混合器に、海水を電気分解して塩素
ガスを発生させるための塩素ガス発生装置を接続した構
成を有することを特徴とする船舶の摩擦抵抗低減装置。
1. An air blower comprising: an air blower for blowing pressurized air at a required position on a hull outer panel; and an air reservoir casing attached to the inside of the hull outer panel so as to surround the air blower. Are connected to the air blower through an air feed pipe equipped with a shut-off valve, and pressurized air generated by the air blower is submerged through the air blower. In the frictional resistance reduction device of a ship which is configured to generate micro bubbles by blowing out, a mixer for mixing chlorine gas into the pressurized air is provided at an intermediate position of the air supply pipe, and An apparatus for reducing frictional resistance of a ship, comprising a structure in which a chlorine gas generator for generating chlorine gas by electrolyzing seawater is connected to the mixer.
【請求項2】 混合器よりも下流に位置する空気送給パ
イプに、空気吹き出し器に導かれる加圧空気中の塩素濃
度を計測するための塩素濃度センサを設け、且つ該塩素
濃度センサで計測した塩素濃度が設定値を超えたときに
塩素ガス発生装置での海水の電気分解を停止させるよう
に制御するための制御装置を設けた請求項1記載の船舶
の摩擦抵抗低減装置。
2. A chlorine concentration sensor for measuring a chlorine concentration in pressurized air guided to an air blower is provided in an air supply pipe located downstream of the mixer, and the chlorine concentration sensor measures the chlorine concentration. 2. The ship frictional resistance reducing device according to claim 1, further comprising a control device for controlling so as to stop the electrolysis of seawater in the chlorine gas generator when the chlorine concentration exceeds a set value.
JP10119125A 1998-04-28 1998-04-28 Device for reducing friction resistance of ship Pending JPH11310188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10119125A JPH11310188A (en) 1998-04-28 1998-04-28 Device for reducing friction resistance of ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10119125A JPH11310188A (en) 1998-04-28 1998-04-28 Device for reducing friction resistance of ship

Publications (1)

Publication Number Publication Date
JPH11310188A true JPH11310188A (en) 1999-11-09

Family

ID=14753568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10119125A Pending JPH11310188A (en) 1998-04-28 1998-04-28 Device for reducing friction resistance of ship

Country Status (1)

Country Link
JP (1) JPH11310188A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058611A1 (en) 2008-11-21 2010-05-27 三菱重工業株式会社 Hull frictional resistance reducing device
CN102328725A (en) * 2007-05-18 2012-01-25 孟英志 Method and device for changing resistance against moving object
JP2012066737A (en) * 2010-09-24 2012-04-05 Mitsubishi Heavy Ind Ltd Frictional resistance alleviating apparatus for ship and method of preventing marine creatures from sticking to abrasion resistance alleviating apparatus for ship
KR101260122B1 (en) 2008-07-23 2013-05-02 요시아키 타카하시 Frictional-resistance reduced ship, and method for steering the same
GB2505236A (en) * 2012-08-24 2014-02-26 Foreship Ltd An air bubble system for a ship
WO2016157633A1 (en) * 2015-03-31 2016-10-06 三菱重工業株式会社 Frictional resistance-reducing device for air-lubricated ship, and ship
WO2022178912A1 (en) * 2021-02-23 2022-09-01 中船重工(上海)节能技术发展有限公司 Pressure stabilizing cavity structure applicable to air-layer drag reduction ship
CN116853411A (en) * 2023-06-29 2023-10-10 中国船舶集团有限公司第七一九研究所 Surface microstructure with drag reduction function and forming method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102328725A (en) * 2007-05-18 2012-01-25 孟英志 Method and device for changing resistance against moving object
KR101260122B1 (en) 2008-07-23 2013-05-02 요시아키 타카하시 Frictional-resistance reduced ship, and method for steering the same
WO2010058611A1 (en) 2008-11-21 2010-05-27 三菱重工業株式会社 Hull frictional resistance reducing device
JP2010120608A (en) * 2008-11-21 2010-06-03 Mitsubishi Heavy Ind Ltd Hull frictional resistance reduction device
EP2360090A1 (en) * 2008-11-21 2011-08-24 Mitsubishi Heavy Industries, Ltd. Hull frictional resistance reducing device
EP2360090A4 (en) * 2008-11-21 2012-05-02 Mitsubishi Heavy Ind Ltd Hull frictional resistance reducing device
US8381668B2 (en) 2008-11-21 2013-02-26 Mitsubishi Heavy Industries, Ltd. Device for reducing frictional resistance of ship body
KR101281406B1 (en) * 2008-11-21 2013-07-02 미츠비시 쥬고교 가부시키가이샤 Hull frictional resistance reducing device
JP2012066737A (en) * 2010-09-24 2012-04-05 Mitsubishi Heavy Ind Ltd Frictional resistance alleviating apparatus for ship and method of preventing marine creatures from sticking to abrasion resistance alleviating apparatus for ship
GB2505281A (en) * 2012-08-24 2014-02-26 Foreship Ltd Air bubble hull lubrication system for a ship
GB2505236A (en) * 2012-08-24 2014-02-26 Foreship Ltd An air bubble system for a ship
GB2505281B (en) * 2012-08-24 2014-08-06 Foreship Ltd Air bubble system for ships
WO2016157633A1 (en) * 2015-03-31 2016-10-06 三菱重工業株式会社 Frictional resistance-reducing device for air-lubricated ship, and ship
JP2016193642A (en) * 2015-03-31 2016-11-17 三菱重工業株式会社 Friction resistance reduction device of air lubrication type ship, and ship
CN107406124A (en) * 2015-03-31 2017-11-28 三菱重工业株式会社 The frictional resistance of air lubrication formula ship reduces device, ship
KR20170132727A (en) * 2015-03-31 2017-12-04 미츠비시 쥬고교 가부시키가이샤 Frictional resistance-reducing device for air-lubricated ship, and ship
CN107406124B (en) * 2015-03-31 2019-09-20 三菱重工业株式会社 The frictional resistance of air lubrication formula ship reduces device, ship
WO2022178912A1 (en) * 2021-02-23 2022-09-01 中船重工(上海)节能技术发展有限公司 Pressure stabilizing cavity structure applicable to air-layer drag reduction ship
CN116853411A (en) * 2023-06-29 2023-10-10 中国船舶集团有限公司第七一九研究所 Surface microstructure with drag reduction function and forming method thereof
CN116853411B (en) * 2023-06-29 2023-12-08 中国船舶集团有限公司第七一九研究所 Surface microstructure with drag reduction function and forming method thereof

Similar Documents

Publication Publication Date Title
JP2009202038A (en) Floating body type water purifier by water circulation, filtration, and aeration using photovoltaic power generation
JPH11310188A (en) Device for reducing friction resistance of ship
CA2244615A1 (en) Friction-reducing ship with compressed air generation apparatus, friction reduction apparatus and gas jetting device
US11959248B2 (en) Device for the removal of sludge and/or sand from the bottom of a wetland
JP3878831B2 (en) Water purification device
EP2913308A1 (en) Ship ballast water treatment system
EP2913307A1 (en) Ship ballast water treatment system
CN210313651U (en) Microbial deactivation device and ship ballast water tank
JP4153758B2 (en) Mobile water purification system
KR20030042645A (en) A purification method of a water guality and an installment considered a motion of fluid and bad weather in an area such as the sea,dams rivers and lakes
JP2000128063A (en) Device to reduce friction resistance of ship
JPH10100989A (en) Frictional resistance reducing device for submarine ship
JPH09328095A (en) Cleaning device for air blow port on ship for generating fine bubble
JP3651965B2 (en) Bottom water purification equipment for lakes, etc.
JP5138804B1 (en) Ship
JP2001328584A (en) Frictional resistance-reduced ship
JP3418608B2 (en) Gas-liquid mixing device
JPH1095389A (en) Friction resistance reducing device for ship
JPH09240571A (en) Frictional resistance reducing device of ship
JPH0663591A (en) Intermittently operated tank type submersible pump
RU2056372C1 (en) Aerator
CN215004180U (en) Ship wake flow bubble mixing simulation device
JPH07117792A (en) Water area purifying device
RU77246U1 (en) DEVICE FOR REDUCING WATER RESISTANCE TO MOTION OF A SHIP (OPTIONS)
CN110228837A (en) Microorganism inactivating device and marine ballast water tank