JPH11304988A - Dissolution tank - Google Patents

Dissolution tank

Info

Publication number
JPH11304988A
JPH11304988A JP10594098A JP10594098A JPH11304988A JP H11304988 A JPH11304988 A JP H11304988A JP 10594098 A JP10594098 A JP 10594098A JP 10594098 A JP10594098 A JP 10594098A JP H11304988 A JPH11304988 A JP H11304988A
Authority
JP
Japan
Prior art keywords
tank
solution
cylinder
dissolution tank
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10594098A
Other languages
Japanese (ja)
Inventor
Kenji Murasawa
憲治 邨沢
Toshio Funakoshi
俊夫 船越
Shozo Taguchi
省三 田口
Tadaaki Koga
忠彰 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10594098A priority Critical patent/JPH11304988A/en
Publication of JPH11304988A publication Critical patent/JPH11304988A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dissolution tank capable of surely stirring solution liquid with a simple structure, by using a small diameter cylindrical dissolution tank dissolving hardly soluble material. SOLUTION: A dissolution tank 1 is provided with a small diameter cylindrical primary cylinder 2 and a secondary cylinder 3. The primary cylinder 2 is provided at the side wall with a shoot 5 for introducing hardly soluble nuclear fuel inside and an anode 4 dipped in the solution at the lower part. In the secondary cylinder 3, a diaphragm 6 and a cathode 7 arranged in the diaphragm are provided. The primary cylinder 2 and the secondary cylinder 3 are connected by a pair of upper connection pipes 8. The dissolution tank 1 is provided with a circulation pump 11 outside the two cylinders 2 and 3, and a lower connection pipe 14 is provided in between the bottom of the secondary cylinder 3 and the circulation pump 11. The circulation pump 11 circulates the solution 12 from the secondary cylinder 3 side to the primary cylinder 2 and stirs and unifies the solution 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は限られた空間の中で
原子燃料等の難溶性物質を電解酸化法にて溶解し、酸化
剤(AgNO3 )の原子価を電解酸化法にて調整する溶
解槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention dissolves a sparingly soluble substance such as a nuclear fuel in a limited space by an electrolytic oxidation method, and adjusts the valence of an oxidizing agent (AgNO 3 ) by an electrolytic oxidation method. It relates to a dissolution tank.

【0002】[0002]

【従来の技術】図2は、従来の電解溶解槽51を示す。
図示のように、電解溶解槽51は、1次側筒52と2次
側筒53とを備え、これらは各々の上部と下部に設けた
一対の管54,55により連通している 1次側筒52には陰極室56を配設し、陰極室56は多
孔質の電気絶縁性材料壁で形成している。陰極室56内
には、陰極57を設けるとともに、液面検出計58と電
解質を陰極室56中に供給する管59を備えている。陰
極室56は、陰極57で発生したガス状物質を洗浄して
放出するガス洗浄塔60に接続している。1次側筒52
には、陽極62と、モーター63の駆動により回転し、
1次及び2次側筒52,53内の溶液混合物を攪拌する
タービン64を設けている。
2. Description of the Related Art FIG. 2 shows a conventional electrolytic dissolving tank 51.
As shown in the figure, the electrolytic dissolving tank 51 includes a primary side cylinder 52 and a secondary side cylinder 53, and these are communicated by a pair of pipes 54 and 55 provided on the upper and lower parts, respectively. A cathode chamber 56 is provided in the cylinder 52, and the cathode chamber 56 is formed of a porous electrically insulating material wall. In the cathode chamber 56, a cathode 57 is provided, and a liquid level detector 58 and a tube 59 for supplying an electrolyte into the cathode chamber 56 are provided. The cathode chamber 56 is connected to a gas cleaning tower 60 that cleans and releases gaseous substances generated at the cathode 57. Primary side cylinder 52
Rotates by the drive of the anode 62 and the motor 63,
A turbine 64 for stirring the solution mixture in the primary and secondary cylinders 52 and 53 is provided.

【0003】2次側筒53には、溶液混合物を冷却する
コイル65を設けるとともに、難溶性物質を2次側筒5
3に導入する供給ファンネル66を配設している。さら
に、2次側筒53には、反応終結検出装置68、反応剤
であるAgOとHNO3 導入する導入用管69及び、1
次及び2次側筒52,53の攪拌等を行う生成溶液排出
用装置70を配設している。また、両側筒52,53の
間には中性子補修材料であるスクリーン61を取付けて
いる。
The secondary cylinder 53 is provided with a coil 65 for cooling the solution mixture, and is provided with a hardly soluble substance.
3 is provided with a supply funnel 66. Further, in the secondary side cylinder 53, a reaction termination detecting device 68, an introduction tube 69 for introducing AgO and HNO 3 as reactants, and 1
A device 70 for discharging a produced solution for stirring the secondary and secondary cylinders 52 and 53 is provided. A screen 61, which is a neutron repair material, is attached between the two cylinders 52, 53.

【0004】このような構造により電解溶解槽51は、
溶解すべき二酸化プルトニウム及び二酸化ネプツニウム
をファンネル66から硝酸水溶液を含む電解セル中に導
入し、その溶液中に酸化銀を添加する。タービン64は
回転することにより、陽極62周辺の溶液を攪拌して、
溶液混合物を図中の矢印に沿って、1次側筒52から連
通管54を介して2次側筒53へ、さらに2次側筒53
から連通管55を介して1次側筒52へ循環させること
ができる。
With such a structure, the electrolytic dissolving tank 51
Plutonium dioxide and neptunium dioxide to be dissolved are introduced from the funnel 66 into an electrolytic cell containing an aqueous nitric acid solution, and silver oxide is added to the solution. The turbine 64 stirs the solution around the anode 62 by rotating,
The solution mixture is transferred from the primary cylinder 52 to the secondary cylinder 53 via the communication pipe 54 along the arrow in the figure, and further to the secondary cylinder 53.
Can be circulated through the communication pipe 55 to the primary side cylinder 52.

【0005】電解溶解槽51は、陽極62の表面積と、
Ag2+イオンの最大可能な再生率に実質的に等しい率
で、Ag+ をAg2+に酸化させる溶液の銀濃度との関数
として選択された一定値に、セル中の電流密度を保持す
るように、陽極62と陰極57間に電位差を与える。そ
して、Ag2+を有する溶液中で二酸化プルトニウム及び
二酸化ネプツニウムを酸化するとともに溶解する。
The electrolytic dissolving tank 51 has a surface area of the anode 62,
Maintaining the current density in the cell at a constant value selected as a function of the silver concentration of the solution that oxidizes Ag + to Ag2 + at a rate substantially equal to the maximum possible regeneration rate of Ag2 + ions Thus, a potential difference is applied between the anode 62 and the cathode 57. Then, the plutonium dioxide and the neptunium dioxide are oxidized and dissolved in the solution containing Ag 2+ .

【0006】[0006]

【発明が解決しようとする課題】ところが、プルトニウ
ムを取り扱うため、臨界管理の観点から、上記のような
径の小さい円筒形(配管状容器)溶解槽のように、非常
に限られた空間で反応を起こし、かつ分解反応を促進す
ることが要求される。これまでの装置では、極力小型の
インペラ型ポンプやプロペラ型攪拌器を設置し、槽内溶
液を攪拌すると同時に同じ筒管内に陽極、陰極及び隔膜
を併設するため、筒管構造が複雑となる。そのうえ、液
の流動性も低下し、メンテナンスも煩雑となる。また、
同じ筒管内に攪拌器等の併設が不可能となる径の小さい
円筒型溶解槽の必要性も生じる。本発明は、上記課題に
鑑みてなされたもので、臨界管理の必要な難溶性物質を
溶解するために、簡単な構造で確実に攪拌することがで
きる溶解槽を提供することを目的とする。
However, since plutonium is handled, from the viewpoint of criticality control, the reaction takes place in a very limited space, such as a small-diameter cylindrical (pipe-shaped vessel) melting tank as described above. And promote the decomposition reaction. In the conventional apparatus, a small impeller pump or a propeller stirrer is installed as much as possible, and the solution in the tank is stirred, and at the same time, the anode, the cathode, and the diaphragm are provided in the same tube. In addition, the fluidity of the liquid decreases, and the maintenance becomes complicated. Also,
There is also a need for a small-diameter cylindrical dissolving tank in which a stirrer or the like cannot be installed in the same cylindrical tube. The present invention has been made in view of the above problems, and has as its object to provide a dissolving tank that can be reliably stirred with a simple structure in order to dissolve a hardly soluble substance that requires criticality management.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の溶解槽は、被溶解物質の投入口を有し、陽
極を溶液中に侵漬する第1の槽と、隔膜で包囲された陰
極を侵漬する第2の槽と、第1の槽と第2の槽のそれぞ
れの上部を連通させて、第1の槽の溶液の第2の槽への
通路となる上部連通路と、第2の槽と第2の槽のそれぞ
れの下部を連通させて、第2の槽の溶液の第1の槽への
通路となる下部連通路と、下部連通路に介装した第2の
槽の溶液を第1の槽に送液する循環ポンプとを備えてい
る。
In order to achieve the above object, a dissolving tank of the present invention has an inlet for a substance to be dissolved, a first tank for immersing an anode in a solution, and a diaphragm. A second tank for impregnating the enclosed cathode, and an upper part of the first tank and the upper part of the second tank which are in communication with each other to form a passage for the solution of the first tank to the second tank. The passage, the lower portion of the second tank and the lower portion of the second tank are communicated with each other, and the lower communication passage serving as a passage for the solution of the second tank to the first tank and the lower communication passage interposed in the lower communication passage. A circulation pump for sending the solution in the second tank to the first tank.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態による
溶解槽について、図1を参照しながら説明する。図1
は、本発明に係る電解酸化溶解装置の溶解槽1を示し、
溶解槽1は径の小さな円筒形の1次側筒2(第1の槽)
と2次側筒(第2の槽)3とを備え、これらの1次及び
2次側筒2,3は筒軸が垂直になるように配置されてい
る。1次側筒2は、側壁に難溶性原子燃料を側筒2内に
導入するためのシュート5を設け、下部に溶液12に浸
漬された陽極4を設けている。2次側筒3には、隔膜6
と該隔膜内に配設し、陰極液13に浸漬されている陰極
7を設けている。陽極4は直流電源10の−側に接続
し、陰極7は直流電源10の+側に接続している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A dissolving tank according to an embodiment of the present invention will be described below with reference to FIG. FIG.
Shows a dissolution tank 1 of the electrolytic oxidation dissolution apparatus according to the present invention,
The dissolving tank 1 is a cylindrical primary cylinder 2 having a small diameter (first tank).
And a secondary cylinder (second tank) 3. These primary and secondary cylinders 2 and 3 are arranged so that the cylinder axes are vertical. The primary side cylinder 2 is provided with a chute 5 for introducing a hardly soluble nuclear fuel into the side cylinder 2 on a side wall, and an anode 4 immersed in a solution 12 at a lower portion. The secondary cylinder 3 has a diaphragm 6
And a cathode 7 immersed in a catholyte 13 provided in the diaphragm. The anode 4 is connected to the negative side of the DC power supply 10, and the cathode 7 is connected to the positive side of the DC power supply 10.

【0009】溶解槽1には、1次側筒2の下部外周に液
温の上昇を防ぐための冷却ジャケット16を設け、1次
側筒2と2次側筒3を、上下に併設した一対の上部連通
管8,9により連通している。また、溶解槽1は、両側
筒2,3の外部に循環ポンプ11を設け、これらの下部
連通管14を2次側筒3の底部と循環ポンプ11との間
に設け、他方の下部連通管15は1次側筒2の側壁下部
の陽極4の近傍に配設している。循環ポンプ11は、溶
液12を2次側筒3側から1次側筒2に循環するととも
に、溶液12の攪拌と均一化を行う。
In the melting tank 1, a cooling jacket 16 for preventing a rise in the liquid temperature is provided on the outer periphery of the lower part of the primary cylinder 2, and the primary cylinder 2 and the secondary cylinder 3 are vertically arranged in a pair. The upper communication pipes 8 and 9 communicate with each other. In the dissolving tank 1, a circulation pump 11 is provided outside the cylinders 2 and 3 on the both sides. These lower communication pipes 14 are provided between the bottom of the secondary cylinder 3 and the circulation pump 11, and the other lower communication pipe is provided. Reference numeral 15 is provided near the anode 4 at the lower part of the side wall of the primary cylinder 2. The circulation pump 11 circulates the solution 12 from the secondary cylinder 3 to the primary cylinder 2 and stirs and homogenizes the solution 12.

【0010】次に、本実施の形態における溶解槽の作用
について説明する。溶解槽1の1次及び2次側筒2,3
に溶液(硝酸銀を含む硝酸溶液)を満たし、シュート5
から難溶性原子燃料(固体)を投入する。直流電源10
により陽極4と陰極7間に電圧を印加し、流す電流値は
0.1 〜1 A/cm2 程度とする。このような条件によ
り、溶液中のAg+ イオンが陽極4表面で酸化され、A
2+イオンとなる。Ag2+イオンは強力な酸化剤であ
る。Ag2+イオンが難溶性物質の表面と接触すると、難
溶性物質はAg2+イオンにより酸化され溶解する。ま
た、強力な酸化剤であったAg2+イオンは、その結果還
元され、予め溶液12内に存在していた状態と同じAg
+ イオンとなる。発生したAg+ イオンは、通電下にお
いて陽極4と接触すると、再びAg2+イオンとなり再生
される。このような繰り返しにより、難溶性物質を電気
的に溶解することが可能となる。
Next, the operation of the melting tank in the present embodiment will be described. Primary and secondary cylinders 2 and 3 of melting tank 1
Into a solution (a nitric acid solution containing silver nitrate) and shoot 5
A poorly soluble nuclear fuel (solid). DC power supply 10
A voltage is applied between the anode 4 and the cathode 7 by the
It is about 0.1 to 1 A / cm 2 . Under these conditions, Ag + ions in the solution are oxidized on the surface of the anode 4 and
g 2+ ions. Ag 2+ ions are strong oxidants. When the Ag 2+ ions come into contact with the surface of the poorly soluble substance, the poorly soluble substance is oxidized and dissolved by the Ag 2+ ions. The Ag 2+ ion, which was a strong oxidizing agent, is reduced as a result, and the same Ag 2+ ion as that previously existing in the solution 12 is obtained.
+ Ions. When the generated Ag + ions come into contact with the anode 4 under energization, they become Ag 2 + ions again and are regenerated. Such repetition makes it possible to electrically dissolve the poorly soluble substance.

【0011】しかし、通常静止した溶液内のイオンの拡
散は、常温ではゆっくりしたものであり、イオンが電極
と接触しなかったり、溶解する目的物質と接触しないと
目的の反応は起こらない。また、強力な酸化剤はそれ自
身では不安定であり、周りの他のイオンと反応し、自分
は還元してしまう。これでは、電気的にイオンを再生し
ても、目的の難溶性物質の溶解には使用されない可能性
も高くなる。そこで、積極的に溶液を循環・攪拌するた
めの手段として循環ポンプを使用し、電気的に再生した
酸化剤を効率良く、目的とする難溶性物質と接触させる
機会を高め、溶解時間の短縮を図ることができる。
However, the diffusion of ions in a stationary solution is slow at normal temperature, and the desired reaction does not occur unless the ions come into contact with the electrode or the dissolved target substance. Also, strong oxidants are unstable by themselves, react with other ions around them, and reduce themselves. In this case, even if the ions are electrically regenerated, there is a high possibility that the ions are not used for dissolving the target hardly soluble substance. Therefore, a circulation pump is used as a means for positively circulating and stirring the solution, thereby increasing the chance of efficiently contacting the electrically regenerated oxidizing agent with the target hardly soluble substance and shortening the dissolving time. Can be planned.

【0012】以上説明したように本実施の形態では、酸
化剤を循環ポンプを用い効率良く、循環、攪拌できるよ
うにしている。従来のように側筒内にタービン等を配設
する必要がない。また、溶液12を冷却するために側筒
2外に冷却ジャケット16を装着している。したがっ
て、両側筒2,3の径を小さくできる。これにより、限
られた空間内(臨界寸法)で溶解槽の形状を変更するこ
となく、また溶解流動促進の結果、再生した強力な酸化
剤は、目的である難溶性物質等と有効に接触でき、有限
時間内で難溶性物質等を溶解することができる。
As described above, in the present embodiment, the oxidizing agent can be efficiently circulated and stirred by using the circulating pump. There is no need to dispose a turbine or the like in the side cylinder as in the related art. Further, a cooling jacket 16 is mounted outside the side tube 2 to cool the solution 12. Therefore, the diameter of both side tubes 2 and 3 can be reduced. As a result, the regenerated strong oxidizing agent can be brought into effective contact with the target hardly soluble substance without changing the shape of the melting tank in a limited space (critical dimension), and as a result of promoting the dissolution flow. , A hardly soluble substance or the like can be dissolved within a finite time.

【0013】以上、本発明の実施の形態について説明し
たが、勿論、本発明はこれに限定されることなく、本発
明の技術的思想に基づいて種々の変形が可能である。例
えば、上記実施の形態では、循環ポンプ11を用いて1
次及び2次側筒2,3を循環、攪拌したが、ポンプ以外
にエジェクタ、エアリストなどを使用することができ
る。
Although the embodiment of the present invention has been described above, the present invention is, of course, not limited to this, and various modifications can be made based on the technical concept of the present invention. For example, in the above embodiment, the circulating pump 11
Although the secondary and secondary cylinders 2 and 3 are circulated and agitated, an ejector, an air wrist, and the like can be used in addition to the pump.

【0014】[0014]

【発明の効果】以上説明したように本発明の溶解炉によ
れば、被溶解物質を投入し、陽極を溶液中に侵漬する第
1の槽と、隔膜で包囲した陰極を侵漬する第2の槽と、
第1の槽と第2の槽のそれぞれの上部を連通して、第1
の槽の溶液を第2の槽へ流出する上部連通路と、第1の
槽と第2の槽のそれぞれの下部を連通した下部連通路
と、該下部連通路に配設し、第2の槽の溶液を第1の槽
に供給する循環ポンプとを備えているので、酸化剤を圧
送装置を用い効率良く、循環、攪拌できるようにしてい
る。これにより、限られた空間内で溶解槽の形状を変更
することを要しない。また、溶解流動促進の結果、再生
した強力な酸化剤は、難溶性物質を溶解するときに、そ
れと有効に接触でき、有限時間内で難溶性物質等を溶解
することができる。
As described above, according to the melting furnace of the present invention, the first tank in which the substance to be melted is introduced and the anode is immersed in the solution, and the cathode in which the cathode is surrounded by the diaphragm are immersed. Two tanks,
The upper part of the first tank and the upper part of the second tank are communicated with each other to form the first tank.
An upper communication path for allowing the solution in the tank to flow out to the second tank, a lower communication path communicating the lower parts of the first tank and the second tank, and a second communication path arranged in the lower communication path. Since a circulation pump for supplying the solution in the tank to the first tank is provided, the oxidizing agent can be efficiently circulated and stirred by using a pressure feeding device. Thereby, it is not necessary to change the shape of the melting tank in a limited space. In addition, as a result of promoting dissolution and flow, the regenerated strong oxidizing agent can effectively contact the hardly soluble substance when it is dissolved, and can dissolve the hardly soluble substance within a finite time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による溶解槽の概念図であ
る。
FIG. 1 is a conceptual diagram of a melting tank according to an embodiment of the present invention.

【図2】従来例による溶解槽の概念図である。FIG. 2 is a conceptual diagram of a dissolving tank according to a conventional example.

【符号の説明】[Explanation of symbols]

1 溶解槽 2 1次側筒 3 2次側筒 4 陽極 5 シュート 6 隔膜 7 陰極 8,9 上部連通管 10 直流電源 11 循環ポンプ 12 溶液 13 陰極液 14,15 下部連通管 16 冷却ジャケット DESCRIPTION OF SYMBOLS 1 Dissolution tank 2 Primary side cylinder 3 Secondary side cylinder 4 Anode 5 Chute 6 Diaphragm 7 Cathode 8, 9 Upper communication pipe 10 DC power supply 11 Circulation pump 12 Solution 13 Catholyte 14, 15 Lower communication pipe 16 Cooling jacket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古賀 忠彰 兵庫県神戸市兵庫区小松通五丁目1番16号 株式会社神菱ハイテック内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tadaaki Koga 5-1-1-16 Komatsu-dori, Hyogo-ku, Kobe City, Hyogo Prefecture Inside Shinryo High-Tech Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被溶解物質の投入口を有し、陽極を溶液
中に侵漬する第1の槽と、隔膜で包囲した陰極を侵漬す
る第2の槽と、第1の槽と第2の槽のそれぞれの上部を
連通して、第1の槽の溶液を第2の槽へ流通できる上部
連通路と、第1の槽と第2の槽のそれぞれの下部を連通
した下部連通路と、該下部連通路に配設し、第2の槽の
溶液を第1の槽に送る圧液装置とを備えてなる溶解槽。
1. A first tank having an inlet for a substance to be dissolved and immersing an anode in a solution, a second tank immersing a cathode surrounded by a diaphragm, a first tank and a first tank. An upper communication passage communicating the upper portions of the two tanks and allowing the solution in the first tank to flow to the second tank; and a lower communication passage communicating the lower portions of the first and second tanks. And a pressurized liquid device disposed in the lower communication passage and for sending the solution in the second tank to the first tank.
JP10594098A 1998-04-16 1998-04-16 Dissolution tank Withdrawn JPH11304988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10594098A JPH11304988A (en) 1998-04-16 1998-04-16 Dissolution tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10594098A JPH11304988A (en) 1998-04-16 1998-04-16 Dissolution tank

Publications (1)

Publication Number Publication Date
JPH11304988A true JPH11304988A (en) 1999-11-05

Family

ID=14420856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10594098A Withdrawn JPH11304988A (en) 1998-04-16 1998-04-16 Dissolution tank

Country Status (1)

Country Link
JP (1) JPH11304988A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578592A (en) * 2013-10-30 2014-02-12 中国核电工程有限公司 Soluble substance storage and release device
CN104361917A (en) * 2014-11-06 2015-02-18 中国原子能科学研究院 Automatic radiochemical separation system used for measuring fuel consumption of spent fuel element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578592A (en) * 2013-10-30 2014-02-12 中国核电工程有限公司 Soluble substance storage and release device
CN104361917A (en) * 2014-11-06 2015-02-18 中国原子能科学研究院 Automatic radiochemical separation system used for measuring fuel consumption of spent fuel element

Similar Documents

Publication Publication Date Title
US4749519A (en) Process for the recovery of plutonium contained in solid waste
KR101063132B1 (en) Chemical decontamination apparatus and decontamination method therein
JP2001133572A (en) Molten salt reactor
EP1481401B1 (en) Electrochemical cell for metal production
JPH11304988A (en) Dissolution tank
US3477926A (en) Electrolytic process and apparatus for recovering metals
JP3763980B2 (en) Spent oxide fuel reduction device and reduction method thereof
US5516401A (en) Process for electrochemical machining
JP2852427B2 (en) Removal method of chlorine ion from contaminated solid waste such as incineration ash containing actinide-based contaminants
US6365019B1 (en) Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel
JP2007212293A (en) Chemical decontaminating apparatus and decontaminating method of same
US20220090275A1 (en) Systems and methods for high-rate electrochemical arsine generation
JP3514742B2 (en) Spent nuclear fuel reprocessing equipment
JP2004117149A (en) Method and device for electrolytic decontamination for waste material from reprocessing facility
EP0364209B1 (en) Method of dissolving spent nuclear fuel
EP0160589B1 (en) Process and apparatus for the dissolution of plutonium and/or neptumium oxides
JP2000355785A (en) Electrochemical cell
JPH1164577A (en) Fused salt electrolytic reprocessing method for spent fuel
JP7247070B2 (en) Electrolytic refining device and electrolytic refining method
US3884784A (en) Process for electro-chemically cutting an irradiated nuclear fuel assembly
JP2005054209A (en) Electrolyzer for oxide electrolytic process
GB2225340A (en) Circulation of electrolyte in an electrochemical cell, using Taylor vortices
JPH10128090A (en) Electrolytic dissolver with agitator
US11884562B2 (en) Apparatus and method for urea electrolysis with controlled alkalinity
JPH10249350A (en) Cmpo decomposing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705