JPH11301256A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH11301256A
JPH11301256A JP10994998A JP10994998A JPH11301256A JP H11301256 A JPH11301256 A JP H11301256A JP 10994998 A JP10994998 A JP 10994998A JP 10994998 A JP10994998 A JP 10994998A JP H11301256 A JPH11301256 A JP H11301256A
Authority
JP
Japan
Prior art keywords
pressure
temperature
target
air
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10994998A
Other languages
Japanese (ja)
Other versions
JP4042203B2 (en
Inventor
Shizuo Tsuchiya
静男 土屋
Katsuya Kusano
勝也 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10994998A priority Critical patent/JP4042203B2/en
Publication of JPH11301256A publication Critical patent/JPH11301256A/en
Application granted granted Critical
Publication of JP4042203B2 publication Critical patent/JP4042203B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To previously prevent a compressor from stopping due to overshooting in an air conditioner constituted to control heating capacity by controlling high pressure. SOLUTION: It is assumed that an air conditioner (a refrigerating cycle) is started by an occupant when outside air temperature is not very low (15 deg.C, for instance) and that set temperature is set high (highest temperature 32 deg.C, for instance), and in this case, it is assumed that extremely large saturation pressure (25 kgf/cm<2> G) is computed by an air conditioner control device. On the other hand, it is assumed that upper limit pressure Pcmax (21 kgf/cm<2> , for instance) is determined from a map. In this case, the saturation pressure PC is reset to the upper limit pressure Pcmax lower than its own value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルのコ
ンデンサにて空気を加熱して空調空間を暖房する空調装
置において、特に冷凍サイクルの高圧圧力(冷媒温度)
を制御することで、暖房能力を制御するものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for heating an air-conditioned space by heating air with a condenser of a refrigeration cycle, and particularly to a high pressure (refrigerant temperature) of the refrigeration cycle.
To control the heating capacity by controlling the heating capacity.

【0002】[0002]

【従来の技術】上述のように高圧圧力を制御して暖房能
力を制御するものとして、特開平7−1954号公報に
記載されている電気自動車用空調装置がある。この従来
装置では、先ず、各種空調情報(例えば、内気温、外気
温、車室内の設定温度)に基づいて、空調風の目標吹出
温度を算出する。その後、この目標吹出温度が得られる
ように高圧圧力の目標高圧を算出し、実際の高圧圧力が
上記目標高圧となるように圧縮機の回転数を制御してい
る。
2. Description of the Related Art As an apparatus for controlling a heating capacity by controlling a high pressure as described above, there is an air conditioner for an electric vehicle described in JP-A-7-1954. In this conventional device, first, a target blow-out temperature of conditioned air is calculated based on various types of air-conditioning information (for example, an inside air temperature, an outside air temperature, and a set temperature in a vehicle cabin). Thereafter, a target high pressure of the high pressure is calculated so as to obtain the target blow-out temperature, and the rotation speed of the compressor is controlled so that the actual high pressure becomes the target high pressure.

【0003】また、上記従来装置には記載されていない
が、このような冷凍サイクルでは、高圧が所定圧力(異
常高圧値)以上となると、冷凍サイクル装置の保護を目
的に冷凍サイクル(圧縮機)を停止させる保護制御を採
用することが周知である。
[0003] Further, although not described in the above conventional apparatus, in such a refrigeration cycle, when the high pressure exceeds a predetermined pressure (abnormal high pressure value), the refrigeration cycle (compressor) is used to protect the refrigeration cycle apparatus. It is well known to employ protection control to stop

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来装置において、外気温が冬場のように0℃以下(以
下、これを低温と呼ぶ)といった条件でなく、例えば比
較的外気温が高温の15℃といったときに、乗員が設定
温度を大きく上げた場合、以下の問題が発生する。つま
り、設定温度を上げると、目標高圧圧力が非常に高い値
に算出されるのであるが、外気温が高温のときに設定温
度を大きくあげると、外気温が低温の場合よりも高圧圧
力の圧力上昇速度が非常に速い。このため、外気温が低
温の場合は、実際の高圧圧力が目標高圧圧力より高くな
ってオーバーシュートし、高圧圧力が異常高圧値となっ
て、冷凍サイクル(圧縮機)が停止するという問題があ
る。
However, in the above-mentioned conventional apparatus, the outside air temperature is not 0 ° C. or less (hereinafter, referred to as a low temperature) as in winter, but is, for example, 15 ° C. where the outside air temperature is relatively high. In such a case, if the occupant greatly increases the set temperature, the following problem occurs. In other words, when the set temperature is increased, the target high pressure is calculated to be a very high value.However, when the set temperature is increased when the outside air temperature is high, the pressure of the high pressure becomes higher than when the outside air temperature is low. The climb speed is very fast. For this reason, when the outside air temperature is low, the actual high pressure becomes higher than the target high pressure and overshoots, the high pressure becomes an abnormally high value, and the refrigeration cycle (compressor) stops. .

【0005】そこで、本発明は、高圧圧力がオーバーシ
ュートして圧縮機が停止することを未然に防止すること
を目的とする。
Accordingly, an object of the present invention is to prevent the compressor from stopping due to overshoot of high pressure.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明では、目標高圧圧力(Pc)に
前記所定圧力より低い上限値(Pcmax)を予め設定
し、この上限値(Pcmax)は外気温が高くなるほど
低い値に設定されていること特徴としている。これによ
り、目標高圧圧力の上限値は、所定圧力より低い値に設
定されているため、オーバーシュートして実際の高圧圧
力が目標高圧圧力より大きくなったしても、この高圧圧
力が上記所定圧力に到達しにくくなり、冷凍サイクルの
停止を未然に防止できる。そして、上述の圧力上昇速度
は外気温が高くなるほど高くなり、実際の高圧圧力がオ
ーバーシュートして上記所定圧力に近づきやすい。この
ため、本発明では、外気温が高くなる程、上限値を低い
値に設定しているため、外気温に応じて冷凍サイクルの
停止を未然に防止できる。
In order to achieve the above object, according to the present invention, an upper limit (Pcmax) lower than the predetermined pressure is set in advance to the target high pressure (Pc). (Pcmax) is characterized in that it is set to a lower value as the outside air temperature increases. Thus, since the upper limit of the target high pressure is set to a value lower than the predetermined pressure, even if the actual high pressure becomes larger than the target high pressure due to overshoot, this high pressure is maintained at the predetermined pressure. And it is possible to prevent the refrigeration cycle from stopping. Then, the above-mentioned pressure rising speed increases as the outside air temperature increases, and the actual high pressure tends to overshoot and approach the predetermined pressure. For this reason, in the present invention, the upper limit is set to a lower value as the outside air temperature increases, so that the refrigeration cycle can be prevented from being stopped in accordance with the outside air temperature.

【0007】ところで、上記従来装置では、冷媒圧縮機
が上記所定圧力により停止するに至らない場合でも、暖
房性能確保に必要な高圧圧力を越えた域での運転が続く
ため、必要以上に圧縮機回転数が高くなり、消費電力お
よび騒音を増加させるという問題があった。これに対し
て、請求項2記載の発明では、請求項1記載の発明の作
用効果に加えて、目標高圧圧力に上限値が設けられるた
め、圧縮機回転数が必要以上に高くならず、消費電力お
よび騒音を低減することができる。
By the way, in the above-mentioned conventional apparatus, even when the refrigerant compressor does not stop at the predetermined pressure, the operation continues in a region exceeding the high pressure necessary for ensuring the heating performance, so that the compressor is more than necessary. There has been a problem that the number of rotations is increased, and power consumption and noise are increased. On the other hand, in the invention of claim 2, in addition to the operation and effect of the invention of claim 1, an upper limit value is provided for the target high-pressure pressure, so that the compressor rotation speed does not increase more than necessary, Power and noise can be reduced.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施形態について
説明する。なお、本例は、本発明の空調装置を電気自動
車用空調装置に適用した例である。図1に自動車用空調
装置の全体構成図を示す。本空調装置は、車室内への空
気流路をなす空調ダクト2、このダクト2内に空気を導
入して車室内へ送る送風機3、アキュムレータ式冷凍サ
イクル4、およびエアコン制御装置5を備える。
Embodiments of the present invention will be described below. This example is an example in which the air conditioner of the present invention is applied to an electric vehicle air conditioner. FIG. 1 shows an overall configuration diagram of a vehicle air conditioner. The air conditioner includes an air conditioning duct 2 that forms an air flow path into a vehicle compartment, a blower 3 that introduces air into the duct 2 and sends the air into the vehicle compartment, an accumulator-type refrigeration cycle 4, and an air conditioner control device 5.

【0009】送付器3は、ブロアケース3a、遠心式フ
ァン3B、ブロアモータ3cよりなり、このブロワモー
タ3cへの印加電圧は、モータ駆動回路6を介してエア
コン制御装置5からの制御信号に基づいて制御される。
ブロワケース3aには、車室内空気(内気)を導入する
内気導入口7、8と、車室外空気(外気)を導入する外
気導入口9とが形成されるとともに、内気導入口7と外
気導入口9との開口割合を調節する内外気切替ダンパ1
0が設けられている。なお、内気導入口8は、常時開口
している。
The transmitter 3 comprises a blower case 3a, a centrifugal fan 3B and a blower motor 3c. The voltage applied to the blower motor 3c is controlled based on a control signal from an air conditioner control device 5 via a motor drive circuit 6. Is done.
Inside air inlets 7 and 8 for introducing vehicle interior air (inside air) and outside air introduction port 9 for introducing outside air (outside air) are formed in the blower case 3a. Inside / outside air switching damper 1 for adjusting the opening ratio with the opening 9
0 is provided. The inside air inlet 8 is always open.

【0010】ダクト2の空気下流側には、車両のフロン
トガラスの内面に向かって空調空気を送風するデフロス
タ吹出口11、乗員の上半身に向かって空調空気を送風
するフェイス吹出口12、乗員の下半身に向かって空調
空気を送風するフット吹出口13が開口形成されてい
る。なお、各吹出口11〜13は、吹出口モードに応じ
て作動する吹出口切替ダンパ(図示しない)によって選
択的に開閉される。
Downstream of the duct 2, a defroster outlet 11 for blowing conditioned air toward the inner surface of the windshield of the vehicle, a face outlet 12 for blowing conditioned air toward the upper body of the occupant, and a lower body of the occupant A foot outlet 13 for blowing conditioned air toward is formed. Each of the air outlets 11 to 13 is selectively opened and closed by an air outlet switching damper (not shown) that operates according to the air outlet mode.

【0011】冷凍サイクル4は、冷媒を高温高圧に圧縮
する冷媒圧縮機14、室外熱交換器15、冷房用熱交換
器18、暖房用熱交換器19、アキュムレータ20、四
方弁21を備える。冷媒圧縮機14は、内蔵された電動
モータ100により駆動されるもので、四方弁21、ア
キュムレータ20とともにコンプレッサユニット22を
構成する。電動モータ100は、インバータ23を介し
て車両搭載のバッテリ101から電力が供給されて駆動
する。そして、電動モータ100は、インバータ23に
よって可変制御される周波数に応じて回転速度が決定制
御される。従って、冷媒圧縮機14の冷媒吐出量、冷媒
圧力(高圧圧力)は、電動モータ100の回転数に応じ
て変化する。
The refrigerating cycle 4 includes a refrigerant compressor 14 for compressing the refrigerant to a high temperature and a high pressure, an outdoor heat exchanger 15, a cooling heat exchanger 18, a heating heat exchanger 19, an accumulator 20, and a four-way valve 21. The refrigerant compressor 14 is driven by a built-in electric motor 100, and forms a compressor unit 22 together with the four-way valve 21 and the accumulator 20. The electric motor 100 is driven by being supplied with electric power from a battery 101 mounted on the vehicle via an inverter 23. The rotation speed of the electric motor 100 is determined and controlled according to the frequency variably controlled by the inverter 23. Therefore, the refrigerant discharge amount and the refrigerant pressure (high pressure) of the refrigerant compressor 14 change according to the rotation speed of the electric motor 100.

【0012】室外熱交換器15は、ダクト2の外部(車
室外)に配されて、外気と冷媒との熱交換を行うもの
で、室外ファン24の送風を受けて、空調運転が暖房運
転時には冷媒蒸発器として機能し、冷房運転時には冷媒
凝縮器として機能する。冷房用減圧装置16は、冷房運
転時に冷房用熱交換器18へ供給される冷媒を減圧膨張
させるもので、固定絞りであるキャピラリーチューブが
使用される。暖房用減圧装置17は、暖房運転時に室外
熱交換器15へ供給される冷媒を減圧膨張させるもの
で、冷房用減圧装置16と同様にキャピラリーチューブ
が使用される。
The outdoor heat exchanger 15 is disposed outside the duct 2 (outside the vehicle compartment) to exchange heat between the outside air and the refrigerant. It functions as a refrigerant evaporator and functions as a refrigerant condenser during cooling operation. The cooling decompression device 16 decompresses and expands the refrigerant supplied to the cooling heat exchanger 18 during the cooling operation, and uses a capillary tube as a fixed throttle. The heating decompression device 17 decompresses and expands the refrigerant supplied to the outdoor heat exchanger 15 during the heating operation, and uses a capillary tube similarly to the cooling decompression device 16.

【0013】冷房用熱交換器18は、冷房運転時に冷媒
蒸発器として機能するもので、ダクト2内に配されて、
冷房用減圧装置16で減圧膨張された低温低圧の冷媒と
空気との熱交換を行うことにより、冷房用熱交換器18
を通過する空気を冷却する。暖房用熱交換器19は暖房
運転時に冷媒凝縮器として機能するもので、ダクト2内
で冷房用熱交換器18の空気下流側に配されて、冷媒圧
縮機14で圧縮された高温高圧の冷媒と空気との熱交換
を行うことにより、暖房用熱交換器19を通過する空気
を加熱する。
The cooling heat exchanger 18 functions as a refrigerant evaporator during cooling operation, and is disposed in the duct 2.
By performing heat exchange between the low-temperature and low-pressure refrigerant decompressed and expanded by the cooling decompression device 16 and air, the cooling heat exchanger 18
Cool the air passing through. The heating heat exchanger 19 functions as a refrigerant condenser during the heating operation. The heating heat exchanger 19 is arranged downstream of the cooling heat exchanger 18 in the air in the duct 2, and is a high-temperature and high-pressure refrigerant compressed by the refrigerant compressor 14. By performing heat exchange between the air and the air, the air passing through the heating heat exchanger 19 is heated.

【0014】アキュムレータ20は、冷凍サイクル4内
の過剰冷媒を一時蓄えるとともに、気相冷媒のみを送り
だして、冷媒圧縮機14に液冷媒が吸い込まれるのを防
止する。四方弁21は、電磁弁25、26、および逆止
弁27、28と協動して、冷媒を流れを切り換えて、上
記冷房運転、上記暖房運転、および後述の除湿運転を実
現するためのものである。以下、これら冷房運転、暖房
運転、除湿運転の冷媒の流れ方について説明する。
The accumulator 20 temporarily stores the excess refrigerant in the refrigeration cycle 4 and sends out only the gas-phase refrigerant to prevent the liquid refrigerant from being sucked into the refrigerant compressor 14. The four-way valve 21 cooperates with the solenoid valves 25 and 26 and the check valves 27 and 28 to switch the flow of the refrigerant to realize the cooling operation, the heating operation, and the dehumidifying operation described below. It is. Hereinafter, how the refrigerant flows in the cooling operation, the heating operation, and the dehumidifying operation will be described.

【0015】冷房運転時は、冷媒圧縮機14より吐出さ
れた冷媒が、四方弁21→逆止弁27→室外熱交換器1
5→冷房用減圧装置16→冷房用熱交換器18→アキュ
ムレータ20→冷媒圧縮機14の順に流れるように、四
方弁21、電磁弁25、26を切り換える(この冷房運
転時の冷媒流れを図1中矢印Cで示す)。暖房運転時
は、冷媒圧縮機14より吐出された冷媒が、四方弁21
→暖房用熱交換器19→暖房用減圧装置17→逆止弁2
8→室外熱交換器15→電磁弁25→アキュムレータ2
0→冷媒圧縮機14の順に流れるように、四方弁21、
電磁弁25、26を切り換える(この冷房運転時の冷媒
流れを図1中矢印Cで示す)。
During the cooling operation, the refrigerant discharged from the refrigerant compressor 14 is supplied to the four-way valve 21 → the check valve 27 → the outdoor heat exchanger 1.
The four-way valve 21 and the solenoid valves 25 and 26 are switched so as to flow in the order of 5 → cooling decompression device 16 → cooling heat exchanger 18 → accumulator 20 → refrigerant compressor 14 (Refrigerant flow during cooling operation is shown in FIG. Indicated by a middle arrow C). During the heating operation, the refrigerant discharged from the refrigerant compressor 14 is supplied to the four-way valve 21.
→ Heating heat exchanger 19 → Heating depressurizer 17 → Check valve 2
8 → Outdoor heat exchanger 15 → Solenoid valve 25 → Accumulator 2
0 → the four-way valve 21 so as to flow in the order of the refrigerant compressor 14,
The electromagnetic valves 25 and 26 are switched (the refrigerant flow during the cooling operation is indicated by an arrow C in FIG. 1).

【0016】除湿運転時は、冷媒圧縮機14より吐出さ
れた冷媒が、四方弁21→暖房用熱交換器19→電磁弁
26→逆止弁28→室外熱交換器15→冷房用減圧装置
16→冷房用熱交換器18→アキュムレータ20→冷媒
圧縮機14の順に流れるように、四方弁21、電磁弁2
5、26を切り換える(この除湿運転時の冷媒流れを図
1中矢印Dで示す)。
During the dehumidifying operation, the refrigerant discharged from the refrigerant compressor 14 is supplied to the four-way valve 21 → the heat exchanger 19 for heating → the solenoid valve 26 → the check valve 28 → the outdoor heat exchanger 15 → the decompression device 16 for cooling. The four-way valve 21 and the solenoid valve 2 are arranged such that the cooling heat exchanger 18, the accumulator 20, and the refrigerant compressor 14 flow in this order.
5 and 26 are switched (the refrigerant flow during this dehumidifying operation is indicated by an arrow D in FIG. 1).

【0017】エアコン制御装置5(図2参照)は、マイ
クロコンピュータ(図示しない)を内蔵し、エアコン操
作パネル29から出力される操作信号、および後述の各
センサ(検出手段)からの空調環境(車室内)に影響を
与える空調情報(検出信号)に基づいて、送風機3、イ
ンバータ23、室外ファン24、四方弁21、電磁弁2
5、26、内外気切替ダンパを駆動するアクチュエータ
(図示しない)等の電気部品を制御する。
The air conditioner control device 5 (see FIG. 2) incorporates a microcomputer (not shown), and operates signals output from an air conditioner operation panel 29 and an air conditioning environment (vehicle) from each sensor (detection means) described later. The blower 3, the inverter 23, the outdoor fan 24, the four-way valve 21, the solenoid valve 2
5, 26, electric components such as an actuator (not shown) for driving the inside / outside air switching damper are controlled.

【0018】センサは、車室内温度Trを検出する内気
センサ30、外気温Tamを検出する外気センサ31、
日射量Tsを検出する日射センサ32、暖房用熱交換器
19の吸込空気温度Tinを検出する入口温度センサ3
3、暖房用熱交換器19よりも冷媒上流側の冷媒圧力
(上記高圧圧力、冷媒圧縮機14の吐出圧力)Pcを検
出する冷媒圧力センサ34等を備える。なお、入口温度
センサ33は、冷媒圧縮機14と暖房用熱交換器19と
を連結する冷媒配管35に取り付けられている。
The sensor includes an inside air sensor 30 for detecting the vehicle interior temperature Tr, an outside air sensor 31 for detecting the outside air temperature Tam,
A solar radiation sensor 32 for detecting the amount of solar radiation Ts, and an inlet temperature sensor 3 for detecting a suction air temperature Tin of the heat exchanger 19 for heating.
3. A refrigerant pressure sensor 34 for detecting the refrigerant pressure (high pressure, the discharge pressure of the refrigerant compressor 14) Pc upstream of the heating heat exchanger 19 is provided. The inlet temperature sensor 33 is attached to a refrigerant pipe 35 that connects the refrigerant compressor 14 and the heating heat exchanger 19.

【0019】次に、本発明の特徴事項である暖房運転時
における冷媒圧縮機14の回転数制御(エアコン制御装
置5で行われる)を、図3のフローチャートにて説明す
る。先ず、ステップS100では、各センサからの出力
を読み込む。次にステップS110ではエアコン操作パ
ネル29で設定された車室内の設定温度Tsetおよび
ステップS100で読み込まれた車室内温度Tr、外気
温Tam、日射量Tsを基に、以下の数式1より空調風
の目標吹出温度TAOを算出する。
Next, the control of the rotational speed of the refrigerant compressor 14 during heating operation (performed by the air conditioner control device 5), which is a feature of the present invention, will be described with reference to the flowchart of FIG. First, in step S100, the output from each sensor is read. Next, in step S110, based on the set temperature Tset in the vehicle interior set on the air conditioner operation panel 29 and the vehicle interior temperature Tr, the outside air temperature Tam, and the amount of solar radiation Ts read in step S100, the air-conditioning wind is calculated by the following equation 1. The target outlet temperature TAO is calculated.

【0020】[0020]

【数1】TAO=Kset・Tset−Kr・Tr−K
am・Tam−Ks・Ts+C 但し、Ksetは温度設定ゲイン、Krは内気温度ゲイ
ン、Kamは外気温度ゲイン、Cは補正定数である。次
にステップS120では、ステップS110で算出した
目標吹出温度TAOと暖房用熱交換器19の吸込空気温
度Tinを基に、以下の数式2より目標吹出温度TAO
が得るための飽和冷媒温度Tcを算出する。
## EQU1 ## TAO = Kset.Tset-Kr.Tr-K
am · Tam−Ks · Ts + C where Kset is a temperature setting gain, Kr is an inside air temperature gain, Kam is an outside air temperature gain, and C is a correction constant. Next, in step S120, based on the target outlet temperature TAO calculated in step S110 and the intake air temperature Tin of the heating heat exchanger 19, the target outlet temperature TAO is calculated from the following equation (2).
Is calculated to obtain the saturated refrigerant temperature Tc.

【0021】[0021]

【数2】Tc=(TAO−Tin)/φ(V)+Tin なお、φ(V)は送風機3による空調空気の風量Vとに
よって異なる温度効率で、この温度効率φ(V)と風量
Vとの関係を示すデータ(図4参照)は、予め上記マイ
クロコンピュータに記憶されている。
Tc = (TAO−Tin) / φ (V) + Tin Here, φ (V) is a temperature efficiency that varies depending on the air volume V of the conditioned air from the blower 3. (See FIG. 4) indicating the relationship is stored in the microcomputer in advance.

【0022】次にステップS130では、飽和冷媒温度
Tcと飽和圧力Tc(暖房用熱交換器19の凝縮圧力)
とには図5に示す相関関係があるため、この相関関係に
基づいて、ステップS120で求めた飽和冷媒温度Tc
に対応する飽和圧力Pc(目標高圧圧力)を算出する。
なお、図5に示すデータは、予めマイクロコンピュータ
に記憶されている。この飽和圧力Pcは、冷媒圧縮機1
4から暖房用熱交換器19までの圧力損失が小さいこと
から、ほぼ冷媒圧縮機14の吐出圧力(冷媒圧力センサ
34で検出する冷媒圧力Pc)と見なすことができる。
Next, in step S130, the saturated refrigerant temperature Tc and the saturated pressure Tc (condensing pressure of the heating heat exchanger 19)
Has a correlation shown in FIG. 5, and based on this correlation, the saturated refrigerant temperature Tc obtained in step S120 is determined.
(The target high pressure) is calculated.
The data shown in FIG. 5 is stored in the microcomputer in advance. This saturation pressure Pc is determined by the refrigerant compressor 1
Since the pressure loss from 4 to the heat exchanger 19 for heating is small, it can be regarded as substantially the discharge pressure of the refrigerant compressor 14 (the refrigerant pressure Pc detected by the refrigerant pressure sensor 34).

【0023】次にステップS140では、上記飽和圧力
Pcが上限圧力(上限値)Pcmaxより高いか否かを
判定する。ここで、この上限圧力Pcmaxは、上記マ
イクロコンピュータ内に予め設定記憶されている。そし
て、図6に示すように上限圧力Pcmaxは、上記外気
温Tamが高くなるほど、低い値に設定されるようにな
っている。具体的には、本例では外気温が−5℃以下の
ときには、上限圧力Pcmaxは22kgf/cm2
一定で、外気温が−5℃より高く20℃までは、外気温
が高くなるほど、上限圧力Pcmaxは低い値に設定さ
れる。また、外気温が20℃より高い場合は、上限圧力
Pcmaxは17kgf/cm2 G一定に設定される。
Next, in step S140, it is determined whether or not the saturation pressure Pc is higher than an upper limit pressure (upper limit value) Pcmax. Here, the upper limit pressure Pcmax is preset and stored in the microcomputer. As shown in FIG. 6, the upper limit pressure Pcmax is set to a lower value as the outside temperature Tam increases. Specifically, in this example, when the outside air temperature is −5 ° C. or less, the upper limit pressure Pcmax is 22 kgf / cm 2 G
When the outside air temperature is higher than −5 ° C. and up to 20 ° C., the upper limit pressure Pcmax is set to a lower value as the outside air temperature becomes higher. When the outside air temperature is higher than 20 ° C., the upper limit pressure Pcmax is set to be constant at 17 kgf / cm 2 G.

【0024】また、本例では、このような飽和圧力Pc
が所定限界圧力(所定圧力)PLとなると、冷凍サイク
ル4が破損する可能性があるため冷媒圧縮機14の作動
を自動的に停止するようにしている。そして、図6に
は、上記所定限界圧力PL(圧縮機停止圧力)が乗せて
示されており、この所定限界圧力PLは、この図から分
かるように上記上限圧力Pcmaxより高い値に設定さ
れている。
In this embodiment, the saturation pressure Pc
When the pressure reaches a predetermined limit pressure (predetermined pressure) PL, the operation of the refrigerant compressor 14 is automatically stopped because the refrigeration cycle 4 may be damaged. FIG. 6 shows the predetermined limit pressure PL (compressor stop pressure). The predetermined limit pressure PL is set to a value higher than the upper limit pressure Pcmax as can be seen from FIG. I have.

【0025】そして、ステップS140での判定結果が
YES、つまり飽和圧力Pcが上限圧力Pcmax以上
であるときはステップS150に進んで、飽和圧力Pc
に上限圧力Pcmaxをセットし、ステップS160に
進む。一方、ステップS140での判定結果がNOの場
合は、飽和圧力PcをステップS120で算出した値と
して、そのままステップS160に進む。
If the result of the determination in step S140 is YES, that is, if the saturation pressure Pc is equal to or higher than the upper limit pressure Pcmax, the routine proceeds to step S150, where the saturation pressure Pc
Is set as the upper limit pressure Pcmax, and the process proceeds to step S160. On the other hand, if the determination result in step S140 is NO, the process directly proceeds to step S160, with the saturation pressure Pc being the value calculated in step S120.

【0026】ステップS160では、上記ステップS1
30もしくはステップS150で決定されら飽和圧力P
cとなるようにインバータ23を通じて電動モータ10
0の回転数を制御する。次に上記ステップS130〜ス
テップS150の流れを具体的な作動にて説明する。
In step S160, step S1 is performed.
30 or the saturation pressure P determined in step S150.
c through the inverter 23 so that the electric motor 10
0 is controlled. Next, the flow of steps S130 to S150 will be described in terms of specific operations.

【0027】外気温がそれほど低く無く、例えば外気温
が15℃であった場合、乗員によって空調装置(冷凍サ
イクル4)が起動されて、上記設定温度(Tset)が
大きく設定(例えば最高温32℃)されたとする。する
と、この場合は、ステップSでは非常に大きな飽和圧力
Pc(例えば25kgf/cm2 G)が算出されたとす
る。一方、図6のマップから上限圧力Pcmaxが決定
され、例えば21kgf/cm2 Gであったとする。
If the outside air temperature is not so low, for example, the outside air temperature is 15 ° C., the occupant starts the air conditioner (refrigeration cycle 4), and the set temperature (Tset) is set to a large value (for example, the maximum temperature is 32 ° C.). ). Then, in this case, it is assumed that a very large saturation pressure Pc (for example, 25 kgf / cm 2 G) is calculated in step S. On the other hand, it is assumed that the upper limit pressure Pcmax is determined from the map of FIG. 6 and is, for example, 21 kgf / cm 2 G.

【0028】そして、この場合、ステップS140では
YESと判定されて、ステップS150に進み、飽和圧
力Pcが、それ自身より低い値の上限圧力Pcmaxに
設定しなおされる。そして、これに加え、この上限圧力
Pcmaxは、図6に示すように上記所定限界圧力PL
より低い値に設定されているため、オーバーシュートし
て実際の高圧圧力(センサ34の検出値)が飽和圧力P
cより大きくなったしても、この高圧圧力が上記所定限
界圧力PLに到達しにくくなり、冷凍サイクル4の停止
を未然に防止できる。
In this case, YES is determined in step S140, and the process proceeds to step S150, where the saturation pressure Pc is reset to the upper limit pressure Pcmax lower than itself. In addition to this, the upper limit pressure Pcmax is, as shown in FIG.
Since it is set to a lower value, overshoot occurs and the actual high pressure (the value detected by the sensor 34) becomes the saturation pressure P
Even if it becomes larger than c, it becomes difficult for this high pressure to reach the predetermined limit pressure PL, and the refrigeration cycle 4 can be prevented from being stopped.

【0029】そして、上述の圧力上昇速度は外気温が高
くなるほど高くなり、実際の高圧圧力(センサ34の検
出値)がオーバーシュートして上記所定限界圧力PLに
近づきやすい。そこで、本例では、外気温が高くなる
程、上限圧力Pcmaxを低い値に設定しているため、
外気温に応じて冷凍サイクル4の停止を未然に防止でき
る。
Then, the above-mentioned pressure rising speed becomes higher as the outside air temperature becomes higher, and the actual high pressure (the value detected by the sensor 34) overshoots and tends to approach the predetermined limit pressure PL. Thus, in this example, the higher the outside air temperature, the lower the upper limit pressure Pcmax is set to a lower value.
The refrigeration cycle 4 can be prevented from being stopped in accordance with the outside air temperature.

【0030】また、上記従来装置では、冷媒圧縮機14
が上記所定限界圧力PLにより停止するに至らない場合
でも、暖房性能確保に必要な高圧圧力を越えた域での運
転が続くため、必要以上に圧縮機回転数が高くなり、消
費電力および騒音を増加させるという問題があった。こ
れに対して、本例ではこのような場合において、飽和圧
力Pcが小さく設定しなおされるため、圧縮機回転数が
必要以上に高くならず、消費電力および騒音を低減する
ことができる。
In the above-described conventional apparatus, the refrigerant compressor 14
Even if it does not come to a stop due to the predetermined limit pressure PL, the operation continues in a region exceeding the high pressure necessary for ensuring the heating performance, the compressor rotation speed becomes higher than necessary, and power consumption and noise are reduced. There was a problem of increasing. On the other hand, in this example, in such a case, the saturation pressure Pc is reset to a small value, so that the compressor speed does not increase unnecessarily, and power consumption and noise can be reduced.

【0031】なお、本発明は、電気自動車用空調装置に
限らず、走行用エンジンで圧縮機をする車両用空調装置
にも適用できるし、家庭用、業務用の空調装置にも適用
できることは勿論である。
The present invention can be applied not only to an air conditioner for an electric vehicle, but also to an air conditioner for a vehicle that uses a running engine as a compressor, and can be applied to an air conditioner for home and business use. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態における空調装置の全体構成
図である。
FIG. 1 is an overall configuration diagram of an air conditioner according to an embodiment of the present invention.

【図2】上記実施形態における空調装置の制御系の構成
図である。
FIG. 2 is a configuration diagram of a control system of the air conditioner in the embodiment.

【図3】上記実施形態における制御装置の制御内容を表
すフローチャートである。
FIG. 3 is a flowchart showing control contents of a control device in the embodiment.

【図4】上記実施形態における風量と温度効率との関係
を表す図である。
FIG. 4 is a diagram illustrating a relationship between an air volume and a temperature efficiency in the embodiment.

【図5】上記実施形態における飽和温度と目標圧力との
関係を表す図である。
FIG. 5 is a diagram illustrating a relationship between a saturation temperature and a target pressure in the embodiment.

【図6】上記実施形態における外気温度と上限圧力との
関係を表す図である。
FIG. 6 is a diagram illustrating a relationship between an outside air temperature and an upper limit pressure in the embodiment.

【符号の説明】[Explanation of symbols]

2 空調ダクト 4 冷凍サイクル 5 エアコン制御装置、 14 冷媒圧縮機 19 暖房用熱交換器。 2 air conditioning duct 4 refrigeration cycle 5 air conditioner control device, 14 refrigerant compressor 19 heat exchanger for heating.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも冷媒を高温高圧に圧縮する冷
媒圧縮機(14)、この冷媒圧縮機(14)からの高温
高圧の冷媒と空調空気とを熱交換し、この空調空気を加
熱する暖房用熱交換器(19)を有する冷凍サイクル
(4)と、 空調環境に影響を与える空調情報に基づいて、前記空調
空気の目標吹出温度(TAO)を算出する目標温度算出
手段(S110)と、 前記目標吹出温度(TAO)に基づいて前記冷凍サイク
ル(4)の目標高圧圧力(Pc)を算出する目標圧力算
出手段(S130)と、 前記冷凍サイクル(4)の高圧圧力が前記目標高圧圧力
(Pc)となるように前記冷媒圧縮機(14)の回転数
を制御する回転数制御手段(S160)とを備え、 前記冷凍サイクル(4)の高圧圧力が所定圧力(PL)
より高くなると、この冷凍サイクル(4)保護のために
前記冷媒圧縮機(14)の作動を停止するようになって
いる空調装置であって、 前記目標高圧圧力(Pc)に前記所定圧力より低い上限
値(Pcmax)を予め設定し、この上限値(Pcma
x)は外気温が高くなるほど低い値に設定されているこ
と特徴とする空調装置。
1. A refrigerant compressor (14) for compressing at least a refrigerant to a high temperature and a high pressure, heat exchange between the high temperature and high pressure refrigerant from the refrigerant compressor (14) and conditioned air, and heating the conditioned air. A refrigeration cycle (4) having a heat exchanger (19); target temperature calculation means (S110) for calculating a target outlet temperature (TAO) of the conditioned air based on air conditioning information affecting an air conditioning environment; A target pressure calculating means (S130) for calculating a target high-pressure pressure (Pc) of the refrigeration cycle (4) based on a target outlet temperature (TAO); and a high-pressure pressure of the refrigeration cycle (4). ), A rotation speed control means (S160) for controlling the rotation speed of the refrigerant compressor (14) so that the high pressure of the refrigeration cycle (4) is a predetermined pressure (PL).
An air conditioner configured to stop the operation of the refrigerant compressor (14) to protect the refrigeration cycle (4) when the pressure becomes higher, wherein the target high pressure (Pc) is lower than the predetermined pressure. An upper limit (Pcmax) is set in advance, and the upper limit (Pcmax) is set.
x) is an air conditioner characterized by being set to a lower value as the outside air temperature increases.
【請求項2】 車室内への空気流路をなす空調ダクト
(2)と、 少なくとも車両に搭載されたバッテリ(101)からの
電力にて駆動されて冷媒を高温高圧に圧縮する冷媒圧縮
機(14)、および前記空調ダクト(2)内に配置さ
れ、前記冷媒圧縮機(14)からの高温高圧の冷媒と空
調空気とを熱交換し、この空調空気を加熱する暖房用熱
交換器を有する冷凍サイクル(4)と、 車室内の空調環境に影響を与える空調情報に基づいて、
前記空調空気の目標吹出温度(TAO)を算出する目標
温度算出手段(S110)と、 前記目標吹出温度(TAO)に基づいて前記冷凍サイク
ル(4)の目標高圧圧力(Pc)を算出する目標圧力算
出手段(S130)と、 前記冷凍サイクル(4)の高圧圧力が前記目標高圧圧力
(Pc)となるように前記冷媒圧縮機(14)の回転数
を制御する回転数制御手段(S160)とを備え、 前記冷凍サイクル(4)の高圧圧力が所定圧力(PL)
より高くなると、この冷凍サイクル(4)保護のために
前記圧縮機(14)の作動を停止するようになっている
車両用空調装置であって、 前記目標高圧圧力(Pc)に前記所定圧力より低い上限
値(Pcmax)を予め設定し、この上限値(Pcma
x)は外気温が高くなるほど低い値に設定されているこ
と特徴とする車両用空調装置。
2. An air conditioning duct (2) forming an air flow path into a vehicle cabin, and a refrigerant compressor driven by at least electric power from a battery (101) mounted on the vehicle to compress the refrigerant to a high temperature and a high pressure. 14) and a heating heat exchanger that is disposed in the air conditioning duct (2), exchanges heat between high-temperature and high-pressure refrigerant from the refrigerant compressor (14) and conditioned air, and heats the conditioned air. Based on the refrigeration cycle (4) and the air conditioning information that affects the air conditioning environment in the cabin,
A target temperature calculating means (S110) for calculating a target outlet temperature (TAO) of the conditioned air; and a target pressure for calculating a target high pressure (Pc) of the refrigeration cycle (4) based on the target outlet temperature (TAO). Calculation means (S130); and rotation speed control means (S160) for controlling the rotation speed of the refrigerant compressor (14) such that the high pressure of the refrigeration cycle (4) becomes the target high pressure (Pc). The high pressure of the refrigeration cycle (4) is a predetermined pressure (PL)
When the pressure becomes higher, the vehicle air conditioner is configured to stop the operation of the compressor (14) to protect the refrigeration cycle (4), wherein the target high pressure (Pc) is higher than the predetermined pressure. A low upper limit (Pcmax) is set in advance, and this upper limit (Pcmax) is set.
x) The vehicle air conditioner, wherein the lower the value, the higher the outside air temperature.
JP10994998A 1998-04-20 1998-04-20 Air conditioner Expired - Fee Related JP4042203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10994998A JP4042203B2 (en) 1998-04-20 1998-04-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10994998A JP4042203B2 (en) 1998-04-20 1998-04-20 Air conditioner

Publications (2)

Publication Number Publication Date
JPH11301256A true JPH11301256A (en) 1999-11-02
JP4042203B2 JP4042203B2 (en) 2008-02-06

Family

ID=14523215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10994998A Expired - Fee Related JP4042203B2 (en) 1998-04-20 1998-04-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP4042203B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679078B2 (en) 2001-11-02 2004-01-20 Kabushiki Kaisha Toyota Jidoshokki Variable displacement compressors and methods for controlling the same
WO2018123636A1 (en) * 2016-12-27 2018-07-05 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679078B2 (en) 2001-11-02 2004-01-20 Kabushiki Kaisha Toyota Jidoshokki Variable displacement compressors and methods for controlling the same
WO2018123636A1 (en) * 2016-12-27 2018-07-05 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air-conditioning apparatus

Also Published As

Publication number Publication date
JP4042203B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP3307466B2 (en) Air conditioner for electric vehicle
US6966197B2 (en) Air conditioner with dehumidifying and heating operation
US6523361B2 (en) Air conditioning systems
US7121103B2 (en) Vehicle air conditioning system
US6715540B2 (en) Air-conditioning apparatus for vehicle
US10137758B2 (en) Vehicle air conditioner
US10166838B2 (en) Air conditioner for vehicle
US20030037562A1 (en) Vehicle air conditioner with defrosting operation in exterior heat exchanger
JP4341093B2 (en) Air conditioner
JPH11157327A (en) Refrigerating cycle device
JP5966796B2 (en) Air conditioner for vehicles
JP2004131033A (en) Air-conditioner
JP4134433B2 (en) Heat pump air conditioner
JP2014058239A (en) Air conditioner for vehicle
JP2003042604A (en) Vapor compression type heat pump cycle and air conditioner
JP5617507B2 (en) Air conditioner for vehicles
JP3063574B2 (en) Air conditioner
JP2003127632A (en) Air conditioner for vehicle
JP2020075623A (en) Vehicular air conditioner
JP2000255253A (en) Air conditioning system
JP2007099072A (en) Air-conditioner for vehicle
JP4042203B2 (en) Air conditioner
JP2004114735A (en) Air-conditioner for vehicle
JP3321907B2 (en) Vehicle air conditioner
JP2002283839A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040817

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070831

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20111122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees