JPH11302776A - High strength steel sheet excellent in sour resistance and its production - Google Patents

High strength steel sheet excellent in sour resistance and its production

Info

Publication number
JPH11302776A
JPH11302776A JP14469298A JP14469298A JPH11302776A JP H11302776 A JPH11302776 A JP H11302776A JP 14469298 A JP14469298 A JP 14469298A JP 14469298 A JP14469298 A JP 14469298A JP H11302776 A JPH11302776 A JP H11302776A
Authority
JP
Japan
Prior art keywords
less
steel
low
steel sheet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14469298A
Other languages
Japanese (ja)
Other versions
JP3752078B2 (en
Inventor
Yoshio Terada
好男 寺田
Takashi Sawai
隆 澤井
Akihiko Kojima
明彦 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14469298A priority Critical patent/JP3752078B2/en
Publication of JPH11302776A publication Critical patent/JPH11302776A/en
Application granted granted Critical
Publication of JP3752078B2 publication Critical patent/JP3752078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high strength steel sheet having excellent sour resistance and HAZ toughness at a low cost by subjecting a steel based on a low C-low Mn-Nb-Ti material with strictly controlled amts. of S, Mg, Ca and O to control rolling, then rapidly cooling the rolled sheet to a specified temp. and then slowly cooling. SOLUTION: A steel sheet having the compsn. described below is heated at 1,050 to 1,250 deg.C, rolled at <=950 deg.C under the conditions of >=60% total rolling reduction and 750 to 900 deg.C finish temp., immediately cooled in water to 350 to 600 deg.C at 3 to 40 deg.C/sec cooling rate, and then slowly cooled. The steel consists of, by weight, 0.002 to 0.08% C; <0.5% Si; 0.8 to 1.5% Mn; <=0.010% P; <=0.001% S; 0.01 to 0.05% Nb; 0.005 to 0.03% Ti; 0.02 to 0.05% Al; 0.005 to 0.03% Mg; 0.001 to 0.004% Ca; 0.001 to 0.005% N; 0.001 to 0.003% O, satisfying 1.0<=Ca(1-124 O)/1.25S<=7.0, and if necessary, containing a specified amt. of Ni, Cu, Cr, Mo, V, REM, and the balance Fe and inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は耐水素誘起割れ(H
IC)性および耐硫化物応力腐食割れ(SSC)性の優
れた耐サワ−パイプライン用高強度鋼板(米国石油協会
(API)規格X60以上の強度、厚み40mm以下)
およびそのの製造法に関するものである。
[0001] The present invention relates to hydrogen-induced cracking (H
High-strength steel plate for sour pipeline with excellent IC) and sulfide stress corrosion cracking (SSC) resistance (American Petroleum Institute (API) standard X60 or higher, thickness 40 mm or less)
And a method for producing the same.

【0002】[0002]

【従来の技術】寒冷地、オフショア−における原油、天
然ガス輸送用大径ラインパイプに対しては高強度ととも
に優れた低温靱性、現地溶接性が要求される。さらに近
年、海水の注入による原油・ガス井戸のサワ−化や劣質
資源の開発にともなって、パイプラインのサワ−化が進
行し、HIC,SSCに対する優れた抵抗(耐サワ−
性)が求められるようになった。
2. Description of the Related Art Large diameter line pipes for transporting crude oil and natural gas in cold regions and offshore areas are required to have high strength, excellent low-temperature toughness and on-site weldability. In recent years, the sourcing of crude oil and gas wells by the injection of seawater and the development of inferior resources have led to the progress of sourcing of pipelines, resulting in excellent resistance to HIC and SSC (resistance to sourcing).
Sex) is required.

【0003】従来、優れた耐サワ−性を有するラインパ
イプは、(1)鋼の高純化、介在物の低減、(2)硫化
物系介在物のCa添加による形態制御、(3)連続鋳造
(CC)時の軽圧下による中心偏析軽減、(4)圧延後
の加速冷却によるミクロ組織制御などの技術を駆使して
製造されてきた(たとえば特公昭63−1369号公
報、特開昭62−112722号公報、特開昭61−1
24555号公報、特公平7−5968号公報)。
Conventionally, line pipes having excellent sour resistance have been obtained by (1) purifying steel, reducing inclusions, (2) controlling the form by adding Ca to sulfide-based inclusions, and (3) continuously casting. It has been manufactured by making full use of technologies such as reduction of center segregation by light reduction at the time of (CC) and (4) control of microstructure by accelerated cooling after rolling (for example, Japanese Patent Publication No. 63-1369, Japanese Patent Application Laid-Open No. JP 112722, JP-A-61-1
No. 24555, Japanese Patent Publication No. 7-5968).

【0004】しかし、さらなる高強度化にともなう合金
元素量の増加および極厚化にともなう溶接入熱量の上昇
により、これらの鋼の溶接熱影響部(HAZ)の低温靱
性は必ずしも十分ではなくなってきた。特公平7−59
68号公報では耐サワ−性とHAZ靱性の改善を目的と
した鋼板の製造法が開示されているが、この場合、Al
量が0.004%以下であるため溶鋼中の溶存酸素量が
高くなり脱硫反応が起こりにくい。この結果、精錬工程
における脱硫処理時間が増加するために製造コストの面
で問題があった。また極厚化にともない溶接入熱量が上
昇した場合にはこの鋼でも良好なHAZ靱性を得ること
ができなくなっている。このため従来の耐サワ−ライン
パイプよりも格段にHAZ靱性の優れた耐サワ−ライン
パイプの開発が強く望まれていた。
[0004] However, due to an increase in the amount of alloying elements accompanying higher strength and an increase in welding heat input due to extremely thickening, the low temperature toughness of the HAZ of these steels has not always been sufficient. . Tokuhei 7-59
No. 68 discloses a method for producing a steel sheet for the purpose of improving sour resistance and HAZ toughness.
Since the amount is 0.004% or less, the amount of dissolved oxygen in the molten steel increases, and desulfurization reaction hardly occurs. As a result, there is a problem in the production cost because the desulfurization treatment time in the refining process increases. Further, when the welding heat input increases with the increase in thickness, it is impossible to obtain good HAZ toughness even with this steel. For this reason, there has been a strong demand for the development of a sour-resistant line pipe having a significantly higher HAZ toughness than conventional sour-resistant line pipes.

【0005】[0005]

【発明が解決しようとする課題】本発明は耐サワ−性の
優れたAPI規格5L−X60以上の高強度を有する鋼
板およびその製造法を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a steel sheet having excellent sour resistance and high strength of API standard 5L-X60 or higher, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、重量%
で、C:0.02〜0.08%、Si:0.5%以下、
Mn:0.8〜1.5%、P:0.010%以下、S:
0.001%以下、Nb:0.01〜0.05%、T
i:0.005〜0.03%、Al:0.02〜0.0
5%、Mg:0.005〜0.03%、Ca:0.00
1〜0.004%、N:0.001〜0.005%、
O:0.001〜0.003%にさらに必要に応じて、
Ni:0.1〜1.0%、Cu:0.1〜1.0%、C
r:0.1〜1.0%、Mo:0.1〜1.0%、V:
0.01〜0.10%、REM:0.0005〜0.0
05%の一種または二種以上を含有し、かつ1.0≦
〔Ca〕(1−124〔O〕)/1.25〔S〕≦7.
0を満足する残部が鉄および不可避的不純物からなる鋼
板。
Means for Solving the Problems The gist of the present invention is that the weight%
And C: 0.02 to 0.08%, Si: 0.5% or less,
Mn: 0.8-1.5%, P: 0.010% or less, S:
0.001% or less, Nb: 0.01 to 0.05%, T
i: 0.005 to 0.03%, Al: 0.02 to 0.0
5%, Mg: 0.005 to 0.03%, Ca: 0.00
1 to 0.004%, N: 0.001 to 0.005%,
O: 0.001 to 0.003%, if necessary,
Ni: 0.1 to 1.0%, Cu: 0.1 to 1.0%, C
r: 0.1 to 1.0%, Mo: 0.1 to 1.0%, V:
0.01 to 0.10%, REM: 0.0005 to 0.0
It contains one or more of 0.05% and 1.0 ≦
[Ca] (1-124 [O]) / 1.25 [S] ≦ 7.
Steel sheet whose balance satisfying 0 is composed of iron and inevitable impurities.

【0007】および重量%で、C:0.02〜0.08
%、Si:0.5%以下、Mn:0.8〜1.5%、
P:0.010%以下、S:0.001%以下、Nb:
0.01〜0.05%、Ti:0.005〜0.03
%、Al:0.02〜0.05%、Mg:0.005〜
0.03%、Ca:0.001〜0.004%、N:
0.001〜0.005%、O:0.001〜0.00
3%に、さらに必要に応じて、Ni:0.1〜1.0
%、Cu:0.1〜1.0%、Cr:0.1〜1.0
%、Mo:0.1〜1.0%、V:0.01〜0.10
%、REM:0.0005〜0.005%の一種または
二種以上を含有し、かつ1.0≦〔Ca〕(1−124
〔O〕)/1.25〔S〕≦7.0を満足する残部が鉄
および不可避的不純物からなる鋼片を1050〜125
0℃の温度範囲に加熱して、950℃以下の累積圧下量
60%以上、圧延終了温度750〜900℃で圧延を行
なった後、ただちに冷却速度3〜40℃/秒で350〜
600℃まで水冷、その後放冷すること、である。
And C: 0.02-0.08 by weight%
%, Si: 0.5% or less, Mn: 0.8 to 1.5%,
P: 0.010% or less, S: 0.001% or less, Nb:
0.01-0.05%, Ti: 0.005-0.03
%, Al: 0.02-0.05%, Mg: 0.005-
0.03%, Ca: 0.001 to 0.004%, N:
0.001 to 0.005%, O: 0.001 to 0.00
3%, and if necessary, Ni: 0.1 to 1.0.
%, Cu: 0.1 to 1.0%, Cr: 0.1 to 1.0
%, Mo: 0.1 to 1.0%, V: 0.01 to 0.10
%, REM: 0.0005 to 0.005%, one or two or more, and 1.0 ≦ [Ca] (1-124
[O]) / 1.25 [S] ≦ A steel slab consisting of iron and unavoidable impurities with a balance of 7.0 or less was set to 1050 to 125.
After heating to a temperature range of 0 ° C. and rolling at a rolling reduction temperature of 750 to 900 ° C. with a cumulative reduction of 60% or more of 950 ° C. or less, immediately cooling at a cooling rate of 3 to 40 ° C./sec.
Water cooling to 600 ° C. and then cooling.

【0008】以下に本発明について詳細に説明する。本
発明の特徴は、(1)低C−低Mn−Nb−Ti系を基
本にS,Mg,CaおよびO量を厳格に制限した鋼およ
びこの鋼を、(2)制御圧延した後、加速冷却するとこ
ろにあり、これによって耐サワ−性と優れたHAZ靱性
を同時に達成できることにある。C,Mn,P量を低減
することにより、CCスラブの中心偏析を改善し、HI
Cの発生・伝播を防止できる。またS,Mg,Caおよ
びO量を厳格に制限することにより、HICの発生起点
となりうるMnSの生成を防止するとともに、Mg添加
するによりCa系介在物を微細化することができ、良好
な耐サワ−性を得ることができる。
Hereinafter, the present invention will be described in detail. The features of the present invention include (1) a steel in which the amounts of S, Mg, Ca and O are strictly restricted based on a low C-low Mn-Nb-Ti system and (2) controlled rolling, and then accelerated. This is because cooling is performed, so that sour resistance and excellent HAZ toughness can be simultaneously achieved. By reducing the amounts of C, Mn, and P, the center segregation of the CC slab is improved and the HI
Generation and propagation of C can be prevented. In addition, by strictly limiting the amounts of S, Mg, Ca and O, it is possible to prevent the generation of MnS, which can be a starting point of HIC, and to refine the Ca-based inclusions by adding Mg. Sourness can be obtained.

【0009】また低合金鋼のHAZ靱性は、(1)結晶
粒のサイズ、(2)高炭素島状マルテンサイト(M*
)、上部ベイナイト(Bu)などの硬化相の分散状
態、(3)粒界脆化の有無、(4)元素のミクロ偏析な
ど種々の冶金学的要因に支配される。なかでもHAZの
結晶粒のサイズおよびM* は低温靱性に大きな影響を与
えることが知られている。本発明ではMgの添加により
Mgを含む微細な酸化物やその酸化物とTiNなどの炭
窒化物との複合体を鋼中に生成させることによりHAZ
におけるオ−ステナイト(γ)粒の粗大化を抑制してH
AZ靱性を向上させる。とくに極厚化した場合、必然的
に溶接入熱量が増加して、HAZにおけるγ粒の粗大化
およびその後の冷却速度が遅くなるためHAZ組織は粗
大化し、HAZ靱性は劣化する。しかし、このような場
合でもMgを含む微細な酸化物やその酸化物とTiNな
どの炭窒化物との複合体の作用によりHAZにおけるγ
粒の粗大化が著しく抑制され、良好なHAZ靱性を得る
ことができる。
The HAZ toughness of a low alloy steel is as follows: (1) the size of crystal grains, (2) high carbon island martensite (M *
), The dispersed state of a hardened phase such as upper bainite (Bu), (3) the presence or absence of grain boundary embrittlement, and (4) microsegregation of elements, which are governed by various metallurgical factors. Among them, it is known that the size and M * of the crystal grains of HAZ have a great influence on the low-temperature toughness. In the present invention, the HAZ is formed by forming a fine oxide containing Mg or a composite of the oxide and a carbonitride such as TiN in steel by adding Mg.
Of austenite (γ) grains in H
Improves AZ toughness. In particular, when the thickness is extremely increased, the amount of heat input to welding is inevitably increased, and coarsening of γ grains in the HAZ and the subsequent cooling rate are slowed, so that the HAZ structure is coarsened and the HAZ toughness is deteriorated. However, even in such a case, due to the action of a fine oxide containing Mg or a composite of the oxide and a carbonitride such as TiN, γ in the HAZ is reduced.
Grain coarsening is remarkably suppressed, and good HAZ toughness can be obtained.

【0010】すなわち、本発明におけるMgの役割り
は、(1)Caと同様にSをMgSとして固定し、HI
Cに有害なMnSの生成を防止すること、(2)Ca系
介在物を微細に分散させること、(3)HAZにおいて
Mgを含む酸化物等によりγ粒の粗大化を抑制し、HA
Z靱性を向上させることにある。前述した通り、Mgは
耐サワ−性を改善する効果とHAZ靱性を向上させる効
果がある。Caを添加してMnSの生成を抑制した耐サ
ワ−鋼においてはCaSやCaOなどのCa系介在物が
生成する。しかしながらCaOなどのCa系酸化物は粗
大化しやすく、粗大化した酸化物はHICの発生起点と
なるためCa系酸化物の微細化が必須であった。
That is, the role of Mg in the present invention is as follows: (1) S is fixed as MgS similarly to Ca,
Preventing the generation of MnS harmful to C; (2) finely dispersing Ca-based inclusions; (3) suppressing the coarsening of γ grains by oxides containing Mg in HAZ;
The purpose is to improve the Z toughness. As described above, Mg has an effect of improving sour resistance and an effect of improving HAZ toughness. Ca-based inclusions such as CaS and CaO are generated in a sour resistant steel in which MnS is suppressed by adding Ca. However, Ca-based oxides such as CaO tend to be coarsened, and the coarsened oxides are a starting point of HIC.

【0011】そこで本発明者らは鋭意検討した結果、M
gを添加することによりCa系酸化物を微細に分散でき
るとともに、Mgを含む微細な酸化物がTiNなどの炭
窒化物の生成サイトとして働き、TiNが微細に分散す
ることにより良好なHAZ靱性が得られるとともに優れ
た耐HIC性が得られることを見いだした。これらの効
果を発揮させるためには0.005%以上のMg添加量
が必要である。また多すぎるとMg系酸化物が増加し、
低温靱性を劣化させるとともに耐HIC性も劣化させる
のでその上限を0.03%に限定した。
The present inventors have conducted intensive studies and found that M
By adding g, the Ca-based oxide can be finely dispersed, and the fine oxide containing Mg acts as a generation site for carbonitrides such as TiN, and the fine HAZ toughness can be obtained by finely dispersing TiN. And excellent HIC resistance. In order to exhibit these effects, 0.005% or more of Mg must be added. If too much, Mg-based oxides increase,
Since the low-temperature toughness is deteriorated and the HIC resistance is also deteriorated, the upper limit is limited to 0.03%.

【0012】本発明では、不純物元素であるS量を0.
001%以下とし、かつCaを添加して、1.0≦〔C
a〕(1−124〔O〕)/1.25〔S〕≦7.0と
する。SはMnS系介在物を形成し、MnSは圧延で伸
長してHICの発生起点となる。これを防止するために
は、介在物の絶対量を低減するとともに、硫化物の形態
を制御して圧延で延伸化し難いCaS(−O)としなけ
ればならない。そこで、S量を0.001%以下とし、
Caを0.001〜0.004%添加し、Caによる硫
化物の形態制御を十分に行うため、〔Ca〕(1−12
4〔O〕)/1.25〔S〕で表されるESSP値を
1.0以上とした。しかしESSP値が大きすぎると、
Ca系介在物が増加し、HICの発生起点となるので、
その上限を7.0とした。
In the present invention, the amount of S, which is an impurity element, is set to 0.1.
001% or less, and adding Ca, 1.0 ≦ [C
a] (1-124 [O]) / 1.25 [S] ≦ 7.0. S forms MnS-based inclusions, and MnS elongates by rolling to become a starting point of HIC. In order to prevent this, it is necessary to reduce the absolute amount of inclusions and control the form of sulfide to make CaS (-O) which is difficult to elongate by rolling. Therefore, the amount of S is made 0.001% or less,
To add 0.001-0.004% of Ca and sufficiently control the form of sulfide by Ca, [Ca] (1-12
4 [O]) / 1.25 [S] The ESSP value was 1.0 or more. However, if the ESSP value is too large,
As Ca-based inclusions increase and become the starting point of HIC,
The upper limit was set to 7.0.

【0013】上記に関連してO量を0.003%以下に
限定した。これはHICの発生起点となる酸化物系介在
物を低減して、Ca、Mgで硫化物の形態制御を行うた
めである。O量の下限0.001%はTiNの生成サイ
トとなる微細な酸化物を生成させるための最小値であ
る。優れた耐サワ−性を得るためにはさらにC,Mn,
P量を限定する必要がある。この理由はCCスラブの中
心偏析を改善し、HICの発生・伝播を防止するためで
ある。X60以上の高強度鋼では必然的にC量が高くな
るが、C量の増加はCCスラブの凝固時の中心偏析帯に
おけるMn,Pの偏析を強め、硬化組織の生成を助長し
て耐サワ−性を著しく劣化させる。
In relation to the above, the amount of O is limited to 0.003% or less. This is because the sulfide morphology is controlled by Ca and Mg by reducing the oxide-based inclusions that are the starting points of HIC. The lower limit of the O content of 0.001% is a minimum value for generating a fine oxide serving as a TiN generation site. In order to obtain excellent sour resistance, C, Mn,
It is necessary to limit the amount of P. The reason for this is to improve the center segregation of the CC slab and prevent the generation and propagation of HIC. In the case of high-strength steels of X60 or higher, the C content is inevitably high. However, the increase in the C content strengthens the segregation of Mn and P in the central segregation zone at the time of solidification of the CC slab, promotes the formation of a hardened structure, and improves the resistance to sour -Significantly deteriorates properties.

【0014】これを防止するためC量の上限は0.08
%としなければならない。C量の下限0.02%は強度
・低温靱性を確保するための最小量である。C量の低減
に加えて、さらにMn,P量を低減することは中心偏析
を軽減、すなわち硬化組織の生成抑制に有効である。こ
のためMn,P量の上限をそれぞれ1.5%、0.01
0%に限定した。Mn量の下限0.8%は母材・溶接部
の強度を確保するための最小値である。一方、P量は低
いほど耐サワ−性は向上する。
To prevent this, the upper limit of the C content is 0.08
%. The lower limit of 0.02% of the C content is the minimum amount for securing strength and low-temperature toughness. In addition to reducing the C content, further reducing the Mn and P contents is effective in reducing center segregation, that is, in suppressing the formation of a hardened structure. Therefore, the upper limits of Mn and P amounts are 1.5% and 0.01%, respectively.
Limited to 0%. The lower limit of 0.8% of the Mn content is a minimum value for securing the strength of the base material and the welded portion. On the other hand, the lower the P content, the better the sour resistance.

【0015】本発明鋼では必須の元素としてNb:0.
01〜0.05%、Ti:0.005〜0.030%を
含有する。Nbは制御圧延において結晶粒の微細化や析
出硬化に寄与し、鋼を強靱化する作用を有する。しかし
Nbを0.05%以上添加すると、現地溶接性やHAZ
靱性に悪影響をもたらすので、その上限を0.05%と
した。またTi添加は微細なTiNを形成し、スラブ再
加熱時および溶接HAZのγ粒の粗大化を抑制してミク
ロ組織を微細化し、母材およびHAZの低温靱性を改善
する。このようなTiNの効果を発現させるためには、
最低0.005%のTi添加が必要である。しかしTi
量が多すぎると、TiNの粗大化やTiCによる析出硬
化が生じ、低温靱性が劣化するので、その上限は0.0
3%に限定しなければならない。
In the steel of the present invention, Nb: 0.
01-0.05%, Ti: 0.005-0.030%. Nb contributes to refinement of crystal grains and precipitation hardening in controlled rolling, and has an effect of toughening steel. However, if Nb is added at 0.05% or more, on-site weldability and HAZ
Since the toughness is adversely affected, the upper limit is set to 0.05%. Also, the addition of Ti forms fine TiN, suppresses coarsening of γ grains in the slab during reheating and in the welded HAZ, refines the microstructure, and improves the low-temperature toughness of the base metal and the HAZ. In order to exhibit such an effect of TiN,
A minimum of 0.005% Ti addition is required. But Ti
If the amount is too large, coarsening of TiN and precipitation hardening due to TiC occur, and the low-temperature toughness deteriorates.
Must be limited to 3%.

【0016】つぎに、その他元素の限定理由について説
明する。Siは脱酸や強度向上のため添加する元素であ
るが、多く添加すると現地溶接性、HAZ靱性を劣化さ
せるので、上限を0.5%とした。鋼の脱酸はAlのみ
でも十分であり、Siは必ずしも添加する必要はない。
Alは脱酸元素として鋼に含まれ、本発明ではAlを添
加することにより鋼中酸素濃度を低下させて、その後の
脱硫反応を促進させる効果がある。Al量が少なすぎる
と脱硫反応が遅れ、精錬工程における処理時間が長くな
り、製造コストが高くなるので、その下限を0.02%
とした。一方、Al量が0.05%以上になるとAl系
非金属介在物が増加して鋼の清浄度を害するので、その
上限を0.05%とした。
Next, the reasons for limiting other elements will be described. Si is an element added for deoxidation and improvement of strength, but if added in a large amount, the on-site weldability and HAZ toughness are deteriorated, so the upper limit was made 0.5%. Al alone is sufficient for deoxidizing steel, and Si need not always be added.
Al is contained in steel as a deoxidizing element, and in the present invention, the addition of Al has the effect of reducing the oxygen concentration in steel and promoting the subsequent desulfurization reaction. If the amount of Al is too small, the desulfurization reaction is delayed, the processing time in the refining process is lengthened, and the production cost is increased.
And On the other hand, if the Al content is 0.05% or more, the amount of Al-based nonmetallic inclusions increases and impairs the cleanliness of the steel.

【0017】NはTiNを形成してスラブ再加熱時およ
び溶接時のγ粒の粗大化を抑制して母材、HAZの低温
靱性を向上させる。このために必要な最小量は0.00
1%である。しかし多すぎるとスラブ表面疵や固溶Nに
よるHAZ靱性劣化の原因となるので、その上限は0.
005%に抑える必要がある。つぎに選択元素であるN
i,Cu,Cr,Mo,V,REMを添加する理由につ
いて説明する。基本となる成分に、さらに、これらの元
素を添加する主たる目的は本発明により得られる鋼板の
優れた特徴を損なうことなく、強度・低温靱性などの特
性向上を図るためである。したがって、その添加量は自
ら制限される性質のものである。
N forms TiN and suppresses coarsening of γ grains during slab reheating and welding, thereby improving the low-temperature toughness of the base material and HAZ. The minimum amount required for this is 0.00
1%. However, if it is too large, it causes the HAZ toughness to be degraded due to slab surface flaws and solid solution N.
005%. Next, the selected element N
The reason for adding i, Cu, Cr, Mo, V, and REM will be described. The main purpose of adding these elements to the basic components is to improve properties such as strength and low-temperature toughness without impairing the excellent characteristics of the steel sheet obtained by the present invention. Therefore, the amount of addition is of a nature restricted by itself.

【0018】Niを添加する目的は低炭素の本発明鋼の
強度を低温靱性や現地溶接性を劣化させることなく向上
させるためである。Ni添加はMnに比較して、圧延組
織(とくにスラブの中心偏析帯)中に低温靱性、耐サワ
−性に有害な硬化組織を形成することが少なく、強度を
増加させる。しかし、添加量が多すぎると経済性だけで
なく、現地溶接性やHAZ靱性などを劣化させるので、
その上限を1.0%とした。Niは連続鋳造時、熱間圧
延時におけるCuクラックの防止にも有効である。
The purpose of adding Ni is to improve the strength of the low carbon steel of the present invention without deteriorating the low-temperature toughness and the on-site weldability. Addition of Ni is less likely to form a hardened structure that is harmful to low-temperature toughness and sour resistance in a rolled structure (especially the central segregation zone of the slab) as compared with Mn, and increases the strength. However, if the addition amount is too large, not only economic efficiency, but also on-site weldability and HAZ toughness are deteriorated.
The upper limit was set to 1.0%. Ni is also effective in preventing Cu cracks during continuous casting and hot rolling.

【0019】Cuは0.1%以上でNiとほぼ同様にH
AZ靱性に大きな影響をおよぼすことなく、強度・低温
靱性を向上させるほか、耐食性、耐水素誘起割れ特性の
向上にも効果がある。またCu析出硬化によって強度を
大幅に増加させる。しかし過剰に添加すると析出硬化に
より母材、HAZの靱性低下や熱間圧延時にCuクラッ
クが生じるので、その上限を1.0%とした。CrはM
nに比較してCCスラブにおいても中心偏析し難く、低
温靱性や耐サワ−性を損なうことなく強度を増加させる
のに有効である。この効果を発揮させるためには0.1
%以上の添加が必要である。しかし多すぎると現地溶接
性やHAZ靱性を著しく劣化させる。このためCr量の
上限は1.0%とした。
Cu is 0.1% or more and H is almost the same as Ni.
It has the effect of improving strength and low-temperature toughness without significantly affecting AZ toughness, and also has an effect on improving corrosion resistance and hydrogen-induced cracking resistance. Also, the strength is greatly increased by Cu precipitation hardening. However, if added in excess, precipitation hardening causes a decrease in the toughness of the base material and HAZ and Cu cracks during hot rolling, so the upper limit was made 1.0%. Cr is M
Compared with n, the CC slab hardly segregates in the center, and is effective in increasing the strength without impairing the low-temperature toughness and the sour resistance. To achieve this effect, 0.1
% Or more is required. However, if it is too large, the on-site weldability and the HAZ toughness are remarkably deteriorated. Therefore, the upper limit of the Cr content is set to 1.0%.

【0020】MoもCrと同様にMnに比較してCCス
ラブにおいても中心偏析し難く、低温靱性や耐サワ−性
を損なうことなく強度を増加させるのに有効な元素であ
る。このような効果を得るためには、Moは最低0.1
%必要である。しかし過剰なMo添加はHAZ靱性、現
地溶接性を劣化させるので、その上限を1.0%とし
た。VはほぼNbと同様の効果を有し、ミクロ組織の微
細化による低温靱性の向上や焼入れ性の増大、析出硬化
による高強度化などに効果がある。しかし、添加量が多
すぎると現地溶接性やHAZ靱性の劣化を招くので、そ
の上限を0.10%とした。V添加量の下限は、前述の
効果を発揮するための最小量である。REMはCaと同
様にMnSの形態制御に効果がある。この効果を発揮さ
せるためには0.0005%以上の添加が必要である。
また添加量が多すぎるとREM系酸化物が増加し、耐H
IC性を劣化させるためにその上限の値を0.005%
とした。
Mo, like Cr, is less likely to cause segregation in the center of the CC slab than Mn, and is an effective element for increasing strength without impairing low-temperature toughness and sour resistance. In order to obtain such an effect, Mo should be at least 0.1.
%is necessary. However, excessive Mo addition degrades HAZ toughness and on-site weldability, so the upper limit was made 1.0%. V has almost the same effect as Nb, and is effective in improving the low-temperature toughness by increasing the microstructure, increasing the hardenability, and increasing the strength by precipitation hardening. However, if the addition amount is too large, on-site weldability and HAZ toughness deteriorate, so the upper limit was made 0.10%. The lower limit of the added amount of V is the minimum amount for exhibiting the above-mentioned effect. REM, like Ca, is effective in controlling the morphology of MnS. In order to exhibit this effect, 0.0005% or more must be added.
On the other hand, if the addition amount is too large, the amount of REM-based oxide increases, and
0.005% of upper limit value to degrade IC performance
And

【0021】上記のような本発明により得られる鋼板に
おいて母材の低温靱性を改善するためには、さらに鋼板
製造法が適切でなければならない。このため鋼片(スラ
ブ)の再加熱、圧延、冷却条件を限定する必要がある。
まず再加熱温度を1050℃〜1250℃の範囲に限定
する。再加熱温度はNb析出物を固溶させ、かつ圧延終
了温度を確保するために1050℃以上としなければな
らない(望ましい再加熱温度は1150〜1200℃で
ある)。しかし再加熱温度が1250℃を超えると、γ
粒が著しく粗大化し圧延によっても完全に微細化できな
いため、優れた低温靱性が得られない。このため再加熱
温度の上限を1250℃とした。
In order to improve the low-temperature toughness of the base material in the steel sheet obtained by the present invention as described above, a steel sheet manufacturing method must be further appropriate. For this reason, it is necessary to limit the reheating, rolling, and cooling conditions of the billet (slab).
First, the reheating temperature is limited to the range of 1050C to 1250C. The reheating temperature must be 1050 ° C. or higher in order to dissolve the Nb precipitates and secure the rolling end temperature (a desirable reheating temperature is 1150 to 1200 ° C.). However, when the reheating temperature exceeds 1250 ° C., γ
Since the grains are extremely coarse and cannot be completely refined even by rolling, excellent low-temperature toughness cannot be obtained. Therefore, the upper limit of the reheating temperature is set to 1250 ° C.

【0022】さらに950℃以下の累積圧下量を60%
以上、圧延終了温度を750〜900℃としなければな
らない(望ましくはAr3 変態点以上)。これは再結晶
域圧延で微細化したγ粒を低温圧延によって延伸化し、
結晶粒の徹底的な微細化をはかって低温靱性を改善する
ためである。累積圧下量が60%未満ではγ組織の延伸
化が不十分で、微細な結晶粒が得られない。また圧延終
了温度が900℃以上では、たとえば累積圧下量が60
%以上でも微細な結晶粒は達成できない。しかし圧延終
了温度が低下し、(γ+α)2相域から水冷すると組織
の制御が困難となり、耐HIC性や強度・低温靱性の劣
化を招くので、圧延終了温度の下限を750℃とした。
Further, the cumulative rolling reduction at 950 ° C. or less is reduced by 60%
As described above, the rolling end temperature must be 750 to 900 ° C. (preferably, the Ar 3 transformation point or higher). This is to elongate the γ grains refined by recrystallization zone rolling by low-temperature rolling,
This is for improving the low-temperature toughness by thoroughly refining the crystal grains. If the cumulative rolling reduction is less than 60%, elongation of the γ structure is insufficient, and fine crystal grains cannot be obtained. If the rolling end temperature is 900 ° C. or higher, for example, the cumulative rolling reduction is 60%.
% Or more cannot achieve fine crystal grains. However, the temperature at the end of rolling decreases, and water cooling from the (γ + α) two-phase region makes it difficult to control the structure, resulting in deterioration of HIC resistance and strength / low-temperature toughness. Therefore, the lower limit of the rolling end temperature was set to 750 ° C.

【0023】圧延後、鋼板を加速冷却することが必須で
ある。加速冷却は中心偏析を含めたミクロ組織の改善に
有効で、低温靱性を損なわずに強度の増加、耐HIC性
の向上を可能にする。加速冷却の条件としては圧延後、
ただちに冷却速度3〜40℃/秒で350℃以上600
℃以下の温度まで冷却、その後空冷しなければならな
い。冷却速度が遅すぎたり、冷却停止温度が高すぎると
加速冷却の効果が十分に得られず、適正なミクロ組織を
得ることができない。一方、冷却速度が大きすぎたり、
停止温度が低すぎると硬化組織が生成して低温靱性や耐
HIC性が大幅に劣化する。
After rolling, it is essential to accelerate cooling of the steel sheet. Accelerated cooling is effective in improving the microstructure including center segregation, and enables an increase in strength and an improvement in HIC resistance without deteriorating low-temperature toughness. The conditions of accelerated cooling are as follows:
Immediately at a cooling rate of 3 to 40 ° C / sec.
It must be cooled to a temperature below ℃ and then air-cooled. If the cooling rate is too slow or the cooling stop temperature is too high, the effect of accelerated cooling cannot be sufficiently obtained, and an appropriate microstructure cannot be obtained. On the other hand, if the cooling rate is too high,
If the stop temperature is too low, a hardened structure is formed, and the low-temperature toughness and the HIC resistance are significantly deteriorated.

【0024】なお、この鋼を製造後、焼戻し、脱水素な
どの目的でAc1 変態点以下の温度で再加熱熱処理して
も本発明の特徴を損なうものではない。また省エネルギ
−などを目的としてCCスラブを加熱炉にホットチャ−
ジ、圧延してもよい。本発明は厚板ミルに適用すること
がもっとも好ましいが、ホットコイルにも適用できる
(この場合、圧延冷却後の鋼板は巻き取られ、冷却され
る)。また、この方法で製造した鋼板は低温靱性に優れ
ているので、寒冷地におけるパイプラインのほか圧力容
器などにも適用できる。
It should be noted that if the steel is manufactured and then reheat-treated at a temperature lower than the Ac 1 transformation point for the purpose of tempering, dehydrogenation, etc., the characteristics of the present invention are not impaired. For the purpose of energy saving, CC slab is heated in a heating furnace.
Di, you may roll. The present invention is most preferably applied to a thick plate mill, but can also be applied to a hot coil (in this case, the steel sheet after rolling and cooling is wound and cooled). Further, since the steel sheet produced by this method has excellent low-temperature toughness, it can be applied to pressure vessels as well as pipelines in cold regions.

【0025】[0025]

【実施例】つぎに本発明の実施例について述べる。転炉
−連続鋳造−厚板工程で表1に示す種々の鋼成分の鋼板
(厚み16〜38mm)を表2に示す種々の製造条件に
より製造し、その強度、低温靱性、HAZ靱性および耐
HIC性を調査し、その結果を表2に示す。本発明にし
たがって製造した鋼板(本発明鋼)はすべて良好な特性
を有する。これに対して本発明によらない比較鋼は化学
成分または鋼板製造条件が適切でなく、強度、低温靱
性、HAZ靱性、耐HIC性のいずれかの特性が劣る。
Next, embodiments of the present invention will be described. In the converter-continuous casting-thick plate process, steel plates (thickness 16 to 38 mm) of various steel components shown in Table 1 were manufactured under various manufacturing conditions shown in Table 2, and their strength, low-temperature toughness, HAZ toughness, and HIC resistance were obtained. Table 2 shows the results. The steel sheets produced according to the invention (invention steels) all have good properties. On the other hand, the comparative steel not according to the present invention does not have an appropriate chemical composition or steel plate manufacturing conditions, and is inferior in any of strength, low-temperature toughness, HAZ toughness, and HIC resistance.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】鋼13はC量が高すぎるため、母材・HA
Z靱性、耐HIC性が劣る。鋼14はMn量が高すぎるた
め、耐HIC性が劣る。鋼15はP量が高すぎるため、
耐HIC性が劣る。鋼16はS量が高すぎるため、耐H
IC性が劣る。鋼17はNbを含有していないため、母
材の強度、靱性が悪い。鋼18はTiを含有していない
ため、母材・HAZ靱性が悪い。鋼19はMgを含有し
ていないため、HAZ靱性、耐HIC性が劣る。鋼20
はMg量が高すぎるため、母材・HAZ靱性、耐HIC
性が劣る。鋼21はCaが添加されていないため、かつ
硫化物の形態制御を表すESSP値が0となるため、耐
HIC性が劣る。
Steel 13 has an excessively high C content, so that the base material / HA
Poor Z toughness and HIC resistance. Steel 14 has inferior HIC resistance because the Mn content is too high. Steel 15 has too high P content,
Poor HIC resistance. Steel 16 has too high an S content, and therefore has a high H resistance.
Poor IC performance. Since steel 17 does not contain Nb, the strength and toughness of the base material are poor. Since steel 18 does not contain Ti, the base material and HAZ toughness are poor. Since steel 19 does not contain Mg, HAZ toughness and HIC resistance are inferior. Steel 20
Is because the Mg content is too high, the base metal, HAZ toughness, and HIC resistance
Poor nature. Steel 21 is inferior in HIC resistance because Ca is not added and the ESSP value indicating morphological control of sulfide is 0.

【0029】鋼22はESSP値が1.0以上を満足し
ないため、耐HIC性が劣る。鋼23はESSP値が
7.0以下を満足しないため、耐HIC性が劣る。鋼2
4〜鋼28の成分は本発明鋼と同様であるが、製造条件
が適当でないために母材強度、低温靱性あるいは耐HI
C性が劣る。鋼24はスラブ再加熱温度が低く、母材強
度が低い。鋼25は950℃以下の累積圧下量が少ない
ため、低温靱性が劣る。鋼26は圧延終了温度が低いた
め、低温靱性、耐HIC性が劣る。鋼27は圧延後の冷
却速度が遅いため、強度が低く、耐HIC性が劣る。鋼
28は水冷停止温度が低いため、耐HIC性が劣る。
Since the steel 22 does not satisfy the ESSP value of 1.0 or more, the HIC resistance is poor. Since Steel 23 does not satisfy the ESSP value of 7.0 or less, the HIC resistance is poor. Steel 2
The composition of steel No. 4 to steel 28 is the same as that of the steel of the present invention, but the base material strength, low-temperature toughness or HI resistance is low due to improper production conditions.
Poor C properties. Steel 24 has a low slab reheating temperature and low base metal strength. Steel 25 has a low cumulative toughness of 950 ° C. or less, and thus has low temperature toughness. Since the steel 26 has a low rolling end temperature, the low-temperature toughness and the HIC resistance are inferior. Steel 27 has a low cooling rate after rolling, and thus has low strength and poor HIC resistance. Since steel 28 has a low water-cooling stop temperature, HIC resistance is poor.

【0030】[0030]

【発明の効果】以上述べたように、本発明により耐サワ
−性の優れた高強度パイプライン用鋼を安価に大量生産
することが可能となった。その結果、パイプラインの安
全性が著しく向上した。
As described above, the present invention makes it possible to mass-produce high-strength pipeline steel excellent in sour resistance at low cost. As a result, the safety of the pipeline has been significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】両面潜弧溶接部からのシャルピ−試験片の採取
位置を示す図である。
FIG. 1 is a view showing a sampling position of a Charpy test specimen from a double-sided latent arc weld.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.02〜0.08%、 Si:0.5%以下、 Mn:0.8〜1.5%、 P :0.010%以下、 S :0.001%以下、 Nb:0.01〜0.05%、 Ti:0.005〜0.03%、 Al:0.02〜0.05%、 Mg:0.005〜0.03%、 Ca:0.001〜0.004%、 N :0.001〜0.005%、 O :0.001〜0.0 03%を含有し、 かつ、1.0≦〔Ca〕(1−124〔O〕)/1.2
5〔S〕≦7.0を満足する残部が鉄および不可避的不
純物からなる耐サワ−性に優れた高強度鋼板。
1. C .: 0.02 to 0.08%, Si: 0.5% or less, Mn: 0.8 to 1.5%, P: 0.010% or less, S: 0 by weight% 0.001% or less, Nb: 0.01 to 0.05%, Ti: 0.005 to 0.03%, Al: 0.02 to 0.05%, Mg: 0.005 to 0.03%, Ca : 0.001 to 0.004%, N: 0.001 to 0.005%, O: 0.001 to 0.003%, and 1.0 ≦ [Ca] (1-124 [ O]) / 1.2
A high-strength steel sheet excellent in sour resistance, the balance of which satisfies 5 [S] ≦ 7.0 is composed of iron and unavoidable impurities.
【請求項2】 重量%で、 C :0.02〜0.08%、 Si:0.5%以下、 Mn:0.8〜1.5%、 P :0.010%以下、 S :0.001%以下、 Nb:0.01〜0.05%、 Ti:0.005〜0.03%、 Al:0.02〜0.05%、 Mg:0.005〜0.03%、 Ca:0.001〜0.004%、 N :0.001〜0.005%、 O :0.001〜0.003%に、 必要に応じて、 Ni:0.1〜1.0%、 Cu:0.1〜1.0%、 Cr:0.1〜1.0%、 Mo:0.1〜1.0%、 V:0.01〜0.10%、 REM:0.0005〜0.005%の一種または二種
以上を含有し、かつ、1.0≦〔Ca〕(1−124
〔O〕)/1.25〔S〕≦7.0を満足する残部が鉄
および不可避的不純物からなる耐サワ−性に優れた高強
度鋼板。
2. In% by weight, C: 0.02 to 0.08%, Si: 0.5% or less, Mn: 0.8 to 1.5%, P: 0.010% or less, S: 0 0.001% or less, Nb: 0.01 to 0.05%, Ti: 0.005 to 0.03%, Al: 0.02 to 0.05%, Mg: 0.005 to 0.03%, Ca : 0.001 to 0.004%, N: 0.001 to 0.005%, O: 0.001 to 0.003%, Ni: 0.1 to 1.0%, if necessary, Cu : 0.1-1.0%, Cr: 0.1-1.0%, Mo: 0.1-1.0%, V: 0.01-0.10%, REM: 0.0005-0 0.001% or more, and 1.0 ≦ [Ca] (1-124
[O]) / High-strength steel sheet excellent in sour resistance, the balance of which satisfies 1.25 [S] ≦ 7.0, the balance being iron and unavoidable impurities.
【請求項3】 重量%で、 C :0.02〜0.08%、 Si:0.5%以下、 Mn:0.8〜1.5%、 P :0.010%以下、 S :0.001%以下、 Nb:0.01〜0.05%、 Ti:0.005〜0.03%、 Al:0.02〜0.05%、 Mg:0.005〜0.03%、 Ca:0.001〜0.004%、 N :0.001〜0.005%、 O :0.001〜0.003%を含有し、 かつ、1.0≦〔Ca〕(1−124〔O〕)/1.2
5〔S〕≦7.0を満足する残部が鉄および不可避的不
純物からなる鋼片を1050〜1250℃の温度範囲に
加熱して、950℃以下の累積圧下量60%以上、圧延
終了温度750〜900℃で圧延を行なった後、ただち
に冷却速度3〜40℃/秒で350〜600℃まで水
冷、その後放冷することを特徴とする耐サワ−性に優れ
た高強度鋼板の製造法。
3. In% by weight, C: 0.02 to 0.08%, Si: 0.5% or less, Mn: 0.8 to 1.5%, P: 0.010% or less, S: 0 0.001% or less, Nb: 0.01 to 0.05%, Ti: 0.005 to 0.03%, Al: 0.02 to 0.05%, Mg: 0.005 to 0.03%, Ca : 0.001 to 0.004%, N: 0.001 to 0.005%, O: 0.001 to 0.003%, and 1.0 ≦ [Ca] (1-124 [O ]) / 1.2
A steel slab, the balance of which satisfies 5 [S] ≦ 7.0, consisting of iron and unavoidable impurities, is heated to a temperature range of 1,050 to 1,250 ° C., and a rolling reduction of 950 ° C. or less 60% or more, and a rolling end temperature 750. A method for producing a high-strength steel sheet excellent in sour resistance, comprising: immediately rolling at a temperature of up to 900 ° C., water cooling to 350 to 600 ° C. at a cooling rate of 3 to 40 ° C./sec, and then cooling.
【請求項4】 重量%で、 C :0.02〜0.08%、 Si:0.5%以下、 Mn:0.8〜1.5%、 P :0.010%以下、 S :0.001%以下、 Nb:0.01〜0.05%、 Ti:0.005〜0.03%、 Al:0.02〜0.05%、 Mg:0.005〜0.03%、 Ca:0.001〜0.004%、 N :0.001〜0.005%、 O :0.001〜0.003%、 に必要に応じて、 Ni:0.1〜1.0%、 Cu:0.1〜1.0%、 Cr:0.1〜1.0%、 Mo:0.1〜1.0%、 V:0.01〜0.10%、 REM:0.0005〜0.005%の一種または二種
以上を含有し、かつ、1.0≦〔Ca〕(1−124
〔O〕)/1.25〔S〕≦7.0を満足する残部が鉄
および不可避的不純物からなる鋼片を1050〜125
0℃の温度範囲に加熱して、950℃以下の累積圧下量
60%以上、圧延終了温度750〜900℃で圧延を行
なった後、ただちに冷却速度3〜40℃/秒で350〜
600℃まで水冷、その後放冷することを特徴とする耐
サワ−性に優れた高強度鋼板の製造法。
4. In% by weight, C: 0.02 to 0.08%, Si: 0.5% or less, Mn: 0.8 to 1.5%, P: 0.010% or less, S: 0 0.001% or less, Nb: 0.01 to 0.05%, Ti: 0.005 to 0.03%, Al: 0.02 to 0.05%, Mg: 0.005 to 0.03%, Ca : 0.001 to 0.004%, N: 0.001 to 0.005%, O: 0.001 to 0.003%, Ni: 0.1 to 1.0%, Cu as required : 0.1-1.0%, Cr: 0.1-1.0%, Mo: 0.1-1.0%, V: 0.01-0.10%, REM: 0.0005-0 0.001% or more, and 1.0 ≦ [Ca] (1-124
[O]) / 1.25 [S] ≦ A steel slab consisting of iron and unavoidable impurities with a balance of 7.0 or less was set to 1050 to 125.
After heating to a temperature range of 0 ° C. and rolling at a rolling reduction temperature of 750 to 900 ° C. with a cumulative reduction of 60% or more of 950 ° C. or less, immediately cooling at a cooling rate of 3 to 40 ° C./sec.
A method for producing a high-strength steel sheet having excellent sour resistance, characterized by cooling with water to 600 ° C. and then allowing it to cool.
JP14469298A 1998-02-17 1998-05-26 High strength steel plate excellent in sour resistance and manufacturing method thereof Expired - Fee Related JP3752078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14469298A JP3752078B2 (en) 1998-02-17 1998-05-26 High strength steel plate excellent in sour resistance and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3493398 1998-02-17
JP10-34933 1998-02-17
JP14469298A JP3752078B2 (en) 1998-02-17 1998-05-26 High strength steel plate excellent in sour resistance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11302776A true JPH11302776A (en) 1999-11-02
JP3752078B2 JP3752078B2 (en) 2006-03-08

Family

ID=26373807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14469298A Expired - Fee Related JP3752078B2 (en) 1998-02-17 1998-05-26 High strength steel plate excellent in sour resistance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3752078B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348609A (en) * 2001-03-23 2002-12-04 Nkk Corp Method for manufacturing steel with high strength for line pipe superior in hic resistance
WO2008132882A1 (en) * 2007-03-01 2008-11-06 Nippon Steel Corporation High-strength hot-rolled steel plate for line pipes excellent in low-temperature toughness and process for production of the same
EP3235921A4 (en) * 2014-12-19 2018-07-25 Baoshan Iron & Steel Co., Ltd. Good fatigue- and crack growth-resistant steel plate and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348609A (en) * 2001-03-23 2002-12-04 Nkk Corp Method for manufacturing steel with high strength for line pipe superior in hic resistance
WO2008132882A1 (en) * 2007-03-01 2008-11-06 Nippon Steel Corporation High-strength hot-rolled steel plate for line pipes excellent in low-temperature toughness and process for production of the same
US8562762B2 (en) 2007-03-01 2013-10-22 Nippon Steel & Sumitomo Metal Corporation High strength hot rolled steel products for line-pipes excellent in low temperature toughness and production method of the same
EP3235921A4 (en) * 2014-12-19 2018-07-25 Baoshan Iron & Steel Co., Ltd. Good fatigue- and crack growth-resistant steel plate and manufacturing method therefor
US10920298B2 (en) 2014-12-19 2021-02-16 Baoshan Iron & Steel Co., Ltd. Good fatigue- and crack growth-resistant steel plate and manufacturing method therefor

Also Published As

Publication number Publication date
JP3752078B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
KR101331976B1 (en) Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
KR101601000B1 (en) Method of manufacturing sheet steel for sour-resistant line pipe
JPH07173536A (en) Production of steel sheet for high strength line pipe excellent in sour resistance
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP3274013B2 (en) Method for producing sour resistant high strength steel sheet having excellent low temperature toughness
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JP2003328080A (en) High-strength steel pipe superior in low-temperature toughness and deformability, and method for manufacturing steel plate for steel pipe
JPH06136440A (en) Production of high strength steel sheet excellent in sour resistance
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JP3752078B2 (en) High strength steel plate excellent in sour resistance and manufacturing method thereof
JPH059575A (en) Production of high streangth steel plate excellent in corrosion resistance
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JP2003293078A (en) Steel pipe having excellent weld heat affected zone toughness and deformability and method of producing steel sheet for steel pipe
JP2001207242A (en) Thick-walled sour-resisting steel tube excellent in toughness at low temperature in circumferential weld zone, and pipeline
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JP3393314B2 (en) Manufacturing method of sour resistant high strength steel sheet with excellent low temperature toughness
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature
JP2001011566A (en) High tensile strength steel excellent in toughness of weld zone and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees