JPH11307248A - Manufacture of electroluminescent element - Google Patents

Manufacture of electroluminescent element

Info

Publication number
JPH11307248A
JPH11307248A JP10122726A JP12272698A JPH11307248A JP H11307248 A JPH11307248 A JP H11307248A JP 10122726 A JP10122726 A JP 10122726A JP 12272698 A JP12272698 A JP 12272698A JP H11307248 A JPH11307248 A JP H11307248A
Authority
JP
Japan
Prior art keywords
film
conversion film
color conversion
opening
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10122726A
Other languages
Japanese (ja)
Other versions
JP4096403B2 (en
Inventor
Minoru Kumagai
稔 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP12272698A priority Critical patent/JP4096403B2/en
Publication of JPH11307248A publication Critical patent/JPH11307248A/en
Application granted granted Critical
Publication of JP4096403B2 publication Critical patent/JP4096403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electroluminescent element of a flat structure in which component layers continue without interruption between steps. SOLUTION: A blue conversion film 13 is formed on a predetermined pixel position on a glass substrate 11 and a flattening film 14 is formed thereafter. An opening is formed in a predetermined pixel position on the flattening film 14. By forming a red conversion film 15A within the opening, the projecting length of the red conversion film 15A from the flattening film 14 can be reduced and the red conversion film 15A can be flatly covered with a protective film 17 formed thereon. Since the films are thus flat, a front electrode 18A, an organic electroluminescent layer 20, and a back electrode 21 can be formed without interruption between steps.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電界発光素子の
製造方法に関し、さらに詳しくは、エレクトロルミネッ
センス(以下、ELという)層を電極で挟んでなる電界
発光素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electroluminescent device, and more particularly, to a method for manufacturing an electroluminescent device having an electroluminescence (hereinafter, referred to as EL) layer sandwiched between electrodes.

【0002】[0002]

【従来の技術】近年、電界発光素子の発光層に有機EL
材料を用いたものが開発され、図7に示すような構造の
電界発光素子1が考えられている。即ち、この電界発光
素子1は、ガラス基板2の上に格子状にブラックマトリ
クス8を形成し、所定の配列で色変換膜6R、6Gを形
成して保護膜9を全面に形成し、さらにその上に前面電
極3、有機EL層4、背面電極5を形成する構造であ
る。
2. Description of the Related Art In recent years, an organic EL device has been
A device using a material has been developed, and an electroluminescent device 1 having a structure as shown in FIG. 7 has been considered. That is, in the electroluminescent device 1, a black matrix 8 is formed in a grid on a glass substrate 2, color conversion films 6R and 6G are formed in a predetermined arrangement, and a protective film 9 is formed on the entire surface. In this structure, a front electrode 3, an organic EL layer 4, and a back electrode 5 are formed thereon.

【0003】[0003]

【発明が解決しようとする課題】このような電界発光素
子では、色変換膜6R及び色変換膜6Gの色変換効率が
異なるためにその膜厚を制御することにより均等な輝度
に発光するように制御され、例えば青色光の入射により
赤色光の放出を行う色変換膜6Rの厚さは約20μmに
設定し、青色光の入射により赤色光の放出を行う色変換
膜6Gの厚さは約10μmに設定しているため色変換膜
6R、6G間で厚さに差があった。また、青色表示のド
ット部は色変換膜を配置しないため、R、G、Bの表示
部分の間で段差ができ、ともすると有機EL層4のステ
ップカバレージが悪化して、特に前面電極3のエッジ部
で有機EL層4が段切れを起こし、前面電極3と背面電
極5とがショートしてしまうことが危惧されている。
In such an electroluminescent device, since the color conversion efficiencies of the color conversion films 6R and 6G are different from each other, the light emission can be made uniform by controlling the film thickness. For example, the thickness of the color conversion film 6R that emits red light when blue light is incident is set to about 20 μm, and the thickness of the color conversion film 6G that emits red light when blue light is incident is about 10 μm. , There was a difference in thickness between the color conversion films 6R and 6G. Further, since the color conversion film is not disposed in the dot portion for displaying blue, a step is formed between the display portions of R, G, and B, and the step coverage of the organic EL layer 4 is deteriorated. It is feared that the organic EL layer 4 is disconnected at the edge portion and the front electrode 3 and the back electrode 5 are short-circuited.

【0004】この発明は、ショートの発生の少ない構造
の電界発光素子の製造方法を提供することを目的として
いる。
An object of the present invention is to provide a method of manufacturing an electroluminescent device having a structure in which a short circuit is less likely to occur.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
第1色変換膜及び第2色変換膜を有する電界発光素子の
製造方法において、透明基板上の所定位置に、第1色変
換膜をパターン形成する工程と、前記透明基板上に、所
定の箇所に開口部を有する絶縁膜を形成する工程と、前
記開口部に、上部が露出するように第2色変換膜を形成
する工程と、を備えることを特徴としている。
According to the first aspect of the present invention,
In a method for manufacturing an electroluminescent device having a first color conversion film and a second color conversion film, a step of patterning a first color conversion film at a predetermined position on a transparent substrate; Forming an insulating film having an opening in the opening, and forming a second color conversion film in the opening so that an upper portion is exposed.

【0006】従って、請求項1記載の発明では、第2色
変換膜に開口部を有する絶縁膜が、第1色変換膜及び第
2色変換膜の段差を緩和しているので、前面電極等のス
テップカバレージを向上することができ、これらの構成
膜の段切れを防止することができる。
Therefore, according to the first aspect of the present invention, the insulating film having the opening in the second color conversion film reduces the level difference between the first color conversion film and the second color conversion film. Can be improved, and disconnection of these constituent films can be prevented.

【0007】請求項2記載の発明は、請求項1記載の電
界発光素子の製造方法であって、前記第1色変換膜及び
前記絶縁膜は感光性樹脂材料から形成されることを特徴
としている。
According to a second aspect of the present invention, in the method of manufacturing an electroluminescent device according to the first aspect, the first color conversion film and the insulating film are formed of a photosensitive resin material. .

【0008】請求項3記載の発明は、電界発光素子の製
造方法であって、透明基板の裏面に、第1開口部及び第
2開口部を有する第1絶縁膜を形成する工程と、前記第
1開口部に第1色変換膜を形成する工程と、前記第2開
口部上に、第3開口部が形成された第2絶縁膜を形成す
る工程と、前記第1絶縁膜の前記第2開口部に、第2色
変換膜を形成するように形成する工程と、を備えること
を特徴としている。
According to a third aspect of the present invention, there is provided a method of manufacturing an electroluminescent device, comprising the steps of: forming a first insulating film having a first opening and a second opening on a back surface of a transparent substrate; Forming a first color conversion film in one opening, forming a second insulating film having a third opening formed on the second opening, and forming a second insulating film on the second opening; Forming the second color conversion film in the opening so as to form the second color conversion film.

【0009】従って、請求項3記載の発明では、色変換
膜材料は解像度が低く、色変換膜材料の感光による加工
寸法より、フォトリソグラフィー法を用いた第1絶縁膜
の加工寸法の方が微細であるため、第1絶縁膜の開口部
に色変換膜を形成することにより、色変換膜の線幅を微
細に形成することができる。このため、高精細な表示が
行える電界発光素子を製造することが可能となる。ま
た、第1絶縁膜と第2絶縁膜とで第1色変換膜と第2色
変換膜との段差を緩和することができるため、前面電極
等のステップカバレージを向上することができる。
Therefore, according to the third aspect of the present invention, the resolution of the color conversion film material is low, and the processing size of the first insulating film using the photolithography method is finer than the processing size of the color conversion film material by exposure to light. Therefore, by forming the color conversion film in the opening of the first insulating film, the line width of the color conversion film can be finely formed. For this reason, it becomes possible to manufacture an electroluminescent element capable of performing high-definition display. In addition, since the step between the first color conversion film and the second color conversion film can be reduced by the first insulating film and the second insulating film, the step coverage of the front electrode and the like can be improved.

【0010】[0010]

【発明の実施の形態】以下、この発明に係る電界発光素
子の製造方法の詳細を図面に示す実施形態に基づいて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of a method for manufacturing an electroluminescent device according to the present invention will be described below based on an embodiment shown in the drawings.

【0011】(実施形態1)図1(a)〜図3(c)を
用いて実施形態1を説明する。まず、図1(a)に示す
ように、ガラス基板11の上へ格子状にブラックマトリ
クス12を形成する。その後所定の波長域の青色光が入
射することにより励起され所定の波長域の緑色光を放出
するネガ型光感光性材料を被膜し、このネガ型光感光性
材料を残す部分を露光した後に現像して、図1(b)に
示すように、ネガ型光感光性材料からなる色変換膜(以
下、緑色変換膜という)13を所定の色配列に応じた配
列でブラックマトリクス12の開口部13を覆うように
パターニング形成する。なお、緑色変換膜13の厚さ
は、視認性の良好な輝度の緑色光を放出するに最適な厚
さ、例えば約10μmに成膜する。
(Embodiment 1) Embodiment 1 will be described with reference to FIGS. 1 (a) to 3 (c). First, as shown in FIG. 1A, a black matrix 12 is formed on a glass substrate 11 in a grid pattern. After that, a negative type photosensitive material which is excited by blue light in a predetermined wavelength range and emits green light in a predetermined wavelength range is coated, and a portion where the negative type photosensitive material is left is exposed and developed. Then, as shown in FIG. 1B, a color conversion film (hereinafter, referred to as a green conversion film) 13 made of a negative type photosensitive material is arranged in an opening 13 of the black matrix 12 in an arrangement corresponding to a predetermined color arrangement. Is formed so as to cover. Note that the green conversion film 13 is formed to have a thickness that is optimal for emitting green light with good visibility and good luminance, for example, about 10 μm.

【0012】次に、図1(c)に示すように、表示領域
全体に平坦化膜14を例えばスピンコーティングによ
り、上記した緑色変換膜13が完全に埋まるように成膜
する。なお、この平坦化膜14の材料は、液晶表示パネ
ル用スペーサ材料として開発された感光性を有する周知
のネガ型合成樹脂材料であり、成膜後の光透過率は90
%以上である。そして、この平坦化膜14を形成する合
成樹脂材料は、液晶表示パネルのギャップ程度の膜厚が
成膜できる材料であり、約10数μm程度の厚さまで形
成できる。
Next, as shown in FIG. 1C, a flattening film 14 is formed on the entire display region by, for example, spin coating so that the green conversion film 13 is completely buried. The material of the flattening film 14 is a well-known negative type synthetic resin material having photosensitivity developed as a spacer material for a liquid crystal display panel, and has a light transmittance of 90 after film formation.
% Or more. The synthetic resin material for forming the flattening film 14 is a material capable of forming a film having a thickness of about the gap of the liquid crystal display panel, and can be formed to a thickness of about 10 μm or so.

【0013】その後、後記する、青色光が入射すること
により励起され赤色光を放出する色変換膜(以下、赤色
変換膜という)15Aが所定の箇所に配置される部分以
外の平坦化膜14になる合成樹脂材料を露光した後、現
像して平坦化膜14に図2(a)に示すような開口部1
4Aを形成する。
Thereafter, a color conversion film (hereinafter, referred to as a red conversion film) 15A which is excited by blue light and emits red light, which will be described later, is applied to the flattening film 14 other than the portion where the color conversion film 15A is disposed at a predetermined position. After the synthetic resin material is exposed to light, it is developed and an opening 1 shown in FIG.
4A is formed.

【0014】続いて、図2(b)に示すように、開口部
14A及び平坦化膜14の上に赤色変換膜15Aを形成
する赤色変換膜材料15を、開口部14Aの深さも含め
て、視認性の良好な輝度の赤色光を放出するに最適な厚
さ、例えば約20μmの厚さになるようにスピンコーテ
ィングにより成膜する。この赤色変換膜15材料は非感
光性材料でなるため、次のような方法でパターニングを
行う。即ち、フォトリソグラフィー技術を用いて、同図
(b)に示すように開口部14Aに対応する赤色変換膜
15材料上方にレジストマスク16を残すようにパター
ニングし、このレジストマスク16を用いて露呈する部
分の赤色変換膜材料15をウェットエッチングにより除
去する。その結果、図2(c)に示すように、平坦化膜
14の開口部14Aから僅かに(2〜3μm程度)突出
する赤色変換膜15Aが形成できる。なお、赤色変換膜
15A及び緑色変換膜13は、レジストマスク16の形
成時のプリベーク及び本ベークの温度に耐えられる材料
からなる。
Subsequently, as shown in FIG. 2B, a red conversion film material 15 for forming a red conversion film 15A on the opening 14A and the flattening film 14 is applied, including the depth of the opening 14A. The film is formed by spin coating so as to have a thickness that is optimal for emitting red light with good visibility, for example, a thickness of about 20 μm. Since the material of the red conversion film 15 is a non-photosensitive material, patterning is performed by the following method. That is, patterning is performed using a photolithography technique so that the resist mask 16 is left above the material of the red conversion film 15 corresponding to the opening 14A as shown in FIG. A portion of the red conversion film material 15 is removed by wet etching. As a result, as shown in FIG. 2C, a red conversion film 15A projecting slightly (about 2 to 3 μm) from the opening 14A of the flattening film 14 can be formed. The red conversion film 15A and the green conversion film 13 are made of a material that can withstand the temperatures of the pre-bake and the main bake when the resist mask 16 is formed.

【0015】次に、図3(a)に示すように、表示領域
全体にアクリル系合成樹脂でなる保護膜17をコーティ
ングする。このとき、赤色変換膜15Aの突出寸法は僅
かであるため、保護膜17で覆うことができ、保護膜1
7の表面は平坦に形成できる。その後、保護膜17の上
に例えばITO(indium tin oxide)やIn23(Zn
O)m(ただし0<m<3)などの透明な導電性材料
(好ましくは後記する有機EL層20に対して正孔注入
性の高い導電性材料)でなる前面電極膜18を、蒸着法
やスパッタ法により成膜する。さらに、前面電極膜18
の上に、レジストマスク19をフォトリソグラフィー技
術を用いてパターン形成する。なお、このレジストマス
ク19は、ガラス基板11の上に形成されたブラックマ
トリクス12の開口部の列又は行に対応する位置に、互
いに平行をなすように形成する。そして、このレジスト
マスク19を用いてウェットエッチング又はドライエッ
チングを行って図3(b)に示すような前面電極18A
を形成する。
Next, as shown in FIG. 3A, a protective film 17 made of an acrylic synthetic resin is coated on the entire display area. At this time, since the protrusion size of the red conversion film 15A is small, it can be covered with the protection film 17 and the protection film 1 can be covered.
The surface of 7 can be formed flat. Then, for example, ITO (indium tin oxide) or In 2 O 3 (Zn
O) A front electrode film 18 made of a transparent conductive material such as m (where 0 <m <3) or the like (preferably a conductive material having a high hole injection property with respect to the organic EL layer 20 described later) is formed by a vapor deposition method. Or by a sputtering method. Further, the front electrode film 18
On this, a resist mask 19 is patterned using photolithography technology. The resist mask 19 is formed at positions corresponding to the columns or rows of the openings of the black matrix 12 formed on the glass substrate 11 so as to be parallel to each other. Then, wet etching or dry etching is performed using the resist mask 19 to form the front electrode 18A as shown in FIG.
To form

【0016】その後、図3(c)に示すように、表示領
域全体に有機EL層20を成膜し、有機EL層20の上
に、上記した前面電極18Aの行又は列に対応するよう
に、MgInやAlLi等の背面電極21をメタルマス
クで蒸着形成する。なお、有機EL層20は、前面電極
膜18側から順に、Aluminum-tris(8-hydroxyquinolina
te)からなる電子輸送層、96重量%の4,4'-Bis(2,2-di
phenylvinylene)biphenyl及び4重量%の4,4'-Bis((2-c
arbazole)vinylene)biphenylからなる発光層、N,N'-di
(α-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-dia
mineからなる正孔輸送層の3層で構成され、内部に電流
が流れることにより青色波長域の光を発する。このよう
にして、図3(c)に示すような電界発光素子22を製
造することができる。
Thereafter, as shown in FIG. 3C, an organic EL layer 20 is formed on the entire display area, and the organic EL layer 20 is formed on the organic EL layer 20 so as to correspond to the rows or columns of the front electrodes 18A. , A back electrode 21 of MgIn, AlLi or the like is formed by vapor deposition using a metal mask. The organic EL layer 20 is formed of aluminum-tris (8-hydroxyquinolina) in order from the front electrode film 18 side.
te), 96% by weight of 4,4′-Bis (2,2-di
phenylvinylene) biphenyl and 4% by weight of 4,4'-Bis ((2-c
Light-emitting layer consisting of arbazole) vinylene) biphenyl, N, N'-di
(α-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-dia
It is composed of three layers of a hole transport layer made of mine, and emits light in the blue wavelength range when a current flows inside. Thus, the electroluminescent device 22 as shown in FIG. 3C can be manufactured.

【0017】本実施形態の電界発光素子の製造方法で
は、膜厚差が大きい色変換膜により生じる段差を、平坦
化膜14や保護膜17を用いて緩和したことにより、前
面電極18A、有機EL層20及び背面電極21を形成
する際に、これらのステップカバレージを良好にして段
切れが発生するのを防止することができる。
In the method of manufacturing an electroluminescent device according to the present embodiment, the step caused by the color conversion film having a large difference in film thickness is reduced by using the flattening film 14 and the protective film 17, so that the front electrode 18A and the organic EL device can be used. When the layer 20 and the back electrode 21 are formed, the step coverage can be improved to prevent disconnection.

【0018】以上、本実施形態について説明したが、本
実施形態ではブラックマトリクス12の開口部に赤色変
換膜15Aや緑色変換膜13を形成したが、ブラックマ
トリクス12の各開口部にそれぞれ所定のカラーフィル
タを形成した後、必要な部分に赤色変換膜15Aや緑色
変換膜13を形成することも可能であり、これら赤、
緑、青のカラーフィルタにより、色変換膜から出射され
た赤、緑の色の発光や、色変換膜を透過しないで有機E
L層20から出射された青色光の色純度を向上させるこ
とも可能となる。また、上記した本実施形態では、保護
膜17の上に前面電極18Aを形成したが、素子の信頼
性を向上させるために、保護膜17の上に酸化シリコン
膜や窒化シリコン膜を成膜した後に前面電極18Aを形
成するようにしても勿論よい。なお、上記した実施形態
1では、有機EL層20の発光色を青色に設定したが、
これに限定されるものではなく、有機EL層20の発光
色に応じて、各色変換膜も適宜変更するものであっても
よい。さらに、本実施形態では、発光層として有機EL
層20を用いたが、無機EL層を用いてもよい。
Although the present embodiment has been described above, the red conversion film 15A and the green conversion film 13 are formed in the openings of the black matrix 12 in this embodiment. After forming the filter, it is also possible to form a red conversion film 15A and a green conversion film 13 on necessary portions.
The green and blue color filters emit light of red and green colors emitted from the color conversion film, and the organic E does not pass through the color conversion film.
It is also possible to improve the color purity of the blue light emitted from the L layer 20. In the above-described embodiment, the front electrode 18A is formed on the protective film 17, but a silicon oxide film or a silicon nitride film is formed on the protective film 17 in order to improve the reliability of the device. Of course, the front electrode 18A may be formed later. In the first embodiment, the emission color of the organic EL layer 20 is set to blue.
The present invention is not limited to this, and each color conversion film may be appropriately changed according to the emission color of the organic EL layer 20. Further, in the present embodiment, an organic EL is used as the light emitting layer.
Although the layer 20 is used, an inorganic EL layer may be used.

【0019】(実施形態2)図4(a)〜図6(b)を
用いて本発明に係る電界発光素子の製造方法の実施形態
2について説明する。まず、図4(a)に示すように、
ガラス基板11の上へ格子状にブラックマトリクス12
を形成する。その後、ネガ型感光性の樹脂をスピンコー
ティングにより膜厚を制御して成膜後、ブラックマトリ
クス12の開口部のうち設定された色配列に応じて色変
換膜を配置しない部分(青色発光部)のみを露光して、
この部分の樹脂を硬化して、図4(b)に示すように、
第1平坦化膜14Aをパターン形成する。ここで、第1
平坦化膜14Aは、ブラックマトリクス12の開口部の
うち色変換膜が配置される開口部に臨むブラックマトリ
クス12の開口縁まで覆う必要はない。
(Embodiment 2) Embodiment 2 of a method for manufacturing an electroluminescent device according to the present invention will be described with reference to FIGS. 4 (a) to 6 (b). First, as shown in FIG.
A black matrix 12 is arranged in a grid on a glass substrate 11.
To form After that, a negative photosensitive resin is formed by controlling the film thickness by spin coating, and then a portion of the opening of the black matrix 12 where the color conversion film is not arranged according to the set color arrangement (blue light emitting portion). Expose only
The resin in this portion is cured, and as shown in FIG.
The first planarization film 14A is patterned. Here, the first
The flattening film 14A does not need to cover the opening edge of the black matrix 12 facing the opening in which the color conversion film is arranged among the openings of the black matrix 12.

【0020】その後、ネガ型感光性の緑色変換膜材料を
塗布し、図4(c)に示すように、予め緑色発光部とし
て設定された部分に対応する第1平坦化膜14Aの開口
部内の緑色変換膜材料を露光して硬化させた後、第1平
坦化膜14Aの表面と面一になるようにエッチバックし
て緑色変換膜13が形成される。このとき、緑色変換膜
13のパターン幅Wは、第1平坦化膜14Aのフォトリ
ソグラフィの精度により決定される。また、予め赤色発
光部として設定された部分に対応する第1平坦化膜14
Aの開口部内の緑色変換膜13はエッチングにより除去
する。
Thereafter, a negative-type photosensitive green conversion film material is applied, and as shown in FIG. 4C, the inside of the opening of the first flattening film 14A corresponding to the portion previously set as the green light emitting portion is formed. After exposing and curing the green color conversion film material, the green color conversion film 13 is formed by etching back so as to be flush with the surface of the first planarization film 14A. At this time, the pattern width W of the green conversion film 13 is determined by the photolithography accuracy of the first planarization film 14A. Further, the first flattening film 14 corresponding to a portion previously set as a red light emitting portion
The green conversion film 13 in the opening A is removed by etching.

【0021】次に、図5(a)に示すように、予め赤色
発光部として設定された部分に対応する第1平坦化膜1
4Aの開口部を除いて表示領域全体に第2平坦化膜14
Bを形成する。なお、第1平坦化膜膜14Aと第2平坦
化膜14Bとで形成される凹部の深さは、約20μm程
度になるように設定されている。その後、全面に赤色変
換膜材料15をスピンコーティングしエッチバックを行
うことにより第2平坦化膜14Bの表面を露呈させる。
このとき、第1平坦化膜14Aと第2平坦化膜14Bと
ブラックマトリクス12の開口部とで形成される凹部内
のみに赤色変換膜15Aが形成され、この赤色変換膜1
5Aの表面と第2平坦化膜14Bの表面とが面一とな
る。
Next, as shown in FIG. 5A, the first flattening film 1 corresponding to a portion previously set as a red light emitting portion.
The second flattening film 14 covers the entire display region except for the opening of 4A.
Form B. The depth of the recess formed by the first planarizing film 14A and the second planarizing film 14B is set to be about 20 μm. Thereafter, the surface of the second flattening film 14B is exposed by spin-coating the entire surface with the red conversion film material 15 and performing etch-back.
At this time, the red conversion film 15A is formed only in the recess formed by the first flattening film 14A, the second flattening film 14B, and the opening of the black matrix 12, and this red conversion film 1 is formed.
The surface of 5A and the surface of the second planarization film 14B are flush with each other.

【0022】次に、図6(a)に示すように保護膜17
を形成した後、図6(b)に示すように、上記した実施
形態1と同様に前面電極18A、有機EL層20及び背
面電極21を形成することにより、電界発光素子22の
製造が完了する。
Next, as shown in FIG.
Then, as shown in FIG. 6B, the front electrode 18A, the organic EL layer 20, and the back electrode 21 are formed in the same manner as in the first embodiment, thereby completing the manufacture of the electroluminescent element 22. .

【0023】本実施形態では、第1平坦化膜14Aに形
成した開口部の幅Kにより緑色変換膜13の幅が決定さ
れると共に、赤色変換膜15Aの幅も第1平坦化膜14
Aと第2平坦化膜14Bとに形成した開口部の幅で決定
されるため、平坦化膜のフォトリソグラフィーの精度を
持って色変換膜を形成することができる。因に、色変換
膜のパターニングに際しては、蛍光材料を多量に含む色
変換膜材料は透過率が低く解像度が低いため感光させて
パターニングした場合、その寸法精度は通常のフォトリ
ソグラフィーのフォトマスク等を用いた最小寸法より、
100μm程度大きくなってしまうが、上記したように
本実施形態では、透過率が高く解像度の高い材料で形成
された第1及び第2平坦化膜の最小寸法までの微細化を
可能とすることができる。このため、電界発光素子の表
示において高精細化を達成することが可能となる。ま
た、第2平坦化膜14Bの表面に赤色変換膜15Aの上
面を面一にすることができるため、その上に形成する保
護膜17の膜厚を薄く設定することが可能となり、有機
EL層20の発光部と色変換膜との距離を短くできる。
このため、視差の影響を大幅に低減させることができ
る。
In the present embodiment, the width of the green conversion film 13 is determined by the width K of the opening formed in the first flattening film 14A, and the width of the red conversion film 15A is also changed.
Since it is determined by the width of the opening formed in A and the second flattening film 14B, the color conversion film can be formed with the accuracy of photolithography of the flattening film. However, when patterning the color conversion film, since the color conversion film material containing a large amount of fluorescent material has low transmittance and low resolution, and is exposed and patterned, the dimensional accuracy is the same as that of a normal photolithography photomask. From the minimum dimensions used,
However, as described above, in this embodiment, the first and second planarization films formed of a material having a high transmittance and a high resolution can be miniaturized to the minimum size. it can. For this reason, it is possible to achieve high definition in the display of the electroluminescent element. Further, since the upper surface of the red conversion film 15A can be flush with the surface of the second flattening film 14B, the thickness of the protective film 17 formed thereon can be set to be thin, and the organic EL layer The distance between the light emitting unit 20 and the color conversion film can be reduced.
For this reason, the influence of parallax can be significantly reduced.

【0024】以上、実施形態2について説明したが、本
発明はこれに限定されるものではなく、構成の要旨に付
随する各種の変更が可能である。例えば、本実施形態で
は、保護膜17の上に前面電極18Aを設けたが、上記
した実施形態1と同様に酸化シリコン膜や窒化シリコン
膜を介して前面電極18Aを形成する構成としてもよ
い。また、上記した実施形態1で説明したように、カラ
ーフィルタをガラス基板11上に配置する構成としても
よい。なお、上記した実施形態2では、実施形態1同
様、有機EL層20の発光色を青色に設定したが、これ
に限定されるものではなく、有機EL層20の発光色に
応じて、各色変換膜も適宜変更するものである。さら
に、本実施形態でも、発光層として有機EL層20を用
いたが、無機EL層を用いてもよい。
Although the second embodiment has been described above, the present invention is not limited to this, and various changes accompanying the gist of the configuration are possible. For example, in the present embodiment, the front electrode 18A is provided on the protective film 17, but the front electrode 18A may be formed via a silicon oxide film or a silicon nitride film as in the first embodiment. Further, as described in the first embodiment, a configuration in which a color filter is arranged on the glass substrate 11 may be adopted. In the second embodiment, the light emission color of the organic EL layer 20 is set to blue as in the first embodiment. However, the present invention is not limited to this, and each color conversion is performed according to the light emission color of the organic EL layer 20. The film is also appropriately changed. Furthermore, in this embodiment, the organic EL layer 20 is used as the light emitting layer, but an inorganic EL layer may be used.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、この発
明によれば、各構成層の段切れのない平坦な構造の電界
発光素子が製造できる。
As is apparent from the above description, according to the present invention, it is possible to manufacture an electroluminescent device having a flat structure with no break in each constituent layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(c)は、本発明に係る電界発光素子
の製造方法の実施形態1を示す工程断面図。
FIGS. 1A to 1C are process cross-sectional views showing Embodiment 1 of a method for manufacturing an electroluminescent device according to the present invention.

【図2】(a)〜(c)は、実施形態1を示す工程断面
図。
FIGS. 2A to 2C are process cross-sectional views showing the first embodiment.

【図3】(a)〜(c)は、実施形態1を示す工程断面
図。
FIGS. 3A to 3C are process cross-sectional views illustrating the first embodiment.

【図4】(a)〜(c)は、本発明に係る電界発光素子
の製造方法の実施形態2を示す工程断面図。
FIGS. 4A to 4C are process cross-sectional views illustrating Embodiment 2 of the method for manufacturing an electroluminescent device according to the present invention.

【図5】(a)〜(c)は、実施形態2を示す工程断面
図。
FIGS. 5A to 5C are cross-sectional views illustrating a process according to the second embodiment.

【図6】(a)及び(b)は、実施形態2を示す工程断
面図。
FIGS. 6A and 6B are process cross-sectional views showing Embodiment 2. FIGS.

【図7】従来の多色表示を行う電界発光素子の断面図。FIG. 7 is a cross-sectional view of a conventional electroluminescent element that performs multicolor display.

【符号の説明】[Explanation of symbols]

11 ガラス基板 13 緑色変換膜 14 平坦化膜 14A 第1平坦化膜 14B 第2平坦化膜 15 赤色変換膜材料 15A 赤色変換膜 17 保護膜 18A 前面電極 20 有機EL層 21 背面電極 22 電界発光素子 DESCRIPTION OF SYMBOLS 11 Glass substrate 13 Green conversion film 14 Flattening film 14A First flattening film 14B Second flattening film 15 Red conversion film material 15A Red conversion film 17 Protective film 18A Front electrode 20 Organic EL layer 21 Back electrode 22 Electroluminescent element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1色変換膜及び第2色変換膜を有する
電界発光素子の製造方法において、 透明基板上の所定位置に、第1色変換膜をパターン形成
する工程と、 前記透明基板上に、所定の箇所に開口部を有する絶縁膜
を形成する工程と、 前記開口部に、上部が露出するように第2色変換膜を形
成する工程と、 を備えることを特徴とする電界発光素子の製造方法。
1. A method of manufacturing an electroluminescent device having a first color conversion film and a second color conversion film, wherein a pattern of a first color conversion film is formed at a predetermined position on a transparent substrate; Forming an insulating film having an opening at a predetermined location; and forming a second color conversion film in the opening such that an upper portion is exposed. Manufacturing method.
【請求項2】 前記第1色変換膜及び前記絶縁膜は感光
性樹脂材料から形成されることを特徴とする請求項1記
載の電界発光素子の製造方法。
2. The method according to claim 1, wherein the first color conversion film and the insulating film are formed of a photosensitive resin material.
【請求項3】 透明基板の裏面に、第1開口部及び第2
開口部を有する第1絶縁膜を形成する工程と、 前記第1開口部に第1色変換膜を形成する工程と、 前記第2開口部上に、第3開口部が形成された第2絶縁
膜を形成する工程と、 前記第1絶縁膜の前記第2開口部に、第2色変換膜を形
成するように形成する工程と、 を備えることを特徴とする電界発光素子の製造方法。
3. A first opening and a second opening on a rear surface of the transparent substrate.
Forming a first insulating film having an opening; forming a first color conversion film in the first opening; and forming a third insulating film on the second opening. A method for manufacturing an electroluminescent device, comprising: forming a film; and forming a second color conversion film in the second opening of the first insulating film so as to form a second color conversion film.
【請求項4】 前記第1色変換膜及び前記第1絶縁膜は
感光性樹脂材料から形成されること特徴とする請求項3
記載の電界発光素子の製造方法。
4. The method according to claim 3, wherein the first color conversion film and the first insulating film are formed of a photosensitive resin material.
A method for manufacturing the electroluminescent device according to the above.
JP12272698A 1998-04-17 1998-04-17 Method for manufacturing electroluminescent element Expired - Lifetime JP4096403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12272698A JP4096403B2 (en) 1998-04-17 1998-04-17 Method for manufacturing electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12272698A JP4096403B2 (en) 1998-04-17 1998-04-17 Method for manufacturing electroluminescent element

Publications (2)

Publication Number Publication Date
JPH11307248A true JPH11307248A (en) 1999-11-05
JP4096403B2 JP4096403B2 (en) 2008-06-04

Family

ID=14843077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12272698A Expired - Lifetime JP4096403B2 (en) 1998-04-17 1998-04-17 Method for manufacturing electroluminescent element

Country Status (1)

Country Link
JP (1) JP4096403B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347045A (en) * 2002-05-02 2003-12-05 Osram Opto Semiconductors Gmbh Method for encapsulating a plurality of devices formed on substrate and electronic device
JP2014123579A (en) * 2005-11-02 2014-07-03 Ifire Ip Corp Electroluminescent display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347045A (en) * 2002-05-02 2003-12-05 Osram Opto Semiconductors Gmbh Method for encapsulating a plurality of devices formed on substrate and electronic device
JP2014123579A (en) * 2005-11-02 2014-07-03 Ifire Ip Corp Electroluminescent display

Also Published As

Publication number Publication date
JP4096403B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
KR102037850B1 (en) Organic light emitting display and manufactucring method of the same
US10504976B2 (en) OLED display device and method of manufacturing the same
US7132801B2 (en) Dual panel-type organic electroluminescent device and method for fabricating the same
US9064822B2 (en) Organic electroluminescent device and method of manufacturing the same
JP5459142B2 (en) ORGANIC EL DEVICE, METHOD FOR MANUFACTURING ORGANIC EL DEVICE, AND ELECTRONIC DEVICE
US11289669B2 (en) Light-emitting device, pixel unit, manufacturing method for pixel unit and display device
US7291975B2 (en) Mask for organic electro-luminescence device and method of fabricating the same
TWI548084B (en) Organic light emitting device
KR20130018501A (en) Method of fabricating the organic light emitting device
CN104244485A (en) Electro-optical apparatus, manufacturing method for electro-optical apparatus, and electronic device
CN109755285B (en) Display panel, manufacturing method thereof and display device
US20230165098A1 (en) Display substrate, manufacturing method thereof and three-dimensional display apparatus
KR100725493B1 (en) Display device and manufactureing method of the same
JP2000113981A (en) Manufacture of organic el display
KR101356865B1 (en) El display panel, el display device provided with el display panel, organic el display device, and method for manufacturing el display panel
KR20080003079A (en) Organic light emitting display device and and method for fabricating the same
CN111415963A (en) Display panel and preparation method thereof
JP4096403B2 (en) Method for manufacturing electroluminescent element
KR100762120B1 (en) Organic light emitting diode and manufacturing method thereof
KR100599469B1 (en) Organic light emitting diode and manufacturing method thereof
JP2009156913A (en) Organic electroluminescence display device and its manufacturing method
KR100499582B1 (en) Organic Electroluminescent Device and Method for Fabricating the same
CN112640580A (en) Display device and method of manufacturing display device
JP7403540B2 (en) Method for manufacturing organic microscreen pixels
KR20020006306A (en) An Organic Electro-Luminescence Display Panel And Fabricating Method Thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term