JP3837208B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3837208B2
JP3837208B2 JP18372397A JP18372397A JP3837208B2 JP 3837208 B2 JP3837208 B2 JP 3837208B2 JP 18372397 A JP18372397 A JP 18372397A JP 18372397 A JP18372397 A JP 18372397A JP 3837208 B2 JP3837208 B2 JP 3837208B2
Authority
JP
Japan
Prior art keywords
capacity
compressor
pressure
low
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18372397A
Other languages
Japanese (ja)
Other versions
JPH1130448A (en
Inventor
岳志 渡部
一廣 志村
直人 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18372397A priority Critical patent/JP3837208B2/en
Publication of JPH1130448A publication Critical patent/JPH1130448A/en
Application granted granted Critical
Publication of JP3837208B2 publication Critical patent/JP3837208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor

Description

【0001】
【発明の属する技術分野】
本発明は、能力可変型圧縮機と定能力型圧縮機とを熱源側に備えた空気調和装置に係り、消費エネルギーの低減や構成部品点数の削減を図りながら、多段階での能力制御を実現する技術に関する。
【0002】
【従来の技術】
近年の空気調和装置では、冷暖房時における室温のオーバシュートやハンチングを防止するため、利用側(室内熱交換器)の能力要求に応じて、熱源側(圧縮機)で能力制御を行うものが主流となっている。圧縮機の能力制御方法としては、インバータ装置を用いて交流電流の周波数を変換し、これにより圧縮機の駆動回転数をリニアに制御するものが多い。この方法によれば、圧縮機の能力を0〜定格点まで任意に変動させることができるため、略完全な空気調和制御が実現可能となる。ところが、インバータ装置には、周波数変換に伴うエネルギーロスが避けられない他、望ましくない電磁波を環境に放出したり、大型のものでは装置コストが高くなる等、種々の問題がある。
【0003】
そこで、特開平8−247560号等では、一定速度で駆動される圧縮機構が内装された定速圧縮機を用いながら、パワーコントロール機構や冷媒戻し回路により能力制御を行う可変能力型圧縮機(以下、PC圧縮機と記す)が提案されている。パワーコントロール機構は、圧縮機構のシリンダ側壁等に弁装置を付設したもので、この弁装置を開放することにより、例えば、圧縮行程前半における圧縮仕事が行われなくなる。また、冷媒戻し回路は、例えば、圧縮機の吐出側冷媒回路と吸込側冷媒回路との間にバイパス配管を設け、このバイパス配管に介装された遮断弁を開放することにより、圧縮後の冷媒の一部を吸込側冷媒回路に環流させる。
【0004】
PC圧縮機と通常の定速圧縮機とを組み合わせた場合、両圧縮機を個別に運転あるいは停止させたり、パワーコントロール機構や冷媒戻し回路を駆動することにより、多段階の能力制御が可能となる。例えば、PC圧縮機の定格能力を4馬力、定速圧縮機の定格能力を6馬力とし、パワーコントロール機構によるPC圧縮機の能力低減量を2馬力、冷媒戻し回路による能力低減量を1馬力とすると、1〜10馬力の範囲で1馬力毎(すなわち、10段階)に能力を切換えられる。
【0005】
【発明が解決しようとする課題】
ところで、上述した冷媒戻し回路を開放させると、圧縮後の冷媒の一部が吸込側冷媒回路に環流するため、圧縮機は無駄な圧縮仕事を行うことになる。例えば、9馬力の能力で運転が行われる際には、冷媒戻し回路により1馬力の圧縮仕事が廃棄されるが、エネルギー消費は10馬力の能力で運転が行われるときと略同等となる。これにより、インバータ装置を用いた場合と同等あるいはそれ以上のエネルギーロスが発生し、PC圧縮機の採用を難しくさせる要因となっていた。尚、冷媒戻し回路を設けず、パワーコントロール機構のみによる能力制御を行うことも考慮されたが、その場合には、上述した圧縮機構成では能力切換えが2馬力毎(すなわち、5段階)となってしまう。そのため、空気調和機においては、利用側の能力要求が小さい(例えば、1〜3馬力程度)場合等には、室温のオーバシュートやハンチングが起こりやすくなり、被空調空間におけるユーザーの快適性を損なう虞がある。
【0006】
そこで、本発明者等は、圧縮機本体で4段階の能力制御を行えるPC圧縮機を開発し、これと通常の定速圧縮機とを組み合わせることで、多段階の能力制御を行いつつ、冷媒戻し回路の使用頻度を低減させた空気調和装置を実現した。すなわち、1〜4馬力の範囲で1馬力毎に能力を切り換えられるPC圧縮機を製作し、これと6馬力の能力を有する定速圧縮機とを組み合わせることで、上述した従来装置と同様に10段階の能力制御を行いながら、冷媒戻し回路の使用を5馬力運転時のみとすることができた。これにより、圧縮仕事の廃棄頻度が減少してエネルギー消費は当然に少なくなったが、今度は、冷媒戻し回路が5馬力運転時にしか用いられなくなるため、冷媒戻し回路(バイパス配管や遮断弁、ジョイント等)のコストパフォーマンスが著しく悪くなるという問題が生じた。
【0007】
本発明は上記状況に鑑みなされたものであり、消費エネルギーの低減や構成部品点数の削減を図りながら、多段階での能力制御を実現した空気調和装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
そこで、請求項1の発明では、熱源側に定能力型圧縮機と能力制御可能な可変能力型圧縮機とを有すると共に、当該可変能力型圧縮機の能力調整を行うパワーコントロール機構が高圧冷媒回路内を流通する高圧冷媒ガスと低圧冷媒回路内を流通する低圧冷媒ガスとによって駆動される空気調和装置であって、前記高圧冷媒回路と前記低圧冷媒回路とを連通する連通配管と、当該連通配管から分岐し、当該連通配管内の冷媒ガスを前記パワーコントロール機構に導く複数本の導入配管と、前記複数本の導入配管の夫々の分岐位置より前記高圧冷媒回路側で前記連通配管に介装された複数個の高圧側遮断弁と、前記複数本の導入配管のうち最も低圧側に位置する導入配管の分岐位置より前記低圧冷媒回路側で前記連通配管に介装された低圧側遮断弁と、前記可変能力型圧縮機の能力を複数段階に調整するべく、前記複数個の高圧側遮断弁と前記低圧側遮断弁とを所定の制御則に基づいて駆動制御する能力制御手段とを備え、前記可変能力型圧縮機は前記複数本の導入配管からの冷媒ガスの制御によって複数段階に制御されるものであり、この能力制御手段は、前記可変能力型圧縮機が停止しかつ前記定能力型圧縮機が運転している際に熱源側の能力を減少させる必要が生じた場合、前記連通配管を冷媒戻し配管とするべく、前記高圧側遮断弁と前記低圧側遮断弁とを同時に開放させるものを提案する。
【0009】
この発明では、例えば、可変能力型圧縮機の最大能力より定能力型圧縮機の能力が比較的大きく、かつ室内側の能力要求が両能力間の値となった場合、能力制御手段は、能力型圧縮機のみを運転させながら高圧側遮断弁と低圧側遮断弁とを同時に開放させる。すると、高圧冷媒回路と低圧冷媒回路とが連通配管を介して連通され、定能力型圧縮機の能力の一部が廃棄されることにより、室内側の能力要求が満たされる。
【0010】
また、請求項2の発明では、請求項1の空気調和装置において、前記定能力型圧縮機の能力と前記可変能力型圧縮機の最大能力との間に当該可変能力型圧縮機における略2段階分の能力差があり、かつ前記連通配管を冷媒戻し配管とした場合の能力減少量と、前記可変能力型圧縮機の1段階あたりの能力増減量とが略等しいものを提案する。
【0011】
この発明では、能力制御手段は、定能力型圧縮機と可変能力型圧縮機との運転制御と、高圧側遮断弁と低圧側遮断弁との開閉制御を適宜行うことで、熱源側の能力を最小値から最大値まで段階的に制御できる。
【0012】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づき詳細に説明する。図1は、1台の室外ユニット1と複数台の室内ユニット2とからなる空気調和システムの概略構成図であり、同図中には実線で冷凍サイクルを示し、一点鎖線で制御・信号系統を示してある。
【0013】
室外ユニット1側には、第1,第2圧縮機3,4、電磁式の四方弁5、室外熱交換器6、電動ファン7、アキュムレータ8、オイルセパレータ9等が設置されている。また、各室内ユニット2側には、電動膨張弁11、室内熱交換器12、電動ファン13等が設置されている。そして、これら機器のうちで冷凍サイクルを構成するものは、ガス冷媒あるいは液冷媒の流通に供される冷媒配管21〜36により接続されている。図中、15,16は、両圧縮機3,4への冷媒の逆流を防止する逆止弁であり、それぞれ冷媒配管21,22に介装されている。
【0014】
本実施形態の場合、冷媒配管23(高圧冷媒回路)と冷媒配管32(低圧冷媒回路)とが連通配管41により連通されており、更に、連通配管41からは冷媒配管23側から順に第1〜第3導入配管42〜44が分岐している。第1〜第3導入配管42〜44は、後述するパワーコントロール機構の駆動源として、いずれも第1圧縮機3に接続されている。また、連通配管41には、第1〜第3導入配管42〜44の各分岐位置より冷媒配管23よりに常閉型の第1〜第3高圧側遮断弁45〜47が介装され、第3導入配管44の分岐位置より冷媒配管32よりにこれも常閉型の低圧側遮断弁48が介装されている。図中、49はキャピラリチューブであり、連通配管41における低圧側遮断弁48と冷媒配管32との間に介装されている。
【0015】
室外ユニット1内には、CPUを始め、入出力インタフェースやROM、RAM等から構成された、室外側コントロールユニット(以下、室外側ECUと記す)51が設置されている。室外側ECU51は、内蔵した制御プログラムや図示しない各種センサ等からの入力情報に基づき、両圧縮機3,4や四方弁5、電動ファン7、各遮断弁45〜48を駆動制御する。
【0016】
一方、各室内ユニット2内には、CPUを始め、入出力インタフェースやROM、RAM等から構成された、室内側コントロールユニット(以下、室内側ECUと記す)53が設置されている。室内側ECU52は、内蔵した制御プログラムや図示しないリモートコントローラ、各種センサ等からの入力信号に基づき、電動膨張弁11や電動ファン13の駆動制御を行うと共に、バスライン55を介して室外側ECU51との間で相互に信号の授受を行う。
【0017】
本実施形態の場合、第1,第2圧縮機3,4は共に上下一対の回転圧縮要素を有する電動ツインロータ型の定速圧縮機であり、第1圧縮機3側の定格出力が4馬力、第2圧縮機4側の定格出力が6馬力となっている。第1圧縮機3は、パワーコントロール機構を備えたPC圧縮機であり、1〜4馬力の間で1馬力毎に出力切換ができる。
【0018】
以下、本実施形態におけるパワーコントロール機構の構造とその作用を説明する。
【0019】
第1圧縮機3の圧縮機構61は、図2にその半裁縦断面を示すように、メインフレーム65とベアリングプレート67とに挟持された上下一対のシリンダ69,70と、両シリンダ69,70および中間プレート71により画成された上下一対のシリンダ室73,75と、両シリンダ室73,75の内周面に摺接しながら相互に180゜の位相差をもって偏心回転する上下一対のロータ77,79とからなっている。図中、80は圧縮機ケーシングである。
【0020】
パワーコントロール機構81は、両シリンダ室73,75を3カ所の連通部位(後述するベーンに対して90゜および180゜位相のずれた部位)で連通させるもので、シリンダ69,70および中間プレート71の外周部を上下方向に貫通するバルブ孔83と、このバルブ孔83に摺動自在に保持された上下一対のピストンバルブ85,86と、これらピストンバルブ85,86を互いに離間する方向に付勢するバルブスプリング(圧縮コイルスプリング)87とを主要構成部材としている。尚、中間プレート71の部分では、ピストンバルブ85,86に対するストッパを形成するべく、バルブ孔83の内径がピストンバルブ85,86の外径より小径となっている。また、バルブスプリング87は、両ピストンバルブ85,86の受圧面に所定値以上の高圧(例えば、第1圧縮機3の最大吐出圧の20%)が作用したときに、完全に圧縮するように設定されている。
【0021】
バルブ孔83は、中間プレート71の近傍に穿孔された一対の連通孔88,89を介して、両シリンダ室73,75と連通されている。また、両シリンダ69,70および中間プレート71には、バルブ孔83に平行する冷媒導入孔91が貫通しており、この冷媒導入孔91に導入配管42(43,44)からのガス冷媒が導入される。更に、メインフレーム65とベアリングプレート67とには、それぞれ、バルブ孔83と冷媒導入孔91とを連通させる連通凹部93,94が形成されている。
【0022】
冷媒導入孔91に低圧冷媒ガスが導入された場合、両ピストンバルブ85,86は、バルブスプリング87のばね力により、図2に示したように、メインフレーム65またはベアリングプレート67の端面に押し付けられる。その結果、両シリンダ室73,75は、連通孔88,89、バルブ孔83、逆止弁90を介して連通され、一方のシリンダ室75(73)の圧縮空間から他方のシリンダ室73(75)の吸入空間にガス冷媒が流出する。一方、冷媒導入孔91に高圧冷媒ガスが導入された場合、両ピストンバルブ85,86の受圧面に高圧が作用してバルブスプリング87が圧縮され、両ピストンバルブ85,86が互いに接近して中間プレート71に当接する。その結果、両ピストンバルブ85,86の外周面により連通孔88,89が閉鎖され、両シリンダ室73,75間が連通されなくなる。
【0023】
図4は、圧縮機構61に対するパワーコントロール機構81の配置を示す模式図である。前述したように、パワーコントロール機構81は、ベーン95に対して90゜および180゜位相のずれた部位にそれぞれ配置されており、吐出ポート97側のパワーコントロール機構81には第1導入配管42が接続し、ベーン95に対向するパワーコントロール機構81には第2導入配管43が接続し、吸入ポート98側のパワーコントロール機構81には第3導入配管44が接続している。
【0024】
本実施形態では、パワーコントロール機構81を作動させる場合、室外側ECU51は、第1〜第3高圧側遮断弁45〜47と低圧側遮断弁48とを適宜駆動制御する。例えば、第1〜第3高圧側遮断弁45〜47を開放(ON作動)させて、低圧側遮断弁48を閉鎖(OFF作動)させれば、冷媒配管23内の高圧冷媒ガスが第1〜第3導入配管42〜44を介して各パワーコントロール機構81に導入され、これにより、両シリンダ室73,75間の連通が全て遮断されて、第1圧縮機3はその運転時に4馬力の圧縮仕事を行うことになる。また、この状態から低圧側遮断弁48を開放(ON作動)させれば、冷媒配管32内の低圧冷媒ガスが第3導入配管44を介して吸入ポート98側のパワーコントロール機構81に導入され、これにより、両シリンダ室73,75間の連通は3/4が遮断されて、第1圧縮機3はその運転時に3馬力の圧縮仕事を行うことになる。
【0025】
また、この状態から更に第3高圧側遮断弁47を開放(ON作動)させれば、冷媒配管32内の低圧冷媒ガスが第2導入配管43を介してベーン95に対向するパワーコントロール機構81にも導入され、これにより、両シリンダ室73,75間の連通は1/2が遮断されて、第1圧縮機3はその運転時に2馬力の圧縮仕事を行うことになる。そして、この状態から更に第2高圧側遮断弁47を開放(ON作動)させれば、冷媒配管32内の低圧冷媒ガスが第1〜第3導入配管42〜44を介して各パワーコントロール機構81に導入され、これにより、両シリンダ室73,75間の連通が1/4が遮断されて、第1圧縮機3はその運転時に1馬力の圧縮仕事を行うことになる。
【0026】
室外側ECU51は、室外ユニット1に1〜10馬力の能力を発生させる際に、第1,第2圧縮機3,4の運転制御とパワーコントロール機構81の駆動制御とを次のように行う。すわなち、第1圧縮機3のみを運転させながら、第1〜第3高圧側遮断弁45〜47と低圧側遮断弁48とを上述した手順で駆動制御すれば、1〜4馬力の間で1馬力毎の能力を得ることができる。また、第2圧縮機4のみを運転させれば、当然のことながら、6馬力の能力を得ることができる。そして、第1,第2圧縮機3,4を同時に運転させながら、第1〜第3高圧側遮断弁45〜47と低圧側遮断弁48とを駆動制御すれば、7〜10馬力の間で1馬力毎の能力を得ることができる。
【0027】
さて、室外ユニット1に5馬力の能力を発生させる場合、室外側ECU51は、第2圧縮機4のみを運転させると同時に、第1〜第3高圧側遮断弁45〜47と低圧側遮断弁48とを全て開放(ON作動)させる。すると、冷媒配管23と冷媒配管32とが連通配管41により連通され、冷媒配管23内を流通する高圧冷媒ガスが冷媒配管32側に流出して、第2圧縮機4でなされた圧縮仕事の一部が廃棄されることになる。つまり、連通配管41は、第1〜第3高圧側遮断弁45〜47と低圧側遮断弁48とを全て開放された場合において、従来装置における冷媒戻し回路と同等の作用をもつことになるのである。また、連通配管41に介装されたキャピラリチューブ49は、第2圧縮機4の運転時に1馬力分の高圧ガス冷媒を流通させるように設定されているため、室外ユニット1は5馬力の能力を発生することになる。尚、図5は、室外ユニット1の能力と、第1,第2圧縮機3,4および各遮断弁45〜48のON/OFF状態との関係を示すテーブルである。
【0028】
このように、本実施形態の空気調和システムでは、パワーコントロール機構用の連通配管や遮断弁に冷媒戻し回路の機能を兼ねさせるようにしたため、冷媒戻し回路に専用のバイパス配管や遮断弁等を設ける必要がなくなり、機器構成の簡素化やコストダウン等を実現できた。
【0029】
以上で具体的実施形態の説明を終えるが、本発明の態様はこの実施形態に限られるものではない。例えば、上記実施形態は各1台の可変能力型圧縮機と定能力型圧縮機とを備えた空気調和システムに本発明を適用したものであるが、定能力型圧縮機を複数台備えたもの等に適用してもよい。また、上記実施形態では、4段階制御のパワーコントロール機構をツインロータ型の定速圧縮機に設けるようにしたが、パワーコントロール機構による能力制御を3段階以下あるいは5段階以上としてもよいし、圧縮機としてトリプルロータ以上の圧縮機構を備えたものを用いてもよい。また、パワーコントロール機構の構造については、例えば、圧縮機ケーシングの外部に連通配管を設ける等、種々の構造が考えられるし、冷凍サイクルにおける他の具体的構成等についても、本発明の趣旨を逸脱しない範囲であれば適宜変更可能である。
【0030】
【発明の効果】
以上詳細に説明したように、請求項1の発明によれば、熱源側に定能力型圧縮機と能力制御可能な可変能力型圧縮機とを有すると共に、当該可変能力型圧縮機の能力調整を行うパワーコントロール機構が高圧冷媒回路内を流通する高圧冷媒ガスと低圧冷媒回路内を流通する低圧冷媒ガスとによって駆動される空気調和装置であって、前記高圧冷媒回路と前記低圧冷媒回路とを連通する連通配管と、当該連通配管から分岐し、当該連通配管内の冷媒ガスを前記パワーコントロール機構に導く複数本の導入配管と、前記複数本の導入配管の夫々の分岐位置より前記高圧冷媒回路側で前記連通配管に介装された複数個の高圧側遮断弁と、前記複数本の導入配管のうち最も低圧側に位置する導入配管の分岐位置より前記低圧冷媒回路側で前記連通配管に介装された低圧側遮断弁と、前記可変能力型圧縮機の能力を複数段階に調整するべく、前記複数個の高圧側遮断弁と前記低圧側遮断弁とを所定の制御則に基づいて駆動制御する能力制御手段とを備え、前記可変能力型圧縮機は前記複数本の導入配管からの冷媒ガスの制御によって複数段階に制御されるものであり、この能力制御手段は、前記可変能力型圧縮機が停止しかつ前記定能力型圧縮機が運転している際に熱源側の能力を減少させる必要が生じた場合、前記連通配管を冷媒戻し配管とするべく、前記高圧側遮断弁と前記低圧側遮断弁とを同時に開放させるものとしたため、多段階での能力制御を実現しながら、バイパス配管や遮断弁等、専用の冷媒戻し回路を構成するための部材が不要になり、装置構成の簡素化やコストの低減を実現することができる。
【0031】
また、請求項2の発明によれば、請求項1の空気調和装置において、前記定能力型圧縮機の能力と前記可変能力型圧縮機の最大能力との間に当該可変能力型圧縮機における略2段階分の能力差があり、かつ前記連通配管を冷媒戻し配管とした場合の能力減少量と、前記可変能力型圧縮機の1段階あたりの能力増減量とが略等しいものとしたため、能力制御手段が定能力型圧縮機と可変能力型圧縮機との運転制御と、高圧側遮断弁と低圧側遮断弁との開閉制御とを適宜行うことで、熱源側の能力を最小値から最大値まで段階的に制御できるようになる。
【図面の簡単な説明】
【図1】本発明に係る空気調和システムの一実施形態を示す概略構成図である。
【図2】パワーコントロール機構の構造および作用を示す半裁縦断面図である。
【図3】パワーコントロール機構の構造および作用を示す半裁縦断面図である。
【図4】圧縮機構に対するパワーコントロール機構の配置を示す模式図である。
【図5】室外ユニットの能力と、第1,第2圧縮機および各遮断弁のON/OFF状態との関係を示すテーブルである。
【符号の説明】
1 室外ユニット
2 室内ユニット
3 第1圧縮機(可変能力型圧縮機)
4 第2圧縮機(定能力型圧縮機)
23 冷媒配管(高圧冷媒回路)
32 冷媒配管(低圧冷媒回路)
41 連通配管
42 第1連通配管
43 第2連通配管
44 第3連通配管
45 第1高圧側遮断弁
46 第2高圧側遮断弁
47 第3高圧側遮断弁
48 低圧側遮断弁
49 キャピラリチューブ
51 室外側ECU
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner equipped with a variable capacity compressor and a constant capacity compressor on the heat source side, and realizes multi-stage capacity control while reducing energy consumption and the number of components. Related to technology.
[0002]
[Prior art]
In recent air conditioners, in order to prevent room temperature overshoot and hunting during cooling and heating, the mainstream is to perform capacity control on the heat source side (compressor) according to the capacity requirements on the use side (indoor heat exchanger). It has become. Many compressor capacity control methods convert the frequency of alternating current using an inverter device, and thereby linearly control the rotational speed of the compressor. According to this method, since the capacity of the compressor can be arbitrarily changed from 0 to the rated point, substantially complete air conditioning control can be realized. However, the inverter device has various problems such as energy loss due to frequency conversion is unavoidable, an undesirable electromagnetic wave is emitted to the environment, and a large device has a high device cost.
[0003]
Therefore, in Japanese Patent Application Laid-Open No. 8-247560 and the like, a variable capacity compressor (hereinafter referred to as “capacity control”) that performs capacity control by a power control mechanism or a refrigerant return circuit while using a constant speed compressor with a compression mechanism driven at a constant speed. And PC compressor) have been proposed. The power control mechanism has a valve device attached to a cylinder side wall or the like of the compression mechanism. By opening the valve device, for example, compression work in the first half of the compression stroke is not performed. The refrigerant return circuit, for example, provides a bypass pipe between the discharge-side refrigerant circuit and the suction-side refrigerant circuit of the compressor, and opens the shut-off valve interposed in the bypass pipe, whereby the refrigerant after compression Is partially circulated to the suction side refrigerant circuit.
[0004]
When a PC compressor and a normal constant speed compressor are combined, multistage capacity control can be performed by operating or stopping both compressors individually or by driving a power control mechanism or a refrigerant return circuit. . For example, the rated capacity of the PC compressor is 4 horsepower, the rated capacity of the constant speed compressor is 6 horsepower, the capacity reduction amount of the PC compressor by the power control mechanism is 2 horsepower, and the capacity reduction amount by the refrigerant return circuit is 1 horsepower Then, the ability can be switched every 1 horsepower (that is, 10 steps) within a range of 1 to 10 horsepower.
[0005]
[Problems to be solved by the invention]
By the way, when the refrigerant return circuit described above is opened, a part of the compressed refrigerant circulates to the suction side refrigerant circuit, so that the compressor performs useless compression work. For example, when the operation is performed with the capacity of 9 horsepower, the compression work of 1 horsepower is discarded by the refrigerant return circuit, but the energy consumption is substantially the same as when the operation is performed with the capacity of 10 horsepower. As a result, an energy loss equal to or greater than that in the case of using the inverter device occurs, which makes it difficult to adopt the PC compressor. In addition, it is considered that the capacity control is performed only by the power control mechanism without providing the refrigerant return circuit. In this case, however, the capacity switching is performed every 2 horsepower (that is, 5 stages) in the above-described compressor configuration. End up. Therefore, in an air conditioner, when the capacity requirement on the use side is small (for example, about 1 to 3 horsepower), room temperature overshoot and hunting are likely to occur, which impairs user comfort in the air-conditioned space. There is a fear.
[0006]
Therefore, the present inventors have developed a PC compressor that can perform four-stage capacity control on the compressor body, and by combining this with a normal constant speed compressor, An air conditioner with reduced use frequency of the return circuit has been realized. That is, a PC compressor whose capacity can be switched for every 1 horsepower within a range of 1 to 4 horsepower is manufactured, and this is combined with a constant speed compressor having a capacity of 6 horsepower, so that the same as the conventional apparatus described above. While performing the capacity control in stages, the refrigerant return circuit could be used only during 5-horsepower operation. As a result, the frequency of discarding the compression work is reduced and energy consumption is naturally reduced. However, this time, the refrigerant return circuit is used only at the time of 5 horsepower operation, so the refrigerant return circuit (bypass piping, shut-off valve, joint) Etc.) has a problem that the cost performance is remarkably deteriorated.
[0007]
The present invention has been made in view of the above situation, and an object thereof is to provide an air conditioner that realizes multi-stage capability control while reducing energy consumption and the number of components.
[0008]
[Means for Solving the Problems]
Therefore, in the first aspect of the present invention, the high-pressure refrigerant circuit has a constant capacity compressor and a variable capacity compressor capable of capacity control on the heat source side, and a power control mechanism for adjusting the capacity of the variable capacity compressor. An air conditioner driven by a high-pressure refrigerant gas that circulates inside and a low-pressure refrigerant gas that circulates inside a low-pressure refrigerant circuit, wherein the communication pipe connects the high-pressure refrigerant circuit and the low-pressure refrigerant circuit, and the communication pipe And a plurality of introduction pipes that lead the refrigerant gas in the communication pipe to the power control mechanism, and are connected to the communication pipe on the high-pressure refrigerant circuit side from the respective branch positions of the plurality of introduction pipes. and a plurality of high-pressure side shut-off valve, the communicating pipe low pressure side blocked interposed in the most the low-pressure refrigerant circuit side of the branch position of the inlet conduit located on the low pressure side of the inlet pipe of the plurality of If the order to adjust the capacity of the variable capacity type compressor in a plurality of stages, and a capacity control means for controlling driving on the basis of said plurality of high-pressure side shut-off valve and the low-pressure-side shut-off valve to a predetermined control law The variable capacity compressor is controlled in a plurality of stages by controlling refrigerant gas from the plurality of introduction pipes, and the capacity control means is configured to stop the variable capacity compressor and When it is necessary to reduce the capacity on the heat source side during operation of the compressor, the high-pressure side shut-off valve and the low-pressure side shut-off valve are simultaneously opened so that the communication pipe is a refrigerant return pipe. Suggest a thing.
[0009]
In the present invention, for example, when the capacity of the constant capacity type compressor is relatively larger than the maximum capacity of the variable capacity type compressor and the indoor capacity request is a value between the two capacities, the capacity control means The high-pressure side shut-off valve and the low-pressure side shut-off valve are simultaneously opened while operating only the mold compressor. Then, the high-pressure refrigerant circuit and the low-pressure refrigerant circuit are communicated with each other via the communication pipe, and a part of the capacity of the constant capacity compressor is discarded, thereby satisfying the indoor capacity requirement.
[0010]
According to a second aspect of the present invention, in the air conditioner according to the first aspect, there are approximately two stages in the variable capacity compressor between the capacity of the constant capacity compressor and the maximum capacity of the variable capacity compressor. There is a difference in capacity, and when the communication pipe is a refrigerant return pipe, a capacity decrease amount and a capacity increase / decrease amount per stage of the variable capacity compressor are approximately equal.
[0011]
In the present invention, the capacity control means appropriately controls the operation of the constant capacity type compressor and the variable capacity type compressor and the open / close control of the high-pressure side shut-off valve and the low-pressure side shut-off valve. It can be controlled in steps from the minimum value to the maximum value.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an air conditioning system including one outdoor unit 1 and a plurality of indoor units 2. In FIG. 1, a refrigeration cycle is shown by a solid line, and a control / signal system is shown by a one-dot chain line. It is shown.
[0013]
On the outdoor unit 1 side, first and second compressors 3 and 4, an electromagnetic four-way valve 5, an outdoor heat exchanger 6, an electric fan 7, an accumulator 8, an oil separator 9, and the like are installed. Moreover, the electric expansion valve 11, the indoor heat exchanger 12, the electric fan 13, etc. are installed in each indoor unit 2 side. Among these devices, those constituting the refrigeration cycle are connected by refrigerant pipes 21 to 36 that are provided for the circulation of gas refrigerant or liquid refrigerant. In the figure, reference numerals 15 and 16 denote check valves that prevent the refrigerant from flowing back to the compressors 3 and 4, and are interposed in the refrigerant pipes 21 and 22, respectively.
[0014]
In the case of the present embodiment, the refrigerant pipe 23 (high-pressure refrigerant circuit) and the refrigerant pipe 32 (low-pressure refrigerant circuit) are communicated with each other by a communication pipe 41, and further from the communication pipe 41 in order from the refrigerant pipe 23 side. The third introduction pipes 42 to 44 are branched. Each of the first to third introduction pipes 42 to 44 is connected to the first compressor 3 as a drive source of a power control mechanism described later. The communication pipe 41 is provided with normally closed first to third high-pressure side shut-off valves 45 to 47 from the refrigerant pipe 23 from the branch positions of the first to third introduction pipes 42 to 44, respectively. 3 A normally closed low-pressure side shut-off valve 48 is interposed from the refrigerant pipe 32 from the branch position of the introduction pipe 44. In the figure, reference numeral 49 denotes a capillary tube, which is interposed between the low pressure side shutoff valve 48 and the refrigerant pipe 32 in the communication pipe 41.
[0015]
In the outdoor unit 1, an outdoor control unit (hereinafter referred to as an outdoor ECU) 51 including an input / output interface, a ROM, a RAM, and the like is installed. The outdoor ECU 51 drives and controls the compressors 3 and 4, the four-way valve 5, the electric fan 7, and the shut-off valves 45 to 48 based on input information from a built-in control program and various sensors (not shown).
[0016]
On the other hand, in each indoor unit 2, an indoor control unit (hereinafter referred to as an indoor ECU) 53 including a CPU, an input / output interface, a ROM, a RAM, and the like is installed. The indoor side ECU 52 controls the drive of the electric expansion valve 11 and the electric fan 13 based on a built-in control program, input signals from a remote controller (not shown), various sensors, and the like, and communicates with the outdoor side ECU 51 via the bus line 55. Send and receive signals to and from each other.
[0017]
In the case of this embodiment, the first and second compressors 3 and 4 are both electric twin rotor type constant speed compressors having a pair of upper and lower rotary compression elements, and the rated output on the first compressor 3 side is 4 horsepower. The rated output on the second compressor 4 side is 6 horsepower. The 1st compressor 3 is a PC compressor provided with the power control mechanism, and can change an output for every 1 horsepower between 1-4 horsepower.
[0018]
Hereinafter, the structure and operation of the power control mechanism in the present embodiment will be described.
[0019]
The compression mechanism 61 of the first compressor 3 includes a pair of upper and lower cylinders 69 and 70 sandwiched between a main frame 65 and a bearing plate 67, as shown in FIG. A pair of upper and lower cylinder chambers 73 and 75 defined by the intermediate plate 71, and a pair of upper and lower rotors 77 and 79 that rotate eccentrically with a phase difference of 180 ° while being in sliding contact with the inner peripheral surfaces of both cylinder chambers 73 and 75. It is made up of. In the figure, 80 is a compressor casing.
[0020]
The power control mechanism 81 communicates both cylinder chambers 73 and 75 at three communicating portions (portions that are 90 ° and 180 ° out of phase with respect to vanes described later). The cylinders 69 and 70 and the intermediate plate 71 are connected to each other. A valve hole 83 penetrating the outer periphery of the valve in the vertical direction, a pair of upper and lower piston valves 85 and 86 slidably held in the valve hole 83, and urging the piston valves 85 and 86 away from each other. The valve spring (compression coil spring) 87 is a main component. In the intermediate plate 71, the inner diameter of the valve hole 83 is smaller than the outer diameter of the piston valves 85 and 86 so as to form stoppers for the piston valves 85 and 86. Further, the valve spring 87 is completely compressed when a high pressure (for example, 20% of the maximum discharge pressure of the first compressor 3) higher than a predetermined value acts on the pressure receiving surfaces of both piston valves 85 and 86. Is set.
[0021]
The valve hole 83 communicates with both the cylinder chambers 73 and 75 through a pair of communication holes 88 and 89 drilled in the vicinity of the intermediate plate 71. The cylinders 69 and 70 and the intermediate plate 71 have a refrigerant introduction hole 91 parallel to the valve hole 83, and gas refrigerant from the introduction pipe 42 (43, 44) is introduced into the refrigerant introduction hole 91. Is done. Further, the main frame 65 and the bearing plate 67 are respectively formed with communication recesses 93 and 94 that allow the valve hole 83 and the refrigerant introduction hole 91 to communicate with each other.
[0022]
When low-pressure refrigerant gas is introduced into the refrigerant introduction hole 91, both piston valves 85 and 86 are pressed against the end face of the main frame 65 or the bearing plate 67 by the spring force of the valve spring 87 as shown in FIG. . As a result, both the cylinder chambers 73 and 75 are communicated with each other via the communication holes 88 and 89, the valve hole 83, and the check valve 90, and the one cylinder chamber 75 (73) to the other cylinder chamber 73 (75). Gas refrigerant flows into the suction space. On the other hand, when high-pressure refrigerant gas is introduced into the refrigerant introduction hole 91, high pressure is applied to the pressure receiving surfaces of both piston valves 85 and 86, the valve spring 87 is compressed, and both piston valves 85 and 86 approach each other and become intermediate. It contacts the plate 71. As a result, the communication holes 88 and 89 are closed by the outer peripheral surfaces of both piston valves 85 and 86, and the cylinder chambers 73 and 75 are not communicated with each other.
[0023]
FIG. 4 is a schematic diagram showing the arrangement of the power control mechanism 81 with respect to the compression mechanism 61. As described above, the power control mechanism 81 is disposed at a portion shifted in phase by 90 ° and 180 ° with respect to the vane 95, and the first introduction pipe 42 is connected to the power control mechanism 81 on the discharge port 97 side. The second introduction pipe 43 is connected to the power control mechanism 81 connected to and opposed to the vane 95, and the third introduction pipe 44 is connected to the power control mechanism 81 on the suction port 98 side.
[0024]
In the present embodiment, when the power control mechanism 81 is operated, the outdoor side ECU 51 appropriately drives and controls the first to third high pressure side cutoff valves 45 to 47 and the low pressure side cutoff valve 48. For example, if the first to third high-pressure side shut-off valves 45 to 47 are opened (ON operation) and the low-pressure side shut-off valve 48 is closed (OFF operation), the high-pressure refrigerant gas in the refrigerant pipe 23 is changed to the first to the third. It is introduced into each power control mechanism 81 via the third introduction pipes 42 to 44, whereby all communication between the cylinder chambers 73, 75 is blocked, and the first compressor 3 is compressed by 4 horsepower during its operation. Will do the job. If the low-pressure side shut-off valve 48 is opened (ON operation) from this state, the low-pressure refrigerant gas in the refrigerant pipe 32 is introduced into the power control mechanism 81 on the suction port 98 side via the third introduction pipe 44. As a result, 3/4 of the communication between the cylinder chambers 73 and 75 is cut off, and the first compressor 3 performs a compression work of 3 horsepower during the operation.
[0025]
Further, if the third high-pressure side shut-off valve 47 is further opened (ON operation) from this state, the low-pressure refrigerant gas in the refrigerant pipe 32 is transferred to the power control mechanism 81 facing the vane 95 via the second introduction pipe 43. As a result, the communication between the cylinder chambers 73 and 75 is cut by half, and the first compressor 3 performs the compression work of 2 horsepower during the operation. If the second high-pressure side shut-off valve 47 is further opened (ON operation) from this state, the low-pressure refrigerant gas in the refrigerant pipe 32 passes through each of the power control mechanisms 81 via the first to third introduction pipes 42 to 44. As a result, the communication between the cylinder chambers 73 and 75 is cut off by a quarter, and the first compressor 3 performs a compression work of 1 horsepower during its operation.
[0026]
The outdoor side ECU 51 performs the operation control of the first and second compressors 3 and 4 and the drive control of the power control mechanism 81 as follows when the outdoor unit 1 generates a capacity of 1 to 10 horsepower. That is, if only the first compressor 3 is operated and the first to third high-pressure side shut-off valves 45 to 47 and the low-pressure side shut-off valve 48 are driven and controlled according to the procedure described above, it is between 1 to 4 horsepower. The ability for each horsepower can be obtained. Moreover, if only the 2nd compressor 4 is drive | operated, naturally the capability of 6 horsepower can be acquired. And if the 1st-3rd high pressure side shut-off valve 45-47 and the low pressure side shut-off valve 48 are drive-controlled while operating the 1st, 2nd compressors 3 and 4 simultaneously, it will be between 7-10 horsepower. Ability for each horsepower can be obtained.
[0027]
When generating the 5-horsepower capacity in the outdoor unit 1, the outdoor ECU 51 operates only the second compressor 4, and at the same time, the first to third high-pressure side shut-off valves 45 to 47 and the low-pressure side shut-off valve 48. Are all opened (ON operation). Then, the refrigerant pipe 23 and the refrigerant pipe 32 are communicated by the communication pipe 41, and the high-pressure refrigerant gas flowing through the refrigerant pipe 23 flows out to the refrigerant pipe 32 side, and one of the compression works performed by the second compressor 4. Department will be discarded. That is, when the first to third high-pressure side shut-off valves 45 to 47 and the low-pressure side shut-off valve 48 are all opened, the communication pipe 41 has the same function as the refrigerant return circuit in the conventional apparatus. is there. In addition, since the capillary tube 49 interposed in the communication pipe 41 is set so as to circulate a high-pressure gas refrigerant for 1 horsepower when the second compressor 4 is operated, the outdoor unit 1 has a capacity of 5 horsepower. Will occur. FIG. 5 is a table showing the relationship between the capacity of the outdoor unit 1 and the ON / OFF states of the first and second compressors 3 and 4 and the shutoff valves 45 to 48.
[0028]
As described above, in the air conditioning system of the present embodiment, the communication piping for the power control mechanism and the shut-off valve are made to function as the refrigerant return circuit. Therefore, a dedicated bypass pipe and a shut-off valve are provided in the refrigerant return circuit. It is no longer necessary, and it has been possible to simplify equipment configuration and reduce costs.
[0029]
Although description of specific embodiment is finished above, the aspect of the present invention is not limited to this embodiment. For example, in the above-described embodiment, the present invention is applied to an air conditioning system including one variable capacity compressor and a constant capacity compressor, but a plurality of constant capacity compressors are provided. You may apply to. In the above embodiment, the four-stage control power control mechanism is provided in the twin rotor type constant speed compressor. However, the capacity control by the power control mechanism may be three stages or less or five stages or more. You may use the thing provided with the compression mechanism more than a triple rotor as a machine. Further, regarding the structure of the power control mechanism, for example, various structures such as providing a communication pipe outside the compressor casing are conceivable, and other specific configurations in the refrigeration cycle also depart from the spirit of the present invention. Any change can be made as long as it is within the range.
[0030]
【The invention's effect】
As described above in detail, according to the first aspect of the invention, the heat source side has the constant capacity type compressor and the variable capacity type compressor whose capacity can be controlled, and the capacity adjustment of the variable capacity type compressor is performed. An air conditioner in which a power control mechanism to be driven is driven by a high-pressure refrigerant gas flowing in a high-pressure refrigerant circuit and a low-pressure refrigerant gas flowing in a low-pressure refrigerant circuit, the communication between the high-pressure refrigerant circuit and the low-pressure refrigerant circuit And a plurality of introduction pipes branching from the communication pipe and leading the refrigerant gas in the communication pipe to the power control mechanism, and the high pressure refrigerant circuit side from each branch position of the plurality of introduction pipes the communication pipe in a plurality of high-pressure side shut-off valve interposed in the communication pipe, in the low-pressure refrigerant circuit side of the branch position of the introduction pipe positioned closest to the low pressure side of the inlet pipe of the plurality of And the low-voltage side shut-off valve which is interposed, the order to adjust the capacity of the variable capacity type compressor in a plurality of stages, based on the said plurality of high-pressure side shut-off valve and the low-pressure-side shut-off valve to a predetermined control law drive Capacity control means for controlling, and the variable capacity compressor is controlled in a plurality of stages by control of refrigerant gas from the plurality of introduction pipes, and the capacity control means includes the variable capacity compression When it is necessary to reduce the capacity on the heat source side when the machine is stopped and the constant capacity compressor is operating, the high pressure side shut-off valve and the low pressure are set to make the communication pipe a refrigerant return pipe. Since the side shut-off valve is opened at the same time, it eliminates the need for a dedicated refrigerant return circuit, such as bypass piping and shut-off valve, while achieving multi-stage capacity control. Realization and cost reduction It can be.
[0031]
According to a second aspect of the present invention, in the air conditioner according to the first aspect, the variable capacity compressor is substantially between the capacity of the constant capacity compressor and the maximum capacity of the variable capacity compressor. Since there is a difference in capacity for two stages and the capacity reduction amount when the communication pipe is a refrigerant return pipe and the capacity increase / decrease quantity per stage of the variable capacity compressor is substantially equal, capacity control By appropriately controlling the operation of the constant capacity type compressor and the variable capacity type compressor and the open / close control of the high pressure side shutoff valve and the low pressure side shutoff valve, the heat source side capacity can be reduced from the minimum value to the maximum value. It becomes possible to control in stages.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of an air conditioning system according to the present invention.
FIG. 2 is a half-cut longitudinal sectional view showing the structure and operation of a power control mechanism.
FIG. 3 is a half-cut longitudinal sectional view showing the structure and operation of a power control mechanism.
FIG. 4 is a schematic diagram showing an arrangement of a power control mechanism with respect to a compression mechanism.
FIG. 5 is a table showing the relationship between the capacity of the outdoor unit and the ON / OFF states of the first and second compressors and the shutoff valves.
[Explanation of symbols]
1 Outdoor unit 2 Indoor unit 3 1st compressor (variable capacity type compressor)
4 Second compressor (constant capacity compressor)
23 Refrigerant piping (high-pressure refrigerant circuit)
32 Refrigerant piping (low pressure refrigerant circuit)
41 communication pipe 42 first communication pipe 43 second communication pipe 44 third communication pipe 45 first high pressure side shutoff valve 46 second high pressure side shutoff valve 47 third high pressure side shutoff valve 48 low pressure side shutoff valve 49 capillary tube 51 outdoor side ECU

Claims (2)

熱源側に定能力型圧縮機と能力制御可能な可変能力型圧縮機とを有すると共に、当該可変能力型圧縮機の能力調整を行うパワーコントロール機構が高圧冷媒回路内を流通する高圧冷媒ガスと低圧冷媒回路内を流通する低圧冷媒ガスとによって駆動される空気調和装置であって、
前記高圧冷媒回路と前記低圧冷媒回路とを連通する連通配管と、
当該連通配管から分岐し、当該連通配管内の冷媒ガスを前記パワーコントロール機構に導く複数本の導入配管と、
前記複数本の導入配管の夫々の分岐位置より前記高圧冷媒回路側で前記連通配管に介装された複数個の高圧側遮断弁と、
前記複数本の導入配管のうち最も低圧側に位置する導入配管の分岐位置より前記低圧冷媒回路側で前記連通配管に介装された低圧側遮断弁と、
前記可変能力型圧縮機の能力を複数段階に調整するべく、前記複数個の高圧側遮断弁と前記低圧側遮断弁とを所定の制御則に基づいて駆動制御する能力制御手段とを備え、
前記可変能力型圧縮機は前記複数本の導入配管からの冷媒ガスの制御によって複数段階に制御されるものであり、
この能力制御手段は、前記可変能力型圧縮機が停止しかつ前記定能力型圧縮機が運転している際に熱源側の能力を減少させる必要が生じた場合、前記連通配管を冷媒戻し配管とするべく、前記高圧側遮断弁と前記低圧側遮断弁とを同時に開放させることを特徴とする空気調和装置。
A high-capacity refrigerant gas and a low-pressure gas that have a constant-capacity compressor and a variable-capacity compressor whose capacity can be controlled on the heat source side, and a power control mechanism that adjusts the capacity of the variable-capacity compressor flows in the high-pressure refrigerant circuit. An air conditioner driven by low-pressure refrigerant gas flowing in the refrigerant circuit,
A communication pipe that connects the high-pressure refrigerant circuit and the low-pressure refrigerant circuit;
A plurality of introduction pipes branching from the communication pipe and guiding the refrigerant gas in the communication pipe to the power control mechanism;
A plurality of high-pressure side shut-off valves interposed in the communication pipe on the high-pressure refrigerant circuit side from the respective branch positions of the plurality of introduction pipes;
A low-pressure side shut-off valve interposed in the communication pipe on the low-pressure refrigerant circuit side from the branch position of the introduction pipe located on the lowest pressure side among the plurality of introduction pipes;
A capacity control means for driving and controlling the plurality of high-pressure side shut-off valves and the low-pressure side shut-off valves based on a predetermined control law in order to adjust the capacity of the variable capacity compressor in a plurality of stages ;
The variable capacity compressor is controlled in a plurality of stages by controlling refrigerant gas from the plurality of introduction pipes,
When the variable capacity type compressor is stopped and the constant capacity type compressor is operating, the capacity control means is configured to reduce the capacity on the heat source side when the variable capacity type compressor is in operation. Therefore, the air conditioner is characterized in that the high-pressure side shut-off valve and the low-pressure side shut-off valve are opened simultaneously.
前記定能力型圧縮機の能力と前記可変能力型圧縮機の最大能力との間に当該可変能力型圧縮機における略2段階分の能力差があり、かつ前記連通配管を冷媒戻し配管とした場合の能力減少量と、前記可変能力型圧縮機の1段階あたりの能力増減量とが略等しいことを特徴とする、請求項1記載の空気調和装置。  When there is a difference in capacity of approximately two stages in the variable capacity compressor between the capacity of the constant capacity compressor and the maximum capacity of the variable capacity compressor, and the communication pipe is a refrigerant return pipe The air conditioner according to claim 1, wherein the capacity reduction amount of the variable capacity compressor is substantially equal to the capacity increase / decrease amount per stage of the variable capacity compressor.
JP18372397A 1997-07-09 1997-07-09 Air conditioner Expired - Fee Related JP3837208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18372397A JP3837208B2 (en) 1997-07-09 1997-07-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18372397A JP3837208B2 (en) 1997-07-09 1997-07-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPH1130448A JPH1130448A (en) 1999-02-02
JP3837208B2 true JP3837208B2 (en) 2006-10-25

Family

ID=16140844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18372397A Expired - Fee Related JP3837208B2 (en) 1997-07-09 1997-07-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP3837208B2 (en)

Also Published As

Publication number Publication date
JPH1130448A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
JP3119946B2 (en) Combined lift / piston / axial port unloader for screw compressor
EP0854293B1 (en) Power-variable compressor and air conditioner using the same
JPH05149634A (en) Air-conditioning device
KR101116214B1 (en) Air conditioning system and control method thereof
KR100620044B1 (en) Modulation apparatus for rotary compressor
JP3979717B2 (en) Air conditioner
CA3107528C (en) Compressor and refrigeration device
WO2017094057A1 (en) Single-screw compressor and refrigeration cycle device
JP3837208B2 (en) Air conditioner
JP3561598B2 (en) Compressors and air conditioners
EP2716999A1 (en) Refrigeration cycle device
JP2005282986A (en) Internal combustion engine-driven heat pump type air conditioner
KR101122080B1 (en) Control method for air conditioner
JP3588216B2 (en) Compressors and air conditioners
KR100585807B1 (en) Modulation type twin rotary compressor and operation method
JP3585149B2 (en) Compressors and air conditioners
JP3819510B2 (en) Air conditioner
WO2009098900A1 (en) Refrigeration system
JP3338256B2 (en) Air conditioner
KR100677527B1 (en) Rotary compressor
KR100724442B1 (en) Modulation type twin rotary compressor and airconditioner using this
JPS6229789A (en) Rotary compressor
KR100677515B1 (en) Modulation type multi-stage rotary compressor and airconditioner using this
KR100608875B1 (en) Refrigerants cooling apparatus for modulation type rotary compressor
JP3634472B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees