JPH11303289A - Base isolation structure - Google Patents

Base isolation structure

Info

Publication number
JPH11303289A
JPH11303289A JP11679398A JP11679398A JPH11303289A JP H11303289 A JPH11303289 A JP H11303289A JP 11679398 A JP11679398 A JP 11679398A JP 11679398 A JP11679398 A JP 11679398A JP H11303289 A JPH11303289 A JP H11303289A
Authority
JP
Japan
Prior art keywords
rubber
rubber ball
upper structure
ball
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11679398A
Other languages
Japanese (ja)
Inventor
Atsushi Watanabe
厚 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11679398A priority Critical patent/JPH11303289A/en
Publication of JPH11303289A publication Critical patent/JPH11303289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain base isolation effect by inserting a rubber-made ball between upper structure and lower structure, and fixing a circular column rubber through an attaching plate at the other part away from the rubber ball between the upper structure and the lower structure. SOLUTION: A rubber ball 1 supporting upper structure B is inserted between the upper structure B and lower structure A, and since the weight of the upper structure B is supported by the rubber ball 1, it is in a slightly collapsed state. At the time of an earthquake, horizontal acceleration acts from the lower structure A, the rubber ball 1 rolls, acceleration transmitted to the upper structure B is reduced to a third or below lower than that of the lower structure A, and earthquake force is hardly transmitted to the upper structure B. Next, as the rubber ball 1 rolls, the collapsed part of the rubber moves, a part receiving compression strain and tension strain changes, in addition, rolling of the rubber ball 1 is not permanently continued, and stops rolling in the range of ±30 cm from the initial position. Thus, economically highly safe base isolation structure can be easily formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、比較的軽い建物
(例えば3階以下の建物、戸建住宅など)や、建物の床
部分に用いることができ、地震発生時に建物や床の横揺
れを防止あるいは緩和するための免震構造に関するもの
である。
The present invention can be used for relatively light buildings (for example, buildings with 3 stories or less, detached houses, etc.) and floors of buildings, and can be used to reduce the rolling of buildings and floors when an earthquake occurs. It is related to seismic isolation structure to prevent or mitigate.

【0002】[0002]

【従来の技術】従来よりこの種の免震装置として、上部
構造と下部構造との間に上部構造を支える鋼製等の硬い
球(ベアリング)を挿入した装置がいくつか提案されて
いる。硬い球のみでは摩擦抵抗が少ないので転がりが止
まりにくいため、鋼球の転がり量を制限するような減衰
装置については、いろいろな種類の発明がなされてい
る。その具体的な事例として特開昭64−17945号
のように、上部構造物の重量を支えるボールベアリング
と、硬質防振ゴムのスタッドを用いているが、これらの
例は、以下の点で、技術的な問題がある。
2. Description of the Related Art Heretofore, as this type of seismic isolation device, there have been proposed some devices in which a hard ball (bearing) made of steel or the like for supporting an upper structure is inserted between an upper structure and a lower structure. Various types of inventions have been made for a damping device that limits the amount of rolling of a steel ball because the rolling is difficult to stop because the friction resistance is small with only a hard ball. As a specific example, as in JP-A-64-17945, a ball bearing that supports the weight of an upper structure and a stud made of a hard vibration-isolating rubber are used, but these examples are as follows. There is a technical problem.

【0003】[0003]

【発明が解決しようとする課題】上記の従来の技術は以
下の点で、本発明に比べて優位性が劣る。 硬い球(ベアリング)は球自身が変形しないので、
上部構造や下部構造と球との接触面積が、非常に狭くな
り、この接触部の圧縮応力が過大になり易い。圧縮応力
が高いと、球や、球と接触する上下の支承部分に、局部
的な、凹み(窪み)が生じ易く、転がり運動が円滑でな
くなる。このため、球の数を増やしたり、球の直径を大
きくしたり、上部・下部構造の鋼球との接点を厚い鋼材
で補強するなどの対策が必要となり、経済的に高いもの
となる。 硬い球は球自身が変形しないので、下部構造にわず
かな不同沈下(部分的な沈下)が生じた場合、球と上部
構造が離れてしまう恐れがある。これにより、球や、下
部構造の荷重の分担に偏りが生じてしまう。 建設時には、下部構造・上部構造の鉛直方向の精度
誤差が生じる。このため、硬い球に過大な圧縮力が生じ
たり、球と上部構造との間に隙間が生じるなどの問題が
生じ易い。 )硬い球は球自身が変形しないので、地震による揺れ
る変位を低減するための工夫が必要となる。一つは、減
衰機構(ダンパー)を挿入して、地震エネルギーを吸収
し、揺れ量を低減する方法である。他の一つは、硬い球
を支える下部支承を緩やかな凹型とし、地震で揺れた場
合に、地震エネルギーを上部構造の位置エネルギーにか
えることで、揺れの変位を低減する方法である。この2
つの手法は、共に技術的には効果はあるが、コストアッ
プにつながる。
The above prior art is inferior to the present invention in the following points. Because a hard ball (bearing) does not deform itself,
The contact area between the upper structure and the lower structure and the sphere becomes very small, and the compressive stress at the contact portion tends to be excessive. If the compressive stress is high, local dents (dents) are likely to occur on the sphere and on the upper and lower bearings in contact with the sphere, and the rolling motion is not smooth. Therefore, it is necessary to take measures such as increasing the number of balls, increasing the diameter of the balls, and reinforcing the contact points with the steel balls of the upper and lower structures with a thick steel material, which is economically high. Since a hard sphere does not deform itself, if there is slight differential subsidence (partial subsidence) in the lower structure, the sphere and the upper structure may be separated. As a result, the load distribution of the ball and the lower structure is biased. During construction, accuracy errors in the vertical direction of the lower and upper structures occur. For this reason, problems such as an excessive compression force being generated on the hard sphere and a gap being generated between the sphere and the upper structure are likely to occur. ) Since a hard sphere does not deform itself, it is necessary to take measures to reduce the displacement caused by the earthquake. One is to insert a damping mechanism (damper) to absorb seismic energy and reduce the amount of shaking. The other method is to reduce the displacement of the sway by making the lower bearing that supports the hard sphere have a gentle concave shape and changing the seismic energy to the potential energy of the upper structure when shaking due to an earthquake. This 2
Both approaches are technically effective, but lead to higher costs.

【0004】[004]

【課題を解決するための手段】上記の課題を解決するた
め、本発明では、上部構造と下部構造との間にゴム製の
球を挿入した免震構造を特徴とする。本発明において、
上部構造と下部構造との間で前記ゴム球と別の箇所に取
付プレートを介して円柱状のゴムを固定してもよい。ま
た本発明は、建物の下部床の上にゴム球を配置し、当該
ゴム球の上に上部床を載せた免震構造を特徴とする。
According to the present invention, there is provided a seismic isolation structure in which a rubber ball is inserted between an upper structure and a lower structure. In the present invention,
A columnar rubber may be fixed between the upper structure and the lower structure at a position different from the rubber ball via a mounting plate. Further, the present invention is characterized by a seismic isolation structure in which a rubber ball is arranged on a lower floor of a building, and an upper floor is placed on the rubber ball.

【作用】この発明の免震構造によれば、普段(常時)
は、ゴム球が上部構造を支えているため、当該ゴム球は
やや潰れた状態となっている。地震時には、下部構造が
水平に揺れるので、ゴム球が潰れた状態で、水平方向に
自在に転がる。転がることで、圧縮力を受ける部分は絶
えず移動するので、ゴム球自身が(減衰効果を発揮し)
地震エネルギーを吸収し、水平変位を低減する。上部構
造に伝わる加速度は、下部構造の加速度の約1/3以下
に低減され、上部構造には、地震力は殆ど伝えない。ゴ
ム球だけでは、地震時に、水平変位が生じた時、元に戻
そうとする力(復元力)が存在しないので、地震後に永
久(残留)変位が生じる可能性が高い。この対策として
以下の2案がある。 (1)地震後に、永久水平(残留)変位が生じた場合に
は、ジャッキ等でもとの位置に戻す。 (2)地震後に、永久水平(残留)変位を生じさせない
ようにする。具体的には上部・下部構造の間に弾性ばね
の特性を持つ円柱ゴムを固定することで、復元力を確保
し、地震後に、元の位置に戻す。本発明の請求項2はこ
の第2案を要旨とする。
According to the seismic isolation structure of the present invention, an ordinary (always)
Since the rubber ball supports the upper structure, the rubber ball is in a slightly crushed state. In the event of an earthquake, the lower structure sways horizontally, so that the rubber ball can be rolled freely in the horizontal direction with the rubber ball collapsed. By rolling, the part that receives the compressive force moves constantly, so the rubber ball itself (exhibits the damping effect)
Absorbs seismic energy and reduces horizontal displacement. The acceleration transmitted to the superstructure is reduced to about 1/3 or less of the acceleration of the lower structure, and the seismic force is hardly transmitted to the upper structure. With rubber balls alone, when horizontal displacement occurs during an earthquake, there is no force (restoring force) to return to the original position, so there is a high possibility that permanent (residual) displacement will occur after the earthquake. There are the following two solutions to this problem. (1) If permanent horizontal (residual) displacement occurs after the earthquake, return it to its original position with a jack or the like. (2) Avoid permanent horizontal (residual) displacement after an earthquake. Specifically, by fixing a cylindrical rubber having elastic spring characteristics between the upper and lower structures, a restoring force is secured, and after an earthquake, it is returned to its original position. Claim 2 of the present invention has the second solution as a gist.

【0005】[0000]

【発明の実施の形態】(実施形態1)図1、図2では、
上部構造Bと下部構造Aとの間に上部構造を支えるゴム
球1が挿入されている。普段は、上部構造Bの重量をゴ
ム球が支えているため、やや潰れている状態となる。こ
の時、ゴム球の負担する重量が等しくなるようにゴム球
を配置し、ゴム球の潰れ量を等しくすることで、上部構
造Bの下部に変形を生じないようにする。建設時には、
下部構造・上部構造の鉛直方向の精度誤差が生じる。し
かしゴム球の柔らかさがこの精度誤差を吸収してしまう
ので、施工性がよい。地震時には、下部構造から、水平
方向の加速度が作用し、ゴム球が転がる。このため、上
部構造Bに伝わる加速度は、下部構造Aの加速度の約1
/3以下に低減され、上部構造には、地震力は殆ど伝え
ない(免震効果)。
(Embodiment 1) In FIGS. 1 and 2, FIG.
A rubber ball 1 for supporting the upper structure is inserted between the upper structure B and the lower structure A. Usually, since the weight of the upper structure B is supported by the rubber ball, the upper structure B is in a slightly crushed state. At this time, the rubber spheres are arranged so that the weights borne by the rubber spheres are equal, and the crushing amounts of the rubber spheres are equalized, so that the lower portion of the upper structure B is not deformed. During construction,
Vertical accuracy errors occur in the lower structure and the upper structure. However, since the softness of the rubber ball absorbs this accuracy error, the workability is good. During an earthquake, a horizontal acceleration acts on the lower structure, causing the rubber balls to roll. For this reason, the acceleration transmitted to the upper structure B is about 1 of the acceleration of the lower structure A.
The seismic force is hardly transmitted to the superstructure (seismic isolation effect).

【0006】ゴム球は転がるにつれて、ゴムの潰れた部
分が移動し、圧縮ひずみや引張ひずみを受ける箇所が常
に変化する、地震エネルギーは一度は上部建物の運動エ
ネルギーに変わるが、その後ゴム球の変形により吸収さ
れる。この効果により、ゴム球の転がりはいつまでも継
続せず、大地震でも元の位置から±30cm以下の範囲で
の転がりで収まる。ゴム球と、上部・下部構造との接点
(支承部分)は、ゴム球の圧力に対して、凹まないもの
が要求される。木材、鋼材、コンクリート、ALCな
ど、通常の建築用構造素材であれば、問題ない。
As the rubber ball rolls, the crushed portion of the rubber moves, and the location where the compressive or tensile strain is applied changes constantly. The seismic energy changes once to the kinetic energy of the upper building, but then the rubber ball deforms Is absorbed by Due to this effect, the rolling of the rubber ball does not continue indefinitely, and even in the case of a large earthquake, it can be stopped within a range of ± 30 cm or less from the original position. The contact point (supporting portion) between the rubber ball and the upper / lower structure is required not to be depressed by the pressure of the rubber ball. There is no problem as long as it is a normal building structural material such as wood, steel, concrete, and ALC.

【0007】図5に、図3のゴム球の復元力特性を示
す。ゴム球だけでは、地震時に、水平変位が生じた時、
元に戻そうとする力(復元力)が存在しないので、地震
後の永久水平(残留)変位が生じる可能性が高い。地震
後に、永久(残留)変位が生じた場合には、ジャッキ等
で戻せば容易にもとの位置に戻すことができる。
FIG. 5 shows the restoring force characteristics of the rubber ball of FIG. With rubber balls alone, when horizontal displacement occurs during an earthquake,
Since there is no restoring force (restoring force), there is a high possibility that permanent horizontal (residual) displacement after the earthquake will occur. If a permanent (residual) displacement occurs after the earthquake, it can be easily returned to the original position by returning it with a jack or the like.

【0008】(実施形態2)図3には、上部構造Bと下
部構造Aとの間に上部構造Bを支えるゴム球1が挿入さ
れ、さらに上部構造Bと下部構造Aとの間で、かつゴム
球1と別の配置箇所に円柱状のゴム2を取り付けプレー
ト3B,3Aとスタッドボルト4で固定した免震構造が
示されている。 (以下実施例1に何じ)
(Embodiment 2) In FIG. 3, a rubber ball 1 for supporting the upper structure B is inserted between the upper structure B and the lower structure A, and between the upper structure B and the lower structure A, A seismic isolation structure is shown in which a cylindrical rubber 2 is fixed at a different place from the rubber ball 1 with mounting plates 3B and 3A and stud bolts 4. (The same as in Example 1 below)

【0009】円柱状のゴム2は、地震時に、せん断変形を
生じ、元の位置に戻す働きをする。 図6に、図3のゴ
ム球と円柱ゴムの復元力特性を示す。円柱ゴムは、線形
(弾性)挙動を示し、ゴム球は図5の様な特性を示す。
ゴム球だけでは、地震時に、水平変位が生じた時、元に
戻そうとする力(復元力)が存在しないので、地震後の
永久水平(残留)変位が生じる可能性が高い。円柱状の
ゴム2を付けることで、地震後にも、上部構造Bをほぼ
元の位置にもどすことができる。
The rubber 2 has a function of causing a shear deformation during an earthquake and returning the rubber to its original position. FIG. 6 shows the restoring force characteristics of the rubber ball and the column rubber of FIG. Cylindrical rubber exhibits linear (elastic) behavior, and rubber spheres exhibit characteristics as shown in FIG.
With a rubber ball alone, when horizontal displacement occurs during an earthquake, there is no force to restore it (restoring force), so there is a high possibility of permanent horizontal (residual) displacement after the earthquake. By attaching the columnar rubber 2, the upper structure B can be returned to almost the original position even after the earthquake.

【0010】(実施形態3)図4には、建物の下部床C
の上にゴム球1を配置し、その上に上部床Dを載せた免
震床構造が示されている。図2は、建物全体を免震化す
る発明であるが、図4は、建物の中の床の一部を免震化
する発明である。その他の内容は、実施形態1と同じで
ある。
(Embodiment 3) FIG. 4 shows a lower floor C of a building.
1 shows a seismic isolation floor structure in which a rubber ball 1 is placed on a floor and an upper floor D is placed thereon. FIG. 2 is an invention for making the entire building seismically isolated, while FIG. 4 is an invention for making a part of the floor in the building seismically isolated. Other details are the same as in the first embodiment.

【0011】[0111]

【発明の効果】本発明の免震構造によると次の効果があ
る。 地震時には、下部構造から、水平方向の加速度が作
用し、ゴム球が転がる。このため、上部構造に伝わる加
速度は、下部構造の加速度の約1/3以下に低減され、
上部構造には、地震力は殆ど伝えない(免震効果)。 ゴム球は安価であるため、の免震効果により、経
済的でかつ、安全性の高い免震構造が容易に実現でき
る。 ゴム球は転がるにつれて、ゴムの潰れた部分が移動
し、圧縮ひずみや引張ひずみを受ける箇所が常に変化す
る。地震エネルギーは一度は上部建物の運動エネルギー
に変わるが、その後ゴム球の変形エネルギーから熱エネ
ルギーに吸収される。この効果により、ゴム球の転がり
はいつまでも継続せず、元の位置から±20〜30cm
以下の範囲での転がりでとまる。 ゴム球自身が上部構造を支え、かつ地震エネルギー
を吸収するので、非常に簡便な仕組みであり、従来の免
震装置に比べてはるかに経済的である。 下部構造の不同沈下(部分的な沈下)に対し、ゴム
の潰れた量が変化することがあるが、上部構造とゴム球
が離れることがなく、安定して上部構造を支えるので、
下部構造の不同沈下にも対応できる。 建設時には、下部構造・上部構造の鉛直方向の精度
誤差が生じる。従来の鋼球では、この精度誤差が問題と
なるが、ゴム球の柔らかさがこの精度誤差を吸収してし
まうので、施工性がよい。
According to the seismic isolation structure of the present invention, the following effects can be obtained. During an earthquake, a horizontal acceleration acts on the lower structure, causing the rubber balls to roll. Therefore, the acceleration transmitted to the upper structure is reduced to about 1/3 or less of the acceleration of the lower structure,
Almost no seismic force is transmitted to the superstructure (seismic isolation effect). Since rubber balls are inexpensive, an economical and highly safe seismic isolation structure can be easily realized by the seismic isolation effect. As the rubber ball rolls, the crushed portion of the rubber moves, and the portion subjected to compressive strain or tensile strain constantly changes. The seismic energy is first converted to kinetic energy of the upper building, but then absorbed by the thermal energy from the deformation energy of the rubber sphere. Due to this effect, the rolling of the rubber ball does not continue forever, ± 20-30cm from the original position
Rolling stops in the following range. Since the rubber ball itself supports the superstructure and absorbs seismic energy, it is a very simple mechanism and much more economical than conventional seismic isolation devices. The amount of rubber crushed may change with respect to the differential subsidence of the lower structure (partial subsidence).
It can cope with uneven settlement of the substructure. During construction, accuracy errors in the vertical direction of the lower and upper structures occur. In a conventional steel ball, this accuracy error is a problem, but the softness of the rubber ball absorbs this accuracy error, so that the workability is good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が実施された家屋の図である。FIG. 1 is a diagram of a house in which the present invention is implemented.

【図2】本発明に係る免震構造物における支承の実施形
態を示す縦断面図を示す。
FIG. 2 is a longitudinal sectional view showing an embodiment of a bearing in the seismic isolation structure according to the present invention.

【図3】本発明に係る免震構造物における支承の実施形
態を示す縦断面図を示す。
FIG. 3 is a longitudinal sectional view showing an embodiment of a bearing in the seismic isolation structure according to the present invention.

【図4】床部分のみを免震化する実施形態の縦断面を示
す。
FIG. 4 shows a longitudinal section of an embodiment in which only the floor is seismically isolated.

【図5】図2,4の免震構造の復元力特性を示す。FIG. 5 shows the restoring force characteristics of the seismic isolation structure of FIGS.

【図6】図2の免震構造の復元力特性を示す。FIG. 6 shows a restoring force characteristic of the seismic isolation structure of FIG.

【符号の説明】[Explanation of symbols]

1 ゴム球 2 円柱状のゴム 3A,3B 取り付けプレート 4 スタッドボルト DESCRIPTION OF SYMBOLS 1 Rubber ball 2 Cylindrical rubber 3A, 3B Mounting plate 4 Stud bolt

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上部構造Bと下部構造Aとの間にゴム球
1を挿入した免震構造。
1. A seismic isolation structure in which a rubber ball 1 is inserted between an upper structure B and a lower structure A.
【請求項2】 上部構造Bと下部構造Aとの間の前記ゴ
ム球1の配設箇所と別の箇所に取付プレート3A,3B
を介して円柱状のゴム2を固定した請求項1記載の免震
構造。
2. Attachment plates 3A, 3B at a position different from the position where the rubber ball 1 is disposed between the upper structure B and the lower structure A.
The seismic isolation structure according to claim 1, wherein the columnar rubber (2) is fixed through the (2).
【請求項3】 建物の下部床Cの上にゴム球1を配置
し、当該ゴム球1の上に上部床Dを載せた免震構造。
3. A seismic isolation structure in which a rubber ball 1 is placed on a lower floor C of a building and an upper floor D is placed on the rubber ball 1.
JP11679398A 1998-04-27 1998-04-27 Base isolation structure Pending JPH11303289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11679398A JPH11303289A (en) 1998-04-27 1998-04-27 Base isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11679398A JPH11303289A (en) 1998-04-27 1998-04-27 Base isolation structure

Publications (1)

Publication Number Publication Date
JPH11303289A true JPH11303289A (en) 1999-11-02

Family

ID=14695831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11679398A Pending JPH11303289A (en) 1998-04-27 1998-04-27 Base isolation structure

Country Status (1)

Country Link
JP (1) JPH11303289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020817A (en) * 2001-07-10 2003-01-24 Sadaichi Yoshihara Base isolation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020817A (en) * 2001-07-10 2003-01-24 Sadaichi Yoshihara Base isolation device

Similar Documents

Publication Publication Date Title
US8156696B2 (en) Seismically stable flooring
JP3794830B2 (en) Isolation device
CA2777088A1 (en) Frictional non rocking seismic base isolator for structure seismic protection (fnsi)
JP2014152448A (en) Viscous wall structure
JP5638762B2 (en) Building
JP2586794Y2 (en) Seismic isolation support device for structures
JP2002147058A (en) Base isolation structure for building
JP2013002192A (en) Tension type base-isolation bearing device
JP2000120776A (en) Floating preventing device in base isolating device for structure
JP2008101346A (en) Aseismic control structure
JPH11303289A (en) Base isolation structure
JP2000266116A (en) Swinging bearing type base isolation device
JPH11303456A (en) Construction of vibration isolation
JP2001082542A (en) Three-dimensional base isolation device
JP5907772B2 (en) Rolling prevention mechanism and vibration isolator with the same mechanism
JP2927357B2 (en) Seismic isolation support device
JP4439694B2 (en) High-damping frame of high-rise building
JPH04343982A (en) Dynamic vibration reducer
JP5721333B2 (en) Sliding foundation structure
CN113123482A (en) Self-resetting spherical groove energy dissipation and shock absorption support
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
JPH09296626A (en) Base isolation structural system, and uplift-preventing device therefor
JP2001329716A (en) Method and structure of base isolation of multistory building
JP2002047827A (en) Base isolation structure
JPH0914346A (en) Base isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20031210

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404