JPH11307082A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH11307082A
JPH11307082A JP10245669A JP24566998A JPH11307082A JP H11307082 A JPH11307082 A JP H11307082A JP 10245669 A JP10245669 A JP 10245669A JP 24566998 A JP24566998 A JP 24566998A JP H11307082 A JPH11307082 A JP H11307082A
Authority
JP
Japan
Prior art keywords
polymer
organic electrolyte
electrode
mixture layer
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10245669A
Other languages
Japanese (ja)
Other versions
JP3853083B2 (en
Inventor
Akiko Ishida
明子 石田
Kazunari Kinoshita
一成 木下
Makoto Tsutsue
誠 筒江
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24566998A priority Critical patent/JP3853083B2/en
Priority to US09/248,914 priority patent/US6579649B2/en
Publication of JPH11307082A publication Critical patent/JPH11307082A/en
Application granted granted Critical
Publication of JP3853083B2 publication Critical patent/JP3853083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer electrolyte battery with large capacity density, by appropriately selecting an average grain size of nodular graphite used for a negative electrode and appropriately specifying the polymer contents in positive and negative mixes. SOLUTION: In an organic electrolyte battery equipped with a positive- electrode mix layer including a lithium-containing oxide and a polymer and borne by a current collector, a porous separator made of a polymer, a negative- electrode mix layer including a graphitic particle body and a polymer and borne by a current collector, and an organic electrolyte held by the positive- electrode mix layer, the negative-electrode mix layer, and the separator, modular graphite having an average grain size of 6 to 35 μm and made by carbonizing and then graphitizing a graphitic mesophase particle body, is used as the graphitic particle body. A discharge characteristic of a polymer electrolyte battery and those of batteries taken as comparison examples are shown in a figure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機電解質電池、
特に電極およびセパレータが有機電解液を吸収保持する
ポリマーを含み、これら電極およびセパレータを熱融着
により一体化できる有機電解質二次電池に関するもので
ある。
The present invention relates to an organic electrolyte battery,
In particular, the present invention relates to an organic electrolyte secondary battery in which an electrode and a separator contain a polymer that absorbs and retains an organic electrolyte, and the electrode and the separator can be integrated by heat fusion.

【0002】[0002]

【従来の技術】近年、携帯電話やノート型コンピュータ
ー等の携帯機器の普及に伴い、小型、軽量で、高エネル
ギー密度の二次電池が切望されている。このような要望
に応えるために、各種二次電池の開発が進められてい
る。リチウムを負極活物質とするリチウム二次電池は、
高エネルギー密度が期待できることから注目されてい
る。なかでも正極、負極およびセパレータにポリマーを
含み、このポリマーに有機電解液を吸収保持させた、い
わゆるポリマー電解質二次電池が注目されている。この
ポリマー電解質二次電池は、ポリマーとしてフッ化ビニ
リデンと六フッ化プロピレンの共重合体を用い、正極、
セパレータおよび負極を熱融着により一体化できること
から、薄型電池の実用化に最も近い電池系として注目さ
れている(特表平8−507407号公報)。
2. Description of the Related Art In recent years, with the spread of portable devices such as portable telephones and notebook computers, there is a strong demand for small, lightweight, and high energy density secondary batteries. To meet such demands, various secondary batteries have been developed. Lithium secondary batteries using lithium as the negative electrode active material
It is attracting attention because high energy density can be expected. Above all, a so-called polymer electrolyte secondary battery in which a positive electrode, a negative electrode, and a separator contain a polymer, and the polymer absorbs and holds an organic electrolyte, has attracted attention. This polymer electrolyte secondary battery uses a copolymer of vinylidene fluoride and propylene hexafluoride as a polymer, and has a positive electrode,
Since the separator and the negative electrode can be integrated by heat fusion, they have attracted attention as a battery system closest to the practical application of a thin battery (Japanese Patent Application Laid-Open No. 8-507407).

【0003】上記ポリマー電解質二次電池は、たとえ
ば、次のようにして製造される。まず、コバルト酸リチ
ウムや黒鉛粒子などの電極活物質粉末と導電剤粉末の混
合物に、ポリマーの有機溶媒溶液と造孔剤のフタル酸ジ
−n−ブチルを添加してペーストを調製する。このペー
ストを集電体に塗着した後、乾燥し前記有機溶媒を除去
して電極シートを得る。こうして得られた正極シートと
負極シートとの間に、造孔剤を含むポリマーからなるセ
パレータシートを介在させ、加熱下で加圧することによ
り熱融着一体化して電池素子シートを得る。次いで、こ
の電池素子シートを抽出溶媒であるたとえばジエチルエ
ーテル中に浸漬して造孔剤を抽出除去して多孔性を付与
し、しかる後細孔部分とポリマー自身に有機電解液を含
浸させる。リチウム二次電池の負極活物質としては、黒
鉛、コークス、炭素繊維などリチウムを可逆的にインタ
ーカレート/デインターカレートする各種の炭素質材料
が知られている。そして、この種ポリマー電解質二次電
池の負極活物質としては、コークスが既に検討されてい
る。また、炭素質メソフェーズ粒体を炭素化し、次いで
黒鉛化した球状黒鉛粒子は、高容量でサイクル特性に優
れたリチウム電池用負極を与えるものとして知られてい
る(特開平5ー290833号公報)ことから、この球
状黒鉛粒子も有望と考えられる。
The above-mentioned polymer electrolyte secondary battery is manufactured, for example, as follows. First, a paste is prepared by adding an organic solvent solution of a polymer and di-n-butyl phthalate as a pore-forming agent to a mixture of an electrode active material powder such as lithium cobalt oxide or graphite particles and a conductive agent powder. After this paste is applied to a current collector, the paste is dried and the organic solvent is removed to obtain an electrode sheet. A separator sheet made of a polymer containing a pore-forming agent is interposed between the positive electrode sheet and the negative electrode sheet thus obtained, and are thermally fused and integrated by pressing under heating to obtain a battery element sheet. Next, the battery element sheet is immersed in an extraction solvent such as diethyl ether to extract and remove the pore-forming agent to impart porosity, and then impregnate the pores and the polymer itself with an organic electrolyte. As a negative electrode active material of a lithium secondary battery, various carbonaceous materials, such as graphite, coke, and carbon fiber, which reversibly intercalate / deintercalate lithium are known. Coke has already been studied as a negative electrode active material of this type of polymer electrolyte secondary battery. Spheroidal graphite particles obtained by carbonizing carbonaceous mesophase particles and then graphitizing are known to provide a negative electrode for a lithium battery having a high capacity and excellent cycle characteristics (Japanese Patent Application Laid-Open No. 5-290833). Thus, these spherical graphite particles are also considered promising.

【0004】上記のようにして得られるポリマー電解質
電池の容量密度は、電極中のポリマーの配合割合に大き
く左右される。すなわち、電極中のポリマーの割合が高
ければ活物質の量が相対的に減少するし、ポリマーの割
合が低ければ結着力が劣って電極強度が低下する。従っ
て、上記の電極材料のペーストを集電体に塗着した後、
圧延するなどにより活物質の充填密度を上げるのが好ま
しい。このような方法により電極を製造する際、ポリマ
ーの配合割合を高くするとゴム状になり、十分に圧延す
ることができなくなる。さらに、電極の集電体としてラ
ス板などを用いると、圧延するときに集電体も一緒に延
びて甚だしいときには集電体が引きちぎられるなどによ
り、活物質の充填密度を上げることができない。また、
ポリマーの配合割合が少ないと、電極とセパレータとを
一体に熱融着することができず、電極とセパレータとの
間に隙間ができ、電池の内部抵抗が高くなり、安定した
電池性能が得られない。従って、従来においては、電極
の合剤層中のポリマー含量は20重量%程度が適切とさ
れていた。特に、負極活物質の炭素材料は、その種類や
粒径などによって物性、殊に表面積が変わるから、電極
を構成するに必要とするポリマー量も変わり、得られる
電極の容量密度が左右される。
[0004] The capacity density of the polymer electrolyte battery obtained as described above largely depends on the mixing ratio of the polymer in the electrode. That is, if the ratio of the polymer in the electrode is high, the amount of the active material is relatively reduced, and if the ratio of the polymer is low, the binding strength is inferior and the electrode strength is reduced. Therefore, after applying the electrode material paste to the current collector,
It is preferable to increase the packing density of the active material by rolling or the like. When the electrode is manufactured by such a method, if the mixing ratio of the polymer is increased, the electrode becomes rubbery and cannot be sufficiently rolled. Further, when a lath plate or the like is used as the current collector of the electrode, the current collector also extends together with rolling, and in severe cases, the current collector is torn off, so that the packing density of the active material cannot be increased. Also,
If the blending ratio of the polymer is small, the electrode and the separator cannot be heat-sealed together, leaving a gap between the electrode and the separator, increasing the internal resistance of the battery, and obtaining stable battery performance. Absent. Therefore, conventionally, it has been considered appropriate that the polymer content in the electrode mixture layer is about 20% by weight. In particular, the carbon material of the negative electrode active material changes its physical properties, particularly its surface area, depending on its type, particle size, and the like. Therefore, the amount of polymer required to form an electrode also changes, and the capacity density of the obtained electrode is affected.

【0005】[0005]

【発明が解決しようとする課題】本発明は、以上に鑑
み、電極、特に負極の活物質材料を適切に選定して、容
量密度の大きいポリマー電解質電池を提供することを目
的とする。また、本発明は、電極中のポリマー含量を適
切に設定することにより、より容量密度の大きいポリマ
ー電解質電池を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a polymer electrolyte battery having a large capacity density by appropriately selecting an electrode, particularly an active material for a negative electrode. Another object of the present invention is to provide a polymer electrolyte battery having a higher capacity density by appropriately setting the polymer content in the electrode.

【0006】[0006]

【課題を解決するための手段】本発明の有機電解質電池
は、活物質のリチウム含有酸化物および有機電解液を吸
収保持するポリマーを5〜10重量%含み集電体に支持
された正極合剤層、有機電解液を吸収保持するポリマー
からなる多孔性のセパレータ、活物質の黒鉛質粒体およ
び有機電解液を吸収保持するポリマーを7〜16重量%
含み集電体に支持された負極合剤層、並びに前記正極合
剤層、負極合剤層およびセパレータに保持された有機電
解液を具備し、前記黒鉛質粒体が、炭素質メソフェーズ
粒体を炭素化し、次いで黒鉛化した平均粒径6〜35μ
mの球状黒鉛であることを特徴とする。前記黒鉛質粒体
は、X線回折における格子面間隔が3.365〜3.3
90オングストローム、c軸方向の結晶子の大きさが2
00〜650オングストローム、アルゴンレーザ・ラマ
ン分光における1580cm-1のピーク強度I1580に対
する1360cm-1のピーク強度I1360の比I1360/
1580が0.20〜0.40の範囲にあることが好まし
い。また、前記ポリマーがフッ化ビニリデンと六フッ化
プロピレンの共重合体からなり、前記負極合剤層中のポ
リマー含量が7〜16重量%、前記正極合剤層中の活物
質がコバルト酸リチウムであり、かつポリマー含量が5
〜10重量%であることが好ましい。なお、このポリマ
ー含量の算出には電解液を含めないものとする。
An organic electrolyte battery according to the present invention comprises a positive electrode mixture supported by a current collector containing 5 to 10% by weight of a lithium-containing oxide as an active material and a polymer for absorbing and retaining an organic electrolyte. Layer, a porous separator made of a polymer that absorbs and retains the organic electrolyte, a graphite material of the active material, and 7 to 16% by weight of the polymer that absorbs and retains the organic electrolyte.
A negative electrode mixture layer supported by a current collector, and an organic electrolyte held by the positive electrode mixture layer, the negative electrode mixture layer and the separator, wherein the graphitic granules are made of carbonaceous mesophase granules. And then graphitized average particle size 6-35μ
m is a spheroidal graphite. The graphite grains have a lattice spacing of 3.365 to 3.3 in X-ray diffraction.
90 Å, crystallite size in c-axis direction is 2
00-650 Å, the ratio I 1360 / I of the peak intensity I 1360 of 1360 cm -1 to the peak intensity I 1580 of 1580 cm -1 in the argon laser Raman spectroscopy
Preferably, 1580 is in the range of 0.20 to 0.40. Further, the polymer is a copolymer of vinylidene fluoride and propylene hexafluoride, the polymer content in the negative electrode mixture layer is 7 to 16% by weight, and the active material in the positive electrode mixture layer is lithium cobalt oxide. Yes and has a polymer content of 5
It is preferably from 10 to 10% by weight. The calculation of the polymer content does not include the electrolytic solution.

【0007】[0007]

【発明の実施の形態】本発明者らは、ポリマー電解質電
池の電極合剤中のポリマーの好ましい含量とともに、負
極活物質に、高容量でサイクル特性に優れた球状黒鉛を
適用し、活物質の充填密度が高く、かつ安定した性能を
発揮できる条件を探索した結果、上記のように平均粒径
6〜35μmの球状黒鉛粒子を用いることにより優れた
電池が得られることを見いだした。すなわち、炭素質メ
ソフェーズ粒体を炭素化および黒鉛化して得られた球状
黒鉛粒子は、石油コークスなどに較べてリチウムの吸蔵
能力が大きく、電極とした際に放電容量を向上させるこ
とができる。この球状黒鉛粒子の粒径に関しては、粒径
が大きなものは、表面積が小さいため、同じポリマー含
量であれば、ポリマーによる球状黒鉛粒子相互の結着性
は粒径の小さい球状黒鉛粒子を用いたものより十分大き
い。このため少量のポリマー含量で黒鉛粒子相互の結着
性が得られるので、放電容量が大きくなる。しかし、粒
径が大きくなると、電極合剤のペーストをラスメタルな
どの集電体に塗着して電極を製造する際、電極板表面に
凹凸の塗着むらができ、製造効率が悪くなるばかりでな
く、粒子が脱落しやすくなることからサイクル特性が悪
くなる。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have applied a high-capacity and excellent cycle characteristic spheroidal graphite to a negative electrode active material together with a preferable content of a polymer in an electrode mixture of a polymer electrolyte battery. As a result of searching for conditions under which the packing density is high and stable performance can be exhibited, it has been found that an excellent battery can be obtained by using spherical graphite particles having an average particle diameter of 6 to 35 μm as described above. That is, the spherical graphite particles obtained by carbonizing and graphitizing the carbonaceous mesophase particles have a large lithium storage capacity as compared with petroleum coke or the like, and can improve the discharge capacity when used as an electrode. Regarding the particle size of the spherical graphite particles, those having a large particle size have a small surface area, so that if the polymer content is the same, the spherical graphite particles having a small particle size are used for the binding property between the spherical graphite particles by the polymer. Bigger than things. For this reason, a small amount of the polymer can provide the binding property between the graphite particles, so that the discharge capacity is increased. However, when the particle size increases, when the electrode mixture paste is applied to a current collector such as a lath metal to manufacture an electrode, uneven coating of the surface of the electrode plate can be uneven, and the manufacturing efficiency only deteriorates. In addition, since the particles easily fall off, the cycle characteristics deteriorate.

【0008】一方、球状黒鉛粒子の粒径があまり小さい
と、嵩が大きくなり粉体の総表面積が大きくなる。この
ため粒径の大きなものを用いた場合と同じポリマー含量
の電極を作製すると、ポリマーによる球状黒鉛粒子相互
の結着性が不十分となって、粉体相互の電気的接触が不
安定となり導電性が悪くなる。従って、結着性を十分に
得るにはポリマー含量を増やさねばならず、そうすると
球状黒鉛の量が相対的に減って充填密度が低下し、放電
容量は小さくなる。また、結着性が不十分であると、電
極合剤層と集電体との密着が十分でなく、引っ張り強度
の弱い電極板となる。さらに、電極合剤層が電解液を吸
収しすぎて大きくふくれたりする不都合が生じる。さら
に、粒径が小さく、表面積が大きな球状黒鉛粒子は、酸
素を含む雰囲気下での取り扱い上安全性に問題がある。
以上の観点から、球状黒鉛の平均粒径が選定される。ま
た、電極合剤層中のポリマー含量は、負極においては7
〜16重量%、正極においては活物質にコバルト酸リチ
ウムを用いたとき5〜10重量%が好適である。
On the other hand, if the particle size of the spherical graphite particles is too small, the bulk becomes large and the total surface area of the powder becomes large. For this reason, if an electrode having the same polymer content as when a large particle size electrode is used is produced, the binding of the spherical graphite particles to each other by the polymer becomes insufficient, and the electrical contact between the powders becomes unstable, resulting in a poor electrical conductivity. Worse. Therefore, the polymer content must be increased in order to obtain a sufficient binding property, so that the amount of spheroidal graphite is relatively reduced, the packing density is reduced, and the discharge capacity is reduced. When the binding property is insufficient, the electrode mixture layer and the current collector are not sufficiently adhered to each other, resulting in an electrode plate having low tensile strength. Further, there is a disadvantage that the electrode mixture layer absorbs the electrolyte too much and bulges greatly. Furthermore, spherical graphite particles having a small particle size and a large surface area have a problem in handling safety in an atmosphere containing oxygen.
From the above viewpoints, the average particle size of the spheroidal graphite is selected. The polymer content in the electrode mixture layer was 7 in the negative electrode.
In the positive electrode, when lithium cobaltate is used as the active material, the content is preferably 5 to 10% by weight.

【0009】本発明によるポリマー電解質電池の電極
は、以下のようにして作製することが好ましい。まず、
コバルト酸リチウムや球状黒鉛粒子などの電極活物質、
導電剤、ポリマーの有機溶媒溶液および造孔剤を混合し
てペーストを調製する。このペーストを集電体に塗着し
乾燥した後、加圧ローラーにより圧延し、所定の寸法に
切断して電極シートを得る。セパレータは、造孔剤を混
入したポリマーシートの状態で準備する。そして、この
ようにして得られたシートの状態で、または正極、負極
およびセパレータを一体に熱融着して電池素子に組み立
てた状態において、溶媒例えばジエチルエーテルにより
造孔剤を抽出することによりポリマー部分を多孔性化
し、電解液を浸透保持させる細孔を形成する。
The electrode of the polymer electrolyte battery according to the present invention is preferably prepared as follows. First,
Electrode active materials such as lithium cobalt oxide and spherical graphite particles,
A paste is prepared by mixing a conductive agent, a solution of a polymer in an organic solvent and a pore-forming agent. After this paste is applied to a current collector and dried, it is rolled with a pressure roller and cut into predetermined dimensions to obtain an electrode sheet. The separator is prepared in a state of a polymer sheet mixed with a pore-forming agent. Then, in the state of the sheet thus obtained, or in a state where the positive electrode, the negative electrode and the separator are integrally heat-fused and assembled into a battery element, the polymer is extracted by extracting the pore-forming agent with a solvent such as diethyl ether. The portion is made porous to form pores that allow the electrolyte to permeate.

【0010】本発明の電極およびセパレータに用いるポ
リマーは、フッ化ビニリデンと六フッ化プロピレンとの
共重合体、また造孔剤はフタル酸ージ−nーブチルがそ
れぞれ好適であるが、これらに限定されるものではな
い。正極活物質としては、LiCoO2、LiNiO2
LiMn24など充放電によりリチウムを可逆的に出し
入れできる酸化物が用いられる。なかでもLiCoO2
が好適に用いられる。
The polymer used for the electrode and the separator of the present invention is preferably a copolymer of vinylidene fluoride and propylene hexafluoride, and the pore-forming agent is preferably di-n-butyl phthalate. It is not something to be done. As the positive electrode active material, LiCoO 2 , LiNiO 2 ,
An oxide such as LiMn 2 O 4 capable of reversibly injecting and extracting lithium by charge and discharge is used. Above all, LiCoO 2
Is preferably used.

【0011】正極の集電体には、アルミニウム、チタ
ン、ステンレス鋼などの箔、穴あき板、ラス板、網体な
ど、また負極の集電体には、銅、ステンレス鋼などの
箔、穴あき板、ラス板、網体などがそれぞれ用いられ
る。セルを多層に積層する構成をとるときは、穴あき板
などの多孔板を用いるのが好ましい。有機電解液には、
LiClO4、LiBF4、LiPF6、LiCF3SO3
など溶質とエチレンカーボネート、プロピレンカーボネ
ート、ジメトキシエタンなどの有機溶媒との組み合わせ
など、有機電解質電池に用いるものとして知られている
もののなかから適宜選択して用いられる。
The current collector of the positive electrode may be a foil of aluminum, titanium, stainless steel or the like, a perforated plate, a lath plate, a net, or the like. The current collector of the negative electrode may be a foil or hole of copper, stainless steel, or the like. A perforated plate, a lath plate, a net, and the like are used. When a configuration in which cells are stacked in multiple layers is used, it is preferable to use a perforated plate such as a perforated plate. Organic electrolytes include:
LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3
Such a combination of a solute and an organic solvent such as ethylene carbonate, propylene carbonate, and dimethoxyethane is appropriately selected from those known as those used for organic electrolyte batteries.

【0012】[0012]

【実施例】以下、本発明をその実施例により詳細に説明
する。 《実施例1》フッ化ビニリデンと六フッ化プロピレンと
の共重合体(六フッ化プロピレンの比率:12重量%)
(以下、P(VDF−HFP)で表す。)100gをア
セトン500gに溶解し、その溶液にフタル酸ージ−n
ーブチル(以下、DBPで表す。)150gを添加して
混合溶液を得た。この溶液をガラス板上に塗布した後、
乾燥してアセトンを除去し、厚さ50μmのポリマーシ
ートを得た。このシートを切断し、サイズ35mm×6
5mmのセパレータシートとした。一方、P(VDF−
HFP)90gをアセトン1500gに溶解した溶液
に、コバルト酸リチウムLiCoO2900g、アセチ
レンブラック50g、およびDBP135gを混合して
ペーストを調製した。このペーストを集電体のアルミニ
ウムのラス板の片面に塗着し乾燥した後、ロールプレス
により圧延した。こうして厚さ100μmのシートを得
た。このシートを切断し、サイズ30mm×60mmの
正極シートとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. << Example 1 >> Copolymer of vinylidene fluoride and propylene hexafluoride (proportion of propylene hexafluoride: 12% by weight)
(Hereinafter, represented by P (VDF-HFP)) 100 g was dissolved in 500 g of acetone, and di-n-phthalic acid was added to the solution.
-Butyl (hereinafter, referred to as DBP) 150 g was added to obtain a mixed solution. After applying this solution on a glass plate,
The acetone was removed by drying to obtain a polymer sheet having a thickness of 50 μm. Cut this sheet, size 35mm x 6
The separator sheet was 5 mm. On the other hand, P (VDF-
A paste prepared by mixing 900 g of HFP) in 1500 g of acetone, 900 g of lithium cobaltate LiCoO 2 , 50 g of acetylene black, and 135 g of DBP. This paste was applied to one side of an aluminum lath plate of a current collector, dried, and then rolled by a roll press. Thus, a sheet having a thickness of 100 μm was obtained. This sheet was cut into a positive electrode sheet having a size of 30 mm × 60 mm.

【0013】P(VDF−HFP)120gをアセトン
1000gに溶解した溶液に、炭素質メソフェーズ粒体
を炭素化および黒鉛化して得られた平均粒径25μmの
球状黒鉛粒子(大阪ガス製)750g、導電剤の黒鉛繊
維(大阪ガス製)60g、およびDBP180gを混合
してペーストを得た。ここに用いた黒鉛繊維は、気相成
長法により得た炭素繊維を黒鉛化したものである。この
ペーストを集電体の銅のラス板の両面に塗着し乾燥した
後、ロールプレスにより圧延した。こうして厚さ300
μmのシートを得た。このシートを切断し、サイズ30
mm×60mmの負極シートとした。なお、上記の正極
および負極の集電体は、表面にあらかじめ導電性炭素皮
膜を形成したものを用いた。この導電性炭素皮膜は、ポ
リフッ化ビニリデンのNーメチルピロリドン溶液(濃度
12重量%)にアセチレンブラックを分散した分散液を
集電体表面に60μmの厚さに塗布した後、80℃以上
の温度で乾燥して形成した。
In a solution of 120 g of P (VDF-HFP) dissolved in 1000 g of acetone, 750 g of spherical graphite particles (manufactured by Osaka Gas) having an average particle size of 25 μm obtained by carbonizing and graphitizing carbonaceous mesophase granules, The paste was obtained by mixing 60 g of graphite fiber (manufactured by Osaka Gas) and 180 g of DBP. The graphite fibers used here are obtained by graphitizing carbon fibers obtained by a vapor growth method. This paste was applied to both sides of a copper lath plate of a current collector, dried, and then rolled by a roll press. Thus thickness 300
A μm sheet was obtained. Cut this sheet, size 30
A negative electrode sheet of mm × 60 mm was obtained. The current collectors of the positive electrode and the negative electrode used had a conductive carbon film formed on the surface in advance. This conductive carbon film is formed by applying a dispersion of acetylene black in an N-methylpyrrolidone solution of polyvinylidene fluoride (concentration: 12% by weight) to a thickness of 60 μm on the surface of the current collector and then applying a temperature of 80 ° C. or higher. And dried.

【0014】上記のようにして得た負極シートの両面
に、それぞれセパレータとしてのポリマーシートを介し
て正極シートを配し、120℃に加熱された二本の加圧
ローラー間をとおして加圧することにより一体に熱融着
して電池素子を得た。この電池素子は、次に抽出溶媒の
ジエチルエーテル中に浸漬することによりDBPを抽出
除去した後、50℃で真空乾燥した。DBPの除去によ
りポリマー部分には微細な細孔が形成され、多孔性とな
る。次いで、電解液中に浸漬して電極およびセパレータ
中の細孔内へ電解液を含浸保持させた。電解液には、エ
チレンカーボネートとメチルエチルカーボネートの体積
比1:3の混合溶媒に六フッ化リン酸リチウムLiPF
6を1モル/lの割合で溶解したものを用いた。このよ
うにして調製した電池素子を、絶縁性樹脂フィルム間に
アルミニウムフィルムを配したラミネートフィルムで外
装して厚さ0.6mm、大きさ35mm×60mmの電
池を得た。この電池の正極合剤層中のポリマー含量(電
解液は含めない)は8.7重量%、負極のそれは12.
9重量%であった。
A positive electrode sheet is disposed on both sides of the negative electrode sheet obtained as described above via a polymer sheet as a separator, and pressure is applied between two pressure rollers heated to 120 ° C. To obtain a battery element. This battery element was then immersed in diethyl ether as an extraction solvent to extract and remove DBP, and then dried in vacuum at 50 ° C. By removing DBP, fine pores are formed in the polymer portion, and the polymer becomes porous. Then, the electrode and the separator were immersed in the electrolyte to impregnate and hold the electrolyte in the pores in the separator. For the electrolyte, lithium hexafluorophosphate LiPF was mixed with a mixed solvent of ethylene carbonate and methyl ethyl carbonate at a volume ratio of 1: 3.
6 was dissolved at a rate of 1 mol / l. The battery element thus prepared was packaged with a laminate film having an aluminum film disposed between insulating resin films to obtain a battery having a thickness of 0.6 mm and a size of 35 mm × 60 mm. The polymer content (not including the electrolytic solution) in the positive electrode mixture layer of this battery was 8.7% by weight, and that of the negative electrode was 12.
It was 9% by weight.

【0015】《実施例2》負極の球状黒鉛の平均粒径を
約4、6、10、35または40μmとした他は実施例
1と同様にして電池を作製した。なお、平均粒径約40
μmの球状黒鉛粒子を用いて電極を作製したところ、電
極表面の凹凸による塗着むらが大きく、セパレータと一
体化して電池を作製するのは困難であった。
Example 2 A battery was manufactured in the same manner as in Example 1 except that the average particle size of the spherical graphite of the negative electrode was about 4, 6, 10, 35, or 40 μm. The average particle size is about 40.
When an electrode was manufactured using spherical graphite particles of μm, uneven coating due to unevenness on the electrode surface was large, and it was difficult to manufacture a battery integrally with the separator.

【0016】《比較例》球状黒鉛粒子に代えて平均粒径
約10μmの石油コークス粉末を用いた以外は実施例1
と同様にして電池を作製した。
Comparative Example 1 Example 1 except that petroleum coke powder having an average particle size of about 10 μm was used instead of the spherical graphite particles.
In the same manner as in the above, a battery was produced.

【0017】以上の実施例および比較例の電池を放電レ
ート0.2Cで終止電圧3.0Vまで放電した。それら
電池の放電曲線を図1に示す。図1では、負極に用いた
球状黒鉛またはコークスの粒径で各電池を区別してい
る。また、放電容量は、平均粒径10μmの球状黒鉛を
用いた電池のそれを100%として表している。図1か
ら明らかなように、炭素質メソフェーズ粒体を炭素化お
よび黒鉛化して得られた球状黒鉛粒子を用いた実施例の
電池は、負極に石油コークスを用いた比較例の電池に較
べて、いずれも放電容量が大きくなっている。特に、球
状黒鉛粒子の粒径が大きいものの方が放電容量は大き
い。球状黒鉛の粒径があまり小さいと、嵩が大きくなっ
て粒体の総表面積が大きくなる。このため合剤中のポリ
マー含量を粒径の大きな黒鉛粒子を用いたものと同じに
して電極を作製すると、ポリマーによる球状黒鉛粒子相
互の結着性が不十分となるから、粒体相互の電気的接触
が不安定となり導電性が悪くなる。粒子相互間の結着性
を十分に得るには、合剤中のポリマー量を増やさねばな
らず、そうすると球状黒鉛の充填密度が相対的に低下
し、電極として放電容量は小さくなる。図1に示したと
おり、球状黒鉛の場合、平均粒径が6〜35μmの範囲
で好ましい放電容量が得られる。一方、粒径が大きなも
のは、表面積が小さいため、ポリマーによる結着性は十
分である。しかし、粒径が大きくなると、電極を製造す
る際電極板表面に凹凸の塗着むらが生じやすく、粒子も
脱落しやすくなることからサイクル特性が悪くなる。
The batteries of the above Examples and Comparative Examples were discharged at a discharge rate of 0.2 C to a final voltage of 3.0 V. FIG. 1 shows the discharge curves of these batteries. In FIG. 1, each battery is distinguished by the particle size of the spherical graphite or coke used for the negative electrode. The discharge capacity is expressed as 100% of that of a battery using spherical graphite having an average particle size of 10 μm. As is evident from FIG. 1, the battery of the example using the spherical graphite particles obtained by carbonizing and graphitizing the carbonaceous mesophase granules was compared with the battery of the comparative example using petroleum coke for the negative electrode. In each case, the discharge capacity is large. In particular, the discharge capacity is larger when the diameter of the spherical graphite particles is larger. If the particle size of the spheroidal graphite is too small, the bulk increases and the total surface area of the particles increases. For this reason, if an electrode is produced with the same polymer content in the mixture as that using graphite particles having a large particle size, the binding of the spherical graphite particles to each other by the polymer becomes insufficient, so that the electrical connection between the particles is not sufficient. The electrical contact becomes unstable and the conductivity deteriorates. In order to obtain sufficient binding between the particles, the amount of the polymer in the mixture must be increased, whereby the packing density of the spheroidal graphite decreases relatively, and the discharge capacity as an electrode decreases. As shown in FIG. 1, in the case of spherical graphite, a preferable discharge capacity is obtained when the average particle size is in the range of 6 to 35 μm. On the other hand, those having a large particle diameter have a small surface area, so that the binding property by the polymer is sufficient. However, when the particle size is large, unevenness of coating is likely to be formed on the surface of the electrode plate when the electrode is manufactured, and the particles also easily fall off, resulting in poor cycle characteristics.

【0018】《実施例3》負極およびセパレータシート
は実施例1と同じとし、正極合剤層中のポリマーP(V
DF−HFP)の含量を0、2、5、7、10、15ま
たは25重量%と変えて同様に電池を作製した。ただ
し、正極活物質のコバルト酸リチウムと導電剤のアセチ
レンブラックの量は実施例1と同じとし、DBPの量は
P(VDF−HFP)に対する比を一定(1.5)とし
た。これらをA群電池という。
Example 3 The negative electrode and the separator sheet were the same as in Example 1, and the polymer P (V
DF-HFP) was changed to 0, 2, 5, 7, 10, 15 or 25% by weight to produce a battery in the same manner. However, the amount of lithium cobalt oxide as the positive electrode active material and the amount of acetylene black as the conductive agent were the same as in Example 1, and the amount of DBP was a constant (1.5) with respect to P (VDF-HFP). These are called Group A batteries.

【0019】《実施例4》正極およびセパレータシート
は実施例1と同じとし、負極合剤層中のポリマーP(V
DF−HFP)の含量を0、5、7、10、12、1
5、16または25重量%と変えて同様に電池を作製し
た。ただし、負極活物質の球状黒鉛と導電剤の黒鉛繊維
の量は実施例1と同じとし、DBPの量はP(VDF−
HFP)に対する比を一定(1.5)とした。これらを
B群電池という。
Example 4 The positive electrode and the separator sheet were the same as in Example 1, and the polymer P (V
DF-HFP) content of 0, 5, 7, 10, 12, 1
A battery was prepared in the same manner except that the battery was replaced with 5, 16 or 25% by weight. However, the amounts of the spherical graphite as the negative electrode active material and the graphite fibers as the conductive agent were the same as in Example 1, and the amount of DBP was P (VDF-
HFP) was constant (1.5). These are called group B batteries.

【0020】上記のA群電池およびB群電池の内部抵抗
を1KHzの交流インピーダンス法によって測定した。
その結果をそれぞれ図2および図3に示す。これらの図
から明らかなように、電池の内部抵抗を基準にすると、
電極合剤層中の最適なポリマー含量は、従来の20重量
%に比べてかなり低いところにあることがわかる。すな
わち、内部抵抗の最小値は、正極では5〜10重量%、
負極では7〜16重量%のポリマー含量である。それ自
体導電性を持たないポリマーの配合割合が多いところで
は電池の内部抵抗が高くなり、ポリマーの配合割合が少
ないところでは電極中の活物質相互間の接触が悪くな
る。また、ポリマー含量が少ないと電極とセパレータの
熱融着が十分できないため、電極とセパレータとの間に
隙間が生じてしまう。このため、内部抵抗が高くなり、
安定した電池性能が得られず、甚だしい場合は放電でき
ないこともある。
The internal resistances of the above-mentioned A group batteries and B group batteries were measured by an AC impedance method of 1 KHz.
The results are shown in FIGS. 2 and 3, respectively. As is clear from these figures, based on the internal resistance of the battery,
It can be seen that the optimum polymer content in the electrode mixture layer is much lower than the conventional 20% by weight. That is, the minimum value of the internal resistance is 5 to 10% by weight for the positive electrode,
The negative electrode has a polymer content of 7 to 16% by weight. Where the blending ratio of the polymer having no conductivity per se is high, the internal resistance of the battery increases, and where the blending ratio of the polymer is low, the contact between the active materials in the electrodes becomes poor. On the other hand, if the polymer content is small, the electrode and the separator cannot be sufficiently thermally fused, so that a gap is formed between the electrode and the separator. For this reason, the internal resistance increases,
Stable battery performance cannot be obtained, and in severe cases, discharge may not be possible.

【0021】[0021]

【発明の効果】以上のように、本発明によれば、負極に
用いる球状黒鉛の平均粒径の適切な選択と正・負極合剤
中のポリマー含量の適切な規定によって、容量密度の大
きいポリマー電解質電池を提供することができる。
As described above, according to the present invention, a polymer having a large capacity density can be obtained by appropriately selecting the average particle size of the spherical graphite used for the negative electrode and appropriately specifying the polymer content in the positive / negative electrode mixture. An electrolyte battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるポリマー電解質電池お
よび比較例の電池の放電特性を示す図である。
FIG. 1 is a diagram showing discharge characteristics of a polymer electrolyte battery according to an example of the present invention and a battery of a comparative example.

【図2】正極のポリマー含量と電池の内部抵抗との関係
を示す図である。
FIG. 2 is a diagram showing the relationship between the polymer content of the positive electrode and the internal resistance of the battery.

【図3】負極のポリマー含量と電池の内部抵抗との関係
を示す図である。
FIG. 3 is a diagram showing the relationship between the polymer content of a negative electrode and the internal resistance of a battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 信夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuo Eda 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活物質のリチウム含有酸化物および有機
電解液を吸収保持するポリマーを5〜10重量%含み集
電体に支持された正極合剤層、有機電解液を吸収保持す
るポリマーからなる多孔性のセパレータ、活物質の黒鉛
質粒体および有機電解液を吸収保持するポリマーを7〜
16重量%含み集電体に支持された負極合剤層、並びに
前記正極合剤層、負極合剤層およびセパレータに吸収保
持された有機電解液を具備し、前記黒鉛質粒体が、炭素
質メソフェーズ粒体を炭素化し、次いで黒鉛化した平均
粒径6〜35μmの球状黒鉛であることを特徴とする有
機電解質電池。
1. A positive electrode mixture layer containing 5 to 10% by weight of a lithium-containing oxide as an active material and a polymer that absorbs and retains an organic electrolyte, and is supported by a current collector, and includes a polymer that absorbs and retains an organic electrolyte. The porous separator, the polymer that absorbs and retains the graphite material of the active material and the organic electrolyte are 7 to
A negative electrode mixture layer containing 16% by weight and supported by a current collector; and an organic electrolyte absorbed and held by the positive electrode mixture layer, the negative electrode mixture layer, and the separator, wherein the graphitic particles are formed of carbonaceous mesophase. An organic electrolyte battery comprising spherical graphite having an average particle diameter of 6 to 35 μm obtained by carbonizing granules and then graphitizing.
【請求項2】 前記黒鉛質粒体が、X線回折における格
子面間隔が3.365〜3.390オングストローム、
c軸方向の結晶子の大きさが200〜650オングスト
ローム、アルゴンレーザ・ラマン分光における1580
cm-1のピーク強度I1580に対する1360cm-1のピ
ーク強度I1360の比I1360/1580が0.20〜0.4
0の範囲にある請求項1記載の有機電解質電池。
2. The graphitic granules have a lattice spacing in X-ray diffraction of 3.365 to 3.390 angstroms,
The crystallite size in the c-axis direction is 200 to 650 Å, and 1580 in argon laser Raman spectroscopy.
The ratio I 1360 / I 1580 of the peak intensity I 1360 at 1360 cm −1 to the peak intensity I 1580 at cm −1 is 0.20 to 0.4.
The organic electrolyte battery according to claim 1, which is in a range of 0.
【請求項3】 前記ポリマーがフッ化ビニリデンと六フ
ッ化プロピレンの共重合体からなり、前記負極合剤層中
のポリマー含量が7〜16重量%、前記正極合剤層中の
活物質がコバルト酸リチウムであり、かつポリマー含量
が5〜10重量%である請求項2記載の有機電解質電
池。
3. The polymer according to claim 1, wherein the polymer is a copolymer of vinylidene fluoride and propylene hexafluoride, the polymer content in the negative electrode mixture layer is 7 to 16% by weight, and the active material in the positive electrode mixture layer is cobalt. 3. The organic electrolyte battery according to claim 2, wherein the battery is lithium oxide and has a polymer content of 5 to 10% by weight.
JP24566998A 1998-02-18 1998-08-31 Organic electrolyte battery Expired - Fee Related JP3853083B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24566998A JP3853083B2 (en) 1998-02-18 1998-08-31 Organic electrolyte battery
US09/248,914 US6579649B2 (en) 1998-02-18 1999-02-09 Polymer electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-36150 1998-02-18
JP3615098 1998-02-18
JP24566998A JP3853083B2 (en) 1998-02-18 1998-08-31 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11307082A true JPH11307082A (en) 1999-11-05
JP3853083B2 JP3853083B2 (en) 2006-12-06

Family

ID=26375201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24566998A Expired - Fee Related JP3853083B2 (en) 1998-02-18 1998-08-31 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3853083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073537A1 (en) * 2002-02-26 2003-09-04 Sony Corporation Nonaqueous electrolyte battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073537A1 (en) * 2002-02-26 2003-09-04 Sony Corporation Nonaqueous electrolyte battery
CN1316651C (en) * 2002-02-26 2007-05-16 索尼公司 Nonaqueous electrolyte battery
US7749659B2 (en) 2002-02-26 2010-07-06 Sony Corporation Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP3853083B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
US7413829B2 (en) Lithium secondary battery
JP4626105B2 (en) Lithium ion secondary battery
US6051343A (en) Polymeric solid electrolyte and lithium secondary cell using the same
US8470473B2 (en) Electrode and electrochemical device
US20050241137A1 (en) Electrode, electrochemical device, and method of making electrode
US20090123839A1 (en) Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
WO2003088404A1 (en) Nonaqueous electrolyte secondary battery
JP3471238B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2001291517A (en) Positive active material and nonaqueous electrolyte secondary battery
JP4283598B2 (en) Non-aqueous electrolyte solution and lithium ion secondary battery
JP2023520192A (en) secondary battery
JP2008097879A (en) Lithium ion secondary battery
US6579649B2 (en) Polymer electrolyte battery
WO2018059180A1 (en) High-power, high-energy chemical power supply and preparation method therefor
WO2020184502A1 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP5357518B2 (en) ELECTRODE BODY FOR STORAGE ELEMENT AND NON-AQUEOUS LITHIUM TYPE STORAGE ELEMENT CONTAINING THE SAME
JP4840302B2 (en) Separator and battery using the same
JP7466981B2 (en) Negative electrode and secondary battery including the same
JP3508514B2 (en) Organic electrolyte battery
JP2002260663A (en) Nonaqueous electrolyte secondary battery
JPH11307084A (en) Organic electrolyte battery
JPH09293533A (en) Nonaqueous electrolyte secondary battery
JPH10154415A (en) Polymer solid-state electrolyte, lithium secondary battery using it, and electric double layer capacitor
JP6832474B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
JP2000195550A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees