JPH11307840A - Magnetic field measuring device - Google Patents

Magnetic field measuring device

Info

Publication number
JPH11307840A
JPH11307840A JP10114623A JP11462398A JPH11307840A JP H11307840 A JPH11307840 A JP H11307840A JP 10114623 A JP10114623 A JP 10114623A JP 11462398 A JP11462398 A JP 11462398A JP H11307840 A JPH11307840 A JP H11307840A
Authority
JP
Japan
Prior art keywords
magnetic
layer
interface
magnetic layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10114623A
Other languages
Japanese (ja)
Inventor
Takashi Furukawa
貴司 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10114623A priority Critical patent/JPH11307840A/en
Publication of JPH11307840A publication Critical patent/JPH11307840A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Abstract

PROBLEM TO BE SOLVED: To reduce the size of connection strength between magnetic layers by using magnetic/non-magnetic multilayer films having irregularities in the boundaries of magnetic layers and non-magnetic layers. SOLUTION: Irregularities are given to an interface 41 between a magnetic layer 13 and a non-magnetic layer 11 and an interface 42 between the non- magnetic layer 11 and a magnetic layer 12 and a magnetic/non-magnetic multilayer film is formed in a spin bubble film for magnetic head. The size of the irregularities in the magnetic/non-magnetic multilayer film is varied in accordance with the material and the crystal orientation of the non-magnetic layer 11 and the degree of the reduction of connection strength. Namely, the thickness of the non-magnetic layer 11 is set to be the distribution of a (t-1) atom layer, t-atom layer and a (t+1) atom layer. The rate of the distribution is set to 0.25, 0.5 and 0.25 against the whole area of the interface 41 and the interface 42. Thus, the magnetic/non-magnetic multilayer film of high ability can be manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、巨大磁気抵抗効果
素子を用いた磁場測定装置に関する。
The present invention relates to a magnetic field measuring apparatus using a giant magnetoresistance effect element.

【0002】[0002]

【従来の技術】高密度磁気記録再生用の磁場測定装置
(例えば磁気ヘッド)への応用が検討されている巨大磁
気抵抗効果素子には、従来より2層の磁性層の間に非磁
性層を挟んだスピンバルブ膜と呼ばれるサンドイッチ構
造の素子が知られており、例えば表面技術48巻11号
(1997年)1059頁から1064頁などに報告さ
れている。
2. Description of the Related Art A giant magnetoresistive element, which is being considered for application to a magnetic field measuring device (for example, a magnetic head) for high density magnetic recording / reproducing, has a nonmagnetic layer between two magnetic layers. A sandwich-structured element called a sandwiched spin valve film is known, and is reported, for example, in Surface Technology, Vol. 48, No. 11, (1997), pp. 1059 to 1064.

【0003】代表的なスピンバルブ膜は、図1に示すよ
うに、非磁性層11が磁性層12および磁性層13によ
って挟まれており、さらに一方の磁性層13には反強磁
性層14が取り付けられている。このスピンバルブ膜に
おいて一方の磁性層13は、その磁化15が反強磁性層
14によって固定されているため固定層と呼ばれ、もう
一方の磁性層12は、その磁化16が外部磁場17の方
向に回転できるようになっているためフリー層と呼ばれ
ている。このときスピンバルブ膜の面内の電気抵抗は、
磁化15と磁化16との相対的な向きに依存し、互いに
平行なときに膜面内の電気抵抗が最小となり、反平行の
ときに最大となる。従って、膜面内の電気抵抗値は、フ
リー層の磁化16と固定層の磁化15とのなす角度の関
数となるが、フリー層の磁化16の向きは外部磁場17
に依存するため、スピンバルブ膜の抵抗を測定すること
により外部磁場17を検出できることになる。
In a typical spin valve film, as shown in FIG. 1, a nonmagnetic layer 11 is sandwiched between a magnetic layer 12 and a magnetic layer 13, and one of the magnetic layers 13 has an antiferromagnetic layer 14. Installed. In this spin valve film, one magnetic layer 13 is called a fixed layer because its magnetization 15 is fixed by an antiferromagnetic layer 14, and the other magnetic layer 12 has its magnetization 16 in the direction of an external magnetic field 17. It is called a free layer because it can be rotated to any angle. At this time, the electrical resistance in the plane of the spin valve film is
Depending on the relative directions of the magnetizations 15 and 16, the electric resistance in the film plane is minimum when they are parallel to each other and maximum when they are antiparallel. Therefore, the electrical resistance value in the film plane is a function of the angle between the magnetization 16 of the free layer and the magnetization 15 of the fixed layer, but the direction of the magnetization 16 of the free layer is determined by the external magnetic field 17.
The external magnetic field 17 can be detected by measuring the resistance of the spin valve film.

【0004】ところで上記スピンバルブ膜には磁性層1
2と磁性層13との間に非磁性層11を介して磁気的な
相互作用が働くため、フリー層の磁化16は固定層の磁
化15と磁気的に結合している。そのためフリー層の磁
化16の外部磁場17の変化に対する応答感度は、この
磁性層間の結合強度が強いほど低下する。
On the other hand, the magnetic layer 1 is formed on the spin valve film.
Since a magnetic interaction acts between the magnetic layer 2 and the magnetic layer 13 via the nonmagnetic layer 11, the magnetization 16 of the free layer is magnetically coupled to the magnetization 15 of the fixed layer. Therefore, the response sensitivity of the magnetization 16 of the free layer to changes in the external magnetic field 17 decreases as the coupling strength between the magnetic layers increases.

【0005】図2に磁気的な結合強度の非磁性層厚さ依
存性を示す。これは非磁性層にAu(111)単結晶を
用いた場合のデータである。図2から、磁気的な結合強
度はAu膜厚の関数として振動しながら減衰する。これ
からわかるように、磁気的な結合強度は、ある特定のA
u膜厚もしくは充分厚いAu膜厚においてゼロとなる。
従ってスピンバルブ膜作製の際には、結合強度の低減の
ために、結合強度がゼロとなる特定の非磁性層厚さを選
んで成膜するか、もしくは結合強度が充分に弱くなる厚
さまで非磁性層を厚くして成膜するという方法をとるこ
とが考えられる。
FIG. 2 shows the dependence of the magnetic coupling strength on the thickness of the nonmagnetic layer. This is data when Au (111) single crystal is used for the nonmagnetic layer. From FIG. 2, the magnetic coupling strength attenuates while vibrating as a function of the Au film thickness. As can be seen, the magnetic coupling strength is a certain A
It becomes zero at the u film thickness or the sufficiently thick Au film thickness.
Therefore, when producing a spin valve film, in order to reduce the bonding strength, a film is formed by selecting a specific nonmagnetic layer thickness at which the bonding strength becomes zero, or the thickness is reduced to a thickness at which the bonding strength becomes sufficiently weak. It is conceivable to adopt a method of forming a film with a thick magnetic layer.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記方法にお
いて、磁気的な結合強度がちょうどゼロとなる非磁性層
の厚さを選んで成膜する場合、非常に高精度の膜厚制御
技術が必要となる。そのため、高性能の成膜装置が必要
となり、その結果としてスピンバルブ膜作製のための装
置が大型化および複雑化し、かつ高価になる欠点、およ
び装置全体の大型化にともない取り扱いが困難になる欠
点があった。
However, in the above method, when a film is formed by selecting the thickness of the nonmagnetic layer at which the magnetic coupling strength becomes just zero, a very accurate film thickness control technique is required. Becomes Therefore, a high-performance film forming apparatus is required, and as a result, the apparatus for producing a spin valve film becomes large and complicated, and it is disadvantageous in that it is expensive, and it is difficult to handle as the whole apparatus becomes large in size. was there.

【0007】さらに、上記方法において、磁気的な結合
強度が減衰してゼロとなる非磁性層の厚さを選んで成膜
する場合、スピンバルブ膜の非磁性層の厚さが厚くなる
のに伴って膜の示す磁気抵抗効果がより小さくなり、磁
場検出感度が低下するという欠点があった。
Further, in the above method, when the thickness of the nonmagnetic layer whose magnetic coupling strength is attenuated and becomes zero is selected and formed, the thickness of the nonmagnetic layer of the spin valve film is increased. Accompanying this, there is a disadvantage that the magnetoresistance effect exhibited by the film becomes smaller and the magnetic field detection sensitivity decreases.

【0008】本発明が解決しようとする課題は、特定の
膜厚に高精度で成膜することなく磁性層間の結合強度の
大きさを低減する方法を提供することにより、小型かつ
単純で取り扱いの容易な成膜装置で製作可能な高性能の
磁性/非磁性多層膜を提供することにある。
The problem to be solved by the present invention is to provide a method for reducing the strength of the coupling strength between magnetic layers without forming a film with a specific film thickness with high accuracy, thereby achieving a small, simple, and easy-to-use device. An object of the present invention is to provide a high-performance magnetic / non-magnetic multilayer film that can be manufactured by an easy film forming apparatus.

【0009】さらに、本発明が解決しようとする課題
は、非磁性層の厚さを厚くすることなく磁性層間の結合
強度の大きさを低減する方法を提供することにより、高
性能の磁性/非磁性多層膜を提供することにある。
Another object of the present invention is to provide a method for reducing the strength of the coupling between magnetic layers without increasing the thickness of the non-magnetic layer, thereby providing a high-performance magnetic / non-magnetic layer. An object of the present invention is to provide a magnetic multilayer film.

【0010】[0010]

【課題を解決するための手段】上記の問題点は、磁性層
と非磁性層の界面の形状を従来の平坦なものから凹凸の
あるものへとすることで解決できる。
The above problems can be solved by changing the shape of the interface between the magnetic layer and the non-magnetic layer from a conventional flat one to an uneven one.

【0011】ここで本発明の元となる現象について説明
する。図3に示すように、磁性層12,非磁性層11,
磁性層13,反強磁性層14の4層からなるスピンバル
ブ膜を考える。反強磁性層14は、上述したように、接
している磁性層13の磁化15の向きを一方向に固定す
るためのものである。このとき、反強磁性層14に接し
ていない磁性層12の磁化16と磁性層13の磁化15
との間には、非磁性層11を介して磁気的な相互作用が
働く。この磁気的な相互作用による磁化15と磁化16
との結合強度は磁性層13と非磁性層11との界面31
および非磁性層11と磁性層12との界面32の形状に
よって変化することが知られており、界面が平坦なとき
よりも凹凸がある場合の方が結合強度は低下する。この
現象は例えばフィジカル・レビュー・レターズ(Physica
l Review Letters)67巻(1991年)1602頁か
ら1605頁に解説されている。
Here, the phenomena underlying the present invention will be described. As shown in FIG. 3, the magnetic layer 12, the non-magnetic layer 11,
A spin valve film composed of four layers, a magnetic layer 13 and an antiferromagnetic layer 14, is considered. As described above, the antiferromagnetic layer 14 fixes the direction of the magnetization 15 of the magnetic layer 13 in contact with the magnetic layer 13 in one direction. At this time, the magnetization 16 of the magnetic layer 12 not in contact with the antiferromagnetic layer 14 and the magnetization 15 of the magnetic layer 13
And a magnetic interaction between them through the nonmagnetic layer 11. The magnetization 15 and the magnetization 16 due to this magnetic interaction
The bond strength between the magnetic layer 13 and the nonmagnetic layer 11 is
It is known that the strength varies depending on the shape of the interface 32 between the nonmagnetic layer 11 and the magnetic layer 12, and the bonding strength is lower when the interface is uneven than when the interface is flat. This phenomenon can be seen, for example, in the Physical Review Letters (Physica
l Review Letters, Vol. 67 (1991), pages 1602 to 1605.

【0012】[0012]

【発明の実施の形態】図4は本発明による磁気ヘッド用
スピンバルブ膜の実施例の基本構成を示す図である。本
構成は磁性層12,非磁性層11,磁性層13,反強磁
性層14からなる。ここで反強磁性層14に接していな
い磁性層12がフリー層であり、接している磁性層13
が固定層である。このスピンバルブ膜において、磁性層
13と非磁性層11との界面41および非磁性層11と
磁性層12との界面42に凹凸をつける。ここで、磁性
層間の結合強度を低減させるのに必要な凹凸の大きさd
は、非磁性層11の材質や結晶方位、また結合強度の低
減の度合いによって異なる。例えば非磁性層11として
平均膜厚がt原子層であるCu(001)を考える。こ
の時、非磁性層11の厚さが(t−1)原子層,t原子
層,(t+1)原子層の分布を持ち、界面の全面積に対
する分布の割合がそれぞれ0.25,0.5,0.25 で
あるとすると、磁性層間の磁気的な結合強度はおよそ1
0分の1となることがフィジカル・レビュー・レターズ
(Physical Review Letters)67巻12号(1991
年)1602頁から1605頁に解説されている。従っ
て実際にスピンバルブ膜を作製する場合、非磁性層11
の材質や結晶方位、また必要な結合強度の低減の度合い
によって適当な凹凸の大きさおよび度合いを選べばよ
い。このとき、界面内での凹凸の分布はランダムでよ
く、特に規則的である必要はない。
FIG. 4 is a diagram showing a basic configuration of an embodiment of a spin valve film for a magnetic head according to the present invention. This structure includes a magnetic layer 12, a nonmagnetic layer 11, a magnetic layer 13, and an antiferromagnetic layer 14. Here, the magnetic layer 12 not in contact with the antiferromagnetic layer 14 is a free layer, and the magnetic layer 13 in contact with the
Is a fixed layer. In this spin valve film, the interface 41 between the magnetic layer 13 and the non-magnetic layer 11 and the interface 42 between the non-magnetic layer 11 and the magnetic layer 12 are made uneven. Here, the size d of the irregularities required to reduce the coupling strength between the magnetic layers
Depends on the material and crystal orientation of the nonmagnetic layer 11 and the degree of reduction of the coupling strength. For example, consider Cu (001) having an average thickness of t atomic layers as the nonmagnetic layer 11. At this time, the thickness of the nonmagnetic layer 11 has a distribution of (t-1) atomic layers, t atomic layers, and (t + 1) atomic layers, and the distribution ratios to the total area of the interface are 0.25 and 0.5, respectively. , 0.25, the magnetic coupling strength between the magnetic layers is about 1
Physical Review Letters Becoming 1/10
(Physical Review Letters) Vol. 67 No. 12 (1991)
(Year) pages 1602 to 1605. Therefore, when actually manufacturing a spin valve film, the nonmagnetic layer 11
The appropriate size and degree of the unevenness may be selected depending on the material and crystal orientation of the material and the degree of the required reduction in the bonding strength. At this time, the unevenness distribution in the interface may be random, and need not be particularly regular.

【0013】この構成では、磁性層12と磁性層13と
の間に非磁性層11を介して働く磁気的な結合が小さい
かもしくはゼロとなるため、フリー層の磁化16は外部
磁場によって容易に回転できる。従って外部磁場の検出
感度が高いスピンバルブ膜が得られることになる。
In this configuration, the magnetic coupling acting between the magnetic layer 12 and the magnetic layer 13 via the non-magnetic layer 11 is small or zero, so that the magnetization 16 of the free layer can be easily formed by an external magnetic field. Can rotate. Therefore, a spin valve film having high detection sensitivity for an external magnetic field can be obtained.

【0014】さらに、本発明により、従来のスピンバル
ブ膜に比べて非磁性層11の厚さを薄くすることが可能
となるため、膜の示す磁気抵抗効果がより大きくなり、
磁気ヘッドへ適用した場合、より高い出力を得ることが
可能となる。
Further, according to the present invention, the thickness of the nonmagnetic layer 11 can be reduced as compared with the conventional spin valve film, so that the magnetoresistive effect exhibited by the film becomes larger.
When applied to a magnetic head, higher output can be obtained.

【0015】さらに、本発明において非磁性層11の平
均膜厚tに対する絶対精度が従来のスピンバルブ膜に比
べ悪くてもよいため、スピンバルブ膜を製作する場合、
膜厚制御に関する必要な精度を低くすることが可能とな
る。
Further, in the present invention, since the absolute accuracy with respect to the average thickness t of the nonmagnetic layer 11 may be lower than that of the conventional spin valve film, when manufacturing the spin valve film,
It is possible to reduce the required precision for controlling the film thickness.

【0016】さらに、本発明において非磁性層11の両
側に2つある界面41および界面42のうちどちらか一
方によって磁性層間の磁気的な結合が充分低減される場
合には、図5に示したように界面51を凹凸とし、界面
52は従来のスピンバルブ膜同様、平坦のままでもよ
い。このとき凹凸にする界面は図5では界面51を選ん
だが、界面52でもよく、少なくともどちらか一方であ
ればよい。
FIG. 5 shows a case where the magnetic coupling between the magnetic layers is sufficiently reduced by one of the two interfaces 41 and 42 on both sides of the nonmagnetic layer 11 in the present invention. As described above, the interface 51 may be made uneven, and the interface 52 may be kept flat like the conventional spin valve film. At this time, the interface to be made uneven is the interface 51 in FIG. 5, but may be the interface 52, or at least one of them.

【0017】さらに、本発明は図6に示したデュアルス
ピンバルブ膜についても適用できる。デュアルスピンバ
ルブ膜の構成は反強磁性層61,磁性層62,非磁性層
63,磁性層64,非磁性層65,磁性層66,反強磁
性層67からなる。ここで反強磁性層61および反強磁
性層67に接していない磁性層64がフリー層であり、
反強磁性層61に接している磁性層62および反強磁性
層67に接している磁性層66がともに固定層である。
この時、磁性層62の磁化68の方向および磁性層66
の磁化69の方向が同一方向となるように反強磁性層6
1および反強磁性層67によって固定する。この場合、
デュアルスピンバルブ膜の中心にある磁性層64の磁化
70が外部磁場17によって回転する。このとき、磁性
層62の磁化68および磁性層66の磁化69と互いに
平行なときに膜面内の電気抵抗が最小となり、反平行の
ときに最大となる。
Further, the present invention can be applied to the dual spin valve film shown in FIG. The configuration of the dual spin valve film includes an antiferromagnetic layer 61, a magnetic layer 62, a nonmagnetic layer 63, a magnetic layer 64, a nonmagnetic layer 65, a magnetic layer 66, and an antiferromagnetic layer 67. Here, the magnetic layer 64 not in contact with the antiferromagnetic layer 61 and the antiferromagnetic layer 67 is a free layer,
The magnetic layer 62 in contact with the antiferromagnetic layer 61 and the magnetic layer 66 in contact with the antiferromagnetic layer 67 are both fixed layers.
At this time, the direction of the magnetization 68 of the magnetic layer 62 and the direction of the magnetic layer 66
Antiferromagnetic layer 6 so that the direction of magnetization 69 of
1 and the antiferromagnetic layer 67. in this case,
The magnetization 70 of the magnetic layer 64 at the center of the dual spin valve film is rotated by the external magnetic field 17. At this time, the electric resistance in the film plane becomes minimum when the magnetization 68 of the magnetic layer 62 and the magnetization 69 of the magnetic layer 66 are parallel to each other, and becomes maximum when the magnetization is antiparallel.

【0018】このデュアルスピンバルブ膜において、図
7に示すように、磁性層62と非磁性層63との界面7
1,非磁性層63と磁性層64との界面72,磁性層6
4と非磁性層65との界面73、および非磁性層65と
磁性層66との界面74に凹凸をつける。ここで、磁性
層間の結合強度を低減させるのに必要な凹凸の大きさ
は、上記スピンバルブ膜の場合と同様、非磁性層63お
よび非磁性層65の材質や結晶方位、および磁性層間の
結合強度の低減の度合いによって異なる。従って実際に
このデュアルスピンバルブ膜を作製する場合、非磁性層
の材質や結晶方位、また必要な結合強度の低減の度合い
によって適当な凹凸の度合いを選べばよい。また、界面
内での凹凸の分布はランダムでよく、特に規則的である
必要はない。
In this dual spin valve film, as shown in FIG. 7, an interface 7 between the magnetic layer 62 and the non-magnetic layer 63 is formed.
1, interface 72 between nonmagnetic layer 63 and magnetic layer 64, magnetic layer 6
An interface 73 between the nonmagnetic layer 4 and the nonmagnetic layer 65 and an interface 74 between the nonmagnetic layer 65 and the magnetic layer 66 are made uneven. Here, as in the case of the spin valve film, the size of the concavities and convexities necessary for reducing the coupling strength between the magnetic layers depends on the material and crystal orientation of the nonmagnetic layer 63 and the nonmagnetic layer 65, and the coupling between the magnetic layers. It depends on the degree of strength reduction. Therefore, when actually fabricating this dual spin valve film, an appropriate degree of unevenness may be selected according to the material and crystal orientation of the nonmagnetic layer and the degree of required reduction of the coupling strength. The distribution of the irregularities in the interface may be random, and need not be particularly regular.

【0019】この構成では、非磁性層63および非磁性
層65を介して磁性層間に働く磁気的な結合が小さいか
もしくはゼロであるため、フリー層の磁化75は外部磁
場によって容易に回転する。従って、外部磁場の検出感
度の高いデュアルスピンバルブ膜が得られることにな
る。
In this configuration, since the magnetic coupling acting between the magnetic layers via the nonmagnetic layer 63 and the nonmagnetic layer 65 is small or zero, the magnetization 75 of the free layer is easily rotated by an external magnetic field. Therefore, a dual spin valve film having high detection sensitivity for an external magnetic field can be obtained.

【0020】さらに、本発明により、従来のデュアルス
ピンバルブ膜に比べて非磁性層63および非磁性層65
の厚さを薄くすることが可能となるため、この膜の示す
磁気抵抗効果がより大きくなる。従って、この膜を磁気
ヘッドに適用した場合、より高い出力を得ることが可能
となる。
Further, according to the present invention, the non-magnetic layer 63 and the non-magnetic layer 65 are compared with the conventional dual spin valve film.
Can be reduced in thickness, so that the magnetoresistance effect of this film is further increased. Therefore, when this film is applied to a magnetic head, a higher output can be obtained.

【0021】さらに、上記スピンバルブ膜と同様、本発
明においても非磁性層の平均膜厚に対する絶対精度が従
来のデュアルスピンバルブ膜に比べ悪くてもよいため、
デュアルスピンバルブ膜を製作する場合、膜厚制御に関
して必要な精度を低くすることが可能となる。
Further, similarly to the above spin valve film, in the present invention, the absolute accuracy with respect to the average thickness of the nonmagnetic layer may be lower than that of the conventional dual spin valve film.
When fabricating a dual spin valve film, it is possible to reduce the required precision for controlling the film thickness.

【0022】さらに、本発明において非磁性層63の両
側にある界面71と界面72、および非磁性層65の両
側にある界面73と界面74のうちそれぞれどちらか一
方によって磁性層間の磁気的な結合が充分低減される場
合には、図8に示したように、界面81および界面84
を凹凸とし、界面82および界面83は従来のデュアル
スピンバルブ膜同様、平坦のままでもよい。このとき凹
凸にする界面は図8では界面81および界面84を選ん
だが、界面81および界面83、または界面82および
界面83、または界面82および界面84のいずれの組
み合せでもよく、これら4つある組み合せのうち少なく
ともどれか1つの組み合せであればよい。
Further, in the present invention, the magnetic coupling between the magnetic layers is caused by one of the interface 71 and the interface 72 on both sides of the nonmagnetic layer 63 and the interface 73 and the interface 74 on both sides of the nonmagnetic layer 65. Is sufficiently reduced, the interface 81 and the interface 84 as shown in FIG.
May be uneven, and the interface 82 and the interface 83 may be flat as in the conventional dual spin valve film. At this time, the interface to be uneven is selected from the interface 81 and the interface 84 in FIG. 8, but may be any combination of the interface 81 and the interface 83, or the interface 82 and the interface 83, or the interface 82 and the interface 84. Any combination of at least one of them may be used.

【0023】さらに、本実施例ではスピンバルブ膜およ
びデュアルスピンバルブ膜を用いた場合について説明し
たが、一般の磁性/非磁性多層膜においても、非磁性層
と反強磁性層に接していない磁性層との界面の形状を凹
凸にすることで、磁性層間の磁気的な結合強度を小さく
することが可能となる。
Further, in this embodiment, the case where a spin valve film and a dual spin valve film are used has been described. However, even in a general magnetic / non-magnetic multilayer film, a magnetic layer which is not in contact with the non-magnetic layer and the anti-ferromagnetic layer is used. By making the shape of the interface with the layer uneven, the magnetic coupling strength between the magnetic layers can be reduced.

【0024】さらに、本実施例では磁性層と非磁性層の
界面に凹凸を付けることが必要であるが、この凹凸は以
下の方法によって付ければよい。
Further, in this embodiment, it is necessary to make the interface between the magnetic layer and the non-magnetic layer uneven, but the unevenness may be made by the following method.

【0025】磁性/非磁性多層膜は一般にスパッタ蒸着
法と呼ばれる真空中での蒸着により成膜される。このス
パッタ蒸着法とは、Arなどの不活性ガスを導入した真
空中において、成膜したい材料(ターゲット)を陰極
(カソード)に配置し、電極間の放電によって発生する
正イオン(Arイオン)が陰極のターゲットをたたくこ
とによって、たたき出された(スパッタされた)粒子が
対面の基板に付着して薄膜を形成する方法である。この
スパッタ蒸着法において、ターゲットと基板の距離を近
付けると基板表面が放電によるプラズマにさらされ、そ
れにより基板表面がこのプラズマによるダメージによっ
て凹凸になる。従って、例えば、磁性体を適当な厚さ蒸
着した後にターゲットと基板の距離を近付けて凹凸をつ
け、その上に非磁性体を成膜すれば、磁性体と非磁性体
の界面に凹凸が形成されることになる。
The magnetic / non-magnetic multilayer film is generally formed by vacuum deposition called a sputter deposition method. In this sputter deposition method, a material (target) to be formed into a film is placed on a cathode (cathode) in a vacuum in which an inert gas such as Ar is introduced, and positive ions (Ar ions) generated by discharge between the electrodes are generated. In this method, the knocked-out (sputtered) particles adhere to a facing substrate to form a thin film by hitting a cathode target. In this sputter deposition method, when the distance between the target and the substrate is reduced, the substrate surface is exposed to plasma due to discharge, and the substrate surface becomes uneven due to damage by the plasma. Therefore, for example, after evaporating a magnetic material to an appropriate thickness, the distance between the target and the substrate is reduced to form irregularities, and if a non-magnetic material is formed thereon, irregularities are formed at the interface between the magnetic material and the non-magnetic material. Will be done.

【0026】さらに、上記スパッタ蒸着法による磁性/
非磁性界面への凹凸形成を行う方法のほかに、以下の方
法によってもよい。
Further, the magnetic properties obtained by the sputter deposition method
In addition to the method of forming irregularities on the non-magnetic interface, the following method may be used.

【0027】上記真空中において、適当な厚さの磁性体
もしくは非磁性体を蒸着したあとに、イオン銃によって
イオン化したArを加速して基板表面にぶつけること
で、基板表面に凹凸ができる。この凹凸表面の上に非磁
性体もしくは磁性体を成膜することで、磁性体と非磁性
体の界面に凹凸が形成されることになる。ここに示した
イオンによって試料表面をたたく方法はイオンスパッタ
法と呼ばれる表面清浄化の一般的な手法である。
In the above-mentioned vacuum, after depositing a magnetic or non-magnetic material having an appropriate thickness, Ar ionized by an ion gun is accelerated and bumped against the substrate surface, whereby irregularities are formed on the substrate surface. By forming a non-magnetic material or a magnetic material on the uneven surface, unevenness is formed at the interface between the magnetic material and the non-magnetic material. The method of hitting the sample surface with ions shown here is a general method of surface cleaning called an ion sputtering method.

【0028】さらに、上記スパッタ蒸着法もしくはイオ
ンスパッタ法による磁性/非磁性界面への凹凸形成を行
う方法のほかに、以下の方法によってもよい。
Further, in addition to the method of forming irregularities on the magnetic / non-magnetic interface by the above-mentioned sputter deposition method or ion sputtering method, the following method may be used.

【0029】イオン蒸着法などによる成膜中において、
基板温度によって基板上での試料の成長様式が異なる場
合がある。例えばAgを蒸着する場合、基板温度を液体
窒素温度程度に下げると成膜後の試料表面は平坦になる
が、室温付近で成膜を行った場合、成膜後の試料表面は
凹凸になる。この凹凸表面上に非磁性体もしくは磁性体
を成膜することで、磁性体と非磁性体の界面に凹凸が形
成される。従って成膜中において適当な温度に基板を制
御することで磁性層と非磁性層の界面に凹凸を形成する
ことができることになる。このとき、凹凸の大きさは試
料や基板温度によって異なるため、必要な凹凸の大きさ
によって適当に実験条件を選べばよい。
During film formation by an ion deposition method or the like,
The growth mode of the sample on the substrate may vary depending on the substrate temperature. For example, in the case of depositing Ag, when the substrate temperature is lowered to about the temperature of liquid nitrogen, the sample surface after film formation becomes flat, but when film formation is performed near room temperature, the sample surface after film formation becomes uneven. By forming a non-magnetic material or a magnetic material on the uneven surface, unevenness is formed at the interface between the magnetic material and the non-magnetic material. Therefore, by controlling the substrate at an appropriate temperature during film formation, irregularities can be formed at the interface between the magnetic layer and the nonmagnetic layer. At this time, since the size of the unevenness differs depending on the sample and the substrate temperature, the experimental conditions may be appropriately selected according to the required size of the unevenness.

【0030】[0030]

【発明の効果】本発明によれば、特定の膜厚に高精度で
成膜することなく磁性層間の結合強度の大きさの低減が
可能となるため、小型かつ単純で取り扱いの容易な成膜
装置で高性能の磁性/非磁性多層膜が製作可能となる効
果がある。さらに、従来と同一の非磁性層膜厚の磁性/
非磁性多層膜であっても、磁性層間に働く磁気的な結合
強度をより小さくすることが出来るため、フリー層の外
部磁場感度を上げることが可能となり、これによって磁
気ヘッド等の磁場検出装置の磁場検出感度も高くするこ
とが可能となる効果がある。
According to the present invention, it is possible to reduce the strength of the coupling between magnetic layers without forming a film with a specific film thickness with high precision. There is an effect that a high-performance magnetic / non-magnetic multilayer film can be manufactured by the apparatus. Furthermore, the magnetic / magnetic layer having the same non-magnetic layer
Even in the case of a non-magnetic multilayer film, the magnetic coupling strength acting between the magnetic layers can be reduced, so that the external magnetic field sensitivity of the free layer can be increased. There is an effect that the magnetic field detection sensitivity can be increased.

【0031】さらに、磁性/非磁性多層膜の示す磁気抵
抗効果の大きさは、非磁性層の厚さが薄くなるにしたが
って大きくなるため、本発明により非磁性層の厚さを薄
くすることができると磁性/非磁性多層膜の示す磁気抵
抗効果を大きくすることが可能となり、これによって磁
気ヘッド等の磁場検出装置の出力も大きくすることすな
わち磁場検出装置の高感度化が可能となる効果がある。
これらの効果の学術分野への応用、さらにはその工業的
価値は非常に高いものである。
Further, since the magnitude of the magnetoresistance effect of the magnetic / nonmagnetic multilayer film increases as the thickness of the nonmagnetic layer decreases, it is possible to reduce the thickness of the nonmagnetic layer according to the present invention. If possible, it is possible to increase the magnetoresistance effect exhibited by the magnetic / non-magnetic multilayer film, thereby increasing the output of a magnetic field detection device such as a magnetic head, that is, increasing the sensitivity of the magnetic field detection device. is there.
The application of these effects to academic fields, and their industrial value, is very high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スピンバルブ膜の構成を説明する斜視図。FIG. 1 is a perspective view illustrating a configuration of a spin valve film.

【図2】本発明の原理となる現象を説明する磁性層間結
合強度の測定図。
FIG. 2 is a measurement diagram of magnetic interlayer coupling strength for explaining a phenomenon that is a principle of the present invention.

【図3】スピンバルブ膜の構成を説明する断面図。FIG. 3 is a cross-sectional view illustrating a configuration of a spin valve film.

【図4】本発明の一実施例になるスピンバルブ膜の基本
構成を表す断面図。
FIG. 4 is a sectional view illustrating a basic configuration of a spin valve film according to one embodiment of the present invention.

【図5】本発明の他の一実施例になるスピンバルブ膜の
基本構成を表す断面図。
FIG. 5 is a cross-sectional view illustrating a basic configuration of a spin valve film according to another embodiment of the present invention.

【図6】デュアルスピンバルブ膜の構成を説明する斜視
図。
FIG. 6 is a perspective view illustrating a configuration of a dual spin valve film.

【図7】本発明の一実施例になるデュアルスピンバルブ
膜の基本構成を表す断面図。
FIG. 7 is a sectional view illustrating a basic configuration of a dual spin valve film according to one embodiment of the present invention.

【図8】本発明の他の一実施例になるデュアルスピンバ
ルブ膜の基本構成を表す断面図。
FIG. 8 is a cross-sectional view illustrating a basic configuration of a dual spin valve film according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…非磁性層、12…磁性層、13…磁性層、14…
反強磁性層、15…磁化、16…磁化、17…外部磁
場、31…界面、32…界面、41…界面、42…界
面、51…界面、52…界面、61…反強磁性層、62
…磁性層、63…非磁性層、64…磁性層、65…非磁
性層、66…磁性層、67…反強磁性層、68…磁化、
69…磁化、70…磁化、71…界面、72…界面、7
3…界面、74…界面、75…磁化、81…界面、82
…界面、83…界面、84…界面。
11: non-magnetic layer, 12: magnetic layer, 13: magnetic layer, 14 ...
Antiferromagnetic layer, 15: magnetization, 16: magnetization, 17: external magnetic field, 31: interface, 32: interface, 41: interface, 42: interface, 51: interface, 52: interface, 61: antiferromagnetic layer, 62
... magnetic layer, 63 ... non-magnetic layer, 64 ... magnetic layer, 65 ... non-magnetic layer, 66 ... magnetic layer, 67 ... antiferromagnetic layer, 68 ... magnetization,
69 ... magnetization, 70 ... magnetization, 71 ... interface, 72 ... interface, 7
3 interface, 74 interface, 75 magnetization, 81 interface, 82
... Interface, 83 ... Interface, 84 ... Interface.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】磁性層と非磁性層を交互に積層した磁性/
非磁性多層膜における磁性層の磁化配列が強磁性的か反
強磁性的かによって膜の電気抵抗が大きく変化する現象
を利用した磁場測定方法において、磁性層と非磁性層と
の界面に凹凸形状を持つ磁性/非磁性多層膜を利用する
ことを特徴とする磁場測定装置。
1. A magnetic / magnetic device comprising a magnetic layer and a non-magnetic layer alternately laminated.
In a magnetic field measurement method using a phenomenon in which the electrical resistance of a magnetic layer changes greatly depending on whether the magnetization arrangement of the magnetic layer in a nonmagnetic multilayer film is ferromagnetic or antiferromagnetic, an uneven shape is formed at the interface between the magnetic layer and the nonmagnetic layer. A magnetic field measuring apparatus using a magnetic / non-magnetic multilayer film having the following.
【請求項2】請求項1記載の磁性/非磁性多層膜が磁性
層/非磁性層/磁性層/反強磁性層の4層からなる多層
膜であることを特徴とする磁場測定装置。
2. A magnetic field measuring apparatus according to claim 1, wherein said magnetic / non-magnetic multilayer film is a multilayer film composed of four layers of a magnetic layer / non-magnetic layer / magnetic layer / antiferromagnetic layer.
【請求項3】請求項2記載の磁性/非磁性多層膜におい
て、磁性層と非磁性層の2つある界面のうちどちらか一
方もしくは両方に凹凸形状を持つことを特徴とする磁場
測定装置。
3. The magnetic field measuring apparatus according to claim 2, wherein one or both of the two interfaces of the magnetic layer and the nonmagnetic layer have an uneven shape.
【請求項4】請求項1記載の磁性/非磁性多層膜が反強
磁性層/磁性層/非磁性層/磁性層/非磁性層/磁性層
/反強磁性層の7層からなる多層膜であることを特徴と
する磁場測定装置。
4. The multi-layered film according to claim 1, wherein said multi-layered film comprises seven layers: antiferromagnetic layer / magnetic layer / nonmagnetic layer / magnetic layer / nonmagnetic layer / magnetic layer / antiferromagnetic layer. A magnetic field measuring apparatus, characterized in that:
【請求項5】請求項4記載の磁性/非磁性多層膜におい
て、磁性層と非磁性層の4つある界面のうち少なくとも
1つの界面に凹凸形状を持つことを特徴とする磁場測定
装置。
5. A magnetic field measuring apparatus according to claim 4, wherein at least one of the four interfaces between the magnetic layer and the nonmagnetic layer has an uneven shape.
JP10114623A 1998-04-24 1998-04-24 Magnetic field measuring device Pending JPH11307840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10114623A JPH11307840A (en) 1998-04-24 1998-04-24 Magnetic field measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10114623A JPH11307840A (en) 1998-04-24 1998-04-24 Magnetic field measuring device

Publications (1)

Publication Number Publication Date
JPH11307840A true JPH11307840A (en) 1999-11-05

Family

ID=14642499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10114623A Pending JPH11307840A (en) 1998-04-24 1998-04-24 Magnetic field measuring device

Country Status (1)

Country Link
JP (1) JPH11307840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093699A1 (en) * 2007-02-02 2008-08-07 Alps Electric Co., Ltd. Magnetic sensor and its manufacturing method
WO2008093672A1 (en) * 2007-02-01 2008-08-07 Alps Electric Co., Ltd. Magnetism detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093672A1 (en) * 2007-02-01 2008-08-07 Alps Electric Co., Ltd. Magnetism detection device
JP5184379B2 (en) * 2007-02-01 2013-04-17 アルプス電気株式会社 Magnetic detector
WO2008093699A1 (en) * 2007-02-02 2008-08-07 Alps Electric Co., Ltd. Magnetic sensor and its manufacturing method
JP5015966B2 (en) * 2007-02-02 2012-09-05 アルプス電気株式会社 Magnetic detection device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6510031B1 (en) Magnetoresistive sensor with magnetostatic coupling to obtain opposite alignment of magnetic regions
JP3219713B2 (en) Method of manufacturing magnetoresistive element
US5795663A (en) Magnetoresistive multilayer film and methods of producing the same
JP2002151757A (en) Thin film magnetic element and its manufacturing method
US6093444A (en) Magnetoresistive transducer with spin-valve structure and manufacturing method of the same
JPH0223681A (en) Magnetoresistance effect element
JPH0870149A (en) Magnetoresistance element
JPH11307840A (en) Magnetic field measuring device
JP3035838B2 (en) Magnetoresistance composite element
JP3035836B2 (en) Magnetoresistive element
JPS6331116B2 (en)
WO2021131401A1 (en) Magnetic sensor
Vas’ ko et al. Effect of grain size on the properties of the CoFe–NiFe/NiMn top spin valve
JPH07220246A (en) Magneto-resistance effect film, magneto-resistance effect type head and magnetic recording and reproducing device
JPH1074658A (en) Manufacture of spin valve magnetoresistive effect device
US7170720B2 (en) CPP read head for high density and shield noise suppression
JPH0888424A (en) Multi-layer film magnetoresistance effect element and its manufacture
JPH0786663A (en) Production of magnetoresistance effect element
JP2860357B2 (en) Method for manufacturing multilayer magnetoresistive element
JPH08316033A (en) Magnetic laminate
JP2001237473A (en) Composite magnetic thin film
JP2001308414A (en) Huge magnetoresistance effect film
KR100479445B1 (en) The fabrication method of the full bridge type magnetic sensor using exchange biased spin valves
JP2569623B2 (en) Magnetoresistive thin film magnetic head
JPH06244476A (en) Magnetoresistance effect element thin film