JPH11304998A - Ceramic thermoelectric conversion element, its production method and its contacting method - Google Patents

Ceramic thermoelectric conversion element, its production method and its contacting method

Info

Publication number
JPH11304998A
JPH11304998A JP11663898A JP11663898A JPH11304998A JP H11304998 A JPH11304998 A JP H11304998A JP 11663898 A JP11663898 A JP 11663898A JP 11663898 A JP11663898 A JP 11663898A JP H11304998 A JPH11304998 A JP H11304998A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
type
sic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11663898A
Other languages
Japanese (ja)
Other versions
JP3565544B2 (en
Inventor
Shintaro Ishiyama
新太郎 石山
Kiyoshi Fukaya
清 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP11663898A priority Critical patent/JP3565544B2/en
Publication of JPH11304998A publication Critical patent/JPH11304998A/en
Application granted granted Critical
Publication of JP3565544B2 publication Critical patent/JP3565544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize high efficiency thermoelectric conversion generation for a long time without being damaged by radiation, by arranging a ceramic thermoelectric conversion element in a pressure vessel and high temperature pipes of a reactor. SOLUTION: This thermoelectric conversion element is capable of highly efficient thermoelectric conversion even in a high temperature and strong radiation location. It is made of a heat-resistive ceramic material of which electric resistance is 10 Ωcm or less and the electromotive force is a few mV or more and the material is porous having a low heat conductance and a high coefficient of performance Z. P type thermoelectric conversion element is produced by sintering SiC + boron carbide (1 to 100 wt.%) in argon or nitrogen gas environment. N type thermoelectric conversion element is produced by sintering SiC + C (1 to 10 wt.%) or Si (1 to 10 wt.%) in argon or nitrogen gas environment. The thermoelectric conversion element and the lead wire are connected by using Ti group braze.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、200℃以上の廃
熱を高効率で電気に変換して再利用できることから、一
般産業廃熱や原子力発電所、高温ガス炉等の高温部から
の熱を有効に電力に変換利用する際に使用されるセラミ
ック製の熱電変換素子、その製造方法及びその接合方法
に関する。
BACKGROUND OF THE INVENTION The present invention is capable of converting waste heat of 200.degree. C. or more to electricity with high efficiency and reusing the same. Therefore, the present invention relates to general industrial waste heat and heat from high temperature parts such as nuclear power plants and high temperature gas furnaces. TECHNICAL FIELD The present invention relates to a thermoelectric conversion element made of ceramic used for effectively converting and converting electric power into electric power, a manufacturing method thereof, and a joining method thereof.

【0002】[0002]

【従来の技術】従来の400℃以上の高温熱の熱電気変
換素子用合金を原子炉熱変換に用いる場合下記の問題が
ある。即ち、原子炉を高温熱源とした場合、原子炉から
の放射線により、従来材である熱電変換素子合金では、
放射線損傷による材料特性の劣化や素子用合金のメン
テナンスの際の放射化による作業員の被曝の問題が考
えられる。また、高温雰囲気での熱電変換素子自身の
高温酸化による材料劣化と、さらには従来材での根本的
問題として高温での発電効率が低い点が上げられる。
2. Description of the Related Art When a conventional alloy for a thermoelectric conversion element having a high temperature of 400.degree. That is, when the nuclear reactor is a high-temperature heat source, the radiation from the nuclear reactor causes the conventional thermoelectric conversion element alloy to:
The problem of deterioration of material properties due to radiation damage and exposure of workers due to activation during maintenance of element alloys may be considered. In addition, material degradation due to high-temperature oxidation of the thermoelectric conversion element itself in a high-temperature atmosphere and a fundamental problem with conventional materials include low power generation efficiency at high temperatures.

【0003】[0003]

【発明が解決しようとする課題】本発明では、SiC
(P型)/SiC(N型)、及びSiC(N型)/B4
C(P型)セラミックス製のP/N型熱電変換素子を開
発することにより、上記の従来法に関わる問題点につい
て下記の対策を講じてある。
SUMMARY OF THE INVENTION In the present invention, SiC
(P-type) / SiC (N-type) and SiC (N-type) / B 4
By developing a P / N type thermoelectric conversion element made of C (P type) ceramics, the following countermeasures have been taken for the above-mentioned problems associated with the conventional method.

【0004】即ち、上記の放射線損傷については、S
iC等の放射線損傷に強い特性を有する材料を基本材料
に用いることによって熱電変換素子の長寿命化を図って
いる。
That is, regarding the above radiation damage, S
By using a material having a property resistant to radiation damage such as iC as a basic material, the life of the thermoelectric conversion element is extended.

【0005】さらに、上記の放射化による作業員の被
曝についても、放射化の極めて少ないSiC等のセラミ
ックス製の熱電変換素子を用いている。また、高温雰囲
気での熱電変換素子自身の上記の高温酸化性について
は、高温での耐酸化性の優れたSiC等のセラミックス
製の熱電変換素子を用いている。
[0005] Further, with respect to the exposure of workers due to the above-mentioned activation, a thermoelectric conversion element made of ceramic such as SiC, which has very little activation, is used. Regarding the high-temperature oxidation property of the thermoelectric conversion element itself in a high-temperature atmosphere, a thermoelectric conversion element made of ceramics such as SiC having excellent oxidation resistance at high temperatures is used.

【0006】上記の発電効率については、本発明のS
iC等のセラミック製の熱電変換素子材料では、高温に
なるに従って材料の電気抵抗が合金とは逆に減少(改
善)していく特性を有するとともに、放射線照射によっ
ても同じく電気抵抗が減少していることになる。従っ
て、原子炉を熱源とした場合、原子炉から発生する高温
熱とともに放射線照射により電気変換効率が向上するこ
とになる。
[0006] Regarding the power generation efficiency described above, S
The thermoelectric conversion element material made of ceramic such as iC has a characteristic that the electric resistance of the material decreases (improves) in reverse to the alloy as the temperature increases, and the electric resistance also decreases by irradiation with radiation. Will be. Therefore, when the nuclear reactor is used as the heat source, the electric conversion efficiency is improved by the radiation irradiation together with the high-temperature heat generated from the nuclear reactor.

【0007】[0007]

【課題を解決するための手段】従来、SiC等のセラミ
ック製材料は、耐熱構造材料や機能材料(絶縁材料)と
してしか利用されなかったのに対して、本発明は、Si
C等のセラミック製材料が熱電変換素子(又は半導体)
に代わり得るとの特性を利用して電気材料としての新し
い利用分野を提案している。本発明は原子力分野のみな
らず一般利用に展開することになればSiC等のセラミ
ック製材料の普及、及び環境汚染防止等における効果が
期待できる。
Conventionally, ceramic materials such as SiC have been used only as heat-resistant structural materials or functional materials (insulating materials).
Ceramic materials such as C are thermoelectric conversion elements (or semiconductors)
It proposes a new field of application as an electrical material by utilizing the characteristic that it can be used instead of. The present invention can be expected to be effective not only in the field of nuclear power but also in general use, in terms of the spread of ceramic materials such as SiC and the effect of preventing environmental pollution.

【0008】即ち、本発明は、原子炉等の高温で放射線
が強い場所で、高効率で熱−電気変換できる熱電変換素
子であり、その電気抵抗が10オームcm以下の抵抗で
かつ起電力が数mV以上の耐熱性セラミックス材で製作
される熱電変換素子であり、それが多孔質で熱伝導率が
低く成績係数Zの高いものである。
That is, the present invention relates to a thermoelectric conversion element capable of performing thermo-electric conversion with high efficiency in a place such as a nuclear reactor where the temperature is high and radiation is strong, the electric resistance of which is less than 10 ohm cm and the electromotive force is lower. A thermoelectric conversion element made of a heat-resistant ceramic material of several mV or more, which is porous, has a low thermal conductivity and a high coefficient of performance Z.

【0009】本発明のP型熱電変換素子は、SiC+ボ
ロンカーバイト(1〜100wt%)をアルゴン又は窒
素ガス雰囲気中で焼結することにより製造され、又本発
明のN型熱電変換素子は、SiC+C(1〜10wt
%)又はSi(1〜10wt%)をアルゴン雰囲気又は
窒素ガス雰囲気中で焼結することにより製造される。そ
の熱電変換素子とリード線間はTi系ロウ材を使用して
とを接合される。
The P-type thermoelectric conversion element of the present invention is manufactured by sintering SiC + boron carbide (1 to 100 wt%) in an argon or nitrogen gas atmosphere. SiC + C (1-10wt
%) Or Si (1 to 10 wt%) in an argon atmosphere or a nitrogen gas atmosphere. The thermoelectric conversion element and the lead wire are joined together using a Ti-based brazing material.

【0010】[0010]

【発明の実施の形態】なお、表1には、上記SiC系の
出発原料を使用した場合の焼結体の密度、焼結条件、P
/N型判定結果及ぶ室温における電気抵抗が示されてい
る。出発原料を2273K以下で焼結するとN型、24
73K以上ではP型の熱電変換素子(半導体)的性質を
示す。しかしながら、室温における電気抵抗値は高い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Table 1 shows the density, sintering conditions and P of the sintered body when the above-mentioned SiC-based starting material was used.
The / N type determination result and the electrical resistance at room temperature are shown. When the starting material is sintered at 2273K or lower, it becomes N-type, 24
Above 73K, it exhibits the properties of a P-type thermoelectric conversion element (semiconductor). However, the electrical resistance at room temperature is high.

【0011】[0011]

【表1】 [Table 1]

【0012】図1には、各種混合粉末の焼結温度、電気
抵抗及びP/N型特性が示されており、図1からみる
と、焼結温度が上がるに従ってN型からP型に、且つβ
からαに変態するが、それにボロンカーバイト(B
4C)を添加することによりP型の電気抵抗が下がり、
また、CやSiを添加した場合には2475Kの高温焼
結で低抵抗のN型半導体が製作できることが分かる。こ
れらの結果から、P/N型熱電変換素子を効率的に製作
するための方法として下記の手順が考えられる。
FIG. 1 shows the sintering temperature, electric resistance and P / N type characteristics of various mixed powders. From FIG. 1, it can be seen that as the sintering temperature increases, the type changes from N type to P type, and β
To α, but boron carbide (B
4 ) By adding C), the electrical resistance of the P-type decreases,
Also, it can be seen that when C or Si is added, an N-type semiconductor having a low resistance can be manufactured by sintering at a high temperature of 2475K. From these results, the following procedure is considered as a method for efficiently manufacturing a P / N type thermoelectric conversion element.

【0013】超微粒β−SiC粉末+ボロンカーバイ
ト(1〜10wt%)粉末を成形プレス容器に入れ、次
にその上に超微粒β−SiC粉末+Si(1〜10wt
%)の混合粉末を入れ、プレスして成型体を製作する。
The ultrafine β-SiC powder + boron carbide (1-10 wt%) powder is put into a molding press container, and then the ultrafine β-SiC powder + Si (1-10 wt%) is placed thereon.
%) And pressed to produce a molded body.

【0014】その成型体を2473Kで焼結すること
によってP型とN型が直接接合したP/N熱電素子を作
ることができる。
By sintering the molded body at 2473 K, a P / N thermoelectric element in which a P-type and an N-type are directly joined can be manufactured.

【0015】図2には、P型熱電変換素子における混合
粉末中のボロンカーバイトの添加量、焼結温度及び焼結
体の電気抵抗が示されており、図2から、その混合粉末
中のボロン量を増やすと焼結体の電気抵抗が低下り、ま
た焼結温度を高温化すると電気抵抗が下がることが示さ
れている。
FIG. 2 shows the addition amount of boron carbide in the mixed powder, the sintering temperature and the electric resistance of the sintered body in the P-type thermoelectric conversion element. It is shown that when the amount of boron is increased, the electric resistance of the sintered body decreases, and when the sintering temperature is increased, the electric resistance decreases.

【0016】図3には、N型熱電変換素子の高温におけ
る電気抵抗の変化と温度との関係が示されており、図3
から、高温になるに従ってその電気抵抗が下がる傾向が
みられる。
FIG. 3 shows the relationship between the change in the electric resistance of the N-type thermoelectric conversion element at a high temperature and the temperature.
Therefore, the electric resistance tends to decrease as the temperature increases.

【0017】図4には、製作したSiC(N型)/B4
C(P型)のP/N型熱電変換素子の高温における起電
力特性が示されており、図4から、製作したSiC(N
型)/B4C(P型)のP/N型熱電変換素子では、温
度が上がるに従って起電圧が上昇する傾向が認められ
る。また、600Kで約100mVの高い起電圧を観測
した。以下、本発明を実施例に基づいて具体的に説明す
る。
FIG. 4 shows the fabricated SiC (N-type) / B4
The electromotive force characteristics of the C (P-type) P / N-type thermoelectric conversion element at a high temperature are shown, and FIG.
(Type) / B 4 C (p-type) P / N-type thermoelectric conversion element has a tendency to increase the electromotive voltage as the temperature increases. In addition, a high electromotive voltage of about 100 mV was observed at 600K. Hereinafter, the present invention will be specifically described based on examples.

【0018】[0018]

【実施例】超微細SiC(β型)粉末(粒径<1ミクロ
ンm)を用いて下記焼結プロセス処理を実施することに
より、表1に示すようなSiCのP型及びN型熱電変換
素子(半導体)が得られることを明らかにした。
EXAMPLE A P-type and N-type thermoelectric conversion element of SiC as shown in Table 1 was obtained by performing the following sintering process using ultra-fine SiC (β type) powder (particle size <1 μm). (Semiconductor) was obtained.

【0019】(焼結プロセス処理) プリフォーム;超微粒β−SiC粉末を成形プレスで
直径φ15×厚み10mmt以上のプリフォーム材を大
気中で2000kgfで15分間以上加圧成形した。
(Sintering Process Treatment) Preform: An ultrafine β-SiC powder was formed by pressing a preform material having a diameter of φ15 and a thickness of 10 mmt or more at 2,000 kgf for 15 minutes or more in the atmosphere by a molding press.

【0020】成形;上記の処理材をゴム等の不浸透
材で覆って、静水圧200MPaに15分以上加えて成
形した。
Molding: The above treated material was covered with an impervious material such as rubber and molded by applying a hydrostatic pressure of 200 MPa for 15 minutes or more.

【0021】焼結;この成形体をアルゴン雰囲気(圧
力大気圧〜5kg/cm2)で(1)N型熱電変換素子
(半導体)を作る際は、2000℃〜2100℃で、
(2)P型熱電変換素子(半導体)を作る場合は220
0℃以上で焼結した。この際の昇温速度は、5〜10℃
/分、最高温度保持時間20分〜5時間、降温速度1〜
2℃/分であった。
Sintering: (1) When forming the N-type thermoelectric conversion element (semiconductor) in an argon atmosphere (atmospheric pressure to 5 kg / cm 2 ) at 2000 to 2100 ° C.
(2) 220 for making a P-type thermoelectric conversion element (semiconductor)
Sintered above 0 ° C. The heating rate at this time is 5 to 10 ° C.
/ Min, maximum temperature holding time 20 minutes to 5 hours, temperature drop rate 1
2 ° C./min.

【0022】表1では、各P及びN型の室温における電
気抵抗計測値も示してある。これによると、製作した材
料はそれぞれ10kオーム以上の高い電気抵抗を示して
いる。そこで、室温における電気抵抗を下げるために下
記添加材を添加することにより作成した。
Table 1 also shows the measured electrical resistance of each P and N type at room temperature. According to this, each of the manufactured materials has a high electric resistance of 10 kΩ or more. Therefore, in order to reduce the electric resistance at room temperature, the following additive was added to make the electrode.

【0023】P型熱電変換素子を得る場合: 超微粒β
−SiC粉末+ボロンカーバイト(1〜100wt%)
をアルゴン若しくは窒素雰囲気中で焼結処理する。その
焼結条件は上記〜に従う。
When a P-type thermoelectric conversion element is obtained: ultra-fine particles β
-SiC powder + boron carbide (1 to 100 wt%)
Is sintered in an argon or nitrogen atmosphere. The sintering conditions are as described above.

【0024】N型熱電変換素子を得る場合: 超微粒子
β−SiC粉末を窒素雰囲気中で焼結する。超微粒β−
SiC粉末+C(1〜10wt%)をアルゴン若しくは
窒素雰囲気中で焼結する。又は超微粒β−SiC粉末+
Si(1〜10wt%)をアルゴン若しくは窒素雰囲気
中で焼結する。その焼結条件は上記〜に従う。
When obtaining an N-type thermoelectric conversion element: Ultrafine β-SiC powder is sintered in a nitrogen atmosphere. Ultrafine β-
The SiC powder + C (1 to 10 wt%) is sintered in an argon or nitrogen atmosphere. Or ultrafine β-SiC powder +
Si (1 to 10 wt%) is sintered in an argon or nitrogen atmosphere. The sintering conditions are as described above.

【0025】ただし、超微粒β−SiC粉末+Cをアル
ゴン雰囲気中で焼結する場合は、SiC粉末:C=1:
5〜10の混合粉末を作り、1時間アルゴン雰囲気中で
その粉末を2200℃で処理し、SiCをβからαに構
造変換させ、その粉末を大気中で500〜800℃で空
気酸化させ、粉末中のCを酸化させた粉末を出発材料と
して用いる。
However, when sintering ultrafine β-SiC powder + C in an argon atmosphere, SiC powder: C = 1:
A mixed powder of 5 to 10 is prepared, and the powder is treated at 2200 ° C. in an argon atmosphere for 1 hour to convert the structure of SiC from β to α, and the powder is air-oxidized in air at 500 to 800 ° C. The powder obtained by oxidizing C therein is used as a starting material.

【0026】P/N型焼結体のリード線の接合は、焼結
体に対して銅製のリード線を接合する必要がある。この
ため、P/N型焼結体のP及びN型それぞれの側に銅線
を下記要領に従ってろう付けする。
For joining the lead wire of the P / N type sintered body, it is necessary to join a copper lead wire to the sintered body. For this purpose, a copper wire is brazed to each of the P and N type sides of the P / N type sintered body according to the following procedure.

【0027】PないしN側とリード線の間にTi+Cr
(1〜30wt%)系ろう材を挿入して、真空中で60
0〜1000℃の温度で10kgf〜100kgfまで
のホットプレスを行い接合を行う。
Ti + Cr between the P or N side and the lead wire
(1-30 wt%)-based brazing material is inserted, and the
A hot press of 10 kgf to 100 kgf is performed at a temperature of 0 to 1000 ° C. to perform joining.

【0028】[0028]

【発明の効果】本発明のSiC(P型)/SiC(N
型)等のセラミックス製熱電変換素子を原子炉(例え
ば、850℃以上の熱源となる原子炉炉心の周囲、高温
ガス炉、軽水炉、宇宙用原子炉等の炉心の周囲)の圧力
容器内及び高温配管に配置することにより、放射線損傷
を受けることなく高効率の熱電変換発電が長時間可能と
なる。
According to the present invention, SiC (P type) / SiC (N
The thermoelectric conversion element made of ceramics, such as a mold, is placed in a pressure vessel of a reactor (for example, around a reactor core serving as a heat source of 850 ° C. or higher, around a core of a high-temperature gas reactor, a light water reactor, a space reactor, etc.) and at a high temperature. By arranging it in a pipe, high-efficiency thermoelectric conversion power generation can be performed for a long time without radiation damage.

【0029】また、一般熱電としては、酸化雰囲気のボ
イラー容器の内外、家庭内でのヒーター等の熱源の周り
に配置するだけで発電や温度センサー等での利用が可能
となる。また、逆に本発明の熱電変換素子に電気を流す
ことによる熱電冷却素子として冷熱媒の冷却に利用する
ことも可能である。
Further, as general thermoelectric, it is possible to use it for power generation, temperature sensor and the like simply by arranging it inside and outside the boiler vessel in an oxidizing atmosphere and around a heat source such as a heater in a home. Conversely, it is also possible to utilize the thermoelectric conversion element of the present invention as a thermoelectric cooling element for cooling a cooling medium by flowing electricity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 各種混合粉末の焼結温度、電気抵抗及びP/
N型特性が示されている。
Fig. 1 Sintering temperature, electric resistance and P /
N-type characteristics are shown.

【図2】 P型熱電変換素子における混合粉末中のボロ
ンカーバイトの添加量、焼結温度及び焼結体の電気抵抗
が示されている。
FIG. 2 shows the addition amount of boron carbide in a mixed powder, a sintering temperature, and an electric resistance of a sintered body in a P-type thermoelectric conversion element.

【図3】 N型熱変換素子の高温における電気抵抗の変
化と温度との関係が示されている。
FIG. 3 shows a relationship between a change in electric resistance of an N-type heat conversion element at a high temperature and a temperature.

【図4】 製作したSiC(N型)/B4C(P型)の
P/N型熱電変換素子の高温における起電力特性が示さ
れている。
FIG. 4 shows an electromotive force characteristic of a manufactured SiC (N-type) / B4C (P-type) P / N-type thermoelectric conversion element at a high temperature.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原子炉等の高温で放射線が強い場所で、
高効率で熱−電気変換できる熱電変換素子。
1. In a high temperature and high radiation place such as a nuclear reactor,
Thermoelectric conversion element that can perform thermo-electric conversion with high efficiency.
【請求項2】 電気抵抗が、10オームcm以下の抵抗
でかつ起電力が数mV以上の耐熱性セラミックス材で製
作される請求項1に記載の熱電変換素子。
2. The thermoelectric conversion element according to claim 1, wherein the thermoelectric conversion element is made of a heat-resistant ceramic material having an electric resistance of 10 ohm cm or less and an electromotive force of several mV or more.
【請求項3】 多孔質で熱伝導率が低く成績係数Zの高
い請求項3記載の熱電変換素子。
3. The thermoelectric conversion element according to claim 3, wherein the thermoelectric conversion element is porous and has a low thermal conductivity and a high coefficient of performance Z.
【請求項4】 SiC+ボロンカーバイト(1〜100
wt%)をアルゴン又は窒素ガス雰囲気中で焼結するこ
とによりP型熱電変換素子を製造する方法。
4. SiC + boron carbide (1 to 100
(wt%) in an argon or nitrogen gas atmosphere to produce a P-type thermoelectric conversion element.
【請求項5】 SiC+C(1〜10wt%)又はSi
(1〜10wt%)をアルゴン雰囲気又は窒素ガス雰囲
気中で焼結することによりN型熱電変換素子を製造する
方法。
5. SiC + C (1-10 wt%) or Si
(1 to 10 wt%) in an argon atmosphere or a nitrogen gas atmosphere to manufacture an N-type thermoelectric conversion element.
【請求項6】 Ti系ロウ材を使用して熱電変換素子と
リード線間とを接合する方法。
6. A method for joining a thermoelectric conversion element and a lead wire using a Ti-based brazing material.
JP11663898A 1998-04-27 1998-04-27 Method for manufacturing ceramic thermoelectric conversion element used in high temperature and high radiation locations Expired - Fee Related JP3565544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11663898A JP3565544B2 (en) 1998-04-27 1998-04-27 Method for manufacturing ceramic thermoelectric conversion element used in high temperature and high radiation locations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11663898A JP3565544B2 (en) 1998-04-27 1998-04-27 Method for manufacturing ceramic thermoelectric conversion element used in high temperature and high radiation locations

Publications (2)

Publication Number Publication Date
JPH11304998A true JPH11304998A (en) 1999-11-05
JP3565544B2 JP3565544B2 (en) 2004-09-15

Family

ID=14692166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11663898A Expired - Fee Related JP3565544B2 (en) 1998-04-27 1998-04-27 Method for manufacturing ceramic thermoelectric conversion element used in high temperature and high radiation locations

Country Status (1)

Country Link
JP (1) JP3565544B2 (en)

Also Published As

Publication number Publication date
JP3565544B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
JP5212937B2 (en) Thermoelectric conversion element, thermoelectric module including the thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
JPWO2009008127A1 (en) Thermoelectric conversion module, heat exchanger using the same, thermoelectric temperature control device, and thermoelectric power generator
CN101765253B (en) Method for preparing SiC heating element having long service life
CN107046739A (en) High-power silicon nitride ceramics heating plate and its interior hard outer soft preparation method
Börner et al. Development of laser-based joining technology for the fabrication of ceramic thermoelectric modules
JP2009081178A (en) Method of manufacturing thermoelectric conversion module
Park et al. Thermoelectric properties of La-filled CoSb 3 skutterudites
JP3565544B2 (en) Method for manufacturing ceramic thermoelectric conversion element used in high temperature and high radiation locations
JP2010098035A (en) Thermoelectric conversion element
Conze et al. Manufacturing processes for TiO x-based thermoelectric modules: from suboxide synthesis to module testing
JP2507151B2 (en) Conductive ceramics sintered body and method for producing the same
JP6365951B2 (en) Thermoelectric material manufacturing method
US20130256608A1 (en) METAL MATERIAL HAVING n-TYPE THERMOELECTRIC CONVERSION CAPABILITY
JP4904452B2 (en) Self-forming method of environmentally resistant coating on semiconductor thermoelectric materials
JP2003304006A (en) Thermoelectric conversion module and heat exchanger using the same
JP2014049737A (en) METALLIC MATERIAL HAVING n-TYPE THERMOELECTRIC CONVERSION PERFORMANCE
Schilz et al. Bismuth-telluride/iron-disilicide segmented thermoelectric elements: patterning, preparation and properties
Gan et al. Joining highly conductive and oxidation resistant silver-based electrode materials to silicon for high temperature thermoelectric energy conversions
JP6778644B2 (en) Manufacturing method of conductive silicon carbide sintered body and conductive silicon carbide sintered body
JP3526558B2 (en) Thermoelectric conversion module and heat exchanger using the same
JPH05500435A (en) silicon heating element
CN109817800A (en) A kind of preparation method of electrode and NbFeSb/Mo thermoelectricity knot
WO2024152449A1 (en) Preparation method for high-thermal-stability and low-contact-resistance barrier layer based on mgagsb-based thermoelectric material
JP3706881B2 (en) Method for producing silicon carbide sintered material
JPH0794787A (en) Thrmoelectric transducer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees