JPH11304127A - Pressure controller for heating medium of pyrolytic reactor - Google Patents

Pressure controller for heating medium of pyrolytic reactor

Info

Publication number
JPH11304127A
JPH11304127A JP11492798A JP11492798A JPH11304127A JP H11304127 A JPH11304127 A JP H11304127A JP 11492798 A JP11492798 A JP 11492798A JP 11492798 A JP11492798 A JP 11492798A JP H11304127 A JPH11304127 A JP H11304127A
Authority
JP
Japan
Prior art keywords
air
heat medium
reactor
temperature
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11492798A
Other languages
Japanese (ja)
Other versions
JP3916759B2 (en
Inventor
Yutaka Okubo
豊 大久保
Nariyuki Nakada
成幸 中田
Ryuichiro Kojima
隆一郎 小島
Takeshi Miyaji
健 宮地
Yukitoshi Yokota
幸利 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP11492798A priority Critical patent/JP3916759B2/en
Publication of JPH11304127A publication Critical patent/JPH11304127A/en
Application granted granted Critical
Publication of JP3916759B2 publication Critical patent/JP3916759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the air in the heat transfer tube of a pyrolytic reactor front leaking out even when, for example, the heat transfer tube is broken so that the inside of the rector may be maintained in a low-oxygen atmosphere. SOLUTION: A high-temperature air heater 1 is formed in such a structure that part of the heating medium of the heater 1 leaks out of a heating medium circulating line 3 and a first connecting duct 7 which is communicated with the atmosphere and has a first control valve 6 is provided on the suction side of a blower 4. In addition, a second connecting duct 9 which is communicated with the atmosphere and has a second control valve 8 is provided on the discharge side of the blower 4 and an air pressure sensor 10 which detects the air pressure is installed to an air pipe 2 near the heating medium inlet of the reactor 52 so that the air pressure of the heating medium flowing through the heat transfer tube of the rector 52 may be adjusted to the same pressure or lower than the atmospheric pressure in the reactor 52 by controlling the control valves 6 and 8 of the ducts 7 and 9 based on the pressure detecting signal of the sensor 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物(家庭やオ
フィスなどから出される都市ごみなどの一般廃棄物、廃
プラスチック、カーシュレッダー・ダスト、廃オフィス
機器、電子機器、化粧品などの産業廃棄物など、可燃物
を含むもの)を焼却処理するに先立って該廃棄物を熱分
解する熱分解反応器に係り、特にその熱媒体圧力制御装
置及びそれを備えた廃棄物処理装置に関するものであ
る。
TECHNICAL FIELD The present invention relates to industrial waste such as waste (general waste such as municipal waste from homes and offices, waste plastic, car shredder dust, waste office equipment, electronic equipment, cosmetics, etc.). The present invention relates to a pyrolysis reactor for thermally decomposing the waste prior to incineration of a substance containing combustibles, and more particularly to a heat medium pressure control device and a waste treatment device provided with the same.

【0002】[0002]

【従来の技術】都市ごみ等の一般廃棄物や廃プラスチッ
ク等の可燃物を含む廃棄物の処理装置の一つとして、廃
棄物を熱分解反応器に入れて低酸素雰囲気中で加熱して
熱分解し、熱分解ガス(乾留ガス)と主として不揮発性
成分からなる熱分解残留物とを生成し、この熱分解ガス
と熱分解残留物とを排出装置において分離し、更に熱分
解残留物を不活性雰囲気下の冷却装置で冷却した後、分
離装置に供給して熱分解カーボンを主体とする燃焼性成
分と、例えば金属や陶器、砂利等の不燃焼性成分とに分
離し、燃焼性成分を粉砕して粉体とし、この粉砕された
燃焼性成分と前記した熱分解ガスとを燃料(燃焼性物)
として燃焼溶融炉に導いて1300℃程度の温度で燃焼
させ、生じた燃焼灰をその燃焼熱により加熱して溶融ス
ラグとなし、この溶融スラグを排出部から外部に排出し
て冷却固化させるようにした廃棄物処理装置が知られて
いる(特公平6−56253号公報)。燃焼溶融炉で発
生した高温の燃焼排ガス(約1200℃)は、後段に設
けられている高温空気加熱器により熱エネルギーを回収
され、更に集塵器で集塵され、最終的にクリーンな排ガ
スとなって煙突から大気中に放出される。
2. Description of the Related Art As one of treatment apparatuses for waste including general waste such as municipal solid waste and combustibles such as waste plastics, the waste is put into a thermal decomposition reactor and heated in a low oxygen atmosphere to heat the waste. Decomposes to generate a pyrolysis gas (dry distillation gas) and a pyrolysis residue mainly composed of non-volatile components. The pyrolysis gas and the pyrolysis residue are separated in a discharge device, and the pyrolysis residue is further purified. After cooling with a cooling device under an active atmosphere, it is supplied to a separation device and separated into a combustible component mainly composed of pyrolytic carbon and a non-combustible component such as metal, pottery, and gravel. Pulverized to a powder, and the pulverized combustible component and the above-mentioned pyrolysis gas are used as fuel (combustible material).
As a result, it is guided to a combustion melting furnace and burned at a temperature of about 1300 ° C., and the generated combustion ash is heated by the combustion heat to form molten slag. A known waste treatment apparatus is known (Japanese Patent Publication No. 6-56253). The high-temperature combustion exhaust gas (about 1200 ° C) generated in the combustion melting furnace is recovered thermal energy by a high-temperature air heater provided at the subsequent stage, and is further collected by a dust collector, and finally is cleaned with a clean exhaust gas. And is released into the atmosphere from the chimney.

【0003】ここで、高温空気加熱器と熱分解反応器は
空気配管で結ばれて熱媒体を循環できるように熱媒体循
環ラインが構成されている。更に、該熱媒体循環ライン
の前記熱分解反応器の下流側と前記高温空気加熱器の上
流側との間には送風機が設けられ、また該熱媒体循環ラ
インの前記高温空気加熱器の下流側と前記熱分解反応器
の上流側との間には始動用加熱炉が設けられている。そ
して、高温空気加熱器で約550℃に加熱された空気が
該ラインを通って熱分解反応器に熱媒体として送られ、
熱分解反応器内の廃棄物を間接的に加熱し、約300℃
に温度低下して該熱分解反応器を出る。この空気は前記
送風機により前記高温空気加熱器に送られ、ここで再び
加熱されて再循環されるようになっている。
Here, a high-temperature air heater and a thermal decomposition reactor are connected by an air pipe, and a heat medium circulation line is formed so that a heat medium can be circulated. Further, a blower is provided between the downstream side of the thermal decomposition reactor and the upstream side of the high-temperature air heater in the heat medium circulation line, and a downstream side of the high-temperature air heater in the heat medium circulation line. A starting furnace is provided between the furnace and the upstream side of the pyrolysis reactor. Then, the air heated to about 550 ° C. by the high-temperature air heater is sent as a heat medium to the pyrolysis reactor through the line,
The waste in the pyrolysis reactor is indirectly heated to about 300 ° C.
And leaves the pyrolysis reactor. This air is sent by the blower to the hot air heater where it is heated again and recirculated.

【0004】前記高温空気加熱器は、その耐腐食性向上
等の理由で、その熱媒体の一部がパージガスとして利用
され、前記熱媒体循環ライン外にリークする構造に形成
されている。その結果、熱媒体循環ラインを循環する空
気の量が減少するため、それを補充する必要がある。こ
の空気の補充は、該ラインに設けられた大気開放の通気
ダクトから、前記空気のリーク量に相当する量が該ライ
ン内に吸引されて行われるようになっている。
The high-temperature air heater has a structure in which a part of the heat medium is used as a purge gas and leaks out of the heat medium circulation line because of its improved corrosion resistance and the like. As a result, the amount of air circulating in the heat medium circulation line decreases, and it is necessary to replenish the air. The replenishment of the air is performed by sucking an amount corresponding to the leak amount of the air into the line from a ventilation duct provided to the line and open to the atmosphere.

【0005】[0005]

【発明が解決しようとする課題】熱分解反応器は、上記
した如く、該熱分解反応器内を移動する廃棄物は、その
伝熱管内を流れる熱媒体空気により間接加熱されて、熱
分解ガスと熱分解残留物とに熱分解されるのであるが、
万一伝熱管が破孔した場合、伝熱管内の空気圧がその外
部より高いため、器内に熱媒体空気の一部が漏洩し、該
器内を低酸素雰囲気に保持することができにくいという
問題があった。
As described above, in the thermal cracking reactor, the waste moving in the thermal cracking reactor is indirectly heated by the heating medium air flowing in the heat transfer tube to generate the thermal cracking gas. And pyrolyzed residue.
If the heat transfer tube breaks, the air pressure inside the heat transfer tube is higher than the outside, so part of the heat medium air leaks into the vessel, making it difficult to maintain the inside of the vessel in a low oxygen atmosphere. There was a problem.

【0006】本発明の課題は、仮に熱分解反応器の伝熱
管が破孔しても該伝熱管内の空気が外部に漏れず、もっ
て熱分解反応器内を低酸素雰囲気に保持することができ
る熱分解反応器の熱媒体圧力制御装置及びそれを備えた
廃棄物処理装置を提供することにある。また、熱分解反
応器の伝熱管が破孔した場合はそれを初期段階で検知で
きるようにすることにある。
An object of the present invention is to prevent the air in the heat transfer tube from leaking to the outside even if the heat transfer tube of the pyrolysis reactor is pierced, thereby maintaining the inside of the pyrolysis reactor in a low oxygen atmosphere. It is an object of the present invention to provide a heat medium pressure control device for a pyrolysis reactor and a waste treatment device provided with the same. Another object of the present invention is to make it possible to detect a rupture in the heat transfer tube of the thermal decomposition reactor at an early stage.

【0007】[0007]

【課題を解決するための手段】上記課題を達成するため
に、本願請求項1記載発明は、燃焼排ガスの熱を熱媒体
である空気により回収する高温空気加熱器と、伝熱管内
を通る熱媒体空気により廃棄物を間接加熱して熱分解す
る熱分解反応器と、該熱分解反応器と前記高温空気加熱
器とを空気配管で結んで熱媒体を循環させる熱媒体循環
ラインと、該熱媒体循環ラインの前記熱分解反応器の下
流側と前記高温空気加熱器の上流側との間に設けられた
送風機と、該熱媒体循環ラインの前記高温空気加熱器の
下流側と前記熱分解反応器の上流側との間に設けられた
始動用加熱炉とを備え、前記高温空気加熱器はその熱媒
体の一部が前記熱媒体循環ライン外にリークする構造に
形成され、前記送風機の吸引側に大気とつながると共に
第1調節弁を有する第1連絡ダクトが設けられ、該送風
機の吐出側に大気とつながると共に第2調節弁を有する
第2連絡ダクトが設けられ、熱分解反応器の熱媒体入口
近傍の空気配管に空気圧を検知する空気圧センサーが設
けられ、該空気圧センサーの圧力検知信号に基づいて前
記第1連絡ダクト及び第2連絡ダクトの各調節弁を制御
し、熱分解反応器の伝熱管内を通る熱媒体空気圧を該熱
分解反応器の器内雰囲気圧と同じか又は少し低圧にする
ことを特徴とするものである。
In order to achieve the above-mentioned object, the present invention is characterized in that a high-temperature air heater for recovering heat of combustion exhaust gas by air as a heat medium and a heat passing through a heat transfer tube. A pyrolysis reactor for indirectly heating and thermally decomposing waste with medium air, a heat medium circulating line for connecting the pyrolysis reactor and the high-temperature air heater with an air pipe to circulate a heat medium, A blower provided between a downstream side of the pyrolysis reactor of the medium circulation line and an upstream side of the high-temperature air heater, and a blower provided between the downstream side of the high-temperature air heater of the heating medium circulation line and the pyrolysis reaction A heating furnace provided between the heating medium and the upstream side of the heating device, wherein the high-temperature air heater is formed in a structure in which a part of the heating medium leaks out of the heating medium circulation line, and the suction of the blower is performed. Connects to the atmosphere on the side and has a first control valve A first communication duct is provided, a second communication duct having a second control valve connected to the atmosphere on the discharge side of the blower is provided, and an air pressure detecting air pressure is provided to an air pipe near a heat medium inlet of the pyrolysis reactor. A control valve for controlling the control valves of the first communication duct and the second communication duct based on a pressure detection signal of the air pressure sensor, and detects a pressure of a heat medium passing through a heat transfer tube of a thermal decomposition reactor by the thermal decomposition. The pressure is equal to or slightly lower than the atmospheric pressure in the reactor.

【0008】これにより、仮に熱分解反応器の伝熱管が
破孔しても、伝熱管内の空気圧は外部と同じか又はそれ
より少し低圧に維持されているため、熱媒体空気が該器
内に漏れず、もって熱分解反応器内を低酸素雰囲気に保
持することができる。ここで、「少し低圧に」維持する
ということにおけるその「少し」とは、低圧にすると、
逆に伝熱管内へ外部気体の浸入が起こるが、その浸入に
よって伝熱管内外の全体的バランスがくずれない程度に
少しという意味である。
Accordingly, even if the heat transfer tube of the thermal decomposition reactor is punctured, the air pressure in the heat transfer tube is maintained at the same level as that of the outside or slightly lower than that of the outside. Therefore, the inside of the thermal decomposition reactor can be maintained in a low oxygen atmosphere. Here, the "slightly" in maintaining "slightly low pressure" means that when the pressure is low,
Conversely, intrusion of the external gas into the heat transfer tube occurs, but the intrusion implies that the overall balance inside and outside the heat transfer tube is so small as not to be destroyed.

【0009】また請求項2記載発明は、請求項1記載発
明において、熱媒体循環ラインの前記熱分解反応器の熱
媒体出口近傍にCO濃度検知手段が設けられたことを特
徴とするものである。伝熱管に破孔が生じると外部気体
である熱分解ガス(COを含む)が少し伝熱管内の熱媒
体空気中に侵入するので、そのCOをCO濃度検知手段
で検知することにより破孔が生じたことを初期段階で的
確に把握して対応できる。
According to a second aspect of the present invention, in the first aspect of the present invention, a CO concentration detecting means is provided near a heat medium outlet of the thermal decomposition reactor in the heat medium circulation line. . When a puncture occurs in the heat transfer tube, the pyrolysis gas (including CO), which is an external gas, slightly penetrates into the heat medium air inside the heat transfer tube, and the puncture is detected by detecting the CO with the CO concentration detecting means. What happened can be accurately grasped and responded at the initial stage.

【0010】また請求項3記載発明は、請求項1又は2
記載発明において、熱媒体循環ラインに、熱分解反応器
をバイパスするバイパスラインが設けられ、熱分解反応
器の熱媒体入口近傍の空気配管に空気温度を検知する第
1温度計が設けられ、熱分解反応器の熱媒体出口近傍の
空気配管に空気温度を検知する第2温度計が設けられ、
高温空気加熱器の熱媒体出口近傍の空気配管に空気温度
を検知する第3温度計が設けられ、前記バイパスライン
に第3調節弁が設けられ、前記熱分解反応器の熱媒体出
口近傍で前記バイパスラインとの合流点より上流の空気
配管に第4調整弁が設けられ、前記第1温度計の検知信
号に基づいて始動加熱炉の燃料流量又は前記送風機の回
転数を制御し、前記第2温度計の検知信号により第3調
節弁及び第4調節弁又は前記送風機の回転数を制御し、
第3温度計の検知信号により前記送風機の回転数を制御
し、これら各制御により熱分解反応器の伝熱管を流れる
空気の温度を設定範囲内に維持するように形成されて成
ることを特徴とするものである。
The third aspect of the present invention is the first or second aspect.
In the described invention, a bypass line that bypasses the thermal decomposition reactor is provided in the thermal medium circulation line, and a first thermometer that detects air temperature is provided in an air pipe near the thermal medium inlet of the thermal decomposition reactor, A second thermometer for detecting an air temperature is provided in an air pipe near a heat medium outlet of the decomposition reactor,
A third thermometer for detecting air temperature is provided in an air pipe near a heat medium outlet of the high-temperature air heater, a third control valve is provided in the bypass line, and the third thermometer is provided near a heat medium outlet of the pyrolysis reactor. A fourth regulating valve is provided in the air pipe upstream of the junction with the bypass line, and controls the fuel flow rate of the starting heating furnace or the number of revolutions of the blower based on the detection signal of the first thermometer. The rotation number of the third control valve and the fourth control valve or the blower is controlled by a detection signal of a thermometer,
The number of rotations of the blower is controlled by a detection signal of a third thermometer, and the temperature of the air flowing through the heat transfer tube of the thermal decomposition reactor is maintained within a set range by these controls. Is what you do.

【0011】通常、熱分解反応器の熱媒体空気の入口温
度は、約550℃程度、出口温度は約300℃程度に設
定されているが、本発明により、前記圧力制御をしつ
つ、熱媒体温度を所望の温度に維持しておくことができ
る。
Normally, the inlet temperature of the heating medium air of the thermal decomposition reactor is set to about 550 ° C. and the outlet temperature is set to about 300 ° C. According to the present invention, the heating medium is controlled while controlling the pressure. The temperature can be maintained at the desired temperature.

【0012】請求項4記載発明は、廃棄物を熱分解して
熱分解ガスおよび熱分解残留物を生成する熱分解反応器
と、前記熱分解残留物を不活性雰囲気下で冷却する冷却
装置と、冷却された熱分解残留物を燃焼性成分および不
燃焼性成分に分離する分離装置と、前記熱分解ガスおよ
び燃焼性成分を灰分を溶融させる温度で燃焼させて不燃
焼分を溶融スラグとして排出部から排出する燃焼溶融炉
と、燃焼溶融炉で生じた高温ガスの熱を空気と熱交換さ
せて回収する高温空気加熱器とを備えた廃棄物処理装置
において、前記熱分解反応機は請求項1〜3のいずれか
に記載の発明に係る熱媒体圧力制御装置を備えているこ
とを特徴とするものである。
[0012] The present invention provides a pyrolysis reactor for pyrolyzing waste to produce a pyrolysis gas and a pyrolysis residue, and a cooling device for cooling the pyrolysis residue in an inert atmosphere. A separation device for separating the cooled pyrolysis residue into a combustible component and a non-combustible component, and combusting the pyrolysis gas and the combustible component at a temperature at which ash is melted to discharge unburned components as molten slag. In a waste treatment apparatus provided with a combustion melting furnace discharged from the section and a high temperature air heater for exchanging heat of the high temperature gas generated in the combustion melting furnace with air for heat recovery, the thermal decomposition reactor is characterized in that: A heat medium pressure control device according to any one of claims 1 to 3 is provided.

【0013】これにより、熱分解反応器の伝熱管が万一
破孔しても、それを確実に初期段階で検知し、ただちに
運転を停止する等の対応をとることができる。
Thus, even if the heat transfer tube of the thermal decomposition reactor should be punctured, it can be reliably detected at the initial stage and the operation can be stopped immediately.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る熱不分解反応
器の熱媒体圧力制御装置の実施の形態を図1に基づいて
説明する。図1において、高温空気加熱器1は燃焼排ガ
スの熱を熱媒体である空気により回収するものである。
また熱分解反応器52は伝熱管(図示せず)内を通る熱
媒体空気により該熱分解反応器52内を移動する廃棄物
を間接加熱して熱分解するものである。この熱分解反応
器52と高温空気加熱器1とは空気配管2で接続されて
熱媒体循環ライン3が形成され、該ライン3により熱媒
体を循環するようになっている。そして、熱媒体循環ラ
イン3の熱分解反応器52の下流側と高温空気加熱器1
の上流側との間に送風機4が設けられ、更に熱媒体循環
ライン3の高温空気加熱器1の下流側と熱分解反応器5
2の上流側との間に始動用加熱炉5が設けられている。
この例では該ライン3に熱分解反応器52をバイパスす
るバイパスライン12が設けられ、該バイパスライン1
2冷却用の熱交換器13と流量調節弁14が設けられて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a heat medium pressure control device for a thermal decomposition reactor according to the present invention will be described below with reference to FIG. In FIG. 1, a high-temperature air heater 1 recovers heat of a combustion exhaust gas by using air as a heat medium.
The thermal decomposition reactor 52 is for indirectly heating and thermally decomposing waste moving in the thermal decomposition reactor 52 by a heat medium air passing through a heat transfer tube (not shown). The thermal decomposition reactor 52 and the high-temperature air heater 1 are connected by an air pipe 2 to form a heat medium circulation line 3 through which the heat medium is circulated. Then, the downstream side of the thermal decomposition reactor 52 of the heat medium circulation line 3 and the high-temperature air heater 1
A blower 4 is provided between the heating medium circulation line 3 and the downstream side of the high-temperature air heater 1 and the thermal decomposition reactor 5.
The starting heating furnace 5 is provided between the heating furnace 5 and the upstream side of the heating furnace 5.
In this example, the line 3 is provided with a bypass line 12 that bypasses the pyrolysis reactor 52, and the bypass line 1
2. A heat exchanger 13 for cooling and a flow control valve 14 are provided.

【0015】また、当該高温空気加熱器1はその熱媒体
空気の一部が前記熱媒体循環ライン3外にリークする構
造に形成されている。すなわち、リーク空気11によ
り、該高温空気加熱器1の金属部分に外部の腐食性ガス
成分が浸透して接触する恐れを無くしている。
The high-temperature air heater 1 is formed so that a part of the heat medium air leaks out of the heat medium circulation line 3. That is, the leak air 11 eliminates the possibility that an external corrosive gas component penetrates into the metal portion of the high-temperature air heater 1 and comes into contact with the metal portion.

【0016】そして、前記送風機4の吸引側に大気とつ
ながると共に流量調節用の第1調節弁6を有する第1連
絡ダクト7が設けられ、送風機4の吐出側には大気とつ
ながると共に第2調節弁8を有する第2連絡ダクト9が
設けられている。更に、熱分解反応器52の熱媒体入口
近傍の空気配管2に空気圧を検知する空気圧センサー1
0が設けられている。また更に、熱分解反応器52の熱
媒体出口近傍の空気配管2にCO分析計16が設けられ
ている。
A first communication duct 7 connected to the atmosphere on the suction side of the blower 4 and having a first control valve 6 for adjusting the flow rate is provided on the suction side of the blower 4. A second communication duct 9 having a valve 8 is provided. Further, an air pressure sensor 1 for detecting air pressure in an air pipe 2 near a heat medium inlet of the pyrolysis reactor 52.
0 is provided. Furthermore, a CO analyzer 16 is provided in the air pipe 2 near the heat medium outlet of the pyrolysis reactor 52.

【0017】次に上記実施の形態例の作用を説明する。
先ず、始動用加熱炉5が停止している場合は、空気圧セ
ンサー10の切替スイッチ15で第1調節弁6を制御
し、第2調節弁8は全閉状態にされる。第1調節弁6は
空気圧センサー10により空気配管2内の検知空気圧が
熱分解反応器52内の雰囲気圧と同じか又は少し低圧と
なるように、この例では0mmAqとなるように開閉制御
される。具体的には高温空気加熱器1のリーク空気11
と同量の空気を補充しつつ前記低圧(0mmAq)となる
ように制御されることになり、この補充空気が第1連絡
ダクト7を通じて供給されるが、その時、第1調節弁6
の存在により圧力損失を生じさせ、前記低圧(0mmA
q)を維持しつつ空気補充が行える。
Next, the operation of the above embodiment will be described.
First, when the starting heating furnace 5 is stopped, the first control valve 6 is controlled by the changeover switch 15 of the air pressure sensor 10, and the second control valve 8 is fully closed. The first control valve 6 is opened and closed by the air pressure sensor 10 so that the detected air pressure in the air pipe 2 is equal to or slightly lower than the atmospheric pressure in the pyrolysis reactor 52, and in this example, is controlled to be 0 mmAq. . Specifically, the leak air 11 of the high-temperature air heater 1
Is controlled so as to maintain the low pressure (0 mmAq) while replenishing the same amount of air, and this replenishment air is supplied through the first communication duct 7.
Causes a pressure loss, and the low pressure (0 mmA
Air supplementation can be performed while maintaining q).

【0018】また始動用加熱炉5が運転状態にある場合
は、空気圧センサー10の切替スイッチ15で第2調節
弁8を制御し、第1調節弁6は全閉状態とされる。始動
用加熱炉5が運転されると、そこから排ガスが発生して
該ライン3の空気配管2内の空気圧が高くなるからであ
る。この場合は、始動用加熱炉5から発生する排ガスと
前記リーク空気11の差と同量の空気が第2連絡ダクト
9から外部に排出される。すなわち、空気圧センサー1
0により空気配管2内の検知空気圧が熱分解反応器52
内の雰囲気圧と同じか又は少し低圧となるように、この
例では0mmAqとなるように第2調節弁8が開閉制御さ
れる。この時も第2調節弁8の存在による圧力損失によ
り前記低圧(0mmAq)を維持しつつ空気排出が行え
る。尚、上記説明では切替スイッチ15を用いて調節弁
6、8の切替をする場合を説明したが第1調節弁6と第
2調節弁8が同時に開かないようにしたシーケンス制御
を構築しておけば、前記切替スイッチ15は不要であ
る。
When the starting heating furnace 5 is in operation, the second control valve 8 is controlled by the changeover switch 15 of the air pressure sensor 10, and the first control valve 6 is fully closed. This is because, when the starting heating furnace 5 is operated, exhaust gas is generated therefrom and the air pressure in the air pipe 2 of the line 3 increases. In this case, the same amount of air as the difference between the exhaust gas generated from the starting heating furnace 5 and the leak air 11 is discharged from the second communication duct 9 to the outside. That is, the air pressure sensor 1
0, the detected air pressure in the air pipe 2 is reduced
The opening and closing of the second control valve 8 is controlled so as to be equal to or slightly lower than the internal atmospheric pressure, and to be 0 mmAq in this example. At this time, the air can be discharged while maintaining the low pressure (0 mmAq) due to the pressure loss due to the presence of the second control valve 8. In the above description, the case where the control valves 6 and 8 are switched using the changeover switch 15 has been described. However, a sequence control in which the first control valve 6 and the second control valve 8 are not simultaneously opened may be constructed. In this case, the changeover switch 15 is unnecessary.

【0019】以上のように、空気圧センサー10の圧力
検知信号に基づいて前記第1連絡ダクト7及び第2連絡
ダクト9の各調節弁6、8を制御し、熱分解反応器52
の伝熱管内を通る熱媒体空気圧を該熱分解反応器52の
器内雰囲気圧と同じか又は少し低圧になるようにして運
転される。これにより、仮に熱分解反応器52の伝熱管
が破孔しても、熱媒体空気が伝熱管内から外部(該器
内)に漏れず、熱分解反応器52内を低酸素雰囲気に保
持することができると共に、CO分析計により破孔を直
ちに検知することができる。
As described above, the control valves 6 and 8 of the first communication duct 7 and the second communication duct 9 are controlled based on the pressure detection signal of the air pressure sensor 10, and the thermal decomposition reactor 52
The operation is performed such that the air pressure of the heat medium passing through the heat transfer tube is equal to or slightly lower than the atmospheric pressure in the thermal decomposition reactor 52. Accordingly, even if the heat transfer tube of the thermal decomposition reactor 52 is punctured, the heat medium air does not leak from the inside of the heat transfer tube to the outside (inside the device), and the inside of the thermal decomposition reactor 52 is kept in a low oxygen atmosphere. The hole can be immediately detected by the CO analyzer.

【0020】図2は本発明の他の実施の形態を示す。こ
の実施の形態例は以下の条件を満たすように制御される
ものである。 熱分解反応器の入口の熱媒体空気温度を550℃に維
持すること、 熱分解反応器の出口の熱媒体空気温度を300℃に維
持すること、 高温空気加熱器の出口の熱媒体空気温度を550℃以
下に維持すること、 始動用加熱炉を運転している場合バイパスラインには
原則流さないこと、 熱分解反応器の伝熱管内を通る熱媒体空気圧をその外
部と同じか又は少し低圧になるようにすること。 そのためにこの例では、熱媒体循環ライン3に、熱分解
反応器52の熱媒体入口近傍の空気配管2に空気温度を
検知する第1温度計20が設けられ、熱分解反応器52
の熱媒体出口近傍の空気配管2に空気温度を検知する第
2温度計21が設けられ、高温空気加熱器1の熱媒体出
口近傍の空気配管2に空気温度を検知する第3温度計2
2が設けられている。更に、前記バイパスライン12に
第3調節弁23が設けられ、前記熱分解反応器52の熱
媒体出口近傍で前記バイパスライン12との合流点より
上流の空気配管2に第4調整弁24が設けられている。
FIG. 2 shows another embodiment of the present invention. This embodiment is controlled so as to satisfy the following conditions. Maintaining the temperature of the heating medium air at the inlet of the pyrolysis reactor at 550 ° C., maintaining the temperature of the heating medium air at the exit of the pyrolysis reactor at 300 ° C., and controlling the temperature of the heating medium air at the outlet of the high-temperature air heater Maintain 550 ° C or less, do not flow in the bypass line when operating the heating furnace for start-up, and keep the air pressure of the heat medium passing through the heat transfer tubes of the pyrolysis reactor equal to or slightly lower than the outside. To be. For this purpose, in this example, the heat medium circulation line 3 is provided with a first thermometer 20 for detecting the air temperature in the air pipe 2 near the heat medium inlet of the heat decomposition reactor 52.
A second thermometer 21 for detecting the air temperature is provided in the air pipe 2 near the heat medium outlet of the third thermometer 2, and a third thermometer 2 for detecting the air temperature in the air pipe 2 near the heat medium outlet of the high-temperature air heater 1 is provided.
2 are provided. Further, a third control valve 23 is provided in the bypass line 12, and a fourth control valve 24 is provided in the air pipe 2 near the heat medium outlet of the pyrolysis reactor 52 and upstream of the junction with the bypass line 12. Have been.

【0021】始動用加熱炉5が停止している場合(灯油
最小量運転を含む)、第1温度計20が550℃を維持
するように切替スイッチ25を介して送風機4の回転数
が制御され、且つ第2温度計21が300℃を維持する
ように切替スイッチ26を介してバイパスライン12の
第3調節弁23が制御され、そこを流れる空気の流量が
調節される。ここで第3調節弁23が全開でも第2温度
計21が300℃以上である時は第4調整弁24が閉じ
られていくようになっている。
When the starting heating furnace 5 is stopped (including the operation of the minimum amount of kerosene), the rotation speed of the blower 4 is controlled via the switch 25 so that the first thermometer 20 maintains 550 ° C. In addition, the third control valve 23 of the bypass line 12 is controlled via the changeover switch 26 so that the second thermometer 21 maintains 300 ° C., and the flow rate of the air flowing therethrough is adjusted. Here, even when the third control valve 23 is fully opened, when the second thermometer 21 is at 300 ° C. or higher, the fourth control valve 24 is closed.

【0022】始動用加熱炉5が運転している場合(灯油
最小量運転は除くは)、第1温度計20が550℃を維
持するように切替スイッチ25を介して始動用加熱炉5
の燃焼量が制御され、且つ第2温度計21が300℃を
維持するように切替スイッチ26を介して送風機4の回
転数が制御される。この回転数を減らしていき、第3温
度計が550℃以上の場合は、この温度が550℃にな
るように切替スイッチ27を介して送風機4の回転数が
調整される。また、この時は第2温度計が300℃以上
となるため、第2温度計21でバイパスライン12の第
3調節弁23を調整し、その温度が300℃になるよう
に制御される。
When the starting heating furnace 5 is operating (except for the operation with the minimum amount of kerosene), the starting heating furnace 5 is switched via the changeover switch 25 so that the first thermometer 20 maintains 550 ° C.
Is controlled via the switch 26 so that the second thermometer 21 maintains 300 ° C. When the rotation speed is reduced and the third thermometer is 550 ° C. or higher, the rotation speed of the blower 4 is adjusted via the switch 27 so that the temperature becomes 550 ° C. At this time, the temperature of the second thermometer becomes 300 ° C. or more. Therefore, the second thermometer 21 adjusts the third control valve 23 of the bypass line 12 to control the temperature to 300 ° C.

【0023】以上のように、第1温度計20の検知信号
に基づいて始動加熱炉5の燃料流量又は前記送風機4の
回転数を制御し、第2温度計21の検知信号により第3
調節弁23及び第4調節弁24又は送風機4の回転数を
制御し、第3温度計22の検知信号により送風機4の回
転数を制御し、これら各制御により熱分解反応器52の
伝熱管を流れる空気の温度を設定範囲内に維持するよう
に形成されて成るものである。すなわち、この例では、
熱分解反応器52の熱媒体空気の入口温度は、約550
℃程度、出口温度は約300℃程度に維持しつつ、前記
圧力制御を行えるものである。
As described above, the fuel flow rate of the starting heating furnace 5 or the rotation speed of the blower 4 is controlled based on the detection signal of the first thermometer 20, and the third flow rate is detected by the detection signal of the second thermometer 21.
The number of rotations of the control valve 23 and the fourth control valve 24 or the blower 4 is controlled, and the number of rotations of the blower 4 is controlled by a detection signal of the third thermometer 22. It is formed so as to maintain the temperature of the flowing air within a set range. That is, in this example,
The inlet temperature of the heating medium air of the pyrolysis reactor 52 is about 550
The pressure control can be performed while maintaining the temperature at about 300C and the outlet temperature at about 300C.

【0024】次に、前記燃焼溶融炉の炉内温度検知装置
を備えた廃棄物処理装置の一実施の形態例を図3に基づ
いて説明する。本実施の形態の廃棄物処理装置におい
て、都市ごみ等の廃棄物50aは、例えば二軸剪断式等
の破砕機で、150mm角以下の大きさにに破砕され、
コンベア等により投入部50内に投入される。投入部5
0に投入された廃棄物50aはスクリューフィーダ51
を経て熱分解反応器52内に供給される。熱分解反応器
52としてはこの例では横型回転式ドラムが用いられ、
ドラム内の加熱分解室は図示しないシール機構により、
その内部は低酸素雰囲気に保持されている。
Next, an embodiment of a waste treatment apparatus provided with a furnace temperature detecting device of the combustion melting furnace will be described with reference to FIG. In the waste treatment apparatus of the present embodiment, the waste 50a such as municipal waste is crushed into a size of 150 mm square or less by a crusher such as a biaxial shearing type.
It is loaded into the loading section 50 by a conveyor or the like. Input unit 5
The waste 50a put into the screw feeder 51
Is supplied to the inside of the thermal decomposition reactor 52. In this example, a horizontal rotary drum is used as the pyrolysis reactor 52,
The thermal decomposition chamber in the drum is operated by a sealing mechanism (not shown).
The inside is kept in a low oxygen atmosphere.

【0025】廃棄物50aは熱分解反応器52内で熱分
解されるが、その熱源は、後述する燃焼溶融炉53の後
流側に配置された熱交換器である高温空気加熱器1によ
り加熱され加熱空気ラインである熱媒体循環ライン3を
介して供給される加熱空気8g(熱媒体)である。この
加熱空気8gにより熱分解反応器52内は300〜60
0℃に、通常は450℃程度に維持される。
The waste 50a is thermally decomposed in the pyrolysis reactor 52, and its heat source is heated by the high-temperature air heater 1, which is a heat exchanger disposed downstream of the combustion melting furnace 53 described later. 8 g of heating air (heating medium) supplied through the heating medium circulation line 3 which is a heating air line. 8 g of the heated air makes the inside of the thermal decomposition reactor 52 300 to 60.
It is maintained at 0 ° C, usually around 450 ° C.

【0026】更に、加熱空気8gにより加熱された廃棄
物50aは、熱分解して熱分解ガスG1と、主として不
揮発性成分からなる熱分解残留物54とになり、排出装
置55に送られて分離される。排出装置55で分離され
た熱分解ガスG1は、排出装置55の上部から熱分解ガ
スラインL2を経て燃焼溶融炉53のバーナ56に供給
される。排出装置55から排出された熱分解残留物54
は、450℃程度の比較的高温であるため、後述する構
造の冷却装置57により不活性雰囲気下で80℃程度に
冷却される。
Furthermore, waste 50a heated by the heated air 8g is thermally decomposed to the pyrolysis gas G 1, becomes the pyrolysis residue 54 consisting mainly of non-volatile components, it is sent to the discharge device 55 Separated. The pyrolysis gas G 1 separated by the discharge device 55 is supplied from above the discharge device 55 to the burner 56 of the combustion melting furnace 53 via the pyrolysis gas line L 2 . Pyrolysis residue 54 discharged from discharge device 55
Is cooled to about 80 ° C. in an inert atmosphere by a cooling device 57 having a structure to be described later.

【0027】その後、冷却された熱分解残留物54は、
例えば磁選式、うず電流式、遠心式又は風力選別式等の
公知の単独又は組み合わされた分離装置58に供給さ
れ、ここで細粒の燃焼性成分58d(灰分を含む)と
鉄、瓦礫等の不燃焼性成分58cとに分離され、不燃焼
性成分58cはコンテナ59に回収され再利用される。
Thereafter, the cooled pyrolysis residue 54 is
For example, it is supplied to a known single or combined separation device 58 such as a magnetic separation type, an eddy current type, a centrifugal type or a wind separation type, where the fine combustible component 58d (including ash) and iron, rubble, etc. The non-combustible component 58c is separated into the non-combustible component 58c, and is collected and reused in the container 59.

【0028】更に、燃焼性成分58dは、主として熱分
解カーボンから成るが、粉砕機60により、例えば1m
m以下に微粉砕されて粉体カーボンとなり、燃焼性成分
ラインL3を経て燃焼溶融炉53のバーナ56に供給さ
れ、熱分解ガスラインL2から供給された熱分解ガスG1
と送風機61により空気ラインL4から供給された燃焼
用空気61eと共に1,300℃程度の高温域で燃焼さ
れる。
Further, the combustible component 58d is mainly composed of pyrolytic carbon.
are milled below m becomes powder carbon, combustible component line L 3 a via is supplied to the burner 56 of the burning melting furnace 53, pyrolysis gas G 1 supplied from the pyrolysis gas line L 2
It is burned in a high temperature range of about 1,300 ° C. with the supplied combustion air 61e from the air line L 4 by the blower 61 and.

【0029】上記燃焼で発生した灰分はその燃焼熱によ
り溶融スラグ53fとなって、この燃焼溶融炉53の内
壁に付着し、更に、内壁を流下し底部排出口62から水
槽63に落下し冷却固化される。燃焼溶融炉53は一般
に溶解炉とも言われるものであって、カーボン等の燃焼
性成分58dを1300℃程度の高温で燃焼させ、灰分
を含む不燃焼分を溶融させて溶融スラグ53fと高温の
燃焼排ガスG2とを生成する。燃焼排ガスG2は、秒速2
〜3m、温度1000〜1100℃のガス流となって、
炉内下流側に設けた高温空気加熱器1の伝熱管体により
熱回収される。
The ash generated by the above combustion becomes molten slag 53f due to the heat of combustion, adheres to the inner wall of the combustion melting furnace 53, further flows down the inner wall, falls from the bottom outlet 62 into a water tank 63, and solidifies by cooling. Is done. The combustion melting furnace 53 is generally referred to as a melting furnace, and burns a combustible component 58d such as carbon at a high temperature of about 1300 ° C., melts unburned components including ash, and forms a high temperature combustion with the molten slag 53f. It generates the exhaust gas G 2. The flue gas G 2 is 2
~ 3m, gas flow of 1000 ~ 1100 ℃
Heat is recovered by the heat transfer tube of the high-temperature air heater 1 provided on the downstream side in the furnace.

【0030】ここで、高温空気加熱器1と熱分解反応器
52は図1、2に示した熱媒体圧力制御装置を備えてい
る。これにより、熱分解反応器52内を、その伝熱管の
破孔等が万一あっても確実に低酸素雰囲気に保持するこ
とができると共に、破孔を検知できる。
Here, the high-temperature air heater 1 and the pyrolysis reactor 52 have the heat medium pressure control device shown in FIGS. This makes it possible to reliably maintain the inside of the thermal decomposition reactor 52 in a low-oxygen atmosphere even if the heat transfer tube has a hole or the like, and to detect the hole.

【0031】前記高温空気加熱器1の部分を通過した燃
焼排ガスG2は、煙道ガスラインL5を介して廃熱ボイラ
64で熱回収され、集塵器65で除塵され、更に排ガス
浄化装置66で塩素等の有害成分が除去された後、低温
のクリーンな排ガスG3となって誘引送風機67を介し
て煙突68から大気へ放出される。廃熱ボイラ64で生
成した蒸気は、蒸気タービンを有する発電機69で発電
に利用される。
The flue gas G 2 passing through the high-temperature air heater 1 is recovered by a waste heat boiler 64 via a flue gas line L 5 , is subjected to dust removal by a dust collector 65, and is further purified by an exhaust gas purifier. After harmful components such as chlorine are removed at 66, the exhaust gas G 3 is discharged into the atmosphere from the chimney 68 via the induction blower 67 as clean low-temperature exhaust gas G 3 . The steam generated by the waste heat boiler 64 is used for power generation by a generator 69 having a steam turbine.

【0032】尚、以上においては、本発明を図示の実施
形態について詳述したが、本発明はそれらの実施形態の
みに限定されるものではなく、本発明の精神を逸脱せず
して種々改変を加え、多種多様の変形をなし得ることは
云うまでもない。
In the above, the present invention has been described in detail with reference to the illustrated embodiments. However, the present invention is not limited to only those embodiments, and various modifications can be made without departing from the spirit of the present invention. It goes without saying that a wide variety of modifications can be made.

【0033】[0033]

【発明の効果】本発明によれば、仮に熱分解反応器の伝
熱管が破孔しても該伝熱管内の空気が外部に漏れず、も
って熱分解反応器内を低酸素雰囲気に保持することがで
きる。
According to the present invention, even if the heat transfer tube of the thermal decomposition reactor breaks, the air in the heat transfer tube does not leak to the outside, so that the inside of the thermal decomposition reactor is kept in a low oxygen atmosphere. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る熱分解反応器の熱媒体圧力制御装
置の一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a heat medium pressure control device of a thermal decomposition reactor according to the present invention.

【図2】本発明に係る熱媒体圧力制御装置の他の例を示
す構成図である。
FIG. 2 is a configuration diagram showing another example of the heat medium pressure control device according to the present invention.

【図3】本発明に係る廃棄物処理装置の概略図である。FIG. 3 is a schematic diagram of a waste disposal apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 高温空気加熱器 2 空気配管 3 熱媒体循環ライン 4 送風機 5 始動用加熱炉 6 第1調節弁 7 第1連絡ダクト 8 第2調節弁 9 第2連絡ダクト 10 空気圧センサー 16 CO分析計 20 第1温度計 21 第2温度計 22 第3温度計 23 第3調節弁 24 第4調節弁 52 熱分解反応器 DESCRIPTION OF SYMBOLS 1 High-temperature air heater 2 Air piping 3 Heat medium circulation line 4 Blower 5 Starting furnace 6 First control valve 7 First communication duct 8 Second control valve 9 Second communication duct 10 Air pressure sensor 16 CO analyzer 20 First Thermometer 21 Second thermometer 22 Third thermometer 23 Third control valve 24 Fourth control valve 52 Thermal decomposition reactor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮地 健 千葉県市原市八幡海岸通1番地 三井造船 株式会社千葉事業所内 (72)発明者 横田 幸利 東京都中央区築地5丁目6番4号 三井造 船株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ken Miyaji 1 Yawata Kaigan-dori, Ichihara-shi, Chiba Mitsui Engineering & Shipbuilding Co., Ltd. Ship Company

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃焼排ガスの熱を熱媒体である空気によ
り回収する高温空気加熱器と、伝熱管内を通る熱媒体空
気により廃棄物を間接加熱して熱分解する熱分解反応器
と、該熱分解反応器と前記高温空気加熱器とを空気配管
で結んで熱媒体を循環させる熱媒体循環ラインと、該熱
媒体循環ラインの前記熱分解反応器の下流側と前記高温
空気加熱器の上流側との間に設けられた送風機と、該熱
媒体循環ラインの前記高温空気加熱器の下流側と前記熱
分解反応器の上流側との間に設けられた始動用加熱炉と
を備え、 前記高温空気加熱器はその熱媒体の一部が前記熱媒体循
環ライン外にリークする構造に形成され、 前記送風機の吸引側に大気とつながると共に第1調節弁
を有する第1連絡ダクトが設けられ、該送風機の吐出側
に大気とつながると共に第2調節弁を有する第2連絡ダ
クトが設けられ、 熱分解反応器の熱媒体入口近傍の空気配管に空気圧を検
知する空気圧センサーが設けられ、 該空気圧センサーの圧力検知信号に基づいて前記第1連
絡ダクト及び第2連絡ダクトの各調節弁を制御し、熱分
解反応器の伝熱管内を通る熱媒体空気圧を該熱分解反応
器の器内雰囲気圧より少し低圧にすることを特徴とする
熱分解反応器の熱媒体圧力制御装置。
A high-temperature air heater for recovering the heat of the combustion exhaust gas with air as a heat medium; a pyrolysis reactor for indirectly heating and thermally decomposing waste with heat medium air passing through a heat transfer tube; A heat medium circulating line connecting the pyrolysis reactor and the high-temperature air heater with an air pipe to circulate a heat medium, a downstream side of the heat decomposition reactor of the heat medium circulating line and an upstream of the high-temperature air heater; And a starter provided between the downstream side of the high-temperature air heater and the upstream side of the pyrolysis reactor in the heat medium circulation line, The high-temperature air heater is formed to have a structure in which a part of the heat medium leaks out of the heat medium circulation line, and a first communication duct having a first control valve connected to the atmosphere on the suction side of the blower is provided, When connected to the atmosphere on the discharge side of the blower, A second communication duct having a second control valve is provided, an air pressure sensor for detecting air pressure is provided in an air pipe near a heat medium inlet of the pyrolysis reactor, and the first pressure sensor is provided based on a pressure detection signal of the air pressure sensor. Controlling the control valves of the communication duct and the second communication duct so that the air pressure of the heat medium passing through the heat transfer tube of the pyrolysis reactor is slightly lower than the atmospheric pressure in the pyrolysis reactor. Heat medium pressure control device for cracking reactor.
【請求項2】 請求項1において、熱媒体循環ラインの
前記熱分解反応器の熱媒体出口近傍にCO濃度検知手段
が設けられたことを特徴とする熱分解反応器の熱媒体圧
力制御装置。
2. The heat medium pressure control device for a thermal decomposition reactor according to claim 1, wherein a CO concentration detecting means is provided near a heat medium outlet of the thermal decomposition reactor in the heat medium circulation line.
【請求項3】 請求項1又は2において、熱媒体循環ラ
インに、熱分解反応器をバイパスするバイパスラインが
設けられ、熱分解反応器の熱媒体入口近傍の空気配管に
空気温度を検知する第1温度計が設けられ、熱分解反応
器の熱媒体出口近傍の空気配管に空気温度を検知する第
2温度計が設けられ、高温空気加熱器の熱媒体出口近傍
の空気配管に空気温度を検知する第3温度計が設けら
れ、前記バイパスラインに第3調節弁が設けられ、前記
熱分解反応器の熱媒体出口近傍で前記バイパスラインと
の合流点より上流の空気配管に第4調整弁が設けられ、 前記第1温度計の検知信号に基づいて始動加熱炉の燃料
流量又は前記送風機の回転数を制御し、前記第2温度計
の検知信号により第3調節弁及び第4調節弁又は前記送
風機の回転数を制御し、第3温度計の検知信号により前
記送風機の回転数を制御し、これら各制御により熱分解
反応器の伝熱管を流れる空気の温度を設定範囲内に維持
するように形成されて成ることを特徴とする熱分解反応
器の熱媒体圧力制御装置。
3. The heat medium circulating line according to claim 1, wherein a bypass line for bypassing the thermal decomposition reactor is provided in the thermal medium circulating line, and air temperature is detected in an air pipe near an inlet of the thermal medium of the thermal decomposition reactor. 1 A thermometer is provided, and a second thermometer for detecting air temperature is provided in an air pipe near a heat medium outlet of the pyrolysis reactor, and an air temperature is detected in an air pipe near a heat medium outlet of the high-temperature air heater. A third thermometer is provided, a third control valve is provided in the bypass line, and a fourth control valve is provided in an air pipe near a heat medium outlet of the pyrolysis reactor and upstream of a junction with the bypass line. The fuel flow rate of the starting heating furnace or the rotation speed of the blower is controlled based on the detection signal of the first thermometer, and the third control valve and the fourth control valve or the third control valve are controlled by the detection signal of the second thermometer. Controls fan speed , The number of revolutions of the blower is controlled by a detection signal of a third thermometer, and the temperature of the air flowing through the heat transfer tube of the thermal decomposition reactor is maintained within a set range by these controls. The heat medium pressure control device of the thermal decomposition reactor.
【請求項4】 廃棄物を熱分解して熱分解ガスおよび熱
分解残留物を生成する熱分解反応器と、前記熱分解残留
物を不活性雰囲気下で冷却する冷却装置と、冷却された
熱分解残留物を燃焼性成分および不燃焼性成分に分離す
る分離装置と、前記熱分解ガスおよび燃焼性成分を灰分
を溶融させる温度で燃焼させて不燃焼分を溶融スラグと
して排出部から排出する燃焼溶融炉と、燃焼溶融炉で生
じた高温ガスの熱を空気と熱交換させて回収する高温空
気加熱器とを備えた廃棄物処理装置において、前記熱分
解反応機は請求項1〜3のいずれかに記載の熱媒体圧力
制御装置を備えていることを特徴とする廃棄物処理装
置。
4. A pyrolysis reactor that pyrolyzes waste to produce a pyrolysis gas and a pyrolysis residue, a cooling device that cools the pyrolysis residue in an inert atmosphere, A separation device for separating the decomposition residue into a combustible component and an incombustible component, and a combustion device in which the pyrolysis gas and the combustible component are burned at a temperature at which ash is melted, and the unburned component is discharged from a discharge portion as molten slag In a waste treatment apparatus provided with a melting furnace and a high-temperature air heater for exchanging heat of a high-temperature gas generated in the combustion-melting furnace with air for heat recovery, the thermal decomposition reactor is any one of claims 1 to 3. A waste treatment device comprising the heat medium pressure control device according to any one of claims 1 to 3.
JP11492798A 1998-04-24 1998-04-24 Heat medium pressure control device for pyrolysis reactor Expired - Fee Related JP3916759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11492798A JP3916759B2 (en) 1998-04-24 1998-04-24 Heat medium pressure control device for pyrolysis reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11492798A JP3916759B2 (en) 1998-04-24 1998-04-24 Heat medium pressure control device for pyrolysis reactor

Publications (2)

Publication Number Publication Date
JPH11304127A true JPH11304127A (en) 1999-11-05
JP3916759B2 JP3916759B2 (en) 2007-05-23

Family

ID=14650116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11492798A Expired - Fee Related JP3916759B2 (en) 1998-04-24 1998-04-24 Heat medium pressure control device for pyrolysis reactor

Country Status (1)

Country Link
JP (1) JP3916759B2 (en)

Also Published As

Publication number Publication date
JP3916759B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
CN101715532B (en) Furnace
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
JP2001289422A (en) Gasifying process system
JP3969846B2 (en) Pyrolysis reactor
JP4770435B2 (en) Method and apparatus for cooling waste pyrolysis char
JPH10132235A (en) Waste disposing apparatus with cooler
JPH11304127A (en) Pressure controller for heating medium of pyrolytic reactor
JP2001021126A (en) Apparatus for dry distilating, thermal cracking, melting and igniting waste material
JP2003049178A (en) Plasma melting furnace
JP3810149B2 (en) Operation method of pyrolysis reactor
JP2004347274A (en) Waste treatment device
KR100316978B1 (en) Water Cooling Wall Incinerator and Combustion Method
JPH1054210A (en) Combined installation of gas turbine generating set and waste dry distillation and thermal cracking melting combustion equipment
JP3893200B2 (en) Method for preventing closure of slag outlet in combustion melting furnace of waste treatment equipment
JP3461457B2 (en) Waste treatment equipment
JP3015266B2 (en) Waste melting equipment
JPH09222219A (en) Flying ash supplying device and waste material treating device
JP2000146149A (en) Dry distillation thermal decomposition molten combustor for waste
JPH1085703A (en) Thermal decomposition reaction apparatus
JP3759791B2 (en) Operation method of combustion melting furnace in waste treatment equipment
JPH1114031A (en) Cooler for residue of thermal decomposition
JPH10122536A (en) Emission device of thermal decomposition reactor
JPH09229324A (en) Waste treatment device and operation method for the device
JP5177839B2 (en) Exhaust gas treatment equipment for melting furnace
JP2004144402A (en) Waste disposing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070207

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees