JPH1130448A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH1130448A
JPH1130448A JP9183723A JP18372397A JPH1130448A JP H1130448 A JPH1130448 A JP H1130448A JP 9183723 A JP9183723 A JP 9183723A JP 18372397 A JP18372397 A JP 18372397A JP H1130448 A JPH1130448 A JP H1130448A
Authority
JP
Japan
Prior art keywords
capacity
compressor
pressure
low
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9183723A
Other languages
Japanese (ja)
Other versions
JP3837208B2 (en
Inventor
Takashi Watabe
岳志 渡部
Kazuhiro Shimura
一廣 志村
Naoto Sakamoto
直人 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18372397A priority Critical patent/JP3837208B2/en
Publication of JPH1130448A publication Critical patent/JPH1130448A/en
Application granted granted Critical
Publication of JP3837208B2 publication Critical patent/JP3837208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner, realizing capacity control in a multitude of stages while contriving the reduction of energy consumption as well as the number of constituting components. SOLUTION: When the capacity of 5 HP is to be generated by an outdoor unit 1, an outdoor side ECU 51 operates only a second compressor 4 having the capacity of 6 HP and, at the same time, all of first-third high-pressure side cut-off valves 45-47 and a low-pressure side cut-off valve 48 are opened. Then, a refrigerant pipeline 23 is communicated with another refrigerant pipeline 32 through a communicating pipeline 41 whereby a high-pressure refrigerant gas, flowing through the refrigerant pipeline 23, flows out into the side of the refrigerant pipeline 32 and a part of compressing work, effected by the second compressor 4, is abolished. A capillary tube 49, interposed in the communicating pipeline 41, is designed so as to conduct the flow of high-pressure gas refrigerant per 1 HP upon the operation of the second compressor 4 whereby the outdoor unit 1 generates the capacity of 5 HP.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、能力可変型圧縮機
と定能力型圧縮機とを熱源側に備えた空気調和装置に係
り、消費エネルギーの低減や構成部品点数の削減を図り
ながら、多段階での能力制御を実現する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner equipped with a variable capacity compressor and a constant capacity compressor on a heat source side, while reducing energy consumption and the number of constituent parts. The present invention relates to a technology for achieving capability control at a stage.

【0002】[0002]

【従来の技術】近年の空気調和装置では、冷暖房時にお
ける室温のオーバシュートやハンチングを防止するた
め、利用側(室内熱交換器)の能力要求に応じて、熱源
側(圧縮機)で能力制御を行うものが主流となってい
る。圧縮機の能力制御方法としては、インバータ装置を
用いて交流電流の周波数を変換し、これにより圧縮機の
駆動回転数をリニアに制御するものが多い。この方法に
よれば、圧縮機の能力を0〜定格点まで任意に変動させ
ることができるため、略完全な空気調和制御が実現可能
となる。ところが、インバータ装置には、周波数変換に
伴うエネルギーロスが避けられない他、望ましくない電
磁波を環境に放出したり、大型のものでは装置コストが
高くなる等、種々の問題がある。
2. Description of the Related Art In recent air conditioners, in order to prevent overshooting and hunting at room temperature during cooling and heating, capacity control is performed on a heat source side (compressor) according to a capacity requirement on a user side (indoor heat exchanger). Is the mainstream. As a method of controlling the capacity of a compressor, there are many methods of converting the frequency of an alternating current using an inverter device and thereby linearly controlling the driving speed of the compressor. According to this method, since the capacity of the compressor can be arbitrarily varied from 0 to the rated point, substantially perfect air conditioning control can be realized. However, the inverter device has various problems, such as inevitable energy loss due to frequency conversion, emission of undesired electromagnetic waves to the environment, and increase in device cost for large-sized devices.

【0003】そこで、特開平8−247560号等で
は、一定速度で駆動される圧縮機構が内装された定速圧
縮機を用いながら、パワーコントロール機構や冷媒戻し
回路により能力制御を行う可変能力型圧縮機(以下、P
C圧縮機と記す)が提案されている。パワーコントロー
ル機構は、圧縮機構のシリンダ側壁等に弁装置を付設し
たもので、この弁装置を開放することにより、例えば、
圧縮行程前半における圧縮仕事が行われなくなる。ま
た、冷媒戻し回路は、例えば、圧縮機の吐出側冷媒回路
と吸込側冷媒回路との間にバイパス配管を設け、このバ
イパス配管に介装された遮断弁を開放することにより、
圧縮後の冷媒の一部を吸込側冷媒回路に環流させる。
Therefore, Japanese Patent Application Laid-Open No. 8-247560 discloses a variable capacity type compression system in which a power control mechanism and a refrigerant return circuit control the capacity while using a constant speed compressor having a compression mechanism driven at a constant speed. Machine (hereinafter, P
C compressor) has been proposed. The power control mechanism has a valve device attached to the cylinder side wall of the compression mechanism, and by opening this valve device, for example,
The compression work in the first half of the compression stroke is not performed. Further, the refrigerant return circuit, for example, by providing a bypass pipe between the discharge-side refrigerant circuit and the suction-side refrigerant circuit of the compressor, by opening a shut-off valve interposed in this bypass pipe,
A part of the compressed refrigerant is returned to the suction-side refrigerant circuit.

【0004】PC圧縮機と通常の定速圧縮機とを組み合
わせた場合、両圧縮機を個別に運転あるいは停止させた
り、パワーコントロール機構や冷媒戻し回路を駆動する
ことにより、多段階の能力制御が可能となる。例えば、
PC圧縮機の定格能力を4馬力、定速圧縮機の定格能力
を6馬力とし、パワーコントロール機構によるPC圧縮
機の能力低減量を2馬力、冷媒戻し回路による能力低減
量を1馬力とすると、1〜10馬力の範囲で1馬力毎
(すなわち、10段階)に能力を切換えられる。
When a PC compressor and a normal constant speed compressor are combined, multi-stage capacity control is performed by operating or stopping both compressors individually or by driving a power control mechanism and a refrigerant return circuit. It becomes possible. For example,
Assuming that the rated capacity of the PC compressor is 4 hp, the rated capacity of the constant speed compressor is 6 hp, the capacity reduction of the PC compressor by the power control mechanism is 2 hp, and the capacity reduction by the refrigerant return circuit is 1 hp, The ability can be switched every 1 horsepower (that is, 10 steps) in the range of 1 to 10 horsepower.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述した冷
媒戻し回路を開放させると、圧縮後の冷媒の一部が吸込
側冷媒回路に環流するため、圧縮機は無駄な圧縮仕事を
行うことになる。例えば、9馬力の能力で運転が行われ
る際には、冷媒戻し回路により1馬力の圧縮仕事が廃棄
されるが、エネルギー消費は10馬力の能力で運転が行
われるときと略同等となる。これにより、インバータ装
置を用いた場合と同等あるいはそれ以上のエネルギーロ
スが発生し、PC圧縮機の採用を難しくさせる要因とな
っていた。尚、冷媒戻し回路を設けず、パワーコントロ
ール機構のみによる能力制御を行うことも考慮された
が、その場合には、上述した圧縮機構成では能力切換え
が2馬力毎(すなわち、5段階)となってしまう。その
ため、空気調和機においては、利用側の能力要求が小さ
い(例えば、1〜3馬力程度)場合等には、室温のオー
バシュートやハンチングが起こりやすくなり、被空調空
間におけるユーザーの快適性を損なう虞がある。
By the way, when the above-mentioned refrigerant return circuit is opened, a part of the compressed refrigerant flows back to the suction-side refrigerant circuit, so that the compressor performs useless compression work. . For example, when operating at a capacity of 9 hp, compression work of 1 hp is discarded by the refrigerant return circuit, but energy consumption is substantially the same as when operating at a capacity of 10 hp. As a result, an energy loss equal to or greater than that in the case where the inverter device is used occurs, and this is a factor that makes it difficult to employ a PC compressor. In addition, although it was considered that the capacity control was performed only by the power control mechanism without providing the refrigerant return circuit, in such a case, in the above-described compressor configuration, the capacity switching was performed every two horsepower (that is, five stages). Would. For this reason, in the air conditioner, when the capacity demand on the user side is small (for example, about 1 to 3 horsepower), overshoot or hunting at room temperature is likely to occur, and the user comfort in the space to be air-conditioned is impaired. There is a fear.

【0006】そこで、本発明者等は、圧縮機本体で4段
階の能力制御を行えるPC圧縮機を開発し、これと通常
の定速圧縮機とを組み合わせることで、多段階の能力制
御を行いつつ、冷媒戻し回路の使用頻度を低減させた空
気調和装置を実現した。すなわち、1〜4馬力の範囲で
1馬力毎に能力を切り換えられるPC圧縮機を製作し、
これと6馬力の能力を有する定速圧縮機とを組み合わせ
ることで、上述した従来装置と同様に10段階の能力制
御を行いながら、冷媒戻し回路の使用を5馬力運転時の
みとすることができた。これにより、圧縮仕事の廃棄頻
度が減少してエネルギー消費は当然に少なくなったが、
今度は、冷媒戻し回路が5馬力運転時にしか用いられな
くなるため、冷媒戻し回路(バイパス配管や遮断弁、ジ
ョイント等)のコストパフォーマンスが著しく悪くなる
という問題が生じた。
Accordingly, the present inventors have developed a PC compressor capable of performing four-stage capacity control with the compressor body, and performing multi-stage capacity control by combining this with a normal constant-speed compressor. Meanwhile, an air conditioner in which the frequency of use of the refrigerant return circuit is reduced has been realized. In other words, a PC compressor capable of switching the capacity every one horsepower in the range of 1 to 4 horsepower is manufactured,
By combining this with a constant speed compressor having a capacity of 6 horsepower, the use of the refrigerant return circuit can be performed only at the time of 5 horsepower operation while performing 10-step capacity control similarly to the above-described conventional apparatus. Was. As a result, the frequency of compression work disposal was reduced and energy consumption was naturally reduced,
This time, since the refrigerant return circuit is used only at the time of 5 hp operation, there has been a problem that the cost performance of the refrigerant return circuit (bypass piping, shutoff valve, joint, etc.) is significantly deteriorated.

【0007】本発明は上記状況に鑑みなされたものであ
り、消費エネルギーの低減や構成部品点数の削減を図り
ながら、多段階での能力制御を実現した空気調和装置を
提供することを目的としている。
The present invention has been made in view of the above circumstances, and has as its object to provide an air conditioner that realizes multi-stage capability control while reducing energy consumption and the number of components. .

【0008】[0008]

【課題を解決するための手段】そこで、請求項1の発明
では、熱源側に定能力型圧縮機と複数段階に能力制御可
能な可変能力型圧縮機とを有すると共に、当該可変能力
型圧縮機の能力調整を行うパワーコントロール機構が高
圧冷媒回路内を流通する高圧冷媒ガスと低圧冷媒回路内
を流通する低圧冷媒ガスとによって駆動される空気調和
装置であって、前記高圧冷媒回路と前記低圧冷媒回路と
を連通する連通配管と、当該連通配管から分岐し、当該
連通配管内の冷媒ガスを前記パワーコントロール機構に
導く導入配管と、前記導入配管の分岐位置より前記高圧
冷媒回路側で前記連通配管に介装された高圧側遮断弁
と、前記導入配管の分岐位置より前記低圧冷媒回路側で
前記連通配管に介装された低圧側遮断弁と、前記可変能
力型圧縮機の能力を調整するべく、前記高圧側遮断弁と
前記低圧側遮断弁とを所定の制御則に基づいて駆動制御
する能力制御手段とを備え、この能力制御手段は、前記
可変能力型圧縮機が停止しかつ前記定能力型圧縮機が運
転している際に熱源側の能力を減少させる必要が生じた
場合、前記連通配管を冷媒戻し配管とするべく、前記高
圧側遮断弁と前記低圧側遮断弁とを同時に開放させるも
のを提案する。
Therefore, according to the present invention, there is provided a constant capacity compressor and a variable capacity compressor capable of controlling the capacity in a plurality of stages on the heat source side, and the variable capacity compressor is provided. An air conditioner in which a power control mechanism for adjusting the capacity of the air conditioner is driven by a high-pressure refrigerant gas flowing in a high-pressure refrigerant circuit and a low-pressure refrigerant gas flowing in a low-pressure refrigerant circuit, wherein the high-pressure refrigerant circuit and the low-pressure refrigerant A communication pipe that communicates with the circuit; an introduction pipe that branches from the communication pipe and guides the refrigerant gas in the communication pipe to the power control mechanism; and the communication pipe that is closer to the high-pressure refrigerant circuit than a branch position of the introduction pipe. A high-pressure side shut-off valve interposed in a low-pressure side shut-off valve interposed in the communication pipe on the low-pressure refrigerant circuit side from a branch position of the introduction pipe, and a capacity of the variable capacity type compressor. Capacity control means for controlling the driving of the high-pressure side cutoff valve and the low-pressure side cutoff valve based on a predetermined control law, and the capacity control means stops the variable capacity type compressor and When it is necessary to reduce the capacity on the heat source side when the constant capacity compressor is operating, the high-pressure side shut-off valve and the low-pressure side shut-off valve are used to make the communication pipe a refrigerant return pipe. We propose something to be released at the same time.

【0009】この発明では、例えば、可変能力型圧縮機
の最大能力より定能力型圧縮機の能力が比較的大きく、
かつ室内側の能力要求が両能力間の値となった場合、能
力制御手段は、能力型圧縮機のみを運転させながら高圧
側遮断弁と低圧側遮断弁とを同時に開放させる。する
と、高圧冷媒回路と低圧冷媒回路とが連通配管を介して
連通され、定能力型圧縮機の能力の一部が廃棄されるこ
とにより、室内側の能力要求が満たされる。
According to the present invention, for example, the capacity of the constant capacity compressor is relatively larger than the maximum capacity of the variable capacity compressor,
When the capacity requirement on the indoor side becomes a value between the two capacities, the capacity control means simultaneously opens the high-pressure side shut-off valve and the low-pressure side shut-off valve while operating only the capacity type compressor. Then, the high-pressure refrigerant circuit and the low-pressure refrigerant circuit are communicated via the communication pipe, and a part of the capacity of the constant capacity compressor is discarded, so that the indoor capacity requirement is satisfied.

【0010】また、請求項2の発明では、請求項1の空
気調和装置において、前記定能力型圧縮機の能力と前記
可変能力型圧縮機の最大能力との間に当該可変能力型圧
縮機における略2段階分の能力差があり、かつ前記連通
配管を冷媒戻し配管とした場合の能力減少量と、前記可
変能力型圧縮機の1段階あたりの能力増減量とが略等し
いものを提案する。
According to a second aspect of the present invention, in the air conditioner of the first aspect, the variable capacity compressor is provided between the capacity of the constant capacity compressor and the maximum capacity of the variable capacity compressor. The present invention proposes a compressor in which there is a difference in capacity of approximately two stages and the amount of decrease in capacity when the communication pipe is a refrigerant return pipe is substantially equal to the amount of increase or decrease in capacity per step of the variable capacity compressor.

【0011】この発明では、能力制御手段は、定能力型
圧縮機と可変能力型圧縮機との運転制御と、高圧側遮断
弁と低圧側遮断弁との開閉制御を適宜行うことで、熱源
側の能力を最小値から最大値まで段階的に制御できる。
In the present invention, the capacity control means appropriately controls the operation of the constant capacity type compressor and the variable capacity type compressor, and controls the opening and closing of the high pressure side cutoff valve and the low pressure side cutoff valve, so that the heat source side is controlled. Can be controlled stepwise from a minimum value to a maximum value.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づき詳細に説明する。図1は、1台の室外ユニット
1と複数台の室内ユニット2とからなる空気調和システ
ムの概略構成図であり、同図中には実線で冷凍サイクル
を示し、一点鎖線で制御・信号系統を示してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an air conditioning system including one outdoor unit 1 and a plurality of indoor units 2. In FIG. 1, a refrigeration cycle is indicated by a solid line, and a control / signal system is indicated by a dashed line. Is shown.

【0013】室外ユニット1側には、第1,第2圧縮機
3,4、電磁式の四方弁5、室外熱交換器6、電動ファ
ン7、アキュムレータ8、オイルセパレータ9等が設置
されている。また、各室内ユニット2側には、電動膨張
弁11、室内熱交換器12、電動ファン13等が設置さ
れている。そして、これら機器のうちで冷凍サイクルを
構成するものは、ガス冷媒あるいは液冷媒の流通に供さ
れる冷媒配管21〜36により接続されている。図中、
15,16は、両圧縮機3,4への冷媒の逆流を防止す
る逆止弁であり、それぞれ冷媒配管21,22に介装さ
れている。
On the side of the outdoor unit 1, there are provided first and second compressors 3 and 4, an electromagnetic four-way valve 5, an outdoor heat exchanger 6, an electric fan 7, an accumulator 8, an oil separator 9, and the like. . An electric expansion valve 11, an indoor heat exchanger 12, an electric fan 13, and the like are installed on each indoor unit 2 side. Among these devices, those constituting a refrigeration cycle are connected by refrigerant pipes 21 to 36 provided for the flow of gas refrigerant or liquid refrigerant. In the figure,
Non-return valves 15 and 16 for preventing the refrigerant from flowing back to the compressors 3 and 4 are interposed in the refrigerant pipes 21 and 22, respectively.

【0014】本実施形態の場合、冷媒配管23(高圧冷
媒回路)と冷媒配管32(低圧冷媒回路)とが連通配管
41により連通されており、更に、連通配管41からは
冷媒配管23側から順に第1〜第3導入配管42〜44
が分岐している。第1〜第3導入配管42〜44は、後
述するパワーコントロール機構の駆動源として、いずれ
も第1圧縮機3に接続されている。また、連通配管41
には、第1〜第3導入配管42〜44の各分岐位置より
冷媒配管23よりに常閉型の第1〜第3高圧側遮断弁4
5〜47が介装され、第3導入配管44の分岐位置より
冷媒配管32よりにこれも常閉型の低圧側遮断弁48が
介装されている。図中、49はキャピラリチューブであ
り、連通配管41における低圧側遮断弁48と冷媒配管
32との間に介装されている。
In the case of this embodiment, the refrigerant pipe 23 (high-pressure refrigerant circuit) and the refrigerant pipe 32 (low-pressure refrigerant circuit) are connected by a communication pipe 41, and further from the communication pipe 41, in order from the refrigerant pipe 23 side. First to third introduction pipes 42 to 44
Has branched. Each of the first to third introduction pipes 42 to 44 is connected to the first compressor 3 as a drive source of a power control mechanism described later. In addition, the communication pipe 41
The first to third high pressure side shut-off valves 4 of normally closed type
5 to 47 are interposed, and a normally-closed low-pressure side shutoff valve 48 is also interposed from the branch line of the third introduction pipe 44 to the refrigerant pipe 32. In the figure, reference numeral 49 denotes a capillary tube which is interposed between the low pressure side shutoff valve 48 and the refrigerant pipe 32 in the communication pipe 41.

【0015】室外ユニット1内には、CPUを始め、入
出力インタフェースやROM、RAM等から構成され
た、室外側コントロールユニット(以下、室外側ECU
と記す)51が設置されている。室外側ECU51は、
内蔵した制御プログラムや図示しない各種センサ等から
の入力情報に基づき、両圧縮機3,4や四方弁5、電動
ファン7、各遮断弁45〜48を駆動制御する。
The outdoor unit 1 includes an outdoor control unit (hereinafter referred to as an outdoor ECU) including a CPU, an input / output interface, a ROM, a RAM, and the like.
51) are provided. The outdoor ECU 51 includes:
Based on input information from a built-in control program and various sensors (not shown), the compressors 3, 4 and the four-way valve 5, the electric fan 7, and the shut-off valves 45 to 48 are drive-controlled.

【0016】一方、各室内ユニット2内には、CPUを
始め、入出力インタフェースやROM、RAM等から構
成された、室内側コントロールユニット(以下、室内側
ECUと記す)53が設置されている。室内側ECU5
2は、内蔵した制御プログラムや図示しないリモートコ
ントローラ、各種センサ等からの入力信号に基づき、電
動膨張弁11や電動ファン13の駆動制御を行うと共
に、バスライン55を介して室外側ECU51との間で
相互に信号の授受を行う。
On the other hand, in each indoor unit 2, an indoor control unit (hereinafter referred to as an indoor ECU) 53 including a CPU, an input / output interface, a ROM, a RAM and the like is installed. Indoor ECU5
2 controls driving of the electric expansion valve 11 and the electric fan 13 based on input signals from a built-in control program, a remote controller (not shown), various sensors, and the like, and communicates with the outdoor ECU 51 via the bus line 55. To exchange signals with each other.

【0017】本実施形態の場合、第1,第2圧縮機3,
4は共に上下一対の回転圧縮要素を有する電動ツインロ
ータ型の定速圧縮機であり、第1圧縮機3側の定格出力
が4馬力、第2圧縮機4側の定格出力が6馬力となって
いる。第1圧縮機3は、パワーコントロール機構を備え
たPC圧縮機であり、1〜4馬力の間で1馬力毎に出力
切換ができる。
In this embodiment, the first and second compressors 3 and 3
Reference numeral 4 denotes an electric twin rotor type constant speed compressor having a pair of upper and lower rotary compression elements. The rated output of the first compressor 3 is 4 hp, and the rated output of the second compressor 4 is 6 hp. ing. The first compressor 3 is a PC compressor provided with a power control mechanism, and can switch the output between 1 to 4 horsepower every one horsepower.

【0018】以下、本実施形態におけるパワーコントロ
ール機構の構造とその作用を説明する。
The structure and operation of the power control mechanism according to the present embodiment will be described below.

【0019】第1圧縮機3の圧縮機構61は、図2にそ
の半裁縦断面を示すように、メインフレーム65とベア
リングプレート67とに挟持された上下一対のシリンダ
69,70と、両シリンダ69,70および中間プレー
ト71により画成された上下一対のシリンダ室73,7
5と、両シリンダ室73,75の内周面に摺接しながら
相互に180゜の位相差をもって偏心回転する上下一対
のロータ77,79とからなっている。図中、80は圧
縮機ケーシングである。
The compression mechanism 61 of the first compressor 3 has a pair of upper and lower cylinders 69 and 70 sandwiched between a main frame 65 and a bearing plate 67, and both cylinders 69, as shown in FIG. , 70 and a pair of upper and lower cylinder chambers 73, 7 defined by the intermediate plate 71.
5 and a pair of upper and lower rotors 77 and 79 which eccentrically rotate with a phase difference of 180 ° while slidingly contacting the inner peripheral surfaces of the two cylinder chambers 73 and 75. In the figure, reference numeral 80 denotes a compressor casing.

【0020】パワーコントロール機構81は、両シリン
ダ室73,75を3カ所の連通部位(後述するベーンに
対して90゜および180゜位相のずれた部位)で連通
させるもので、シリンダ69,70および中間プレート
71の外周部を上下方向に貫通するバルブ孔83と、こ
のバルブ孔83に摺動自在に保持された上下一対のピス
トンバルブ85,86と、これらピストンバルブ85,
86を互いに離間する方向に付勢するバルブスプリング
(圧縮コイルスプリング)87とを主要構成部材として
いる。尚、中間プレート71の部分では、ピストンバル
ブ85,86に対するストッパを形成するべく、バルブ
孔83の内径がピストンバルブ85,86の外径より小
径となっている。また、バルブスプリング87は、両ピ
ストンバルブ85,86の受圧面に所定値以上の高圧
(例えば、第1圧縮機3の最大吐出圧の20%)が作用
したときに、完全に圧縮するように設定されている。
The power control mechanism 81 communicates the two cylinder chambers 73 and 75 at three communicating portions (portions which are out of phase by 90 ° and 180 ° with respect to a vane described later). A valve hole 83 penetrating vertically through the outer periphery of the intermediate plate 71, a pair of upper and lower piston valves 85, 86 slidably held in the valve hole 83,
A main component is a valve spring (compression coil spring) 87 that urges the pumps 86 away from each other. In the intermediate plate 71, the inner diameter of the valve hole 83 is smaller than the outer diameter of the piston valves 85 and 86 so as to form stoppers for the piston valves 85 and 86. Further, the valve spring 87 is completely compressed when a high pressure (for example, 20% of the maximum discharge pressure of the first compressor 3) acts on the pressure receiving surfaces of the piston valves 85 and 86 at a predetermined value or more. Is set.

【0021】バルブ孔83は、中間プレート71の近傍
に穿孔された一対の連通孔88,89を介して、両シリ
ンダ室73,75と連通されている。また、両シリンダ
69,70および中間プレート71には、バルブ孔83
に平行する冷媒導入孔91が貫通しており、この冷媒導
入孔91に導入配管42(43,44)からのガス冷媒
が導入される。更に、メインフレーム65とベアリング
プレート67とには、それぞれ、バルブ孔83と冷媒導
入孔91とを連通させる連通凹部93,94が形成され
ている。
The valve hole 83 communicates with the two cylinder chambers 73 and 75 through a pair of communication holes 88 and 89 formed near the intermediate plate 71. In both cylinders 69, 70 and intermediate plate 71, valve holes 83 are provided.
A gas refrigerant from the introduction pipe 42 (43, 44) is introduced into the refrigerant introduction hole 91. Further, communication recesses 93 and 94 are formed in the main frame 65 and the bearing plate 67 to communicate the valve hole 83 and the coolant introduction hole 91, respectively.

【0022】冷媒導入孔91に低圧冷媒ガスが導入され
た場合、両ピストンバルブ85,86は、バルブスプリ
ング87のばね力により、図2に示したように、メイン
フレーム65またはベアリングプレート67の端面に押
し付けられる。その結果、両シリンダ室73,75は、
連通孔88,89、バルブ孔83、逆止弁90を介して
連通され、一方のシリンダ室75(73)の圧縮空間か
ら他方のシリンダ室73(75)の吸入空間にガス冷媒
が流出する。一方、冷媒導入孔91に高圧冷媒ガスが導
入された場合、両ピストンバルブ85,86の受圧面に
高圧が作用してバルブスプリング87が圧縮され、両ピ
ストンバルブ85,86が互いに接近して中間プレート
71に当接する。その結果、両ピストンバルブ85,8
6の外周面により連通孔88,89が閉鎖され、両シリ
ンダ室73,75間が連通されなくなる。
When low-pressure refrigerant gas is introduced into the refrigerant introduction hole 91, the piston valves 85 and 86 are actuated by the spring force of the valve spring 87, as shown in FIG. Pressed to. As a result, both cylinder chambers 73 and 75
The gas refrigerant flows through the communication holes 88 and 89, the valve hole 83, and the check valve 90, and flows out of the compression space of one cylinder chamber 75 (73) into the suction space of the other cylinder chamber 73 (75). On the other hand, when high-pressure refrigerant gas is introduced into the refrigerant introduction hole 91, a high pressure acts on the pressure receiving surfaces of the piston valves 85 and 86, and the valve spring 87 is compressed. It comes into contact with the plate 71. As a result, both piston valves 85, 8
The communication holes 88 and 89 are closed by the outer peripheral surface of 6, and the communication between the two cylinder chambers 73 and 75 is stopped.

【0023】図4は、圧縮機構61に対するパワーコン
トロール機構81の配置を示す模式図である。前述した
ように、パワーコントロール機構81は、ベーン95に
対して90゜および180゜位相のずれた部位にそれぞ
れ配置されており、吐出ポート97側のパワーコントロ
ール機構81には第1導入配管42が接続し、ベーン9
5に対向するパワーコントロール機構81には第2導入
配管43が接続し、吸入ポート98側のパワーコントロ
ール機構81には第3導入配管44が接続している。
FIG. 4 is a schematic diagram showing the arrangement of the power control mechanism 81 with respect to the compression mechanism 61. As described above, the power control mechanism 81 is disposed at a position that is 90 ° and 180 ° out of phase with respect to the vane 95, and the first introduction pipe 42 is provided in the power control mechanism 81 on the discharge port 97 side. Connect and Vane 9
The second introduction pipe 43 is connected to the power control mechanism 81 facing the power supply 5, and the third introduction pipe 44 is connected to the power control mechanism 81 on the suction port 98 side.

【0024】本実施形態では、パワーコントロール機構
81を作動させる場合、室外側ECU51は、第1〜第
3高圧側遮断弁45〜47と低圧側遮断弁48とを適宜
駆動制御する。例えば、第1〜第3高圧側遮断弁45〜
47を開放(ON作動)させて、低圧側遮断弁48を閉
鎖(OFF作動)させれば、冷媒配管23内の高圧冷媒
ガスが第1〜第3導入配管42〜44を介して各パワー
コントロール機構81に導入され、これにより、両シリ
ンダ室73,75間の連通が全て遮断されて、第1圧縮
機3はその運転時に4馬力の圧縮仕事を行うことにな
る。また、この状態から低圧側遮断弁48を開放(ON
作動)させれば、冷媒配管32内の低圧冷媒ガスが第3
導入配管44を介して吸入ポート98側のパワーコント
ロール機構81に導入され、これにより、両シリンダ室
73,75間の連通は3/4が遮断されて、第1圧縮機
3はその運転時に3馬力の圧縮仕事を行うことになる。
In the present embodiment, when the power control mechanism 81 is operated, the outdoor ECU 51 appropriately controls the driving of the first to third high-pressure cutoff valves 45 to 47 and the low-pressure cutoff valve 48. For example, first to third high pressure side shutoff valves 45 to 45
If the low pressure side shut-off valve 48 is closed (OFF operation) by opening the 47 (ON operation) and the low pressure side shut-off valve 48 is closed, the high pressure refrigerant gas in the refrigerant pipe 23 is controlled by the power control via the first to third introduction pipes 42 to 44. The first compressor 3 is introduced into the mechanism 81, whereby the communication between the two cylinder chambers 73, 75 is completely shut off, and the first compressor 3 performs a compression work of 4 hp during its operation. In this state, the low-pressure side shutoff valve 48 is opened (ON
Operation), the low-pressure refrigerant gas in the refrigerant pipe 32 becomes the third
The power is introduced into the power control mechanism 81 on the suction port 98 side through the introduction pipe 44, whereby the communication between the two cylinder chambers 73 and 75 is cut off by 3/4, and the first compressor 3 is turned off during operation. It will do the work of compressing horsepower.

【0025】また、この状態から更に第3高圧側遮断弁
47を開放(ON作動)させれば、冷媒配管32内の低
圧冷媒ガスが第2導入配管43を介してベーン95に対
向するパワーコントロール機構81にも導入され、これ
により、両シリンダ室73,75間の連通は1/2が遮
断されて、第1圧縮機3はその運転時に2馬力の圧縮仕
事を行うことになる。そして、この状態から更に第2高
圧側遮断弁47を開放(ON作動)させれば、冷媒配管
32内の低圧冷媒ガスが第1〜第3導入配管42〜44
を介して各パワーコントロール機構81に導入され、こ
れにより、両シリンダ室73,75間の連通が1/4が
遮断されて、第1圧縮機3はその運転時に1馬力の圧縮
仕事を行うことになる。
When the third high-pressure side shutoff valve 47 is further opened (ON operation) from this state, the power control in which the low-pressure refrigerant gas in the refrigerant pipe 32 faces the vane 95 via the second introduction pipe 43. It is also introduced into the mechanism 81, whereby the communication between the two cylinder chambers 73 and 75 is cut off by half, and the first compressor 3 performs a compression work of 2 hp during its operation. Then, when the second high-pressure side shut-off valve 47 is further opened (ON operation) from this state, the low-pressure refrigerant gas in the refrigerant pipe 32 becomes the first to third introduction pipes 42 to 44.
, The communication between the two cylinder chambers 73 and 75 is cut off by 4, and the first compressor 3 performs 1 hp compression work during its operation. become.

【0026】室外側ECU51は、室外ユニット1に1
〜10馬力の能力を発生させる際に、第1,第2圧縮機
3,4の運転制御とパワーコントロール機構81の駆動
制御とを次のように行う。すわなち、第1圧縮機3のみ
を運転させながら、第1〜第3高圧側遮断弁45〜47
と低圧側遮断弁48とを上述した手順で駆動制御すれ
ば、1〜4馬力の間で1馬力毎の能力を得ることができ
る。また、第2圧縮機4のみを運転させれば、当然のこ
とながら、6馬力の能力を得ることができる。そして、
第1,第2圧縮機3,4を同時に運転させながら、第1
〜第3高圧側遮断弁45〜47と低圧側遮断弁48とを
駆動制御すれば、7〜10馬力の間で1馬力毎の能力を
得ることができる。
The outdoor ECU 51 provides the outdoor unit 1 with 1
When the capacity of 10 to 10 hp is generated, the operation control of the first and second compressors 3 and 4 and the drive control of the power control mechanism 81 are performed as follows. That is, while operating only the first compressor 3, the first to third high-pressure side shutoff valves 45 to 47
By driving and controlling the low-pressure side shut-off valve 48 in the above-described procedure, it is possible to obtain the capability for each 1 hp between 1 and 4 hp. In addition, if only the second compressor 4 is operated, a capacity of 6 horsepower can be naturally obtained. And
While operating the first and second compressors 3 and 4 simultaneously, the first
By driving and controlling the third to third high pressure side shutoff valves 45 to 47 and the low pressure side shutoff valve 48, it is possible to obtain a capacity for each 1 hp from 7 to 10 hp.

【0027】さて、室外ユニット1に5馬力の能力を発
生させる場合、室外側ECU51は、第2圧縮機4のみ
を運転させると同時に、第1〜第3高圧側遮断弁45〜
47と低圧側遮断弁48とを全て開放(ON作動)させ
る。すると、冷媒配管23と冷媒配管32とが連通配管
41により連通され、冷媒配管23内を流通する高圧冷
媒ガスが冷媒配管32側に流出して、第2圧縮機4でな
された圧縮仕事の一部が廃棄されることになる。つま
り、連通配管41は、第1〜第3高圧側遮断弁45〜4
7と低圧側遮断弁48とを全て開放された場合におい
て、従来装置における冷媒戻し回路と同等の作用をもつ
ことになるのである。また、連通配管41に介装された
キャピラリチューブ49は、第2圧縮機4の運転時に1
馬力分の高圧ガス冷媒を流通させるように設定されてい
るため、室外ユニット1は5馬力の能力を発生すること
になる。尚、図5は、室外ユニット1の能力と、第1,
第2圧縮機3,4および各遮断弁45〜48のON/O
FF状態との関係を示すテーブルである。
When the outdoor unit 1 is to have a capacity of 5 hp, the outdoor ECU 51 operates only the second compressor 4 and simultaneously operates the first to third high-pressure side shutoff valves 45 to 45.
47 and the low pressure side shutoff valve 48 are all opened (ON operation). Then, the refrigerant pipe 23 and the refrigerant pipe 32 are communicated with each other by the communication pipe 41, and the high-pressure refrigerant gas flowing through the refrigerant pipe 23 flows out to the refrigerant pipe 32 side, and one of the compression work performed by the second compressor 4 is performed. Parts will be discarded. That is, the communication pipe 41 includes the first to third high-pressure side shutoff valves 45 to 4.
When both the valve 7 and the low-pressure side shutoff valve 48 are opened, the operation is equivalent to that of the refrigerant return circuit in the conventional device. The capillary tube 49 interposed in the communication pipe 41 is connected to the first tube 4 when the second compressor 4 is operating.
Since the high-pressure gas refrigerant corresponding to the horsepower is set to flow, the outdoor unit 1 generates a capacity of 5 horsepower. FIG. 5 shows the capacity of the outdoor unit 1 and
ON / O of the second compressors 3 and 4 and the shutoff valves 45 to 48
It is a table which shows the relationship with FF state.

【0028】このように、本実施形態の空気調和システ
ムでは、パワーコントロール機構用の連通配管や遮断弁
に冷媒戻し回路の機能を兼ねさせるようにしたため、冷
媒戻し回路に専用のバイパス配管や遮断弁等を設ける必
要がなくなり、機器構成の簡素化やコストダウン等を実
現できた。
As described above, in the air conditioning system of the present embodiment, the communication pipe and the shut-off valve for the power control mechanism also have the function of the refrigerant return circuit. There is no need to provide such a device, and the device configuration can be simplified and costs can be reduced.

【0029】以上で具体的実施形態の説明を終えるが、
本発明の態様はこの実施形態に限られるものではない。
例えば、上記実施形態は各1台の可変能力型圧縮機と定
能力型圧縮機とを備えた空気調和システムに本発明を適
用したものであるが、定能力型圧縮機を複数台備えたも
の等に適用してもよい。また、上記実施形態では、4段
階制御のパワーコントロール機構をツインロータ型の定
速圧縮機に設けるようにしたが、パワーコントロール機
構による能力制御を3段階以下あるいは5段階以上とし
てもよいし、圧縮機としてトリプルロータ以上の圧縮機
構を備えたものを用いてもよい。また、パワーコントロ
ール機構の構造については、例えば、圧縮機ケーシング
の外部に連通配管を設ける等、種々の構造が考えられる
し、冷凍サイクルにおける他の具体的構成等について
も、本発明の趣旨を逸脱しない範囲であれば適宜変更可
能である。
The description of the specific embodiment has been completed.
Aspects of the present invention are not limited to this embodiment.
For example, in the above-described embodiment, the present invention is applied to an air conditioning system including one variable capacity compressor and one fixed capacity compressor, but a plurality of fixed capacity compressors are provided. Etc. may be applied. Further, in the above embodiment, the power control mechanism of the four-stage control is provided in the twin rotor type constant speed compressor. However, the power control by the power control mechanism may be three or less stages or five or more stages. A machine having a compression mechanism of a triple rotor or more may be used. Further, as for the structure of the power control mechanism, various structures are conceivable, for example, a communication pipe is provided outside the compressor casing, and other specific configurations in the refrigeration cycle also deviate from the gist of the present invention. It can be changed appropriately as long as it is not within the range.

【0030】[0030]

【発明の効果】以上、詳細に説明したように、請求項1
の発明によれば、熱源側に定能力型圧縮機と複数段階に
能力制御可能な可変能力型圧縮機とを有すると共に、当
該可変能力型圧縮機の能力調整を行うパワーコントロー
ル機構が高圧冷媒回路内を流通する高圧冷媒ガスと低圧
冷媒回路内を流通する低圧冷媒ガスとによって駆動され
る空気調和装置であって、前記高圧冷媒回路と前記低圧
冷媒回路とを連通する連通配管と、当該連通配管から分
岐し、当該連通配管内の冷媒ガスを前記パワーコントロ
ール機構に導く導入配管と、前記導入配管の分岐位置よ
り前記高圧冷媒回路側で前記連通配管に介装された高圧
側遮断弁と、前記導入配管の分岐位置より前記低圧冷媒
回路側で前記連通配管に介装された低圧側遮断弁と、前
記可変能力型圧縮機の能力を調整するべく、前記高圧側
遮断弁と前記低圧側遮断弁とを所定の制御則に基づいて
駆動制御する能力制御手段とを備え、この能力制御手段
は、前記可変能力型圧縮機が停止しかつ前記定能力型圧
縮機が運転している際に熱源側の能力を減少させる必要
が生じた場合、前記連通配管を冷媒戻し配管とするべ
く、前記高圧側遮断弁と前記低圧側遮断弁とを同時に開
放させるものとしたため、多段階での能力制御を実現し
ながら、バイパス配管や遮断弁等、専用の冷媒戻し回路
を構成するための部材が不要になり、装置構成の簡素化
やコストの低減を実現することができる。
As described in detail above, claim 1 is as follows.
According to the invention, the heat source side has a constant capacity compressor and a variable capacity compressor capable of controlling the capacity in a plurality of stages, and a power control mechanism for adjusting the capacity of the variable capacity compressor is a high pressure refrigerant circuit. An air conditioner driven by a high-pressure refrigerant gas flowing through the inside and a low-pressure refrigerant gas flowing through the low-pressure refrigerant circuit, comprising: a communication pipe for communicating the high-pressure refrigerant circuit with the low-pressure refrigerant circuit; and the communication pipe. And a high-pressure side shut-off valve interposed in the communication pipe on the high-pressure refrigerant circuit side from a branch position of the introduction pipe, the introduction pipe guiding the refrigerant gas in the communication pipe to the power control mechanism. A low-pressure side shut-off valve interposed in the communication pipe on a side of the low-pressure refrigerant circuit from a branch position of the introduction pipe, and the high-pressure side shut-off valve and the low-pressure shut-off valve for adjusting the capacity of the variable capacity compressor. And a capacity control means for driving and controlling the shutoff valve based on a predetermined control law, wherein the capacity control means is provided when the variable capacity type compressor is stopped and the constant capacity type compressor is operating. When it is necessary to reduce the capacity on the heat source side, the high-pressure side shut-off valve and the low-pressure side shut-off valve are simultaneously opened in order to make the communication pipe a refrigerant return pipe. Therefore, members for configuring a dedicated refrigerant return circuit, such as a bypass pipe and a shutoff valve, are not required, so that the device configuration can be simplified and the cost can be reduced.

【0031】また、請求項2の発明によれば、請求項1
の空気調和装置において、前記定能力型圧縮機の能力と
前記可変能力型圧縮機の最大能力との間に当該可変能力
型圧縮機における略2段階分の能力差があり、かつ前記
連通配管を冷媒戻し配管とした場合の能力減少量と、前
記可変能力型圧縮機の1段階あたりの能力増減量とが略
等しいものとしたため、能力制御手段が定能力型圧縮機
と可変能力型圧縮機との運転制御と、高圧側遮断弁と低
圧側遮断弁との開閉制御とを適宜行うことで、熱源側の
能力を最小値から最大値まで段階的に制御できるように
なる。
Further, according to the invention of claim 2, according to claim 1,
In the air conditioner, there is a capacity difference of approximately two stages in the variable capacity type compressor between the capacity of the constant capacity type compressor and the maximum capacity of the variable capacity type compressor, and the communication pipe is Since the amount of capacity decrease in the case of the refrigerant return pipe and the amount of capacity increase / decrease per stage of the variable capacity compressor are assumed to be substantially the same, the capacity control means uses a constant capacity compressor and a variable capacity compressor. , And the opening and closing control of the high-pressure side shut-off valve and the low-pressure side shut-off valve is appropriately performed, whereby the capability of the heat source side can be controlled stepwise from the minimum value to the maximum value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る空気調和システムの一実施形態を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating an embodiment of an air conditioning system according to the present invention.

【図2】パワーコントロール機構の構造および作用を示
す半裁縦断面図である。
FIG. 2 is a half vertical sectional view showing the structure and operation of a power control mechanism.

【図3】パワーコントロール機構の構造および作用を示
す半裁縦断面図である。
FIG. 3 is a half vertical sectional view showing the structure and operation of a power control mechanism.

【図4】圧縮機構に対するパワーコントロール機構の配
置を示す模式図である。
FIG. 4 is a schematic diagram showing an arrangement of a power control mechanism with respect to a compression mechanism.

【図5】室外ユニットの能力と、第1,第2圧縮機およ
び各遮断弁のON/OFF状態との関係を示すテーブル
である。
FIG. 5 is a table showing the relationship between the capacity of the outdoor unit and the ON / OFF states of the first and second compressors and each shut-off valve.

【符号の説明】[Explanation of symbols]

1 室外ユニット 2 室内ユニット 3 第1圧縮機(可変能力型圧縮機) 4 第2圧縮機(定能力型圧縮機) 23 冷媒配管(高圧冷媒回路) 32 冷媒配管(低圧冷媒回路) 41 連通配管 42 第1連通配管 43 第2連通配管 44 第3連通配管 45 第1高圧側遮断弁 46 第2高圧側遮断弁 47 第3高圧側遮断弁 48 低圧側遮断弁 49 キャピラリチューブ 51 室外側ECU Reference Signs List 1 outdoor unit 2 indoor unit 3 first compressor (variable capacity compressor) 4 second compressor (constant capacity compressor) 23 refrigerant pipe (high pressure refrigerant circuit) 32 refrigerant pipe (low pressure refrigerant circuit) 41 communication pipe 42 1st communication pipe 43 2nd communication pipe 44 3rd communication pipe 45 1st high pressure side cutoff valve 46 2nd high pressure side cutoff valve 47 3rd high pressure side cutoff valve 48 low pressure side cutoff valve 49 Capillary tube 51 Outdoor ECU

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱源側に定能力型圧縮機と複数段階に能
力制御可能な可変能力型圧縮機とを有すると共に、当該
可変能力型圧縮機の能力調整を行うパワーコントロール
機構が高圧冷媒回路内を流通する高圧冷媒ガスと低圧冷
媒回路内を流通する低圧冷媒ガスとによって駆動される
空気調和装置であって、 前記高圧冷媒回路と前記低圧冷媒回路とを連通する連通
配管と、 当該連通配管から分岐し、当該連通配管内の冷媒ガスを
前記パワーコントロール機構に導く導入配管と、 前記導入配管の分岐位置より前記高圧冷媒回路側で前記
連通配管に介装された高圧側遮断弁と、 前記導入配管の分岐位置より前記低圧冷媒回路側で前記
連通配管に介装された低圧側遮断弁と、 前記可変能力型圧縮機の能力を調整するべく、前記高圧
側遮断弁と前記低圧側遮断弁とを所定の制御則に基づい
て駆動制御する能力制御手段とを備え、 この能力制御手段は、前記可変能力型圧縮機が停止しか
つ前記定能力型圧縮機が運転している際に熱源側の能力
を減少させる必要が生じた場合、前記連通配管を冷媒戻
し配管とするべく、前記高圧側遮断弁と前記低圧側遮断
弁とを同時に開放させることを特徴とする空気調和装
置。
1. A high-performance refrigerant circuit having a constant capacity compressor and a variable capacity compressor capable of controlling the capacity in a plurality of stages on a heat source side, and a power control mechanism for adjusting the capacity of the variable capacity compressor. An air conditioner driven by a high-pressure refrigerant gas flowing through the low-pressure refrigerant gas and a low-pressure refrigerant gas flowing in the low-pressure refrigerant circuit, comprising: a communication pipe that communicates the high-pressure refrigerant circuit and the low-pressure refrigerant circuit; and An introduction pipe that branches and guides the refrigerant gas in the communication pipe to the power control mechanism; a high-pressure side cutoff valve interposed in the communication pipe on the high-pressure refrigerant circuit side from a branch position of the introduction pipe; A low-pressure side shut-off valve interposed in the communication pipe on the low-pressure refrigerant circuit side from a branch position of the pipe; and a high-pressure side shut-off valve and the low-pressure side to adjust the capacity of the variable capacity compressor. And a capacity control means for driving and controlling the shutoff valve based on a predetermined control law, wherein the capacity control means is provided when the variable capacity type compressor is stopped and the constant capacity type compressor is operating. An air conditioner characterized by opening the high-pressure side shut-off valve and the low-pressure side shut-off valve at the same time in order to make the communication pipe a refrigerant return pipe when it becomes necessary to reduce the capacity on the heat source side.
【請求項2】 前記定能力型圧縮機の能力と前記可変能
力型圧縮機の最大能力との間に当該可変能力型圧縮機に
おける略2段階分の能力差があり、かつ前記連通配管を
冷媒戻し配管とした場合の能力減少量と、前記可変能力
型圧縮機の1段階あたりの能力増減量とが略等しいこと
を特徴とする、請求項1記載の空気調和装置。
2. The variable capacity compressor has a capacity difference of approximately two stages between the capacity of the constant capacity compressor and the maximum capacity of the variable capacity compressor, and the communication pipe is connected to a refrigerant. 2. The air conditioner according to claim 1, wherein a capacity reduction amount in the case of a return pipe is substantially equal to a capacity change amount per one stage of the variable capacity compressor. 3.
JP18372397A 1997-07-09 1997-07-09 Air conditioner Expired - Fee Related JP3837208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18372397A JP3837208B2 (en) 1997-07-09 1997-07-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18372397A JP3837208B2 (en) 1997-07-09 1997-07-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPH1130448A true JPH1130448A (en) 1999-02-02
JP3837208B2 JP3837208B2 (en) 2006-10-25

Family

ID=16140844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18372397A Expired - Fee Related JP3837208B2 (en) 1997-07-09 1997-07-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP3837208B2 (en)

Also Published As

Publication number Publication date
JP3837208B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
EP1851434B1 (en) Capacity varying type rotary compressor and refrigeration system having the same
US7976289B2 (en) Capacity variable type rotary compressor and driving method thereof
US5050233A (en) Rotary compressor
JP3119946B2 (en) Combined lift / piston / axial port unloader for screw compressor
US6024547A (en) Power-variable compressor and air conditioner using the same
KR100620044B1 (en) Modulation apparatus for rotary compressor
KR100724452B1 (en) Modulation type rotary compressor
JP3979717B2 (en) Air conditioner
JPH02191882A (en) Displacement control device for compressor and control method thereof
JP3561598B2 (en) Compressors and air conditioners
JP3837208B2 (en) Air conditioner
KR100585809B1 (en) Modulation type multi rotary compressor and operation method
JP3588216B2 (en) Compressors and air conditioners
JP3585149B2 (en) Compressors and air conditioners
KR100724442B1 (en) Modulation type twin rotary compressor and airconditioner using this
KR100677527B1 (en) Rotary compressor
KR100677515B1 (en) Modulation type multi-stage rotary compressor and airconditioner using this
KR100664293B1 (en) Modulation apparatus for rotary compressor and airconditioner with his
JP3819510B2 (en) Air conditioner
JP3338256B2 (en) Air conditioner
JP3634472B2 (en) Air conditioner
JPS6229789A (en) Rotary compressor
KR100625806B1 (en) Hybrid Air-Conditioner
KR100585808B1 (en) Multi-stage rotary compressor
JP3553714B2 (en) Air conditioner and control method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees