JPH11304550A - System for detecting avalanche of sand and stone - Google Patents

System for detecting avalanche of sand and stone

Info

Publication number
JPH11304550A
JPH11304550A JP11695898A JP11695898A JPH11304550A JP H11304550 A JPH11304550 A JP H11304550A JP 11695898 A JP11695898 A JP 11695898A JP 11695898 A JP11695898 A JP 11695898A JP H11304550 A JPH11304550 A JP H11304550A
Authority
JP
Japan
Prior art keywords
debris flow
river
sensors
sand
stone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11695898A
Other languages
Japanese (ja)
Inventor
Mitsuyuki Nonaka
光之 野中
Hirohisa Yoshida
博久 吉田
Tomoyoshi Baba
智義 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11695898A priority Critical patent/JPH11304550A/en
Publication of JPH11304550A publication Critical patent/JPH11304550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately detect the occurrence position, moving position and speed of an avalanche of sand and stone in a system for detecting the avalanche of sand and stone in a river. SOLUTION: Support legs 2 are fixed to the bed 11 of a river 10 to support steel pipes 1 which are located in water along the river width and disposed with specified spacings from the upstream to the downstream, and AE sensors 3 are disposed in the steel pipe 1 to send signals from the AE sensors 3 to detectors 20 through cables. When the avalanche of sand and stone occurs, the water flow increases with solids in water, colliding against the steel pipes 1 to generate ultrasonic waves which the AE sensors 3 sense to provide signals and processors in the detectors 20 judge from the heights of the detected signal levels that these signals indicate a safe condition, a sign or occurrence of the avalanche of sand and stone. Its position and speed can be detected from the signal detect conditions by the plurality of AE sensors disposed from the upstream to the downstream.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はAE式土石流検知シ
ステムに関し、AEセンサにより土石流の発生とその位
置、速度を簡単に検知できるようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AE-type debris flow detection system, and more particularly to an AE-type debris flow detection system capable of easily detecting generation of a debris flow, its position and speed.

【0002】[0002]

【従来の技術】従来の河川の土石流検知システムにおい
ては、例えば、図示省略するが、土石流の発生する危険
性のある河川に沿って発光器と受光器を対向するように
設け、発光器から受光器への赤外信号が所定時間以上継
続して遮断されたときに土石流が発生したものとみな
し、警報を発している。また、河床の深さが所定値より
浅くなったことを検知した場合に、危険な状態であると
判定し、警報を発する装置も提案されている。
2. Description of the Related Art In a conventional river debris flow detection system, for example, although not shown, a light emitter and a light receiver are provided so as to face each other along a river where a debris flow is likely to occur, and light is received from the light emitter. When the infrared signal to the vessel is continuously interrupted for a predetermined time or more, it is considered that debris flow has occurred, and a warning is issued. Further, there has been proposed a device which, when detecting that the depth of a riverbed has become shallower than a predetermined value, judges that the river is in a dangerous state and issues an alarm.

【0003】又、針金等を用いて土石流を検知する代表
的なシステムについて図4で説明する。図4において、
土石流の発生する危険性のある渓流等の川Aの水面付近
に、上流部から下流部へ向けて任意間隔で川Aの流れに
対して横断するよう、複数本の針金51が設置される。
各針金51は電線52で直列に接続され、この直列接続
の両端が断線監視器53に接続されている。そして土石
流が発生した場合に、土石によりいずれかの針金51が
切断されると、前記直列接続の抵抗値が大きくなった
り、あるいは電流が流れなくなるため、断線監視器53
が土石流の発生を検知する。
A typical system for detecting debris flow using a wire or the like will be described with reference to FIG. In FIG.
A plurality of wires 51 are installed near the water surface of the river A, such as a mountain stream where there is a risk of occurrence of debris flow, so as to cross the flow of the river A at arbitrary intervals from the upstream to the downstream.
Each wire 51 is connected in series by an electric wire 52, and both ends of the series connection are connected to a disconnection monitor 53. If any wire 51 is cut by the debris when the debris flow occurs, the resistance value of the series connection increases or the current stops flowing, so the disconnection monitor 53
Detects the occurrence of debris flow.

【0004】[0004]

【発明が解決しようとする課題】前述の従来の土石流検
知システムにおいては、光を用いる方式では河川で土石
流が発生したことを瞬時に検知できるものではなく、実
際の土石流発生から検知までに時間を要し、光の入射を
検知するので信頼性にも問題があり、また、システムの
構成も複雑であり、設置工事が困難である。又、図6に
示す針金を用いる方式では、土石流の発生をON/OF
F的に知るのみで、土石流を早期に検知することができ
ず、その規模や速度等の検知、又発生状況の連続的な監
視等はできない。
In the above-mentioned conventional debris flow detection system, the method using light cannot instantaneously detect the occurrence of debris flow in a river, but requires a long time from actual debris flow generation to detection. In short, there is a problem in reliability because light incidence is detected, and the system configuration is complicated, and installation work is difficult. In the method using the wire shown in FIG. 6, generation of debris flow is turned ON / OF.
Just knowing from F, the debris flow cannot be detected at an early stage, and its scale, speed, etc. cannot be detected, and the occurrence status cannot be continuously monitored.

【0005】そこで本発明では、河川の上流から下流へ
移動する土石流を検知し、土石流の発生場所と移動位置
及び速度が簡単な構成で容易に検知し、判定のできるA
E式土石流検知システムを提供することを課題としてな
されたものである。
Therefore, in the present invention, the debris flow moving from the upstream to the downstream of the river is detected, and the debris flow generation location, moving position and speed can be easily detected and determined with a simple configuration.
An object of the present invention is to provide an E-type debris flow detection system.

【0006】[0006]

【課題を解決するための手段】本発明は前述の課題を解
決するために次の手段を提供する。
The present invention provides the following means for solving the above-mentioned problems.

【0007】河川の水中に埋没して川幅方向に伸び互に
所定間隔を保って河床に固定された複数の鋼管と、同鋼
管内に取付けられたAEセンサと、同各AEセンサが検
出した前記鋼管が発する音の信号を取込み土石流の状態
を判定する検知装置とからなり、同検知装置は前記AE
センサが検知した信号のレベルと予め定められたしきい
値とを比較し、土石流の発生を判定すると共に、河川の
上流から下流にわたって配置された複数の各AEセンサ
の検知信号のレベルの推移から土石流の位置とその速度
を算出することを特徴とする土石流検知システム。
[0007] A plurality of steel pipes buried in the water of the river and stretched in the width direction of the river and fixed to the riverbed at predetermined intervals from each other, an AE sensor mounted in the steel pipe, and the AE sensors detected by the AE sensors. A detection device which receives a signal of a sound emitted from the steel pipe and determines a state of debris flow, wherein the detection device is the AE.
The level of the signal detected by the sensor is compared with a predetermined threshold value to determine the occurrence of debris flow, and based on the transition of the level of the detection signal of each of the plurality of AE sensors arranged from the upstream to the downstream of the river. A debris flow detection system that calculates the position and speed of the debris flow.

【0008】本発明の土石流検知システムでは、鋼管内
にAEセンサを取付け、この鋼管及びAEセンサを河川
の上流から下流に沿って複数配置しており、土石流が発
生すると濁水が増加し、濁水に含まれる固形物が鋼管の
表面に衝突し、超音波を発生する。この超音波は鋼管内
のAEセンサにより検知され、この信号のレベルは検知
装置であらかじめ定められたしきい値と比較され、信号
レベルの大きさによって、安全、土石流の前兆、土石流
の発生、等が判定される。
In the debris flow detection system of the present invention, an AE sensor is mounted in a steel pipe, and a plurality of such steel pipes and AE sensors are arranged along the river from upstream to downstream. When debris flow occurs, turbid water increases, and turbid water increases. The contained solids collide with the surface of the steel pipe and generate ultrasonic waves. This ultrasonic wave is detected by the AE sensor in the steel pipe, and the level of this signal is compared with a predetermined threshold value by the detecting device, and depending on the magnitude of the signal level, safety, a precursor of debris flow, occurrence of debris flow, etc. Is determined.

【0009】又、上流から下流にかけて配置されたAE
センサの各検出信号を比較し、その各AEセンサでの信
号レベルにより土石流の発生している位置が判定でき、
又、各信号の推移をみることによりその速度が算出され
る。
An AE arranged from upstream to downstream
By comparing each detection signal of the sensor, the position where the debris flow occurs can be determined by the signal level of each AE sensor,
The speed is calculated by observing the transition of each signal.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の一形態に係るAE式土石流検知システムを示し、
(a)は全体の構成図、(b)はそのA−A矢視図を示
す。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows an AE type debris flow detection system according to an embodiment of the present invention,
(A) is an overall configuration diagram, and (b) is a view taken along the line AA.

【0011】図1において、1は鋼管であり、河川10
の幅方向に水中に没し、川床11から所定の高さで配設
されている。2は支持脚であり、図(b)に示すように
鋼管1を水中の川床11に固定し、土石流で押し流され
ないように強固に支持する。3はAEセンサであり、図
(b)に示すように鋼管1内部に固定され、鋼管1の発
生する超音波信号を検知するものである。20は検知装
置であり、ケーブル25によりAEセンサ3からの信号
を取り出し、入力して後述するように土石流の発生を判
定するものである。
In FIG. 1, reference numeral 1 denotes a steel pipe,
Is immersed in water in the width direction, and is disposed at a predetermined height from the riverbed 11. Reference numeral 2 denotes a support leg, as shown in FIG. 2B, for fixing the steel pipe 1 to a submerged riverbed 11 and firmly supporting it so as not to be washed away by debris flow. Reference numeral 3 denotes an AE sensor, which is fixed inside the steel pipe 1 as shown in FIG. 1B and detects an ultrasonic signal generated by the steel pipe 1. Reference numeral 20 denotes a detection device which extracts a signal from the AE sensor 3 via a cable 25 and inputs the signal to determine the occurrence of debris flow as described later.

【0012】なお、図1では鋼管1及びAEセンサ3は
3個の例で示しているが、実際には土石流が発生しやす
く、又土石流を検知したい河川10の適切な長さを設定
し、この間に必要に応じて複数個の鋼管1及びAEセン
サ3を河床11に埋設しない水中の所定の高さで規定の
間隔をもって配置する。
In FIG. 1, three steel pipes 1 and three AE sensors 3 are shown. However, in practice, a debris flow is likely to occur, and an appropriate length of the river 10 for which the debris flow is to be detected is set. During this time, if necessary, a plurality of steel pipes 1 and AE sensors 3 are arranged at a predetermined height in water that is not buried in the riverbed 11 and at specified intervals.

【0013】図2は本実施の形態における土石流検知シ
ステムの系統図である。図において、検知装置20には
各AEセンサ3からの信号がケーブル25を通って入力
され、プリアンプ21、主増幅器22、処理判定部23
からなり、又検知装置20での監視状況及び判定結果を
表示する表示装置24が接続されている。
FIG. 2 is a system diagram of the debris flow detection system according to the present embodiment. In the figure, a signal from each AE sensor 3 is input to a detecting device 20 through a cable 25, and a preamplifier 21, a main amplifier 22, a processing determining unit 23
And a display device 24 for displaying the monitoring status of the detection device 20 and the determination result.

【0014】上記の構成において、大雨時等を除く通常
時には、河川10の水質も良く、流速により鋼管1表面
に衝突する固形物は微量であり、AEセンサ3は鋼管1
が発生する超音波信号はほとんど検知されない。
In the above configuration, the water quality of the river 10 is good at normal times except during heavy rain, etc., and the solid matter colliding with the surface of the steel pipe 1 due to the flow velocity is very small.
Is hardly detected.

【0015】河川10の上流側に大雨が降り、土石流が
発生し、濁水濃度と流速が増加するに従って固形物が鋼
管1の表面に衝突する頻度が大きくなる。従って鋼管1
がこれにより超音波を発するようになり、AEセンサ3
が検出する超音波の信号レベルが増大する。この時の状
態は下流側のAEセンサ3の設置位置では土石流前兆と
見なす。
Heavy rain falls on the upstream side of the river 10 to generate debris flow, and the frequency of solids colliding with the surface of the steel pipe 1 increases as the turbid water concentration and the flow velocity increase. Therefore steel pipe 1
Emits ultrasonic waves by this, and the AE sensor 3
Increases the signal level of the ultrasonic wave detected. The state at this time is regarded as a debris flow precursor at the installation position of the AE sensor 3 on the downstream side.

【0016】濁水と共に河底部においては、徐々に岩石
等が流動し始め、鋼管1には更に固形物が接触するよう
になり、AEセンサ3の検出信号は増大してゆき危険な
状態を事前に察知できる。
At the bottom of the river together with the turbid water, rocks and the like gradually begin to flow, and the solid matter comes into contact with the steel pipe 1 further, and the detection signal of the AE sensor 3 increases, causing a dangerous state in advance. Can detect.

【0017】土石流が発生した場合には、上流側に設置
したAEセンサ3から順に下流側のAEセンサへ向って
検出信号が増大してゆき、土石流を受けると最大信号レ
ベルとなり、土石流が連続して流動中にはその場所のA
Eセンサ3が最大信号レベルを出力した状態が継続す
る。
When a debris flow occurs, the detection signal increases in order from the AE sensor 3 installed on the upstream side to the AE sensor on the downstream side. When the debris flow is received, the detection signal reaches a maximum signal level, and the debris flow continues. During the flow
The state where the E sensor 3 outputs the maximum signal level continues.

【0018】上記に説明の各複数のAEセンサ3からの
検出信号は、図2に示すようにケーブル25より鋼管1
内のAEセンサ3から検知装置20内に導かれ、プリア
ンプ21、主増幅器22で増幅され、処理判定部23で
各検出信号が所定のしきい値と比較され、土石流の発生
の無い状態、土石流の前兆、危険な状態等が判定され、
その結果は表示装置24に表示される。
The detection signals from the plurality of AE sensors 3 described above are transmitted from the cable 25 to the steel pipe 1 as shown in FIG.
Is guided from the AE sensor 3 into the detection device 20, amplified by the preamplifier 21 and the main amplifier 22, and each detection signal is compared with a predetermined threshold value by the processing determination unit 23. Signs, dangerous situations, etc. are determined,
The result is displayed on the display device 24.

【0019】図3は上記に説明の検知装置20内の信号
処理部23での判定の状態を説明する図であり、信号処
理部23内にはしきい値(S1 ),(S2 ),(S3
が設定してある。しきい値(S1 ),(S2 ),
(S3 )はそれぞれ信号レベルV1,V2 ,V3 に相当
し、時刻t1 までは検出信号レベルVは、ほぼ0<V<
1であり、この状態での信号レベルVはほぼ0<V<
1 となり、「通常状態」であって判定は「安全」と判
断する。
FIG. 3 is a diagram for explaining the state of the judgment in the signal processing section 23 in the detection device 20 described above. The threshold values (S 1 ) and (S 2 ) are stored in the signal processing section 23. , (S 3 )
Is set. Threshold values (S 1 ), (S 2 ),
(S 3 ) respectively correspond to the signal levels V 1 , V 2 , V 3 , and the detection signal level V is substantially 0 <V <until time t 1.
V 1 , and the signal level V in this state is substantially 0 <V <
S 1, and the determination is "normal state" is determined as "safe".

【0020】時刻t1 〜t2 間では、検出信号レベルV
は、ほぼ0<V<V2 となり、検出信号Vがしきい値S
1 とS2 間、もしくはS3 以上の状態にある。この状態
では「濁水」が発生し、除々に濁水が増加している状態
で、この検出したAEセンサの位置では土石流が発生す
る前兆である。従って判定は「軽警報」と判断する。
Between time t 1 and t 2 , the detection signal level V
Is approximately 0 <V <V 2 , and the detection signal V is
Between 1 and S 2, or in S 3 or more states. In this state, “turbid water” is generated, and the amount of turbid water is gradually increasing. At this detected position of the AE sensor, there is a precursor to the occurrence of debris flow. Therefore, the judgment is "light alarm".

【0021】時刻t2 〜t3 間では、検出信号レベルV
は、0<V<V3 となり、検出信号Vがしきい値S2
3 間、もしくはそれ以上の状態にある。このS2 <V
<S 3 の状態では土石流が増大し、「濃濁水」の状態で
あり、この時の判定は「重警報」と判断する。更に、V
>S3 では完全に「土石流発生」の状態で、かつ土石流
が継続している状態である。従って、この状態での判定
は「重警報(土石流継続)」と判断する。
Time tTwo~ TThreeBetween the detection signal levels V
Is 0 <V <VThreeAnd the detection signal V becomes the threshold STwoWhen
SThreeOr more than that. This STwo<V
<S ThreeThe debris flow increases in the condition of
Yes, the determination at this time is determined to be "heavy warning". Furthermore, V
> SThreeNow, it is completely debris flow
Is in a state of continuing. Therefore, judgment in this state
Is judged as "heavy warning (continuation of debris flow)".

【0022】上記の図3に基づく土石流の判定は、所定
の間隔で配置した各AEセンサ3からの信号を検知装置
20へ取込み、それぞれの検出信号Vが、0<V<
1 ,S 1 <V<S2 ,S2 <V<S3 ,V>S3 のい
ずれかに存在するかを処理判定部23で判定し、これら
各AEセンサ間での各検出レベル信号Vを比較すること
により、上流側から下流側へ進む土石流の位置、その速
度が算出され、表示部24に表示することができる。
The determination of the debris flow based on FIG.
For detecting signals from the AE sensors 3 arranged at intervals of
20 and each detection signal V is 0 <V <
S1, S 1<V <STwo, STwo<V <SThree, V> SThreeNo
The processing determining unit 23 determines whether or not there is a deviation.
Comparing each detection level signal V between each AE sensor
Of debris flow from upstream to downstream
The degree is calculated and can be displayed on the display unit 24.

【0023】以上説明のように、本実施の形態によれ
ば、河川の幅方向に鋼管1を所定の間隔で水中に固定
し、鋼管1内にはAEセンサ3を取付け、AEセンサ3
により鋼管1と水流中の固形物との衝突により発生する
超音波を検知して検知装置20に導き、検知装置20内
の処理判定部23で各AEセンサ3からの検出レベル信
号Vにより土石流の状態を判定するので、濁水濃度と流
速による検出信号レベルの高さで土石流発生の前兆を下
流側において早期に検知可能となる。又、上流から下流
へ移動する土石流の発生位置、移動位置及び速度が正確
に判定できる。更に、鋼管1の設置も容易であり、簡単
な設備で正確な土石流の検知が可能となる。
As described above, according to the present embodiment, the steel pipe 1 is fixed in water at predetermined intervals in the width direction of the river, and the AE sensor 3 is mounted in the steel pipe 1.
The ultrasonic wave generated by the collision between the steel pipe 1 and the solid matter in the water flow is detected by the detection device 20 and guided to the detection device 20. Since the state is determined, the sign of the occurrence of debris flow can be detected early on the downstream side based on the detection signal level based on the turbid water concentration and the flow velocity. Further, the occurrence position, movement position, and speed of the debris flow moving from upstream to downstream can be accurately determined. Furthermore, the installation of the steel pipe 1 is easy, and accurate detection of debris flow is possible with simple equipment.

【0024】[0024]

【発明の効果】本発明の土石流検知システムは、河川の
水中に埋没して川幅方向に伸び互に所定間隔を保って河
床に固定された複数の鋼管と、同鋼管内に取付けられた
AEセンサと、同各AEセンサが検出した前記鋼管が発
する音の信号を取込み土石流の状態を判定する検知装置
とからなり、同検知装置は前記AEセンサが検知した信
号のレベルと予め定められたしきい値とを比較し、土石
流の発生を判定すると共に、河川の上流から下流にわた
って配置された複数の各AEセンサの検知信号のレベル
の推移から土石流の位置とその速度を算出することを特
徴としている。このような構成により、AEセンサの検
知する信号レベルで土石流が容易に検知することがで
き、土石流の前兆を早期に検知することができる。更
に、土石流の移動、その位置及び速度が判定できる。
又、構造も簡単であり、設置も容易であり、土石流の検
知及びその監視が容易となるものである。
According to the debris flow detection system of the present invention, there are provided a plurality of steel pipes buried in the water of a river and extending in the width direction of the river and fixed to the riverbed at predetermined intervals, and an AE sensor mounted in the steel pipe. And a detecting device which takes in the signal of the sound emitted from the steel pipe detected by each of the AE sensors and determines the state of the debris flow, wherein the detecting device is configured to detect the level of the signal detected by the AE sensor and a predetermined threshold. The values are compared with each other to determine the occurrence of debris flow, and the position and speed of the debris flow are calculated from changes in the levels of detection signals of a plurality of AE sensors arranged from upstream to downstream of the river. . With such a configuration, the debris flow can be easily detected at the signal level detected by the AE sensor, and the precursor of the debris flow can be detected early. Furthermore, the movement of the debris flow, its position and speed can be determined.
In addition, the structure is simple, the installation is easy, and the detection and monitoring of the debris flow are easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係るAE式土石流検知
装置を示し、(a)は全体構成図、(b)は(a)にお
けるA−A矢視図である。
1A and 1B show an AE debris flow detection device according to an embodiment of the present invention, wherein FIG. 1A is an overall configuration diagram, and FIG.

【図2】本発明の実施の一形態に係るAE式土石流検知
システムの系統図である。
FIG. 2 is a system diagram of an AE debris flow detection system according to an embodiment of the present invention.

【図3】本発明の実施の一形態に係るAE式土石流検知
システムの検知信号レベルの波形図である。
FIG. 3 is a waveform diagram of a detection signal level of the AE debris flow detection system according to the embodiment of the present invention.

【図4】従来の土石流検知システムの構成図である。FIG. 4 is a configuration diagram of a conventional debris flow detection system.

【符号の説明】[Explanation of symbols]

1 鋼管 2 支持脚 3 AEセンサ 10 河川 11 河床 20 検知装置 21 プリアンプ 22 主増幅器 23 処理判定部 24 表示部 DESCRIPTION OF SYMBOLS 1 Steel pipe 2 Support leg 3 AE sensor 10 River 11 Riverbed 20 Detector 21 Preamplifier 22 Main amplifier 23 Processing judgment part 24 Display part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G01V 9/00 G01V 9/00 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI G01V 9/00 G01V 9/00 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 河川の水中に埋没して川幅方向に伸び互
に所定間隔を保ち河床に固定された複数の鋼管と、同鋼
管内に取付けられたAEセンサと、同各AEセンサが検
出した前記鋼管が発する音の信号を取込み土石流の状態
を判定する検知装置とからなり、同検知装置は前記AE
センサが検知した信号のレベルと予め定められたしきい
値とを比較し、土石流の発生を判定すると共に、河川の
上流から下流にわたって配置された複数の各AEセンサ
の検知信号のレベルの推移から土石流の位置とその速度
を算出することを特徴とする土石流検知システム。
1. A plurality of steel pipes that are buried in the water of a river and extend in the width direction of the river and are fixed to a riverbed at a predetermined interval from each other, an AE sensor mounted in the steel pipe, and each of the AE sensors. A detecting device which receives a signal of a sound emitted from the steel pipe to determine a state of debris flow, wherein the detecting device includes the AE.
The level of the signal detected by the sensor is compared with a predetermined threshold value to determine the occurrence of debris flow, and based on the transition of the level of the detection signal of each of the plurality of AE sensors arranged from the upstream to the downstream of the river. A debris flow detection system that calculates the position and speed of the debris flow.
JP11695898A 1998-04-27 1998-04-27 System for detecting avalanche of sand and stone Pending JPH11304550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11695898A JPH11304550A (en) 1998-04-27 1998-04-27 System for detecting avalanche of sand and stone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11695898A JPH11304550A (en) 1998-04-27 1998-04-27 System for detecting avalanche of sand and stone

Publications (1)

Publication Number Publication Date
JPH11304550A true JPH11304550A (en) 1999-11-05

Family

ID=14699959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11695898A Pending JPH11304550A (en) 1998-04-27 1998-04-27 System for detecting avalanche of sand and stone

Country Status (1)

Country Link
JP (1) JPH11304550A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296682C (en) * 2004-08-17 2007-01-24 广东省基础工程公司 Device and its method for monitoring river bed sedimentation in tunnel pass through river construction
KR101039816B1 (en) 2009-10-20 2011-06-09 강릉원주대학교산학협력단 Node installation apparatus for underwater
WO2014096424A1 (en) * 2012-12-21 2014-06-26 Universität Innsbruck Bed load measurement using position or shape-alterable obstructing elements
CN105571819A (en) * 2015-12-11 2016-05-11 重庆交通大学 Sound acquiring system used for transportation observation of gravel and cobble, sound acquiring device and arrangement method thereof
CN107238483A (en) * 2017-08-09 2017-10-10 重庆交通大学 For defeated harvester, the system and method for moving pressure and defeated shifting audio of boulder and cobble
WO2020189679A1 (en) * 2019-03-19 2020-09-24 公立大学法人公立諏訪東京理科大学 Debris flow notification system and debris flow sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296682C (en) * 2004-08-17 2007-01-24 广东省基础工程公司 Device and its method for monitoring river bed sedimentation in tunnel pass through river construction
KR101039816B1 (en) 2009-10-20 2011-06-09 강릉원주대학교산학협력단 Node installation apparatus for underwater
WO2014096424A1 (en) * 2012-12-21 2014-06-26 Universität Innsbruck Bed load measurement using position or shape-alterable obstructing elements
CN105571819A (en) * 2015-12-11 2016-05-11 重庆交通大学 Sound acquiring system used for transportation observation of gravel and cobble, sound acquiring device and arrangement method thereof
CN107238483A (en) * 2017-08-09 2017-10-10 重庆交通大学 For defeated harvester, the system and method for moving pressure and defeated shifting audio of boulder and cobble
WO2020189679A1 (en) * 2019-03-19 2020-09-24 公立大学法人公立諏訪東京理科大学 Debris flow notification system and debris flow sensor

Similar Documents

Publication Publication Date Title
EP0953827B1 (en) Open channel flowmeter utilizing surface velocity and lookdown level devices
EP0465032A1 (en) Method for monitoring acoustic emissions
EA028593B1 (en) Method and apparatus for monitoring a fluid carrying conduit
CA2573518A1 (en) Sonar sand detection
US20020149487A1 (en) In-ground pipeline monitoring
JP3308249B2 (en) Scour monitoring system
US8601883B2 (en) Acoustic sensor for averaging pitot tube installation
NO321752B1 (en) System for sand detection in constrictions or currents in rudder
JPH11304550A (en) System for detecting avalanche of sand and stone
JPH0813505A (en) Slope collapse detector
JP3439113B2 (en) Pier scour monitoring system
JP3012522B2 (en) River monitoring system
JP2005258747A (en) Disaster prevention alarm device
US5801636A (en) Method and apparatus for seismic tornado detection
JPH11271058A (en) Bridge pier scour monitor
JPH0260241B2 (en)
JP3784963B2 (en) Pier scour monitoring equipment
KR830008343A (en) Industrial Plant Sound Monitoring Method and Apparatus
JP2004219179A (en) Open channel flow rate observation method using noncontact type current meter, and its device
CA2509332A1 (en) Extravasation detector
EP0300460B1 (en) Apparatus for detecting presence/absence of water leakage from water pipe
JPH11352247A (en) Natural disaster occurrence detecting device and method therefor, and avalanche occurrence detecting device and method therefor
CN113188620A (en) Method and system for preventing external gas stealing for ultrasonic gas meter
JP3474515B2 (en) Debris flow / mud flow detection device
JP2012002708A (en) Ultrasonic gas meter

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030325