JPH11303456A - Construction of vibration isolation - Google Patents

Construction of vibration isolation

Info

Publication number
JPH11303456A
JPH11303456A JP11720398A JP11720398A JPH11303456A JP H11303456 A JPH11303456 A JP H11303456A JP 11720398 A JP11720398 A JP 11720398A JP 11720398 A JP11720398 A JP 11720398A JP H11303456 A JPH11303456 A JP H11303456A
Authority
JP
Japan
Prior art keywords
upper structure
rubber
earthquake
steel ball
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11720398A
Other languages
Japanese (ja)
Inventor
Atsushi Watanabe
厚 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11720398A priority Critical patent/JPH11303456A/en
Publication of JPH11303456A publication Critical patent/JPH11303456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the rolling of a building and a floor at the time of the generation of an earthquake by inserting a steel ball supporting an upper structure between the upper structure and a lower structure and rubber boards to the upper and lower sections of the steel ball. SOLUTION: Steel balls 1 supporting an upper structure B are inserted between the upper structure B and a lower structure A and rubber boards 2A, 2B to the upper and lower sections of the steel balls. The tabular rubbers 2A, 2B are brought to the state, in which they are recessed, at the pressure of the steel balls 1 at the normal time. Since the lower structure A is quaked horizontally at the time of an earthquake, the balls 1 are rolled freely in the horizontal direction. Recessed sections in the tabular rubbers are moved at all times by rolling. Consequently, rubber board 2A, 2B themselves absorb seismic energy (displaying a damping effect), and horizontal displacement is reduced. Accordingly, acceleration transmitted to the upper structure is lowered to approximately one third or less of the acceleration of the lower structure, and seismic force is hardly transmitted to the upper structure. Since the cost of the rubber boards and the steel balls is reduced, the economical construction of vibration isolation having high safety can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、比較的軽い建物
(例えば3階以下の建物、戸建住宅など)や、建物の床
部分に用いることができ、地震発生時に建物や床の横揺
れを防止あるいは緩和するための免震構造に関するもの
である。
The present invention can be used for relatively light buildings (for example, buildings with 3 stories or less, detached houses, etc.) and floors of buildings, and can be used to reduce the rolling of buildings and floors when an earthquake occurs. It is related to seismic isolation structure to prevent or mitigate.

【0002】[0002]

【従来の技術】従来よりこの種の免震装置として、上部
構造と下部構造との間に上部構造を支える鋼製等の硬い
球(ベアリング)を挿入した装置がいくつか提案されて
いる。硬い球のみでは摩擦抵抗が少ないので転がりが止
まりにくいため、鋼球の転がり量を制限するような減衰
装置については、いろいろな種類の発明がなされてい
る。その具体的な事例として特開平2−285176号
のように、上部構造物の重量を支えるボールベアリング
に、粘性体(グリースなどの防錆効果のある材料)を用
いている。これらの例は、以下の点で、技術的な問題が
ある。
2. Description of the Related Art Heretofore, as this type of seismic isolation device, there have been proposed some devices in which a hard ball (bearing) made of steel or the like for supporting an upper structure is inserted between an upper structure and a lower structure. Various types of inventions have been made for a damping device that limits the amount of rolling of a steel ball because the rolling is difficult to stop because the friction resistance is small with only a hard ball. As a specific example, as in JP-A-2-285176, a viscous body (a material having a rust-proof effect such as grease) is used for a ball bearing that supports the weight of an upper structure. These examples have technical problems in the following points.

【0003】[0003]

【発明が解決しようとする課題】上記の従来の技術は以
下の点で、本発明に比べて優位性が劣る。 硬い球(ベアリング)は球自身が変形しないので、
上部構造や下部構造と球との接触面積が、非常に狭くな
り、この接触部の圧縮応力が過大になり易い。圧縮応力
が高いと、球や、球と接触する上下の支承部分に、局部
的な、凹み(窪み)が生じ易く、転がり運動が円滑でな
くなる。このため、球の数を増やしたり、球の直径を大
きくしたり、上部・下部構造の鋼球との接点を厚い鋼材
で補強するなどの対策が必要となり、経済的に高いもの
となる。 硬い球は球自身が変形しないので、下部構造にわず
かな不同沈下(部分的な沈下)が生じた場合、球と上部
構造が離れてしまう恐れがある。これにより、球や、下
部構造の荷重の分担に偏りが生じてしまう。 建設時には、下部構造・上部構造の鉛直方向の精度
誤差が生じる。このため、硬い球に過大な圧縮力が生じ
たり、球と上部構造との間に隙間が生じるなどの問題が
生じ易い。 硬い球は球自身が変形しないので、地震による揺れ
る変位を低減するための工夫が必要となる。一つは、減
衰機構(ダンパー)を挿入して、地震エネルギーを吸収
し、揺れ量を低減する方法である。他の一つは、硬い球
を支える下部支承を緩やかな凹型とし、地震で揺れた場
合に、地震エネルギーを上部構造の位置エネルギーにか
えることで、揺れの変位を低減する方法である。この2
つの手法は、共に技術的には効果はあるが、コストアッ
プにつながる。
The above prior art is inferior to the present invention in the following points. Because a hard ball (bearing) does not deform itself,
The contact area between the upper structure and the lower structure and the sphere becomes very small, and the compressive stress at the contact portion tends to be excessive. If the compressive stress is high, local dents (dents) are likely to occur on the sphere and on the upper and lower bearings in contact with the sphere, and the rolling motion is not smooth. Therefore, it is necessary to take measures such as increasing the number of balls, increasing the diameter of the balls, and reinforcing the contact points with the steel balls of the upper and lower structures with a thick steel material, which is economically high. Since a hard sphere does not deform itself, if there is slight differential subsidence (partial subsidence) in the lower structure, the sphere and the upper structure may be separated. As a result, the load distribution of the ball and the lower structure is biased. During construction, accuracy errors in the vertical direction of the lower and upper structures occur. For this reason, problems such as an excessive compression force being generated on the hard sphere and a gap being generated between the sphere and the upper structure are likely to occur. Since a hard sphere does not deform itself, it is necessary to take measures to reduce the displacement caused by the earthquake. One is to insert a damping mechanism (damper) to absorb seismic energy and reduce the amount of shaking. The other method is to reduce the displacement of the sway by making the lower bearing that supports the hard sphere have a gentle concave shape and changing the seismic energy to the potential energy of the upper structure when shaking due to an earthquake. This 2
Both approaches are technically effective, but lead to higher costs.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め、本発明では、上部構造と下部構造との間に上部構造
を支える鋼球と、鋼球の上下にゴム板を挿入した免震構
造を特徴とする。本発明において、上部構造と下部構造
との間で、前記鋼球およびゴム板の配設箇所と別の箇所
に取付プレートを介して円柱状のゴムを固定してもよ
い。また本発明は、上部床と下部床との間に鋼球と、鋼
球の上下にゴム板を挿入した免震構造を特徴とする。 (作用)この発明の免震構造によれば、普段(常時)
は、鋼製球の圧力により、板状のゴムが凹状にへこんだ
状態となっている。地震時には、下部構造が水平に揺れ
るので、球が水平方向に自在に転がる。転がることで、
板状のゴムの凹状にへこんだ部分は絶えず移動する。こ
の結果、ゴム板自身が(減衰効果を発揮し)地震エネル
ギーを吸収し、水平変位を低減する。また、このとき鋼
製球の圧力は、ゴム板2を介して上下部構造に伝達され
るため、接触面積が多く、局部的な応力集中による鋼製
球の凹みや、上部部構造の凹みがが生じることはない。
そして、上部構造に伝わる加速度は、下部構造の加速度
の約1/3以下に低減され、上部構造には、地震力は殆
ど伝えない。球とゴム板だけでは、地震時に、水平変位
が生じた時、元に戻そうとする力(復元力)が存在しな
いので、地震後に永久(残留)変位が生じる可能性が高
い。この対策として以下の2案がある。 (1)地震後に、永久水平(残留)変位が生じた場合に
は、ジャッキ等でもとの位置に戻す。 (2)地震後に、永久水平(残留)変位を生じさせない
ようにする。具体的には上部・下部構造の間に弾性ばね
の特性を持つ円柱ゴムを固定することで、復元力を確保
し、地震後に、元の位置に戻す。(本発明の請求項2
は、この第2案を要旨とする)
In order to solve the above-mentioned problems, according to the present invention, a steel ball for supporting an upper structure between an upper structure and a lower structure, and a seismic isolation device in which rubber plates are inserted above and below the steel ball. Features a structure. In the present invention, between the upper structure and the lower structure, a columnar rubber may be fixed via a mounting plate at a place different from the place where the steel ball and the rubber plate are provided. Further, the present invention is characterized by a seismic isolation structure in which steel balls are inserted between an upper floor and a lower floor, and rubber plates are inserted above and below the steel balls. (Function) According to the seismic isolation structure of the present invention,
Is in a state in which the plate-like rubber is dented into a concave shape due to the pressure of a steel ball. During an earthquake, the substructure sways horizontally, so the ball rolls freely in the horizontal direction. By rolling,
The concave portion of the rubber plate moves constantly. As a result, the rubber plate itself (exhibiting a damping effect) absorbs seismic energy and reduces horizontal displacement. At this time, since the pressure of the steel ball is transmitted to the upper and lower structures via the rubber plate 2, the contact area is large, and the depression of the steel ball due to local stress concentration and the depression of the upper structure are reduced. Does not occur.
The acceleration transmitted to the upper structure is reduced to about 1/3 or less of the acceleration of the lower structure, and almost no seismic force is transmitted to the upper structure. With the ball and rubber plate alone, when horizontal displacement occurs during an earthquake, there is no force (restoring force) to return to the original state, so there is a high possibility that permanent (residual) displacement will occur after the earthquake. There are the following two solutions to this problem. (1) If permanent horizontal (residual) displacement occurs after the earthquake, return it to its original position with a jack or the like. (2) Avoid permanent horizontal (residual) displacement after an earthquake. Specifically, by fixing a cylindrical rubber having elastic spring characteristics between the upper and lower structures, a restoring force is secured, and after an earthquake, it is returned to its original position. (Claim 2 of the present invention)
Is the abstract of this second plan)

【0005】[0005]

【発明の実施の形態】(実施形態1)図1と図2で、上
部構造Bと下部構造Aとの間に上部構造を支える鋼製球
1が挿入されている。普段(常時)は、鋼製球の圧力に
より、板状のゴムが凹状にへこんだ状態となっている。
球1の負担する重量が等しくなるように球1を配置し、
ゴム板2のへこみ量を等しくすることで、上部構造Bの
下部に不同沈下(沈下のばらつき)を生じないようにす
る。建設時には、下部構造・上部構造の鉛直方向の精度
誤差が生じる。しかし、ゴム板2の柔らかさがこの精度
誤差を吸収してしまうので、施工性がよい。地震時に
は、下部構造Aが水平に加速度を受けるので、球1が水
平方向に自在に転がる。転がることで、板状のゴム2の
凹状にへこんだ部分は絶えず移動する。この結果、ゴム
板2自身が(減衰効果を発揮し)地震エネルギーを吸収
し、水平変位を低減する。この結果上部構造Aに伝わる
加速度は、下部構造の加速度の約1/3以下に低減さ
れ、上部構造Aには、地震力は殆ど伝えない。
(Embodiment 1) In FIGS. 1 and 2, a steel ball 1 for supporting an upper structure is inserted between an upper structure B and a lower structure A. Normally (always), the pressure of the steel ball causes the plate-like rubber to be dented in a concave shape.
Arrange the ball 1 so that the weight borne by the ball 1 is equal,
By making the amount of depression of the rubber plate 2 equal, uneven settlement (variation in settlement) is prevented from occurring in the lower part of the upper structure B. During construction, accuracy errors in the vertical direction of the lower and upper structures occur. However, the softness of the rubber plate 2 absorbs this accuracy error, so that the workability is good. During an earthquake, the lower structure A receives acceleration horizontally, so that the ball 1 rolls freely in the horizontal direction. By rolling, the concave portion of the rubber plate 2 is constantly moved. As a result, the rubber plate 2 itself (exhibiting the damping effect) absorbs the seismic energy and reduces the horizontal displacement. As a result, the acceleration transmitted to the upper structure A is reduced to about 1/3 or less of the acceleration of the lower structure, and the seismic force is hardly transmitted to the upper structure A.

【0006】球1が転がるにつれて、ゴム板の凹んだ部
分はまた元にもどり、再び凹むことを繰り返す。地震エ
ネルギーは一度は上部建物の運動エネルギーに変るが、
その後ゴム板2の変形により吸収される。この効果によ
り、球1の転がりはいつまでも継続せず、大地震でも元
の位置から±30cm以下の範囲での転がりで収まる。
図5に、図3の免震構造の復元力特性を示す。ゴム板2
と球1だけでは、地震時に、水平変位が生じた時、元に
戻そうとする力(復元力)が存在しないので、地震後の
永久水平(残留)変位が生じる可能性が高い。地震後
に、永久(残留)変位が生じた場合には、ジャッキ等で
戻せば容易に元の位置に戻すことができる。
[0006] As the ball 1 rolls, the recessed portion of the rubber plate returns to its original position and repeats the recessing again. The seismic energy is converted into the kinetic energy of the upper building once,
Thereafter, it is absorbed by the deformation of the rubber plate 2. Due to this effect, the rolling of the ball 1 does not continue indefinitely, and even in the case of a large earthquake, the ball 1 falls within a range of ± 30 cm or less from the original position.
FIG. 5 shows the restoring force characteristics of the seismic isolation structure of FIG. Rubber plate 2
With the sphere 1 alone, when a horizontal displacement occurs during an earthquake, there is no force (restoring force) to restore the horizontal displacement, so there is a high possibility that a permanent horizontal (residual) displacement will occur after the earthquake. If a permanent (residual) displacement occurs after the earthquake, it can be easily returned to the original position by returning it with a jack or the like.

【0007】(実施形態2)図3には、上部構造Bと下
部構造Aとの間に上部構造Aを支える鋼製球1が挿入さ
れ、鋼製球1の上下の支承部には板状のゴム2が設置さ
れ、さらに上部構造と下部構造との間に円柱状のゴム3
を取り付けプレート4とスタッドボルト5で固定した免
震構造が示されている。
(Embodiment 2) In FIG. 3, steel balls 1 for supporting the upper structure A are inserted between the upper structure B and the lower structure A, and the upper and lower bearings of the steel balls 1 are plate-shaped. Rubber 2 is installed, and a columnar rubber 3 is provided between the upper structure and the lower structure.
The seismic isolation structure in which is fixed by the mounting plate 4 and the stud bolt 5 is shown.

【0008】円柱状のゴム3は、地震時に、せん断変形
を生じ、元の位置に戻す働きをする。図6に、図3の免
震構造の復元力特性を示す。円柱ゴム3は、線形(弾
性)挙動を示し、ゴム板2と球1の装置は図5の様な特
性を示す。ゴム板2と球1の装置だけでは、地震時に、
水平変位が生じた時、元に戻そうとする力(復元力)が
存在しないので、地震後の永久水平(残留)変位が生じ
る可能性が高い。円柱ゴム3を付設することで、地震後
にも、上部構造Bをほぼ元の位置にもどすことができ
る、
[0008] The columnar rubber 3 causes a shear deformation during an earthquake, and functions to return to the original position. FIG. 6 shows the restoring force characteristics of the seismic isolation structure of FIG. The cylindrical rubber 3 shows a linear (elastic) behavior, and the device of the rubber plate 2 and the sphere 1 shows characteristics as shown in FIG. With the rubber plate 2 and the ball 1 alone,
When horizontal displacement occurs, there is no restoring force, so there is a high possibility that permanent horizontal (residual) displacement after the earthquake will occur. By attaching the columnar rubber 3, the upper structure B can be almost returned to its original position even after the earthquake.

【0009】(実施形態3)図4には、建物の下部床C
の上に鋼製球1を配置し、その上に上部床Dを載せた免
震床構造が示されている。鋼製球1の上下の支承部には
板状のゴム2が設置されている。図2は、建物全体を免
震化する発明であるが、図4は、建物の中の床の一部を
免震化する発明である。その他の内容は、実施形態1と
同じである。
(Embodiment 3) FIG. 4 shows a lower floor C of a building.
1 shows a base-isolated floor structure in which a steel ball 1 is disposed on the upper surface and an upper floor D is placed thereon. Plate-shaped rubber 2 is installed on the upper and lower bearings of the steel ball 1. FIG. 2 is an invention for making the entire building seismically isolated, while FIG. 4 is an invention for making a part of the floor in the building seismically isolated. Other details are the same as in the first embodiment.

【0010】[0010]

【発明の効果】本発明によると、次の効果がある。 地震時には、下部構造から、水平方向の加速度が作
用し、球1が転がる。このため、上部構造に伝わる加速
度は、下部構造の加速度の約1/3以下に低減され、上
部構造には、地震力はほとんど伝えない(免震効果)。 ゴム板2と鋼製球1は安価であるため、非常に簡便
な仕組みで、従来の免震装置に比べてはるかに経済的で
かつ、安全性の高い免震構造が容易に実現できる。 球1は転がるにつれて、ゴム板2の凹んだ部分が移
動し、圧縮ひずみを受ける箇所が常に変化する。地震エ
ネルギーは一度は上部建物の運動エネルギーに変るが、
その後板ゴム2の変形エネルギーから熱エネルギーに変
化する。この効果により、球1の転がりはいつまでも継
続せず、元の位置から±20〜30cm以下の範囲を越
えることはない。 下部構造の不同沈下(部分的な沈下)に対し、板ゴ
ム2の凹み量が変化することがあるが、上部構造と球1
が離れることなく、安定して上部構造を支えるので、下
部構造の不同沈下にも対応できる。 建設時には、下部構造・上部構造の鉛直方向の精度
誤差が生じる。従来の鋼球を剛な支承で支える仕組みで
は、この精度誤差が問題となるが、ゴム板2の柔らかさ
が、この精度誤差を吸収してしまうので、施工性がよ
い。
According to the present invention, the following effects can be obtained. During an earthquake, a horizontal acceleration acts on the lower structure, and the ball 1 rolls. Therefore, the acceleration transmitted to the upper structure is reduced to about 1/3 or less of the acceleration of the lower structure, and the seismic force is hardly transmitted to the upper structure (seismic isolation effect). Since the rubber plate 2 and the steel ball 1 are inexpensive, a very simple mechanism can easily realize a much more economical and highly safe seismic isolation structure as compared with the conventional seismic isolation device. As the ball 1 rolls, the recessed portion of the rubber plate 2 moves, and the portion that receives compressive strain constantly changes. The seismic energy is converted into the kinetic energy of the upper building once,
Thereafter, the deformation energy of the rubber sheet 2 is changed to heat energy. Due to this effect, the rolling of the ball 1 does not continue forever and does not exceed the range of ± 20 to 30 cm from the original position. The dent amount of the rubber plate 2 may change due to uneven settlement (partial settlement) of the lower structure.
The upper structure is supported stably without leaving, so it can cope with uneven settlement of the lower structure. During construction, accuracy errors in the vertical direction of the lower and upper structures occur. In a conventional mechanism for supporting a steel ball with a rigid bearing, this accuracy error is a problem, but the softness of the rubber plate 2 absorbs this accuracy error, so that the workability is good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が実施された家屋の図である。FIG. 1 is a diagram of a house in which the present invention is implemented.

【図2】本発明に係る免震構造物における支承の実施形
態を示す縦断面図を示す。
FIG. 2 is a longitudinal sectional view showing an embodiment of a bearing in the seismic isolation structure according to the present invention.

【図3】本発明に係る免震構造物における支承の実施形
態を示す縦断面図を示す。
FIG. 3 is a longitudinal sectional view showing an embodiment of a bearing in the seismic isolation structure according to the present invention.

【図4】床部分のみを免震化する実施形態の縦断面を示
す。
FIG. 4 shows a longitudinal section of an embodiment in which only the floor is seismically isolated.

【図5】図2,4の免震構造の復元力特性を示す。FIG. 5 shows the restoring force characteristics of the seismic isolation structure of FIGS.

【図6】図3の免震構造の復元力特性を示す。FIG. 6 shows the restoring force characteristics of the seismic isolation structure of FIG.

【符号の説明】[Explanation of symbols]

1 鋼球 2 ゴム板 3 円柱状のゴム 4A,4B 取り付けプレート 5 スタッドボルト A 下部構造 B 上部構造 DESCRIPTION OF SYMBOLS 1 Steel ball 2 Rubber plate 3 Cylindrical rubber 4A, 4B Mounting plate 5 Stud bolt A Lower structure B Upper structure

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上部構造Bと下部構造Aとの間に上部構
造を支える鋼球1と、鋼球1の上下にゴム板2A,2B
を挿入した免震構造。
1. A steel ball 1 for supporting an upper structure between an upper structure B and a lower structure A, and rubber plates 2A, 2B above and below the steel ball 1.
The seismic isolation structure with the inserted.
【請求項2】 上部構造Bと下部構造Aとの間で前記鋼
球1およびゴム板2A,2Bの配置箇所と別の箇所に取
付プレート4A,4Bを介して円柱状のゴム3を固定し
た請求項1記載の免震構造。
2. A columnar rubber 3 is fixed between the upper structure B and the lower structure A at a position different from the position where the steel ball 1 and the rubber plates 2A and 2B are arranged via mounting plates 4A and 4B. The seismic isolation structure according to claim 1.
【請求項3】 上部床Dと下部床Cとの間に鋼球1と、
鋼球1の上下にゴム板2C,2Dを挿入した免震構造。
3. A steel ball 1 between an upper floor D and a lower floor C;
Seismic isolation structure with rubber plates 2C and 2D inserted above and below steel ball 1.
JP11720398A 1998-04-27 1998-04-27 Construction of vibration isolation Pending JPH11303456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11720398A JPH11303456A (en) 1998-04-27 1998-04-27 Construction of vibration isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11720398A JPH11303456A (en) 1998-04-27 1998-04-27 Construction of vibration isolation

Publications (1)

Publication Number Publication Date
JPH11303456A true JPH11303456A (en) 1999-11-02

Family

ID=14705947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11720398A Pending JPH11303456A (en) 1998-04-27 1998-04-27 Construction of vibration isolation

Country Status (1)

Country Link
JP (1) JPH11303456A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433936A (en) * 2011-12-26 2012-05-02 北京工业大学 T-shaped frame positioning type steel ball rolling shock isolation supporting seat and manufacturing method thereof
CN107504131A (en) * 2017-08-23 2017-12-22 合肥同诺文化科技有限公司 Shockproof display screen mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433936A (en) * 2011-12-26 2012-05-02 北京工业大学 T-shaped frame positioning type steel ball rolling shock isolation supporting seat and manufacturing method thereof
CN107504131A (en) * 2017-08-23 2017-12-22 合肥同诺文化科技有限公司 Shockproof display screen mechanism

Similar Documents

Publication Publication Date Title
KR100635478B1 (en) Rolling pendulum bearing with low friction
JPH1046867A (en) Earthquake-resisting device
JP4706958B2 (en) Seismic isolation structure
JP4118417B2 (en) Lift prevention device in seismic isolation device for structures
JPH11303456A (en) Construction of vibration isolation
JP2008101346A (en) Aseismic control structure
JP5907772B2 (en) Rolling prevention mechanism and vibration isolator with the same mechanism
JPH11303289A (en) Base isolation structure
JPH09184542A (en) Base isolation device
JP2005030071A (en) Rolling vibration absorption bearing with attenuation function
KR20050025723A (en) An anti-earthquake bearing apparatus having force of restitution
JPH04343982A (en) Dynamic vibration reducer
JPH10292669A (en) Base isolating device of building and base isolating structure of building using the same
JPH09242818A (en) Base isolation structure for structure
JP5858730B2 (en) Attenuation pad
JP3625047B2 (en) Seismic isolation shelf
JP2007078012A (en) Base isolation device
JP2927357B2 (en) Seismic isolation support device
JP5855916B2 (en) Seismic reduction device
JPH0914346A (en) Base isolation device
JPH09196116A (en) Base isolator of structure
JP2000104420A (en) Base isolation structure
KR20170006144A (en) Seismic Equipment with Flat Spring and Ball Transfer
JPH11159186A (en) Base-isolation device
JPH1122783A (en) Base isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031210

A977 Report on retrieval

Effective date: 20050916

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307