JPH11309467A - Treatment of waste water containing volatile compound - Google Patents

Treatment of waste water containing volatile compound

Info

Publication number
JPH11309467A
JPH11309467A JP12078798A JP12078798A JPH11309467A JP H11309467 A JPH11309467 A JP H11309467A JP 12078798 A JP12078798 A JP 12078798A JP 12078798 A JP12078798 A JP 12078798A JP H11309467 A JPH11309467 A JP H11309467A
Authority
JP
Japan
Prior art keywords
water
treated
gas
catalyst
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12078798A
Other languages
Japanese (ja)
Other versions
JP4038873B2 (en
Inventor
Ryoichi Yamada
亮一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP12078798A priority Critical patent/JP4038873B2/en
Publication of JPH11309467A publication Critical patent/JPH11309467A/en
Application granted granted Critical
Publication of JP4038873B2 publication Critical patent/JP4038873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration of catalytic activity and to execute a stable and efficient treatment over a long period of time by recovering a treated water obtained by removing a volatile compd. by oxidative or reductive decomposition by using an oxidizing agent or a reducing agent generating water or gas by oxidative or reductive decomposition reaction. SOLUTION: The pH of a raw water in a raw water storage tank 1 is subjected to pH adjustment at a pH adjusting tank 2. The pH-adjusted water is sent to a degassing column 5 via a heat exchanger 4 and evaporated and condensed at an evaporating and concentrating device 6 after degassing. The obtained condensed water is moreover concentrated at need, and dried, solidified to dispose. On the other hand, the oxidizing agent (reducing agent) is added to the condensed water at an oxidizing agent (reducing agent) adding tank 7, and the water is passed through a catalyst column 11 via the heat exchanger 9 and a heater 10 to subjected to a catalytic wet oxidation (reduction) treatment. After heat recovering by subjecting the treated water and the treated gas from the catalyst column 11 to heat exchange at the heat exchanger 9, the treated water and the treated gas are subjected to a gas-liq. separation at a gas liq. separating column 13, and the treated water having a good water quality in almost the same order as a distilled water is subjected to a recovery of a waste heat at the heat exchanger 4 and reused.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は揮発性化合物を含む
廃水の処理方法に係り、特に、廃水中の揮発性化合物を
触媒湿式酸化・還元法で処理するに当り、触媒性能の低
下を防止して長期にわたり安定かつ効果的な酸化・還元
処理を行うと共に、処理水を蒸留水として再利用可能な
状態で回収することができる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater containing volatile compounds, and more particularly to a method for treating volatile compounds in wastewater by a catalytic wet oxidation / reduction method to prevent a decrease in catalytic performance. The present invention relates to a method capable of performing a stable and effective oxidation / reduction treatment over a long period of time and recovering treated water in a reusable state as distilled water.

【0002】[0002]

【従来の技術】廃水処理の一手法として、廃水に触媒の
存在下酸化剤又は還元剤を添加して、該廃水中の汚染物
質を酸化又は還元処理する触媒湿式酸化・還元法が知ら
れている。この方法においては、被処理廃水に酸化剤又
は還元剤を添加した後、該廃水を例えば触媒充填塔に通
水して触媒と接触させて酸化・還元処理を行う。
2. Description of the Related Art As one method of treating wastewater, a catalytic wet oxidation / reduction method in which an oxidizing agent or a reducing agent is added to wastewater in the presence of a catalyst to oxidize or reduce pollutants in the wastewater is known. I have. In this method, after an oxidizing agent or a reducing agent is added to the wastewater to be treated, the wastewater is passed through, for example, a catalyst packed tower and brought into contact with a catalyst to perform oxidation / reduction treatment.

【0003】また、アンモニウムイオンを含む廃水につ
いては常温下、廃水のpHを12付近にして溶存アンモ
ニアとした後、空気又は水蒸気を吹き込みアンモニアを
気相中に移行させ、その後、300℃付近で触媒の存在
下、空気等を酸化剤として用いてアンモニアを窒素分子
にまで分解するアンモニアストリッピング法がある。
For wastewater containing ammonium ions, the pH of the wastewater is adjusted to around 12 at room temperature to make dissolved ammonia, and then air or steam is blown in to transfer the ammonia into the gaseous phase. There is an ammonia stripping method in which ammonia is decomposed into nitrogen molecules using air or the like as an oxidizing agent in the presence of water.

【0004】[0004]

【発明が解決しようとする課題】触媒湿式酸化・還元法
は、比較的低温において二次反応等の問題もなく効率的
な酸化分解又は還元分解を行うことができる方法ではあ
るが、廃水を触媒湿式酸化・還元法により処理した場
合、触媒性能の低下が著しく、触媒寿命が短いことが多
い。性能低下した触媒は再生剤により性能回復可能な場
合もあるが、状況によっては再生不可能となる場合もあ
り、触媒の交換が必要となる。また、上記触媒の性能低
下原因物質を予め除去する手段もあるが、装置構成が多
くなり、複雑な制御を必要とする。このようなことか
ら、多くの場合、目標とする水質の処理水は、触媒充填
塔への通水開始初期の短期間しか得ることができず、触
媒の交換を頻繁に行う必要があった。
The catalytic wet oxidation / reduction method is a method capable of performing efficient oxidative decomposition or reductive decomposition at a relatively low temperature without problems such as secondary reactions. When the treatment is performed by the wet oxidation / reduction method, the catalyst performance is significantly reduced, and the catalyst life is often short. In some cases, the performance of the deteriorated catalyst can be recovered by the regenerating agent, but in other cases, the catalyst cannot be regenerated, and the catalyst needs to be replaced. In addition, there is a means for previously removing a substance causing a decrease in the performance of the catalyst, but the apparatus configuration is increased and complicated control is required. For this reason, in many cases, the treated water of the target water quality can be obtained only for a short period at the beginning of the passage of water to the catalyst packed tower, and the catalyst needs to be frequently replaced.

【0005】また、触媒湿式酸化・還元処理で得られる
処理水は、処理対象物質はガスないし水として分解除去
されているが、処理対象物質以外の物質がそのまま残存
しており、このため、この処理水を回収してそのまま再
利用することは不可能である。
[0005] In the treated water obtained by the catalytic wet oxidation / reduction treatment, the substance to be treated is decomposed and removed as gas or water, but substances other than the substance to be treated remain as they are. It is impossible to collect the treated water and reuse it as it is.

【0006】アンモニアを気相に移行させて触媒酸化す
る方法でも、アンモニアを除去した後の処理水には、廃
水由来の塩類等が残留するため、これをそのまま再利用
することはできない。
[0006] Even in the method in which ammonia is transferred to the gas phase to oxidize the catalyst, the treated water after the removal of ammonia contains salts and the like derived from wastewater, and thus cannot be reused as it is.

【0007】本発明は、上記従来の問題点を解決し、揮
発性化合物を含む廃水を触媒湿式酸化・還元法で処理し
て該揮発性化合物を分解するに当り、触媒活性の低下を
防止して、長期に亘り安定かつ効率的な処理を行うと共
に、揮発性化合物を分解除去して得られる処理水を蒸留
水と同程度の水質の水として回収し、処理水の再利用を
可能とする揮発性化合物を含む廃水の処理方法を提供す
ることを目的とする。
[0007] The present invention solves the above-mentioned conventional problems, and prevents a decrease in catalytic activity when treating wastewater containing volatile compounds by a catalytic wet oxidation / reduction method to decompose the volatile compounds. In addition to performing stable and efficient treatment for a long period of time, the treated water obtained by decomposing and removing volatile compounds is recovered as water of the same quality as distilled water, and the treated water can be reused. An object of the present invention is to provide a method for treating wastewater containing a volatile compound.

【0008】[0008]

【課題を解決するための手段】本発明の揮発性化合物を
含む廃水の処理方法は、揮発性化合物を含む廃水を蒸発
させた後、揮発性化合物を含む凝縮水に酸化剤又は還元
剤を添加して、触媒の存在下、該揮発性化合物を酸化又
は還元分解する揮発性化合物を含む廃水の処理方法であ
って、該酸化剤又は還元剤は酸化又は還元分解反応によ
って水又はガスを生成する物質であり、酸化又は還元分
解によって該揮発性化合物を除去して得られる処理水を
回収することを特徴とする。
According to the method for treating wastewater containing a volatile compound of the present invention, an oxidizing agent or a reducing agent is added to condensed water containing a volatile compound after evaporating the wastewater containing the volatile compound. A method for treating wastewater containing a volatile compound that oxidizes or reductively decomposes the volatile compound in the presence of a catalyst, wherein the oxidizing agent or the reducing agent generates water or gas by an oxidizing or reductive decomposition reaction. A treated substance obtained by removing the volatile compound by oxidation or reductive decomposition.

【0009】本発明者らは、触媒湿式酸化・還元法にお
ける触媒活性の低下の原因について検討した結果、廃水
中に含まれる重金属類やF,Cl等の共存塩類、スケー
ル生成原因物質等が、触媒表面に付着ないし沈着するこ
とで触媒の活性点が塞がれ、これにより、触媒が早期に
失活することを知見した。
The inventors of the present invention have studied the cause of the decrease in catalytic activity in the catalytic wet oxidation / reduction method. As a result, heavy metals, coexisting salts such as F and Cl, and scale-forming substances contained in the wastewater are reduced to It has been found that the active points of the catalyst are blocked by being attached or deposited on the surface of the catalyst, whereby the catalyst is deactivated early.

【0010】本発明においては、廃水を蒸発させ、触媒
性能の低下要因となる重金属類や共存塩類、スケール生
成原因物質等は濃縮水(蒸発残留物)側に残留させる。
処理対象とする揮発性化合物は大部分が揮発して、凝縮
水中に移行するため、この揮発性化合物を含み、重金属
類や共存塩類等を殆ど含まない凝縮水を触媒湿式酸化・
還元法で処理することにより、触媒性能の低下を防止し
て、揮発性化合物を長期に亘り安定かつ効率的に分解す
ることが可能となる。
In the present invention, the wastewater is evaporated, and heavy metals, coexisting salts, scale-generating substances, and the like, which cause a reduction in catalyst performance, remain on the concentrated water (evaporation residue) side.
Most of the volatile compounds to be treated volatilize and migrate into condensed water, so condensed water containing this volatile compound and containing almost no heavy metals or coexisting salts, etc., is subjected to catalytic wet oxidation.
By performing the treatment by the reduction method, it is possible to prevent a decrease in catalyst performance and to stably and efficiently decompose volatile compounds over a long period of time.

【0011】しかも、本発明では、酸化剤又は還元剤と
して、酸化又は還元分解反応によって水又はガスを生成
する物質を用いるため、揮発性化合物を酸化又は還元分
解した後の処理水中には、添加した酸化剤又は還元剤が
有機物や塩類として残留することはなく、従って、この
処理水は蒸留水と同程度の水質であり、これを回収して
そのまま有効に再利用することができる。
Further, in the present invention, since a substance which generates water or gas by an oxidizing or reductive decomposition reaction is used as the oxidizing agent or the reducing agent, the volatile compound is not added to the treated water after the oxidizing or reductive decomposition. The oxidizing agent or reducing agent does not remain as organic substances or salts, and thus the treated water has the same water quality as that of distilled water, and can be recovered and effectively reused as it is.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0013】本発明において処理対象となる廃水は、揮
発性化合物、例えば、アンモニア、アミン、尿素、或い
はトリクロロエチレン等の低沸点有機化合物、その他、
酢酸、ギ酸等の有機酸、アルコール等の揮発性化合物を
含み、かつ、触媒性能の低下要因となる重金属類やシリ
カ、アルミニウム化合物等のスケール生成原因物質、共
存塩類等を含む廃水である。具体的には、し尿排水、ゴ
ミ埋め立て地浸出水、半導体工場廃水、染料工場廃水、
化学プラント工場廃水等が挙げられる。
The wastewater to be treated in the present invention includes volatile compounds such as ammonia, amines, urea, and low-boiling organic compounds such as trichloroethylene.
Wastewater containing organic compounds such as acetic acid and formic acid, volatile compounds such as alcohols, and heavy metals, silica, aluminum compounds and other scale-generating substances, coexisting salts, and the like, which cause a reduction in catalytic performance. Specifically, human wastewater, leachate leachate, semiconductor factory wastewater, dye factory wastewater,
Chemical plant factory wastewater and the like.

【0014】本発明においては、このような廃水をまず
蒸発して揮発性化合物を含む凝縮水を得るが、この蒸発
操作に先立ち、必要に応じて廃水を、含有される揮発性
化合物の種類に応じて当該揮発性化合物が揮発し易いp
HにpH調整を行うのが好ましい。この好適pHは、例
えば、揮発性化合物がアンモニアの場合はpH8以下、
有機酸の場合はpH5以下、トリクロロエチレンの場合
はpH7付近である。また、蒸発操作に当り、廃水中に
ガス(例えば酸素、炭酸等)が含まれていると、熱効率
が低下するため、予めこれらのガスを脱気しておくのが
好ましい。
In the present invention, such wastewater is first evaporated to obtain condensed water containing a volatile compound. Prior to this evaporation operation, the wastewater is optionally subjected to the classification of the volatile compound contained therein. Accordingly, the volatile compound is likely to evaporate.
Preferably, the pH is adjusted to H. This preferred pH is, for example, pH 8 or less when the volatile compound is ammonia,
In the case of an organic acid, the pH is 5 or less, and in the case of trichloroethylene, the pH is around 7. Further, in the evaporating operation, if gas (for example, oxygen, carbonic acid, etc.) is contained in the wastewater, the thermal efficiency is reduced. Therefore, it is preferable to degas these gases in advance.

【0015】蒸発操作は、廃水中の揮発性化合物の大部
分が凝縮水中に移行するような条件であることが好まし
く、揮発性化合物の物性(沸点等)や廃水の水質等に応
じて適宜決定される。
The evaporating operation is preferably carried out under such conditions that most of the volatile compounds in the wastewater migrate into the condensed water, and are appropriately determined according to the physical properties (boiling point, etc.) of the volatile compounds and the quality of the wastewater. Is done.

【0016】なお、蒸発プロセスとしては、多重効用蒸
発法又は蒸気圧縮蒸発法を採用することができ、蒸発装
置の形式としては、自然循環式、強制循環式、液膜式
等、様々な型式のものを採用できる。また、減圧(ない
し真空)蒸発法を採用することもできる。
As the evaporation process, a multi-effect evaporation method or a vapor compression evaporation method can be adopted. As the type of the evaporation device, various types such as a natural circulation type, a forced circulation type, a liquid film type and the like can be used. Things can be adopted. Further, a reduced pressure (or vacuum) evaporation method can also be employed.

【0017】揮発性化合物が上記の低沸点有機化合物で
ある場合、常圧で水を沸騰させるのが簡便である。
When the volatile compound is the above-mentioned low-boiling organic compound, it is convenient to boil water at normal pressure.

【0018】蒸発により得られた凝縮水中には揮発性化
合物が含まれ、一方、濃縮水(蒸発残留液)中には、重
金属やスケール生成原因物質、F,Cl等の共存塩類等
が濃縮される。
The condensed water obtained by evaporation contains volatile compounds, while the concentrated water (evaporation residue) concentrates heavy metals, scale-forming substances, coexisting salts such as F and Cl, and the like. You.

【0019】本発明において、この濃縮水の濃縮倍数は
廃水の水質に応じて適宜決定されるが、2〜40倍、特
に5〜30倍、とりわけ10〜20倍となるように、即
ち濃縮水の容量が被処理廃水の容量の1/2〜1/4
0、特に1/5〜1/30、とりわけ10〜20倍とな
るように蒸発操作を行うのが好ましい。揮発性化合物を
含む凝縮水は、次いで、酸化剤又は還元剤を添加した
後、触媒と接触させる。
In the present invention, the concentration multiple of the concentrated water is appropriately determined according to the quality of the wastewater, but is 2 to 40 times, particularly 5 to 30 times, especially 10 to 20 times, that is, the concentrated water. Capacity is 1/2 to 1/4 of the capacity of the wastewater to be treated
It is preferable to perform the evaporation operation so as to be 0, especially 1/5 to 1/30, especially 10 to 20 times. The condensed water containing the volatile compounds is then brought into contact with the catalyst after adding an oxidizing or reducing agent.

【0020】本発明においては、この酸化剤又は還元剤
として酸化又は還元分解反応によって水又はガスを生成
し、好ましくは無機イオンとして残留しない物質を用い
る。具体的には、この酸化剤として、空気、酸素、過酸
化水素、オゾン等を用いることができる。還元剤として
は水素、ヒドラジン等を用いることができる。これらの
添加量は、当然ながら揮発性化合物の種類及び濃度に応
じて調整される。
In the present invention, as the oxidizing agent or the reducing agent, a substance that generates water or gas by an oxidizing or reductive decomposition reaction and preferably does not remain as inorganic ions is used. Specifically, air, oxygen, hydrogen peroxide, ozone, or the like can be used as the oxidizing agent. Hydrogen, hydrazine and the like can be used as the reducing agent. The amount of these additions is naturally adjusted according to the type and concentration of the volatile compound.

【0021】このような酸化剤又は還元剤を用いること
により、触媒湿式酸化・還元処理後に得られる処理水
は、無機塩類を殆ど含まず、蒸留水と同程度の水質であ
り、これを回収して有効に再利用することができるよう
になる。
By using such an oxidizing agent or a reducing agent, the treated water obtained after the catalytic wet oxidation / reduction treatment contains almost no inorganic salts and has a water quality comparable to that of distilled water. Can be reused effectively.

【0022】触媒としては、例えば担体に金属を担持し
た不均一系触媒が使用され、その金属としては白金、パ
ラジウム、ルテニウム、ロジウム、イリジウム、ニッケ
ル、コバルトなどが挙げられる。また、担体としては、
アルミナ、チタニア、活性炭、ジルコニア、ゼオライ
ト、シリカ、ガラス、樹脂、プラスチックなどが挙げら
れる。
As the catalyst, for example, a heterogeneous catalyst having a metal supported on a carrier is used, and examples of the metal include platinum, palladium, ruthenium, rhodium, iridium, nickel, and cobalt. In addition, as a carrier,
Examples include alumina, titania, activated carbon, zirconia, zeolite, silica, glass, resin, and plastic.

【0023】接触方式は、触媒を充填した塔に該凝縮水
を通液する方式が好適であるが、これ以外のものであっ
ても良い。接触温度(酸化又は還元反応温度)は、一般
的には常温〜250℃、多くの場合90〜200℃の範
囲で、その反応に応じて好適な温度に設定する。前記の
通り、この凝縮水中には触媒性能の低下要因となる重金
属類や塩類、スケール生成原因物質等が含有されていな
いことから、触媒性能がこれらの物質で阻害されること
はなく、長期に亘り揮発性化合物を十分に酸化・還元処
理することができる。
As the contact method, a method in which the condensed water is passed through a column packed with a catalyst is preferable, but other methods may be used. The contact temperature (oxidation or reduction reaction temperature) is generally set in a range from room temperature to 250 ° C., often from 90 to 200 ° C., and is set to a suitable temperature according to the reaction. As described above, since the condensed water does not contain heavy metals, salts, or scale-generating substances that cause a decrease in catalytic performance, the catalytic performance is not hindered by these substances, and the condensed water has a long term. Thus, the volatile compounds can be sufficiently oxidized and reduced.

【0024】なお、重金属、残留揮発性化合物及び共存
塩類等を含む濃縮水は、それぞれ凝集沈澱濾過、焼却、
固化により処理することができる。また、濃縮水を凝集
沈澱濾過後、濾液を原水に返送して処理しても良い。
The concentrated water containing heavy metals, residual volatile compounds, coexisting salts and the like is subjected to coagulation sedimentation filtration, incineration,
It can be processed by solidification. Further, the concentrated water may be subjected to coagulation precipitation filtration, and then the filtrate may be returned to raw water for treatment.

【0025】以下に、本発明の揮発性化合物を含む廃水
の処理方法の実施の形態の一例を示す図1を参照して、
具体的な処理手順を説明する。
Hereinafter, referring to FIG. 1 showing an embodiment of a method for treating a wastewater containing a volatile compound according to the present invention,
A specific processing procedure will be described.

【0026】図1の方法では原水貯槽1の原水(揮発性
化合物含有廃水)をまずpH調整槽2で、必要に応じて
酸又はアルカリを添加して、含有される揮発性化合物の
揮発に好適なpH条件にpH調整する。pH調整水はポ
ンプ3により熱交換器4を経て脱ガス塔5に送給し、蒸
発の際の熱効率の低下を防止するために脱ガス処理した
後、蒸発濃縮装置6で蒸発、凝縮処理する。ここで得ら
れた濃縮水は必要に応じて更に濃縮し、乾燥、固化して
処分する。
In the method shown in FIG. 1, raw water (waste water containing volatile compounds) in a raw water storage tank 1 is first added to an acid or alkali, if necessary, in a pH adjustment tank 2 to be suitable for volatilization of the volatile compounds contained therein. Adjust pH to appropriate pH conditions. The pH-adjusted water is sent to the degassing tower 5 via the heat exchanger 4 by the pump 3, degassed in order to prevent a decrease in heat efficiency during evaporation, and then evaporated and condensed in the evaporative concentration device 6. . The concentrated water obtained here is further concentrated if necessary, dried, solidified and disposed.

【0027】一方、凝縮水は、酸化剤(又は還元剤)添
加槽7で酸化剤(又は還元剤)を添加し、ポンプ8によ
り、熱交換器9及びヒータ10を経て触媒塔11に通液
し、触媒湿式酸化(又は還元)処理する。
On the other hand, the condensed water is added with an oxidizing agent (or a reducing agent) in an oxidizing agent (or a reducing agent) adding tank 7 and is passed through a heat exchanger 9 and a heater 10 to a catalyst tower 11 by a pump 8. Then, a catalytic wet oxidation (or reduction) treatment is performed.

【0028】触媒塔11からの処理水及び処理ガスは熱
交換器9で熱交換して熱回収した後、気液分離塔13で
気液分離され、処理ガスは系外へ排出される。また処理
水は、蒸留水とほぼ同程度の良好な水質のものであり、
熱交換器4で更に排熱の回収を行った後、再利用され
る。なお、気液分離塔13の入り口側には、触媒塔11
の圧力を所定の圧力に調整するための調圧弁12が設け
られており、この調圧弁12及びヒータ10により、触
媒塔11内では、所定の温度及び圧力条件で分解反応が
行われる。
The treated water and the treated gas from the catalyst tower 11 are heat-exchanged in the heat exchanger 9 to recover heat, then gas-liquid separated in the gas-liquid separation tower 13, and the treated gas is discharged out of the system. In addition, the treated water is of good quality, almost the same as distilled water,
After the waste heat is further recovered in the heat exchanger 4, it is reused. In addition, at the entrance side of the gas-liquid separation tower 13,
Is provided with a pressure regulating valve 12 for adjusting the pressure to a predetermined pressure, and a decomposition reaction is performed in the catalyst tower 11 by the pressure regulating valve 12 and the heater 10 under predetermined temperature and pressure conditions.

【0029】[0029]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0030】実施例1 下記水質の合成廃水を、三ッ口フラスコに冷却管及びヒ
ータを取り付けた実験用蒸発装置により下記条件で蒸発
させた後凝縮し、下記水質の凝縮水を得た。
Example 1 Synthetic wastewater having the following water quality was evaporated under the following conditions using an experimental evaporator equipped with a cooling tube and a heater in a three-necked flask, and then condensed to obtain condensed water having the following water quality.

【0031】[廃水水質] アンモニア態窒素:170mg/L CODMn :68mg/L 全溶解塩類 :12000mg/L シリカ :40mg/L Cu :8mg/L pH :7.5 [蒸発条件] 圧力 :常圧 温度 :100〜105℃ 濃縮倍数 :10倍 [凝縮水水質] アンモニア態窒素:154mg/L CODMn :3.6mg/L 全溶解塩類 :300mg/L シリカ :<1mg/L Cu :<1mg/L pH :8.5 上記水質の凝縮水に酸化剤として過酸化水素(H22
を添加し、触媒の存在下、アンモニア態窒素の酸化処理
を行った。過酸化水素とアンモニア態窒素の反応は下記
式で示される。
[Wastewater quality] Ammonia nitrogen: 170 mg / L COD Mn : 68 mg / L Total dissolved salts: 12000 mg / L Silica: 40 mg / L Cu: 8 mg / L pH: 7.5 [Evaporation conditions] Pressure: normal pressure Temperature: 100 to 105 ° C. Concentration multiple: 10 times [Condensed water quality] Ammonia nitrogen: 154 mg / L COD Mn : 3.6 mg / L Total dissolved salts: 300 mg / L Silica: <1 mg / L Cu: <1 mg / L pH: 8.5 Hydrogen peroxide (H 2 O 2 ) as an oxidizing agent in the above condensed water of the above quality
Was added, and oxidation treatment of ammonia nitrogen was performed in the presence of a catalyst. The reaction between hydrogen peroxide and ammonia nitrogen is represented by the following equation.

【0032】2NH4OH+3H22→N2+8H2O 即ち、アンモニア態窒素1モルを理論的に酸化するため
に必要なH22量は3/2モルとなる。
2NH 4 OH + 3H 2 O 2 → N 2 + 8H 2 O That is, the amount of H 2 O 2 required to theoretically oxidize 1 mol of ammonia nitrogen is 3/2 mol.

【0033】触媒酸化の処理条件は下記の通りとし、処
理方式は、触媒充填塔通液方式とした。
The processing conditions for the catalytic oxidation were as follows, and the processing method was a catalyst-packed column flow-through method.

【0034】[処理条件] 触媒 :0.5重量%Pt担持/チタニア球 触媒充填量 :50mL 温度 :160℃ 通液SV :3L/hr 通液量 :1000BV(50L) H22添加濃度:アンモニア態窒素モル濃度に対して、
理論添加量の1.3倍量 この結果、下記の通り、蒸留水(脱塩水)とほぼ同等の
良好な水質の処理水が得られた。
[Treatment conditions] Catalyst: 0.5 wt% Pt loading / titania sphere Catalyst filling amount: 50 mL Temperature: 160 ° C. Passing SV: 3 L / hr Passing amount: 1000 BV (50 L) H 2 O 2 addition concentration: For ammonia nitrogen molarity,
1.3 times the theoretical addition amount As a result, as described below, treated water having good water quality almost equivalent to distilled water (demineralized water) was obtained.

【0035】[処理水水質] アンモニア態窒素:10mg/L CODMn :<1mg/L 全溶解塩類 :<20mg/L pH :5.8 比較例1 実施例1において、過酸化水素の代わりに酸化剤として
亜硝酸ナトリウム(NaNO2)を使用したこと以外は
全く同様にして処理を行った。亜硝酸ナトリウムとアン
モニア態窒素の反応は下記式で示され、反応により処理
水中にはアンモニア態窒素と等当量の水酸化ナトリウム
が生成する。
[Treated water quality] Ammonia nitrogen: 10 mg / L COD Mn : <1 mg / L Total dissolved salts: <20 mg / L pH: 5.8 Comparative Example 1 In Example 1, oxidation was performed instead of hydrogen peroxide. The treatment was carried out in exactly the same manner except that sodium nitrite (NaNO 2 ) was used as the agent. The reaction between sodium nitrite and ammonia nitrogen is represented by the following equation, and the reaction produces an equivalent amount of sodium hydroxide in the treated water as ammonia nitrogen.

【0036】 NH4OH+NaNO2→NaOH+N2+2H2O この結果、得られた処理水の全溶解塩類は560mg/
L、pHは13.5であり、塩類濃度が高く、再利用す
るためには更に脱塩処理が必要であった。
NH 4 OH + NaNO 2 → NaOH + N 2 + 2H 2 O As a result, the total dissolved salts of the obtained treated water was 560 mg /
L and pH were 13.5, the salt concentration was high, and further desalting was required for reuse.

【0037】比較例2 蒸発、凝縮を行わず、廃水に直接酸化剤を添加して触媒
充填塔に通液したこと以外は実施例1と同様にして処理
したところ、通液倍数200BV以降は急激に水質が悪
化し、処理水のアンモニア濃度は100mg/Lに達し
た。
COMPARATIVE EXAMPLE 2 The same treatment as in Example 1 was carried out except that the oxidizing agent was directly added to the wastewater without passing through evaporation and condensation, and the mixture was passed through a catalyst packed column. The water quality deteriorated, and the ammonia concentration of the treated water reached 100 mg / L.

【0038】[0038]

【発明の効果】以上の実施例及び比較例からも明らかな
通り、本発明によれば、揮発性化合物を含む廃水を蒸
発、凝縮して揮発性化合物を凝縮水側に移行させ、触媒
性能阻害物質を除去した後、触媒湿式酸化・還元処理を
行うため、廃水中の触媒性能阻害物質の共存のために適
用困難とされていた触媒湿式酸化・還元法を各種の廃水
処理に適用することが可能となり、廃水中のアンモニ
ア、アミン、尿素、トリクロロエチレン等の揮発性化合
物を長期間にわたり安定且つ効果的に効率良く分解処理
することが可能である。
As is clear from the above Examples and Comparative Examples, according to the present invention, wastewater containing volatile compounds is evaporated and condensed to transfer the volatile compounds to the condensed water side, thereby inhibiting the catalytic performance. After removing the substance, the wet oxidation / reduction treatment of the catalyst is performed, so the wet oxidation / reduction method of the catalyst, which was considered difficult to apply due to the coexistence of the catalytic performance inhibitor in the wastewater, can be applied to various wastewater treatments. This makes it possible to decompose volatile compounds such as ammonia, amine, urea, and trichlorethylene in wastewater stably, effectively and efficiently over a long period of time.

【0039】しかも、本発明では、酸化剤又は還元剤と
して、酸化又は還元分解反応によって水又はガスを生成
する物質を用いるため、揮発性化合物を酸化又は還元分
解した後の処理水中には、添加した酸化剤又は還元剤が
有機物や塩類として残留することはなく、従って、この
処理水は蒸留水と同程度の水質であり、これを回収して
そのまま有効に再利用することができる。
Further, in the present invention, since a substance that generates water or gas by an oxidation or reductive decomposition reaction is used as the oxidizing agent or the reducing agent, the volatile compound is not added to the treated water after the oxidation or reductive decomposition. The oxidizing agent or reducing agent does not remain as organic substances or salts, and thus the treated water has the same water quality as that of distilled water, and can be recovered and effectively reused as it is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の揮発性化合物を含む廃水の処理方法の
実施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a method for treating wastewater containing a volatile compound according to the present invention.

【符号の説明】[Explanation of symbols]

1 原水貯槽 2 pH調整槽 3、8 ポンプ 4、9 熱交換器 5 脱ガス塔 6 蒸発濃縮装置 7 酸化剤(又は還元剤)添加槽 10 ヒーター 11 触媒塔 12 調圧弁 13 気液分離塔 DESCRIPTION OF SYMBOLS 1 Raw water storage tank 2 pH adjustment tank 3, 8 Pump 4, 9 Heat exchanger 5 Degassing tower 6 Evaporation concentrator 7 Oxidizing agent (or reducing agent) addition tank 10 Heater 11 Catalyst tower 12 Pressure regulating valve 13 Gas-liquid separation tower

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 揮発性化合物を含む廃水を蒸発させた
後、揮発性化合物を含む凝縮水に酸化剤又は還元剤を添
加して、触媒の存在下、該揮発性化合物を酸化又は還元
分解する揮発性化合物を含む廃水の処理方法であって、 該酸化剤又は還元剤は酸化又は還元分解反応によって水
又はガスを生成する物質であり、 酸化又は還元分解によって該揮発性化合物を除去して得
られる処理水を回収することを特徴とする揮発性化合物
を含む廃水の処理方法。
After evaporating waste water containing a volatile compound, an oxidizing agent or a reducing agent is added to condensed water containing the volatile compound, and the volatile compound is oxidized or decomposed in the presence of a catalyst. A method for treating wastewater containing a volatile compound, wherein the oxidizing agent or the reducing agent is a substance that generates water or a gas by an oxidative or reductive decomposition reaction, and is obtained by removing the volatile compound by an oxidative or reductive decomposition. A method for treating wastewater containing volatile compounds, comprising collecting treated water to be used.
JP12078798A 1998-04-30 1998-04-30 Method for treating wastewater containing volatile compounds Expired - Fee Related JP4038873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12078798A JP4038873B2 (en) 1998-04-30 1998-04-30 Method for treating wastewater containing volatile compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12078798A JP4038873B2 (en) 1998-04-30 1998-04-30 Method for treating wastewater containing volatile compounds

Publications (2)

Publication Number Publication Date
JPH11309467A true JPH11309467A (en) 1999-11-09
JP4038873B2 JP4038873B2 (en) 2008-01-30

Family

ID=14794996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12078798A Expired - Fee Related JP4038873B2 (en) 1998-04-30 1998-04-30 Method for treating wastewater containing volatile compounds

Country Status (1)

Country Link
JP (1) JP4038873B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100493260B1 (en) * 2003-05-07 2005-06-02 김성천 the Device for Cleaning Sewage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100493260B1 (en) * 2003-05-07 2005-06-02 김성천 the Device for Cleaning Sewage

Also Published As

Publication number Publication date
JP4038873B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
US5876685A (en) Separation and purification of fluoride from industrial wastes
JPS59169920A (en) Improvement of collection of co2 from flue gas
JP2008080277A (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JP4579682B2 (en) Method and apparatus for recycling metal pickling baths
JP2001170615A (en) Removing method of volatile organic matter
CN104812705A (en) Device for treating ammonia-containing wastewater, and method for treating ammonia-containing wastewater
JP4164896B2 (en) Landfill leachate treatment method
JP6653626B2 (en) Water treatment method and apparatus, water treatment apparatus modification method, and water treatment apparatus modification kit
JP2005066544A (en) Method for recovering monoethanolamine
JP4038873B2 (en) Method for treating wastewater containing volatile compounds
JP3667597B2 (en) Method for treating ammonia-containing wastewater discharged from semiconductor manufacturing processes
JP3278918B2 (en) Desalting method
JP3313549B2 (en) Decomposition and removal method of organic matter in chloride ion-containing wastewater
JP3855326B2 (en) Wastewater treatment method
JP4177521B2 (en) Method for treating wastewater containing metal and ammonia
JPH08224572A (en) Ultra pure water production and wastewater treatment in closed system
JPH09294974A (en) Water treatment apparatus
JPH1099853A (en) Apparatus for treating water containing tetraalkylammonium hydroxide
JPH08141582A (en) Method and apparatus for treating industrial waste water
JPH10272478A (en) Treatment of waste water containing ethanol amine
JP4524525B2 (en) Method for treating wastewater containing ammonia and hydrogen peroxide
JPH1119663A (en) Removing method for organic matter
JP3238741B2 (en) Method of treating ammonium fluoride-containing water
JPH08173978A (en) Method for removing organic substance
JPH10137755A (en) Membrane treating device of waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees