JPH11300372A - Treatment of selenium-containing liquid - Google Patents

Treatment of selenium-containing liquid

Info

Publication number
JPH11300372A
JPH11300372A JP10901498A JP10901498A JPH11300372A JP H11300372 A JPH11300372 A JP H11300372A JP 10901498 A JP10901498 A JP 10901498A JP 10901498 A JP10901498 A JP 10901498A JP H11300372 A JPH11300372 A JP H11300372A
Authority
JP
Japan
Prior art keywords
selenium
liquid
treatment
hexavalent
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10901498A
Other languages
Japanese (ja)
Other versions
JP3989618B2 (en
Inventor
Taeko Fujigaki
妙子 藤垣
Mikio Ebata
幹夫 江端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAIGAI KAGAKU SEIHIN KK
Realize Corp
Original Assignee
NAIGAI KAGAKU SEIHIN KK
Realize Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAIGAI KAGAKU SEIHIN KK, Realize Corp filed Critical NAIGAI KAGAKU SEIHIN KK
Priority to JP10901498A priority Critical patent/JP3989618B2/en
Publication of JPH11300372A publication Critical patent/JPH11300372A/en
Application granted granted Critical
Publication of JP3989618B2 publication Critical patent/JP3989618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an extremely practical means as a method for removing selenium from a selenium(VI)-contg. liq. by which the entire selenium is surely removed below the effluent standard value at ordinary temps. at a low cost and in a short time. SOLUTION: An aq. ferrous salt soln. is added to a selenium(VI)-contg. liq. to perform reduction in a non-heated state. In this case, the liq. being treated is regulated to pH 8.5-9.5 in the first stage, to pH 1.5-7.5 in the second stage and to pH 8.5-9.5 in the third stage, the reduced liq. is kept at >=pH 11, air is blown into the liq. to oxidize the ferrous salt, then the liq. is neutralized to pH 5.8-7, and the precipitates are separated from the liq.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、6価セレンを含有
する液中よりセレンを除去する処理方法、特に常温域で
の処理によって全セレンを確実に排水基準の規定値以下
とする実用的な処理方法に関する。
The present invention relates to a treatment method for removing selenium from a liquid containing hexavalent selenium, and more particularly to a practical method for ensuring that all selenium is below a specified value of a drainage standard by treatment in a normal temperature range. Regarding the processing method.

【0002】[0002]

【従来技術とその課題】着色ガラス製品の製造工場を始
めとする各種工場の排煙脱硫装置の吸収塔より出る廃
水、火力発電所における石炭がらの消火に供した廃水、
金属の電解沈澱物の処理工程やセレン整流器の製造工程
より発生する廃水等には、有毒なセレンが比較的高濃度
で含まれている。このセレンの排水基準による規定値は
0.1mg/L以下であるから、上記廃水についてはセ
レンを規定値以下まで除去する高度の処理を施す必要が
あり、またセレンは資源的に稀少であるために回収して
再利用することが望ましい。しかるに、この廃水からの
セレン除去について、従来より数多くの提案がなされて
いるにも関わらず、未だに除去効率及び処理コストの面
より充分に満足できる処理方法は確立されていない。
2. Description of the Related Art Wastewater discharged from an absorption tower of a flue gas desulfurization unit of various factories including a factory for manufacturing colored glass products, wastewater used to extinguish coal in a thermal power plant,
Wastewater and the like generated from the process of treating the electrolytic precipitate of metal and the process of manufacturing the selenium rectifier contain a relatively high concentration of toxic selenium. Since the specified value based on the selenium effluent standard is 0.1 mg / L or less, the wastewater must be subjected to advanced treatment to remove selenium to the specified value or less, and selenium is scarce as a resource. It is desirable to collect and reuse. However, although there have been many proposals for removing selenium from this wastewater, a treatment method that is sufficiently satisfactory in terms of removal efficiency and treatment cost has not yet been established.

【0003】一般的に、各種廃水中に含まれるセレンの
多くはSeO3 2- (4価セレン)とSeO4 2- (6価セ
レン)の形態として共存している。前者の4価セレンに
ついては、廃水中に第二鉄塩を溶解させて加水分解し、
析出する水酸化第二鉄に吸着・共沈させる方法によって
容易に除去できるが、この方法では6価セレンを殆ど除
去できないことが知られている。そこで、近年において
提案されているセレン含有廃水の処理方法では、還元剤
を加えて6価セレンを還元した上で、鉄の析出物への吸
着・共沈を行うのが一般的である。
In general, many of the selenium contained in various waste water coexist in the form of SeO 3 2- (4-valent selenium) and SeO 4 2- (6-valent selenium). For the former tetravalent selenium, ferric salt is dissolved in wastewater and hydrolyzed,
Although it can be easily removed by a method of adsorbing and coprecipitating with the precipitated ferric hydroxide, it is known that hexavalent selenium can hardly be removed by this method. Therefore, in a method of treating selenium-containing wastewater proposed in recent years, it is common to reduce and add hexavalent selenium by adding a reducing agent and then perform adsorption and coprecipitation on iron precipitates.

【0004】例えば、特開平9−150164号の処理
方法では、前段の予備処理において、40〜80℃(好
ましくは55〜65℃)に加熱したセレン含有廃水中
に、後段の本処理後に固液分離して得られる水酸化第一
鉄を含む沈澱物と中和剤を加えて予備還元し、沈降処理
して沈澱物を濾過し、濾過残渣を分離除去する一方、濾
液を沈降処理の上澄み液とともに本処理に供し、この本
処理で液温を上記範囲に維持して硫酸第一鉄と中和剤を
加えて還元し、同様の沈降処理及び濾過を行い、その濾
過残渣を前段の予備処理に供すると共に、濾液と沈降処
理の上澄み液を排出する。また特開平9−299964
号の処理方法では、液温を50〜95℃(好ましくは8
0℃前後)としたセレン含有廃水中に第一鉄塩を加え、
次いでpHを7〜13に調整して一定時間保持したの
ち、上記液温を維持しつつpHを前よりも2以上低く設
定して一定時間保持させ、かくして還元されたセレンを
固液分離により除去する。更に、特開平9−15536
3号の処理方法では、セレン含有廃水をフェロセレンの
如きセレン合金に接触させて6価セレンを還元し、この
還元後の被処理液中に第一鉄塩を加え、次いで中和して
空気を吹き込むことにより、セレンを析出する鉄成分と
共沈させて固液分離により除去する。
[0004] For example, in the treatment method of Japanese Patent Application Laid-Open No. 9-150164, in the preliminary treatment in the first stage, the solid-liquid wastewater containing selenium heated to 40 to 80 ° C. (preferably 55 to 65 ° C.) A precipitate containing ferrous hydroxide obtained by separation and a neutralizing agent are added and pre-reduced, and the precipitate is filtered by precipitating, and the filtration residue is separated and removed. In this treatment, the solution temperature is maintained in the above range, ferrous sulfate and a neutralizing agent are added and reduced, and the same sedimentation treatment and filtration are performed. And the filtrate and the supernatant of the sedimentation treatment are discharged. Also, Japanese Patent Application Laid-Open No. 9-299964
In the treatment method of No. 1, the liquid temperature is 50 to 95 ° C. (preferably 8
Ferrous salt was added to the selenium-containing wastewater
Next, after adjusting the pH to 7 to 13 and maintaining the solution for a certain period of time, the pH is set at least two times lower than before while maintaining the liquid temperature, and the solution is maintained for a certain period of time. The selenium thus reduced is removed by solid-liquid separation. I do. Further, JP-A-9-15536
In the treatment method of No. 3, the selenium-containing waste water is brought into contact with a selenium alloy such as ferro-selenium to reduce hexavalent selenium, a ferrous salt is added to the liquid to be treated after the reduction, and then neutralized to remove air. By blowing, selenium co-precipitates with the precipitated iron component and is removed by solid-liquid separation.

【0005】しかしながら、これらの処理方法は、最終
的にセレンを排水基準の0.1mg/L以下まで除去で
きるとしているものの、大量に発生する廃水の処理に適
用する上で到底現実的な手段とは言い難い。すなわち、
前二者の処理方法は、共に被処理液を高温に維持した状
態で反応させる必要があり、大量の廃水を昇温させるた
めには膨大な熱エネルギーの消費を余儀なくされ、加え
て還元剤としての鉄塩の使用量も多く、大量の処理残渣
を生じることから、処理コストならびに環境保全の両面
より採用困難である。また、後一者の処理方法は、高価
なセレン合金を用いる必要があり、大量に発生する廃水
の処理にはコスト的に到底見合わず、しかも還元に数十
時間といった長時間を要するため、やはり非現実的であ
る。
[0005] However, although these treatment methods are described as being able to finally remove selenium to 0.1 mg / L or less of the wastewater standard, they are practically impossible means for applying to the treatment of wastewater generated in large quantities. Is hard to say. That is,
In the former two treatment methods, it is necessary to carry out the reaction while maintaining the liquid to be treated at a high temperature, and in order to raise the temperature of a large amount of wastewater, enormous heat energy is consumed, and in addition, as a reducing agent Since the amount of iron salt used is large and a large amount of processing residue is generated, it is difficult to adopt it in terms of both processing cost and environmental protection. In addition, the latter treatment method requires the use of an expensive selenium alloy, which makes it impossible to treat a large amount of wastewater in terms of cost, and requires a long time such as tens of hours for reduction. After all it is unrealistic.

【0006】なお、これら以外にもセレン含有排水の処
理に関して多くの提案がなされているが、処理コスト等
で実用性に乏しい、実際には謳われるほどの高いセレン
除去効率が得られない、といった難点があるため、いず
れも確立した処理方法として定着していない。
Although many other proposals have been made regarding the treatment of selenium-containing wastewater, they are not practical due to the treatment cost and the like, and a selenium removal efficiency as high as claimed can not be obtained in practice. Due to difficulties, none of them has been established as an established processing method.

【0007】本発明は、上述の状況に照らし、6価セレ
ンを含有する液中よりセレンを除去する処理方法とし
て、特に常温域での処理により、低コストで且つ短時間
に全セレンを排水基準の規定値以下まで確実に除去でき
る、極めて実用的な手段を提供することを目的としてい
る。
The present invention has been made in view of the above circumstances, and as a treatment method for removing selenium from a liquid containing hexavalent selenium, a method for removing all selenium in a short time at low cost by a treatment in a normal temperature range, particularly at a low temperature. It is an object of the present invention to provide an extremely practical means that can be reliably removed to a specified value or less.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討を行う過程で、まず従来にお
いて満足なセレン除去方法が確立されていない要因につ
いて、各処理操作時の水中におけるセレンの挙動が充分
に把握されていなかった点にあると捉え、この挙動を正
確に知るために以下に述べる種々の試験を行った。
Means for Solving the Problems In the course of diligent studies to achieve the above object, the present inventors first examined factors that have not established a satisfactory selenium removal method in the prior art at the time of each processing operation. It was considered that the behavior of selenium in water was not sufficiently grasped, and various tests described below were performed in order to know the behavior accurately.

【0009】これら試験では、全処理工程を通して非加
熱(室温24℃,液温の到達最高温度29℃)とし、還
元処理工程は空気との接触を遮断するために密栓状態と
した。なお、被処理液には、一般的なセレン含有廃水の
組成に合わせるために、通常の該廃水中に含まれて且つ
6価セレンの還元を妨害する成分でもある硫酸イオン及
び無機塩類として、硫酸ナトリウムと塩化ナトリウムを
各々15000mg/Lの高濃度で添加している。ま
た、還元剤としての第一鉄塩には0.4Nの塩酸溶液に
硫酸第一鉄(FeSO4 ・7H2 O)を溶解させたも
の、4価セレンには酸化セレン(SeO2 )を水に溶解
して亜セレン酸(H2 SeO3 )としたもの、6価セレ
ンにはセレン酸ソーダ(Na2 SeO4 )を水に溶解し
たものをそれぞれ使用すると共に、pH調整には苛性ソ
ーダと塩酸を用いた。
In these tests, non-heating (room temperature 24 ° C., maximum temperature at which the liquid temperature reached 29 ° C.) was carried out throughout the treatment steps, and the reduction treatment step was sealed in order to cut off contact with air. In addition, in order to adjust to the composition of the general selenium-containing wastewater, the liquid to be treated contains sulfate ions, which are contained in the normal wastewater and are also components that hinder the reduction of hexavalent selenium, and inorganic salts such as sulfuric acid. Sodium and sodium chloride were added at a high concentration of 15000 mg / L each. Moreover, those in the ferrous salt as the reducing agent dissolved in hydrochloric acid solution 0.4N ferrous sulfate (FeSO 4 · 7H 2 O) , selenium oxide is tetravalent selenium (SeO 2) water And selenous acid (H 2 SeO 3 ) dissolved in water, and sodium hexaselenate (Na 2 SeO 4 ) dissolved in water is used for hexavalent selenium, and caustic soda and hydrochloric acid are used for pH adjustment. Was used.

【0010】 <試験1> 〔被処理液中の成分濃度〕 硫酸ナトリウム(Na2 SO4 として)・・・15000mg/L 塩化ナトリウム(NaClとして) ・・・15000mg/L 硫酸第一鉄(Fe2+として) ・・・・1500mg/L 4価セレン(Se4+として) ・・・・・・20mg/L 〔試験方法〕上記組成の被処理液を後記表1記載の各p
Hに調整しながら非加熱下(室温24℃)で液中に空気
を吹き込むことにより、20分間の曝気を行って第一鉄
イオンを酸化させたのち、No.5C濾紙にて濾過し、
濾液中の全セレン(T−Se)と4価セレン(Se4+
の濃度を測定した。その結果を次の表1に示す。
<Test 1> [Component Concentration in Liquid to be Treated] Sodium sulfate (as Na 2 SO 4 ): 15000 mg / L Sodium chloride (as NaCl): 15000 mg / L Ferrous sulfate (Fe 2) each p of + a) as ···· 1500mg / L 4-valent selenium (Se 4+) ······ 20mg / L [test method] table 1 below describes a liquid to be treated having the above composition
After air was blown into the liquid under non-heating (room temperature 24 ° C.) while adjusting to H, ferrous ions were oxidized by aeration for 20 minutes. Filter with 5C filter paper,
Total selenium (T-Se) and tetravalent selenium (Se 4+ ) in the filtrate
Was measured. The results are shown in Table 1 below.

【0011】[0011]

【表1】 [Table 1]

【0012】上記表1から明らかなように、元の被処理
液には6価セレンが含まれていないにも関わらず、20
分間の曝気によってpH10以下の領域で6価セレンが
生成している。従って、この6価セレンは、4価セレン
が酸化して生成したもの、言わば先祖帰り現象によって
生成したものに他ならない。これは、廃水中の6価セレ
ンを第一鉄塩の添加によって4価セレンに還元しても、
この還元生成した4価セレンあるいは元の廃水中に存在
する4価セレンが次の曝気による酸化の過程で6価セレ
ンに戻り得ることを意味しており、セレンを排水基準の
0.1mg/L以下まで除去する上で致命的な問題とな
る。なお、表1より、6価セレンの生成はpHが低いほ
ど増加する一方、4価セレンの析出鉄成分への吸着によ
る除去率はpHが低いほど高くなることが判る。
As is clear from the above Table 1, although the original liquid does not contain hexavalent selenium,
Hexavalent selenium is generated in a pH range of 10 or less by aeration for one minute. Therefore, this hexavalent selenium is nothing but the one generated by the oxidation of tetravalent selenium, that is, the one generated by the ancestral phenomenon. This is because even if hexavalent selenium in wastewater is reduced to tetravalent selenium by adding ferrous salt,
This means that the reduced tetravalent selenium or the tetravalent selenium present in the original wastewater can return to hexavalent selenium in the oxidation process by the next aeration. It is a fatal problem in removing below. From Table 1, it can be seen that the production of hexavalent selenium increases as the pH decreases, whereas the removal rate of tetravalent selenium by adsorption to the precipitated iron component increases as the pH decreases.

【0013】 <試験2> 〔被処理液中の成分濃度〕 硫酸ナトリウム(Na2 SO4 として)・・・15000mg/L 塩化ナトリウム(NaClとして) ・・・15000mg/L 塩化第二鉄(Fe3+として) ・・・・1500mg/L 4価セレン(Se4+として) ・・・・・・21mg/L 〔試験方法〕上記組成の被処理液を試験1と同様にして
後記表2記載の各pHに調整しながら20分間の曝気を
行ったのち、No.5C濾紙にて濾過し、その濾液中の
全セレン(T−Se)と4価セレン(Se4+)の濃度を
前記同様に測定した。その結果を次の表2に示す。
<Test 2> [Component Concentration in Liquid to be Treated] Sodium sulfate (as Na 2 SO 4 ): 15000 mg / L Sodium chloride (as NaCl): 15000 mg / L Ferric chloride (Fe 3 + as) ···· 1500mg / L 4-valent selenium (as Se 4+) ······ 21mg / L [test method] of the following table 2 according to the liquid to be treated with the above composition in the same manner as in test 1 After aeration for 20 minutes while adjusting to each pH, no. The solution was filtered through a 5C filter paper, and the concentrations of total selenium (T-Se) and tetravalent selenium (Se 4+ ) in the filtrate were measured in the same manner as described above. The results are shown in Table 2 below.

【0014】[0014]

【表2】 [Table 2]

【0015】上記表2から明らかなように、被処理液を
第二鉄塩の存在下で曝気しても6価セレンは殆ど生成し
ていない。この試験2と前記試験1の結果の違いは理論
的には解明困難であるが、曝気処理工程中において4価
セレンが酸化して6価セレンを生成する先祖帰り現象
は、三価鉄(Fe3+)のみによっては誘発されず、二価
鉄(Fe2+)の共存によって引き起こされていることを
示唆している。
As is clear from Table 2, even if the liquid to be treated is aerated in the presence of a ferric salt, hexavalent selenium is hardly produced. Although the difference between the results of Test 2 and Test 1 is theoretically difficult to elucidate, the ancestral phenomena in which tetravalent selenium is oxidized to generate hexavalent selenium during the aeration treatment process is based on ferric (Fe) 3+ ) alone, suggesting that it is caused by the coexistence of ferrous iron (Fe 2+ ).

【0016】しかして、試験1,2の結果から、第一鉄
塩を還元剤として還元−曝気−吸着の工程を経るセレン
除去における各処理工程の条件設定に対する重要な指標
が得られる。すなわち、最終的に全セレン濃度を廃水基
準の規制値以下とする上で、まず還元処理において被処
理液中の6価セレン濃度を0.1mg/L以下まで低下
させ、次いで曝気処理では前記の先祖帰り現象を回避す
るためにpH11以上に設定して二価鉄を酸化させ、そ
の後の吸着処理ではpHを低くして4価セレンを効率よ
く析出鉄成分に吸着させる、ということである。次の試
験は、6価セレンを含む被処理液を上記指標に基づく条
件設定で処理するものである。
Thus, the results of Tests 1 and 2 provide an important index for setting the conditions of each treatment step in selenium removal through the reduction-aeration-adsorption step using ferrous salt as a reducing agent. That is, in order to finally make the total selenium concentration equal to or less than the regulation value of the wastewater standard, first, the hexavalent selenium concentration in the liquid to be treated is reduced to 0.1 mg / L or less in the reduction treatment, and then the aeration treatment is performed as described above. In order to avoid the ancestral phenomenon, the ferrous iron is oxidized by setting the pH to 11 or more, and in the subsequent adsorption treatment, the pH is lowered to efficiently adsorb tetravalent selenium to the precipitated iron component. In the next test, the liquid to be treated containing hexavalent selenium is treated under the condition setting based on the above index.

【0017】 <試験3> 〔被処理液中の成分濃度〕 硫酸ナトリウム(Na2 SO4 として)・・・15000mg/L 塩化ナトリウム(NaClとして) ・・・15000mg/L 硫酸第一鉄(Fe2+として) ・・・・1500mg/L 6価セレン(Se6+として) ・・・・・・20mg/L 〔試験方法〕上記組成の被処理液(原液pH1.5)を
非加熱下(室温24℃)でpH8.5〜9.5に調整し
つつ、処理Iでは50分間、処理IIでは80分間保持し
て6価セレンを還元し、次いでpHを11.5に調整し
つつ液中に空気を吹き込むことにより、20分間の曝気
を行って第一鉄イオンを酸化させたのち、pHを6.5
に調整しつつ15分間保持してセレンを析出鉄成分(主
として水酸化第二鉄)に吸着させ、次いでNo・5C濾
紙にて濾過し、濾液中の全セレン(T−Se)と4価セ
レン(Se4+)の濃度を測定した。その結果を各処理段
階のpH及び保持時間と共に次の表3に示す。
<Test 3> [Component Concentration in Liquid to be Treated] Sodium sulfate (as Na 2 SO 4 ): 15000 mg / L Sodium chloride (as NaCl): 15000 mg / L Ferrous sulfate (Fe 2 + as) as ···· 1500mg / L 6-valent selenium (Se 6+) ······ 20mg / L [test method] the liquid to be treated having the above composition (stock solution pH 1.5) unheated under (room temperature (At 24 ° C.) to reduce the hexavalent selenium by adjusting the pH to 8.5 to 9.5 while maintaining treatment 50 for 50 minutes and treatment II for 80 minutes to reduce the hexavalent selenium. By blowing air, aeration is performed for 20 minutes to oxidize ferrous ions, and then the pH is increased to 6.5.
Selenium was adsorbed on the precipitated iron component (mainly ferric hydroxide), and then filtered through No. 5C filter paper, and all selenium (T-Se) and tetravalent selenium in the filtrate were adjusted. The concentration of (Se 4+ ) was measured. The results are shown in the following Table 3 together with the pH and the holding time of each treatment step.

【0018】[0018]

【表3】 [Table 3]

【0019】表3の結果から明らかなように、還元工程
を80分と長くとっても6価セレンは0.41mg/L
とかなりの割合で残留している。これは常温域での還元
処理では長時間をかけても6価セレンを充分に還元でき
ず、最終的な全セレン濃度を排水基準の規制値以下にす
ることが基本的に困難であることを表している。
As is evident from the results in Table 3, even if the reduction step is as long as 80 minutes, the amount of hexavalent selenium is 0.41 mg / L.
And it remains in a considerable proportion. This implies that hexavalent selenium cannot be sufficiently reduced even in a long period of time in the reduction treatment in the normal temperature range, and it is basically difficult to reduce the final total selenium concentration below the regulation value of the wastewater standard. Represents.

【0020】前記の試験1〜3の結果と従来より知られ
る技術情報に基づくセレンの水中挙動を総括すると、次
のようになる。 4価セレンは水酸化第二鉄の如き析出鉄成分によく
吸着されるが、6価セレンは殆ど吸着されない。 4価セレンは、2価鉄の共存下で空気と接触すると
容易に酸化されて6価セレンとなる傾向があるが、3価
鉄のみの存在下ではその傾向を示さない。 4価セレンの析出鉄成分への吸着率はpHが低いほ
ど高くなる一方、前項の酸化による6価セレンの生成
はpHが高いほど少なくなる。 金属セレンは希薄な酸及びアルカリに安定である
が、殆どの処理方法において6価セレンの還元は4価セ
レン止まりであり、金属セレンまで還元されることは少
ない。 第一鉄塩による6価セレンの還元は、常温域では単
に時間を長くするだけでは不完全である。
The following summarizes the behavior of selenium in water based on the results of Tests 1 to 3 and technical information conventionally known. Tetravalent selenium is well adsorbed by precipitated iron components such as ferric hydroxide, but hexavalent selenium is hardly adsorbed. Tetravalent selenium tends to be easily oxidized to hexavalent selenium when brought into contact with air in the presence of divalent iron, but does not show this tendency in the presence of trivalent iron alone. The lower the pH, the higher the adsorption rate of tetravalent selenium to the precipitated iron component, while the lower the pH, the lower the production of hexavalent selenium due to the oxidation described above. Although metal selenium is stable to dilute acids and alkalis, in most treatment methods, reduction of hexavalent selenium is limited to tetravalent selenium, and is rarely reduced to metal selenium. The reduction of hexavalent selenium with ferrous salts is incomplete at room temperature by simply increasing the time.

【0021】上記の,及び項は、6価セレンを含
む廃水からセレンを高度に除去することの困難さを表し
ている。すなわち、通常の第一鉄塩による還元処理では
6価セレンは4価セレンまでしか還元されず、4価セレ
ンは次の2価鉄を酸化するための曝気過程で誘発される
項の先祖帰り現象によって6価セレンに戻り易く、こ
の6価セレンは項の性質によって析出した鉄成分に吸
着されずに残留することになる。一方、項は項の先
祖帰り現象を回避して4価セレンの吸着除去率を高める
ための条件を示唆するが、このような条件を設定しても
項によって常温域での処理では6価セレンを充分に除
去できないことが判る。しかるに、6価セレンの残留防
止のために被処理液を加熱したり、6価セレンを金属セ
レンまで還元し得る特殊な還元剤を使用する手段は、実
際の廃水処理では既述のように到底採用できない。
[0021] The above and above indicate the difficulty of highly removing selenium from wastewater containing hexavalent selenium. In other words, hexavalent selenium is reduced only to tetravalent selenium by the usual reduction treatment with ferrous salt, and tetravalent selenium is an ancestral phenomenon of a term induced in the next aeration process for oxidizing ferrous iron. This makes it easy to return to hexavalent selenium, and this hexavalent selenium remains without being adsorbed by the precipitated iron component due to the properties of the term. On the other hand, the term suggests a condition for avoiding the ancestor return phenomenon of the term and increasing the adsorption and removal rate of tetravalent selenium. Is not sufficiently removed. However, means for heating the liquid to be treated to prevent hexavalent selenium from remaining or using a special reducing agent capable of reducing hexavalent selenium to metallic selenium is, as described above, in actual wastewater treatment. Can not be adopted.

【0022】そこで、本発明者らは、更に鋭意検討を重
ねた結果、還元時間を長くしても未還元の6価セレンが
残留するのは反応系の相平衡によって還元反応が進まな
くなることに起因すると判断し、還元処理中のpH変化
で系の相平衡をシフトさせることにより、系内の4価及
び6価セレンの濃度と存在形態を変えて処理効率を高め
るという考え方に到達した。すなわち、4価セレンは前
記項のように高pHほど析出鉄成分による吸着率が低
下つまり液中濃度が上昇する傾向を有するが、還元処理
のpH範囲(8.5〜9.5程度)は4価セレンが充分
に吸着される環境ではないから、反応系は〔Se6+⇔S
4+⇔吸着〕という相平衡を有することになる。この相
平衡においては6価セレンの濃度は必然的に4価セレン
の濃度によって支配されているが、処理中にpHを低い
側に変化させると、4価セレンの析出鉄成分への吸着量
が増加し、その分だけ4価セレンが反応系から除外され
るから、次にpHを再び元の領域まで上昇させると、上
記の相平衡はpH変化を行う前に比較して確実に低い濃
度で成立し、もって6価セレンの濃度が低下することに
なる。
Thus, the present inventors have conducted further intensive studies. As a result, even if the reduction time is lengthened, unreduced hexavalent selenium remains because the reduction reaction does not proceed due to the phase equilibrium of the reaction system. It was determined that this was caused by the change in pH during the reduction treatment, thereby shifting the phase equilibrium of the system, thereby changing the concentrations and existing forms of tetravalent and hexavalent selenium in the system, and reached the idea of increasing the processing efficiency. That is, tetravalent selenium has a tendency that the higher the pH, the lower the adsorption rate by the precipitated iron component, that is, the higher the pH, that is, the higher the concentration in the liquid, the higher the pH, but the pH range of the reduction treatment (about 8.5 to 9.5) is The reaction system is [Se 6+ ⇔S
e 4+ {adsorption]. In this phase equilibrium, the concentration of hexavalent selenium is necessarily governed by the concentration of tetravalent selenium, but when the pH is changed to a lower side during the treatment, the amount of tetravalent selenium adsorbed on the precipitated iron component is reduced. When the pH is then raised again to the original range, the above phase equilibrium is surely at a lower concentration than before the pH change. That is, the concentration of hexavalent selenium is reduced.

【0023】しかして、上記知見に基づいて、第一鉄塩
を還元剤として還元−曝気−吸着の工程を経るセレン除
去を常温域で行う場合に、還元処理中のpHを低い側に
振った上で戻すというpH変化を伴う処理方法について
綿密な実験研究を重ねた結果、この方法によって全セレ
ンを排水基準の規制値以下まで確実に除去でき、しかも
処理コストや処理能率の面でも優位であり、大量に発生
する排水の処理手段として高い適性を備えることが判明
し、本発明に係る第一のセレン含有液の処理方法が確立
された。すなわち、この処理方法によれば、常温域での
処理であるにも関わらず還元処理を短い時間で能率よく
行えると共に、上記のpHを低い側に振った際の新たに
見出された4価セレンの特異な挙動により、第一鉄塩の
使用量を少なくしても充分な還元効率を達成でき、もっ
て最終の固液分離による固形分の発生量が少なくなる
上、この固形分中にセレンが高濃度に濃縮するため、被
処理液中のセレンを高濃度の濃縮状態で効率よく回収で
きるという利点がある。
Thus, based on the above findings, when selenium removal through a reduction-aeration-adsorption process using ferrous salt as a reducing agent is carried out in a normal temperature range, the pH during the reduction treatment was lowered. As a result of extensive experimental research on a treatment method involving a pH change of returning above, all selenium can be reliably removed to below the regulation value of wastewater standards by this method, and it is also superior in terms of treatment cost and treatment efficiency. It has been found that the method has a high suitability for treating a large amount of wastewater, and the first method for treating a selenium-containing liquid according to the present invention has been established. That is, according to this treatment method, the reduction treatment can be carried out efficiently in a short time despite the treatment in the normal temperature range, and the newly discovered tetravalent when the above-mentioned pH is lowered to a lower side. Due to the unique behavior of selenium, sufficient reduction efficiency can be achieved even when the amount of ferrous salt used is reduced, so that the amount of solids generated by final solid-liquid separation is reduced, and selenium is contained in this solids. Since selenium is concentrated to a high concentration, there is an advantage that selenium in the liquid to be treated can be efficiently recovered in a highly concentrated state.

【0024】更に、本発明者らは、上記のpHを低い側
に振った際の4価セレンの特異な挙動に着目し、この挙
動を利用したより能率のよい処理手段の可否について更
なる検討を重ねた結果、前記第一の処理方法と同様のp
H変化を伴う還元処理後に処理物の全濾過を行った場合
に、被処理液中のセレンが濾過残渣中に集中し、濾液中
には殆どセレンが存在しない状態となり、もって前記第
一の処理方法における曝気−吸着の処理工程を省略でき
ることを見出し、本発明に係る第二のセレン含有液の処
理方法を構築することに成功した。
Further, the present inventors have focused on the peculiar behavior of tetravalent selenium when the above-mentioned pH is lowered to a lower side, and further examine whether or not a more efficient processing means utilizing this behavior is possible. As a result, p is the same as in the first processing method.
In the case where the treated material is completely filtered after the reduction treatment accompanied by the change in H, selenium in the liquid to be treated concentrates in the filtration residue, and almost no selenium is present in the filtrate. The inventors have found that the aeration-adsorption treatment step in the method can be omitted, and succeeded in constructing a second treatment method for a selenium-containing liquid according to the present invention.

【0025】すなわち、上記の4価セレンの特異な挙動
とは、想定されていた析出鉄成分による吸着に加えて、
4価セレンである亜セレン酸が2価の鉄イオンと容易に
結合して難溶性の亜セレン酸鉄を生成することである。
この亜セレン酸鉄は、アルカリ側領域と強酸性領域で溶
解する性質があるが、pH2.5〜8の範囲では充分に
低い溶解度を有している。従って、前記pH変化を伴う
充分な還元処理を行ったのち、pHを前記の低い範囲に
設定して全濾過を行えば、被処理液中に含有されていた
セレンの略全量が析出鉄成分(主として水酸化第二鉄)
への吸着分と亜セレン酸鉄として濾過残渣に含有され、
且つ余剰の2価鉄は溶解して濾液側に移行するため、前
記第一の処理方法に比較して濾過残渣は更に少量とな
り、セレンをより高濃度の濃縮状態として回収でき、そ
れだけ再利用が容易になる。
That is, the specific behavior of the above-mentioned tetravalent selenium means that, in addition to the assumed adsorption by the precipitated iron component,
The reason is that selenite, which is tetravalent selenium, easily bonds with divalent iron ions to form hardly soluble iron selenite.
This iron selenite has the property of dissolving in the alkali side region and the strongly acidic region, but has a sufficiently low solubility in the pH range of 2.5 to 8. Therefore, after performing the sufficient reduction treatment accompanied by the pH change, if the pH is set to the low range and the whole filtration is performed, substantially the entire amount of selenium contained in the liquid to be treated is reduced to the precipitated iron component ( Mainly ferric hydroxide)
Contained in the filtration residue as adsorbed to and iron selenite,
In addition, since excess ferrous iron dissolves and moves to the filtrate side, the amount of the filtration residue is further reduced as compared with the first treatment method, and selenium can be recovered as a higher-concentration state. It will be easier.

【0026】本発明の請求項1に係る第一のセレン含有
液の処理方法は、6価セレンを含有する液中に第一鉄塩
水溶液を添加して非加熱下で行う還元処理において、処
理中の液のpHが第一段階で8.5〜9.5、第二段階
で1.5〜7.5、第三段階で8.5〜9.5となるよ
うに調整し、この還元処理後に液のpHを11以上に維
持しつつ液中に空気を吹き込んで第一鉄を酸化し、次い
で液をpH5.8〜7に中和したのち、沈澱物を固液分
離することを特徴とするものである。また本発明の請求
項2に係る第二のセレン含有液の処理方法は、6価セレ
ンを含有する液中に第一鉄塩水溶液を添加して非加熱下
で行う還元処理において、処理中の液のpHが第一段階
で8.5〜9.5、第二段階で1.5〜7.5、第三段
階で8.5〜9.5となるように調整し、この還元処理
後に液のpHを2〜7.5に低下させて全濾過を行うこ
とを特徴とするものである。
The first method for treating a selenium-containing liquid according to the first aspect of the present invention is a method for treating a selenium-containing liquid, which comprises adding a ferrous salt aqueous solution to a hexavalent selenium-containing solution and performing the treatment without heating. The pH of the liquid in the first step is adjusted to 8.5 to 9.5, the second step to 1.5 to 7.5, and the third step to 8.5 to 9.5. After the treatment, air is blown into the liquid while maintaining the pH of the liquid at 11 or more to oxidize ferrous iron, and then the liquid is neutralized to pH 5.8 to 7, and then the precipitate is solid-liquid separated. It is assumed that. The second method for treating a selenium-containing liquid according to claim 2 of the present invention is characterized in that, in the reduction treatment performed by adding an aqueous ferrous salt solution to a solution containing hexavalent selenium and without heating, The pH of the solution was adjusted to be 8.5 to 9.5 in the first step, 1.5 to 7.5 in the second step, and 8.5 to 9.5 in the third step. The method is characterized in that the pH of the liquid is lowered to 2 to 7.5 and the whole filtration is performed.

【0027】しかして、これら第一及び第二の処理方法
においては、還元処理における第一段階の保持時間を5
分以上、第二段階の保持時間を1分以上、第三段階の保
持時間を5分以上にそれぞれ設定する請求項3を好適態
様として挙げることができる。
However, in these first and second treatment methods, the holding time of the first stage in the reduction treatment is set to 5 hours.
Claim 3 in which the holding time of the second stage is set to 1 minute or more and the holding time of the third stage to 5 minutes or more, respectively, can be cited as a preferred embodiment.

【0028】[0028]

【発明の実施の形態】本発明の第一及び第二のセレン含
有液の処理方法では、非加熱下で6価セレンを含有する
液中に第一鉄塩水溶液を添加して還元処理を行うが、こ
の還元処理中の液のpHを調整し、第一段階でpH8.
5〜9.5の範囲に設定したのち、第二段階ではpHを
1.5〜7.5の範囲まで低下させ、次いで第三段階で
は元のpH8.5〜9.5の範囲へ戻すことにより、6
価セレンの還元を最大限に進行させ、もって最終的な固
液分離を経た液中の全セレンを排水基準の規制値である
0.1mg/L以下に低減させる。
BEST MODE FOR CARRYING OUT THE INVENTION In the first and second methods for treating a selenium-containing liquid according to the present invention, a reduction treatment is performed by adding an aqueous ferrous salt solution to a liquid containing hexavalent selenium without heating. Adjusts the pH of the solution during the reduction treatment, and in the first step, pH 8.
After setting the pH in the range of 5 to 9.5, the pH is reduced to the range of 1.5 to 7.5 in the second stage, and then returned to the original range of 8.5 to 9.5 in the third stage. By 6
The reduction of the selenium (II) proceeds to the utmost, so that the total selenium in the liquid after the final solid-liquid separation is reduced to 0.1 mg / L or less, which is the regulation value of the wastewater standard.

【0029】すなわち、還元処理の第一段階のpH範囲
では、反応系の〔Se6+⇔Se4+⇔吸着〕という相平衡
が成立しており、6価セレンの濃度は4価セレンの濃度
によって支配されているが、第二段階でpHを低下させ
ることにより、4価セレンのかなりの割合が析出鉄成分
への吸着の増加と亜セレン酸鉄の生成とによって反応系
から除外される。従って、次に第三段階としてpHを再
び元の領域まで上昇させると、上記の相平衡はpH変化
を行う前に比較して確実に低い濃度で成立することにな
るから、この第三段階においては、第一段階では前記相
平衡によって妨げられていた6価セレンの還元が減少し
た4価セレンの濃度に支配される該低濃度の相平衡に達
するまで進行する。従って、還元処理工程の終了時点で
残留する未還元の6価セレンは、排水基準の規制値であ
る0.1mg/Lを充分に下回る低い濃度となる。
That is, in the pH range of the first stage of the reduction treatment, a phase equilibrium of [Se 6+ ⇔Se 4+ ⇔adsorption] is established in the reaction system, and the concentration of hexavalent selenium is equal to that of tetravalent selenium. However, by lowering the pH in the second step, a significant proportion of the tetravalent selenium is excluded from the reaction by increasing adsorption to the precipitated iron component and producing iron selenite. Therefore, when the pH is raised again to the original region as the third step, the above-mentioned phase equilibrium is established at a lower concentration than before the pH change, so that in this third step, Proceeds until the reduction of hexavalent selenium, which was hindered by the phase equilibrium in the first stage, reaches the low concentration of phase equilibrium governed by the reduced concentration of tetravalent selenium. Therefore, the unreduced hexavalent selenium remaining at the end of the reduction treatment step has a low concentration sufficiently lower than the regulated value of the wastewater standard of 0.1 mg / L.

【0030】前記の第一段階及び第三段階のpHは、
8.5〜9.5の範囲より高低いずれの側に外れても6
価セレンの還元効率が低下するために望ましくない。ま
た第二段階のpHは前記のように強酸性域から中性域と
広いが、7.5よりもアルカリ側では前記の相平衡の低
濃度側へのシフトが生起せず、還元処理工程の終了時点
で残留する未還元の6価セレンの量が急激に増加する。
なお、pH調整には、例えば苛性ソーダや塩酸のような
従来よりpH調整用として汎用される一般的なアルカリ
成分及び酸成分を使用できる。
The pH of the first and third steps is as follows:
It is 6 even if it deviates on either side higher or lower than the range of 8.5 to 9.5.
It is not desirable because the reduction efficiency of selenium (IV) decreases. Although the pH of the second stage is broad from the strongly acidic region to the neutral region as described above, the shift of the phase equilibrium to the lower concentration side does not occur on the alkaline side than 7.5, and the pH of the reduction treatment step is reduced. The amount of unreduced hexavalent selenium remaining at the end of time sharply increases.
For pH adjustment, common alkali components and acid components conventionally used for pH adjustment, such as caustic soda and hydrochloric acid, can be used.

【0031】ここで、前記還元処理における各段階の好
ましい保持時間としては、第一段階が5分以上、第二段
階が1分以上、第三段階が5分以上程度であり、いずれ
の段階でも上記範囲より短過ぎては6価セレンの還元が
不充分になり、逆に長過ぎては6価セレンの還元には支
障はないけれども処理全体に時間がかかって非能率であ
る。しかして、この還元処理は、常温域で行うにも関わ
らず、全体を通して僅か数分から数拾分程度で済むた
め、極めて処理能率がよいと言える。
Here, the preferable holding time of each step in the reduction treatment is about 5 minutes or more in the first step, about 1 minute or more in the second step, and about 5 minutes or more in the third step. If it is shorter than the above range, the reduction of hexavalent selenium is insufficient. On the other hand, if it is too long, the reduction of hexavalent selenium does not hinder, but the whole process takes time and is inefficient. However, although this reduction process is performed in a normal temperature range, it takes only a few minutes to a few pick-ups throughout the entire process, so it can be said that the processing efficiency is extremely good.

【0032】本発明の第一の処理方法では、上記の還元
処理後に液のpHを11以上に維持しつつ液中に空気を
吹き込んで第一鉄を酸化し、次いで液をpH5.8〜7
に中和したのち、沈澱物を固液分離する。すなわち、空
気を吹き込んで曝気することにより、第一鉄が酸化加水
分解されて主として水酸化第二鉄を析出し、この水酸化
第二鉄を主とする析出鉄成分に、還元処理後の液中に溶
存していた4価セレンが吸着して固形分側へ移行し、も
って被処理液中に含有されていた殆どのセレンが後の固
液分離による沈澱物と共に除去される。
In the first treatment method of the present invention, air is blown into the liquid while maintaining the pH of the liquid at 11 or more after the above-mentioned reduction treatment to oxidize ferrous iron, and then the liquid is treated with a pH of 5.8-7.
After the neutralization, the precipitate is subjected to solid-liquid separation. That is, by blowing air and aerating, ferrous iron is oxidatively hydrolyzed to mainly precipitate ferric hydroxide, and the precipitated iron component mainly composed of ferric hydroxide is added to the liquid after the reduction treatment. The tetravalent selenium dissolved therein is adsorbed and migrates to the solid content side, whereby most of the selenium contained in the liquid to be treated is removed together with the precipitate by the subsequent solid-liquid separation.

【0033】ここで、上記の曝気処理における液のpH
を11以上に設定するのは、4価セレンが2価鉄の存在
下での空気との接触によって酸化されて6価セレンに戻
るという既述の先祖帰り現象を回避するためである。前
記表1に示すように、このpHが11より低くなると先
祖帰り現象が誘発されるため、最終的にセレン濃度を排
水基準の規制値以下にすることが極めて困難になる。な
お、この曝気時間は、2価鉄のほとんどが3価鉄に酸化
されるまでとする。
Here, the pH of the solution in the above-described aeration treatment
Is set to 11 or more in order to avoid the above-mentioned ancestor return phenomenon in which tetravalent selenium is oxidized by contact with air in the presence of divalent iron and returns to hexavalent selenium. As shown in Table 1, when this pH is lower than 11, an ancestral phenomenon is induced, so that it is extremely difficult to finally reduce the selenium concentration to the regulated value of the wastewater standard. The aeration time is set until almost all of the ferrous iron is oxidized to trivalent iron.

【0034】上記曝気後に液をpH5.8〜7に中和す
るのは、水酸化第二鉄を主とする析出鉄成分による4価
セレンの吸着を促進するためであり、このpHが高過ぎ
ては吸着が不充分となり、逆に低過ぎても4価セレンの
吸着が不完全となり0.1mg/Lの排水規制値を満足
しないという問題がある。さらに、pHの排水基準を考
慮したとき、下限値はpH5.8とするのが好ましい。
The reason why the solution is neutralized to pH 5.8 to 7 after the aeration is to promote adsorption of tetravalent selenium by the precipitated iron component mainly composed of ferric hydroxide, and this pH is too high. On the other hand, there is a problem that even if the adsorption is insufficient, the adsorption of tetravalent selenium is incomplete even if the adsorption is too low, and the drainage regulation value of 0.1 mg / L is not satisfied. Further, considering the drainage standard of pH, the lower limit is preferably set to pH 5.8.

【0035】最後の固液分離には、シックナー等による
沈降処理、適当な濾材による濾過、沈降処理とその沈澱
物の濾過の組合せ等を採用でき、その際に固液分離を促
進するための適当な凝集剤や沈降剤を添加してもよい。
しかして、沈降処理の上澄み液及び濾液は、全セレン濃
度が排水基準の規制値である0.1mg/Lよりも充分
に低いため、そのまま排出可能である。一方、沈降処理
の沈澱物や濾過残渣にはセレンが集中して含有される
が、既述のように還元剤として用いる第一鉄塩の量を少
なくできるから、これら沈澱物や濾過残渣の量も少なく
でき、もって被処理液中のセレンを高濃度の濃縮状態で
回収することが可能となり、それだけセレンの再利用が
容易になる。
For the final solid-liquid separation, sedimentation treatment with a thickener or the like, filtration with an appropriate filter medium, a combination of sedimentation treatment and filtration of the precipitate can be employed, and in that case, an appropriate method for promoting solid-liquid separation can be used. Any suitable coagulant or sedimentation agent may be added.
The supernatant and the filtrate of the sedimentation treatment can be discharged as they are because the total selenium concentration is sufficiently lower than the regulated value of the wastewater standard of 0.1 mg / L. On the other hand, selenium is concentrated in the sediment and the filtration residue in the sedimentation treatment. However, as described above, the amount of the ferrous salt used as the reducing agent can be reduced. Therefore, selenium in the liquid to be treated can be recovered in a highly concentrated state, and selenium can be easily reused.

【0036】一方、本発明の第二の処理方法では、前記
の還元処理後に液のpHを2〜7.5に低下させて全濾
過を行う。
On the other hand, in the second treatment method of the present invention, after the above-mentioned reduction treatment, the pH of the solution is reduced to 2 to 7.5, and the whole filtration is performed.

【0037】この第二の処理方法にあっては、還元処理
後に液のpHを2〜7.5に低下させた際、還元処理中
の第二段階と同様に、液中に溶存していた4価セレンで
ある亜セレン酸が2価の鉄イオンと結合して難溶性の亜
セレン酸鉄を生成するため、該4価セレンを析出鉄成分
への吸着によらずに固形分側へ移行させることができ
る。そして、後述する実施例2の結果でも示されるよう
に、前記のpH変化を伴う充分な還元処理を行えば、被
処理液中に含有されていたセレンの略全量が主として亜
セレン酸鉄として全濾過した濾過残渣に含まれ、濾液に
は殆どセレンが存在せず、この段階においても排水基準
の規制値を充分にクリアーできる。
In the second treatment method, when the pH of the liquid was reduced to 2 to 7.5 after the reduction treatment, the solution was dissolved in the liquid as in the second stage during the reduction treatment. Since selenite, which is tetravalent selenium, combines with divalent iron ions to form hardly soluble iron selenite, the tetravalent selenium is transferred to the solid content side without being adsorbed on the precipitated iron component. Can be done. Then, as shown in the results of Example 2 described below, if the above-described sufficient reduction treatment with a change in pH is performed, almost the entire amount of selenium contained in the liquid to be treated is mainly reduced as iron selenite. It is contained in the filtered residue, and the filtrate contains almost no selenium. Even at this stage, the regulation value of the wastewater standard can be sufficiently cleared.

【0038】また還元処理後の液中に溶存していた余剰
の2価鉄はそのまま濾過した濾液側に移行するため、濾
過残渣の量は前記の曝気によって余剰の2価鉄を3価鉄
として析出させる第一の処理方法に比較して格段に少量
となる。従って、セレンを第一の処理方法よりも更に高
濃度の濃縮状態として回収でき、より再利用を行い易く
なる。
Further, since the excess ferrous iron dissolved in the liquid after the reduction treatment is directly transferred to the filtrate side after filtration, the amount of the filtration residue is reduced by the above-described aeration to convert the surplus ferrous iron into trivalent iron. The amount is much smaller than that of the first treatment method for precipitation. Therefore, selenium can be recovered in a more concentrated state than in the first treatment method, and reuse becomes easier.

【0039】なお、還元処理後に調整する液のpHが前
記の2〜7.5の範囲を高低いずれの側に外れても、亜
セレン酸鉄の溶出を生じる恐れがあり、この溶出によっ
て4価セレンが濾液側へ移行するため、排水基準の規制
値をクリアーすることが困難になる。なお、この還元処
理後にpH2〜7.5に調整した状態での保持時間は1
分以上とするのがよい。無論、この保持中においても液
の加熱は全く不要である。
If the pH of the solution to be adjusted after the reduction treatment deviates from the above range of 2 to 7.5 on either side, iron selenite may be eluted. Since selenium moves to the filtrate side, it becomes difficult to clear the regulation value of the drainage standard. After the reduction treatment, the holding time in a state where the pH is adjusted to 2 to 7.5 is 1
It should be at least minutes. Needless to say, heating of the liquid is not required at all during this holding.

【0040】本発明の前記第一及び第二の処理方法共
に、処理対象とするセレン含有液は6価セレンを含むも
のであれは特に制約はないが、6価セレンの還元を妨害
する成分である硫酸イオンや無機塩類を高濃度で含む場
合でも支障なく、セレンを排水基準の規制値以下まで除
去可能である。
In both the first and second treatment methods of the present invention, the selenium-containing liquid to be treated is not particularly limited as long as it contains hexavalent selenium, but it is a component that hinders the reduction of hexavalent selenium. Even when high concentrations of certain sulfate ions and inorganic salts are contained, selenium can be removed to a level below the regulation value of the wastewater standard without any problem.

【0041】[0041]

【実施例】 実施例1 〔被処理液中の成分濃度〕 硫酸ナトリウム(Na2 SO4 として)・・・15000mg/L 塩化ナトリウム(NaClとして) ・・・15000mg/L 硫酸第一鉄(Fe2+として) ・・・・1500mg/L 6価セレン(Se6+として) ・・・・・・20mg/L 上記組成の被処理液(原液pH1.5)について、非加
熱下(室温24℃)で攪拌しつつ、苛性ソーダ及び塩酸
を用いてpH調整することにより、各々後記表4に記載
のpH及び時間条件とした第一〜第三段階を経る還元処
理を行ったのち、pHを11.5に調整しつつ液中に空
気を吹き込むことにより、20分間の曝気を行って第一
鉄イオンを酸化して水酸化第二鉄を主とする3価鉄成分
を析出させたのち、pHを6.5に調整しつつ15分間
保持してセレンを析出鉄成分に吸着させ、次いでNo.
5C濾紙にて濾過し、濾液中の全セレン(T−Se)と
4価セレン(Se4+)の濃度を測定した。その結果を各
工程の保持時間及びpHと共に次の表4に示す。
EXAMPLES Example 1 [Component Concentration in Liquid to be Treated] Sodium sulfate (as Na 2 SO 4 ): 15000 mg / L Sodium chloride (as NaCl): 15000 mg / L Ferrous sulfate (Fe 2 + as) ···· 1500mg / L 6-valent selenium (Se 6+ as) ······ 20mg / L the liquid to be treated a composition (for stock solution pH 1.5), non-heating temperature (room temperature 24 ° C.) The pH was adjusted using sodium hydroxide and hydrochloric acid while stirring at, and after performing the reduction treatment through the first to third steps under the pH and time conditions described in Table 4 below, the pH was adjusted to 11.5. By blowing air into the liquid while adjusting the pH, ferrous ions are oxidized to precipitate a trivalent iron component mainly composed of ferric hydroxide. .15 and hold for 15 minutes Selenium is adsorbed to precipitated iron component and, then No.
The solution was filtered through a 5C filter paper, and the concentrations of total selenium (T-Se) and tetravalent selenium (Se 4+ ) in the filtrate were measured. The results are shown in the following Table 4 together with the retention time and pH of each step.

【0042】[0042]

【表4】 [Table 4]

【0043】表4の結果から明らかなように、第一鉄塩
を還元剤として還元−曝気−吸着の工程を経る常温域で
のセレン除去処理において、還元処理中に液のpHを低
い側へ一旦振った上で元のpHへ戻すという処理手段を
採用すれば、最終的な処理後の全セレンを排水基準の規
制値である0.1mg/L以下まで充分に除去可能であ
る。しかして、上記のpHを低い側へ振る際(第二段
階)のpH値は、処理A〜Fのように1.5〜7.5の
広い範囲を採用できるが、処理G(pH8)のようにp
H7.5を越える場合には未還元で残る6価セレンが著
しく増加するために排水基準の規制値をクリアーできな
くなることが判る。なお水酸化第一鉄の溶解度積定数か
ら求められる第一鉄の溶解度はpH8では44mg/L
程度、pH7.5では440mg/L程度であることか
ら、少なくとも数百mg/L以上の第一鉄の存在におい
て亜セレン酸第一鉄の十分な形成が行われていることが
推測される。
As is evident from the results in Table 4, in the selenium removal treatment at room temperature through the reduction-aeration-adsorption process using ferrous salt as a reducing agent, the pH of the liquid was lowered during the reduction treatment. If a processing means of shaking once and returning to the original pH is adopted, all the selenium after the final treatment can be sufficiently removed to 0.1 mg / L or less, which is the regulation value of the wastewater standard. Thus, the pH value when the above-mentioned pH is shaken to the lower side (second stage) can adopt a wide range of 1.5 to 7.5 as in the treatments A to F, but the pH in the treatment G (pH 8) can be adopted. Like p
When H exceeds 7.5, it can be seen that unreduced hexavalent selenium is remarkably increased, so that the regulated value of the wastewater standard cannot be cleared. The solubility of ferrous iron determined from the solubility product constant of ferrous hydroxide is 44 mg / L at pH 8.
Since the pH and pH are about 440 mg / L at 7.5, it is inferred that ferrous selenite is sufficiently formed in the presence of at least several hundred mg / L of ferrous iron.

【0044】 実施例2 〔被処理液中の成分濃度〕 硫酸ナトリウム(Na2 SO4 として)・・・15000mg/L 塩化ナトリウム(NaClとして) ・・・15000mg/L 硫酸第一鉄(Fe2+として) ・・・・1500mg/L 6価セレン(Se6+として) ・・・・・・50mg/L 上記組成の被処理液(原液pH1.5)について、非加
熱下(室温24℃)で攪拌しつつ、苛性ソーダ及び塩酸
を用いてpH調整することにより、第一段階ではpH
9.10〜9.27にて10分間、第二段階ではpH
3.44〜3.45にて4分間、第三段階ではpH9.
08〜9.24の範囲で13分間、それぞれ保持する三
段階を経る還元処理を行ったのち、pHを3.39に調
整して5分間保持した上で、処理液全量をNo.5Cの
濾紙にて濾過した。
Example 2 [Component Concentration in Liquid to be Treated] Sodium sulfate (as Na 2 SO 4 ): 15000 mg / L Sodium chloride (as NaCl): 15000 mg / L Ferrous sulfate (Fe 2+) 1500 mg / L Hexavalent selenium (as Se 6+ ) 50 mg / L For the liquid to be treated (stock solution pH 1.5) having the above composition, without heating (room temperature 24 ° C.) By adjusting the pH with caustic soda and hydrochloric acid while stirring, the first step is to adjust the pH
9.10-9.27 for 10 minutes, pH 2 in the second step
4 minutes at 3.44 to 3.45, pH 9 in the third stage.
After performing a reduction treatment through three steps of holding each in the range of 08 to 9.24 for 13 minutes, the pH was adjusted to 3.39, and the mixture was held for 5 minutes. The mixture was filtered with a 5C filter paper.

【0045】上記濾過後の濾液について、pHを11.
4〜11.5の範囲に調整しつつ空気を吹き込んで15
分間の曝気を行い、更にpH6.5に調整して10分間
保持したのち、No.5Cの濾紙による濾過を行い、そ
の濾液の全セレン(T−Se)と4価セレン(Se4+
の濃度を測定したところ、全セレンは0.033mg/
L、4価セレンは0.018mg/L、6価セレンは
0.015mg/Lという結果が得られた。
The filtrate after the filtration was adjusted to pH 11.
Blowing air while adjusting to the range of 4 to 11.5, 15
After aeration for a minute, the pH was further adjusted to 6.5 and maintained for 10 minutes. The solution was filtered through a 5C filter paper, and the filtrate was entirely selenium (T-Se) and tetravalent selenium (Se 4+ ).
Was measured, the total selenium was 0.033 mg /
The results were 0.018 mg / L for L and tetravalent selenium, and 0.015 mg / L for hexavalent selenium.

【0046】また、上記濾過後の濾液について、全セレ
ン(T−Se)と4価セレン(Se 4+)の濃度を測定し
たところ全セレンは0.09mg/L、4価セレン0.
073mg/L、6価セレン0.017mg/Lという
結果が得られた。
In addition, the filtrate after the above-mentioned filtration
(T-Se) and tetravalent selenium (Se 4+Measure the concentration)
As a result, all selenium was 0.09 mg / L and tetravalent selenium was 0.1.
073 mg / L, 0.017 mg / L hexavalent selenium
The result was obtained.

【0047】一方、前記の全濾過による濾過残渣につい
て、水洗後に(1+1)塩酸による洗浄と1%苛性ソー
ダによる洗浄を別個に行い、酸性環境でビタミンCを溶
解液に添加した所、いずれも夥しい赤色沈澱を生じた。
ビタミンCは4価セレンと酸性環境にて赤色金属セレン
を発生させることから、濾過残渣中の強酸性、或いは広
範なアルカリ領域で溶解するセレンは4価セレンであ
り、これらの事象からセレンの還元はその大部分が4価
セレン止まりであることが確認される。
On the other hand, with respect to the filtration residue obtained by the total filtration, washing with (1 + 1) hydrochloric acid and washing with 1% caustic soda were separately performed after washing with water, and vitamin C was added to the solution in an acidic environment. A precipitate formed.
Vitamin C generates tetravalent selenium and red metal selenium in an acidic environment. Therefore, selenium dissolved in a strongly acidic or wide alkaline region in the filtration residue is tetravalent selenium. Is confirmed to be mostly tetravalent selenium.

【0048】この実施例2の処理においては、セレンの
還元が殆ど4価止まりであることを前提とし、被処理液
中に酸素が10mg/L存在していると仮定しても、還
元処理後の3価鉄の存在は理論的に135mg/L程度
と推定され、この3価鉄に対してセレン濃度は50mg
/Lと非常に多いが、その殆どが濾過残渣中に移行して
いる。しかして、この濾過残渣中への移行が水酸化第二
鉄による吸着のみでなされるとすれば、一般的に3価鉄
が少なくともセレンの10倍は必要と考えられるが、こ
の処理では上記のように2.7倍程度しか存在せず、ま
た濾過残渣の生成量も少ないことを勘案すると、セレン
の濾過残渣中への移行のかなりの割合が既述の亜セレン
酸鉄の沈澱生成によって遂行されていると想定される。
In the treatment of Example 2, it is assumed that the reduction of selenium is almost tetravalent, and even if it is assumed that 10 mg / L of oxygen is present in the liquid to be treated, Is theoretically estimated to be about 135 mg / L, and a selenium concentration of 50 mg
/ L, most of which have migrated into the filtration residue. If the transfer into the filtration residue is performed only by adsorption with ferric hydroxide, it is generally considered that ferric iron is required to be at least 10 times as large as selenium. Considering that only about 2.7 times exist and the amount of filtration residue generated is small, a considerable proportion of selenium is transferred to the filtration residue by precipitation of iron selenite as described above. It is assumed that

【0049】[0049]

【発明の効果】請求項1の発明によれば、6価セレンを
含む被処理液よりセレンを除去する処理方法として、還
元−曝気−吸着を常温域で行って固液分離する処理によ
り、短時間で能率よく全セレンを排水基準の規定値以下
まで確実に除去でき、しかも還元剤の使用量も少なくて
済み、大量に発生する廃水等も低コストで処理できる
上、セレンを高濃度の濃縮状態で回収できる極めて実用
的な方法が提供される。
According to the first aspect of the present invention, as a method for removing selenium from a liquid to be treated containing hexavalent selenium, reduction-aeration-adsorption is performed in a normal temperature range to perform solid-liquid separation. Efficiently removes all selenium below the specified value of wastewater standards efficiently in a short time, uses less reducing agent, can process large amounts of wastewater at low cost, and concentrates selenium at high concentration A very practical method that can be recovered in a state is provided.

【0050】請求項2の発明によれば、6価セレンを含
む被処理液よりセレンを除去する処理方法として、常温
域での還元後に全濾過を行うことにより、上記処理方法
よりも更に能率よく全セレンを排水基準の規定値以下ま
で確実に除去できると共に、処理コスト及び設備コスト
がより低減され、しかも濾過残渣の発生量が少なく、セ
レンを再利用容易なより高濃度の濃縮状態で回収できる
方法が提供される。
According to the second aspect of the present invention, as a treatment method for removing selenium from the liquid to be treated containing hexavalent selenium, by performing a total filtration after reduction in a normal temperature range, it is more efficient than the above treatment method. All selenium can be reliably removed to below the sewage standard value, processing costs and equipment costs are further reduced, and the amount of filtration residue generated is small, and selenium can be recovered in a more concentrated state that is easy to reuse. A method is provided.

【0051】請求項3の発明によれば、上記の処理方法
において、還元処理を効率よく確実に行えるという利点
がある。
According to the third aspect of the present invention, there is an advantage in the above-described processing method that the reduction treatment can be performed efficiently and reliably.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 6価セレンを含有する液中に第一鉄塩水
溶液を添加して非加熱下で行う還元処理において、処理
中の液のpHが第一段階で8.5〜9.5、第二段階で
1.5〜7.5、第三段階で8.5〜9.5となるよう
に調整し、この還元処理後に液のpHを11以上に維持
しつつ液中に空気を吹き込んで第一鉄を酸化し、次いで
液をpH5.8〜7に中和したのち、沈澱物を固液分離
することを特徴とするセレン含有液の処理方法。
1. In a reduction treatment performed by adding an aqueous ferrous salt solution to a solution containing hexavalent selenium without heating, the pH of the solution during the treatment is 8.5 to 9.5 in the first stage. In the second step, the pH is adjusted to 1.5 to 7.5, and in the third step, 8.5 to 9.5. After the reduction treatment, air is introduced into the liquid while maintaining the pH of the liquid at 11 or more. A method for treating a selenium-containing liquid, which comprises blowing a ferrous iron to oxidize the liquid, neutralizing the liquid to a pH of 5.8 to 7, and then separating the precipitate into a solid and a liquid.
【請求項2】 6価セレンを含有する液中に第一鉄塩水
溶液を添加して非加熱下で行う還元処理において、処理
中の液のpHが第一段階で8.5〜9.5、第二段階で
1.5〜7.5、第三段階で8.5〜9.5となるよう
に調整し、この還元処理後に液のpHを2〜7.5に低
下させて全濾過を行うことを特徴とするセレン含有液の
処理方法。
2. In a reduction treatment performed by adding an aqueous solution of ferrous salt to a solution containing hexavalent selenium without heating, the pH of the solution during the treatment is 8.5 to 9.5 in the first stage. In the second step, the pH is adjusted to 1.5 to 7.5 and in the third step to 8.5 to 9.5. After the reduction treatment, the pH of the solution is reduced to 2 to 7.5, and the solution is completely filtered. A method for treating a selenium-containing liquid.
【請求項3】 還元処理における第一段階の保持時間を
5分以上、第二段階の保持時間を1分以上、第三段階の
保持時間を5分以上にそれぞれ設定する請求項1又は2
のいずれかに記載のセレン含有液の処理方法。
3. The holding time of the first step in the reduction treatment is set to 5 minutes or more, the holding time of the second step is set to 1 minute or more, and the holding time of the third step is set to 5 minutes or more.
The method for treating a selenium-containing liquid according to any one of the above.
JP10901498A 1998-04-20 1998-04-20 Method for treating selenium-containing liquid Expired - Lifetime JP3989618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10901498A JP3989618B2 (en) 1998-04-20 1998-04-20 Method for treating selenium-containing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10901498A JP3989618B2 (en) 1998-04-20 1998-04-20 Method for treating selenium-containing liquid

Publications (2)

Publication Number Publication Date
JPH11300372A true JPH11300372A (en) 1999-11-02
JP3989618B2 JP3989618B2 (en) 2007-10-10

Family

ID=14499396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10901498A Expired - Lifetime JP3989618B2 (en) 1998-04-20 1998-04-20 Method for treating selenium-containing liquid

Country Status (1)

Country Link
JP (1) JP3989618B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126758A (en) * 2000-10-30 2002-05-08 Taiheiyo Cement Corp Method for treating water
KR20160045877A (en) * 2013-10-16 2016-04-27 미츠비시 쥬고교 가부시키가이샤 Wastewater treatment method and wastewater treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126758A (en) * 2000-10-30 2002-05-08 Taiheiyo Cement Corp Method for treating water
KR20160045877A (en) * 2013-10-16 2016-04-27 미츠비시 쥬고교 가부시키가이샤 Wastewater treatment method and wastewater treatment device
US10336631B2 (en) 2013-10-16 2019-07-02 Mitsubishi Heavy Industries Engineering, Ltd. Wastewater treatment method and wastewater treatment apparatus

Also Published As

Publication number Publication date
JP3989618B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
CA2386940C (en) Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
CN105753218A (en) Method for removing trivalent arsenic
CN111018192A (en) Method for preparing high-purity ferrous iron by using heavy metal ions in ferrous solution precipitated by sodium sulfide solid
JPS5952583A (en) Treatment of aqueous solution containing arsenic and iron using iron-oxidizing bacteria
JP4614093B2 (en) Arsenic wastewater treatment method
JP4231934B2 (en) How to remove selenium in wastewater
JP3577832B2 (en) Method for removing Se from Se-containing liquid
JP3945216B2 (en) Waste acid gypsum manufacturing method
JP4145431B2 (en) Treatment of selenium-containing wastewater
JPH08206410A (en) Coagulant for water treatment
JPH11300372A (en) Treatment of selenium-containing liquid
JP2006102559A (en) Treatment method of selenium-containing wastewater
WO2023070556A1 (en) Method for removing thallium from leach liquor of ash of lead smelting bottom-blown converter
JP2007268338A (en) Method for removing phosphorus included underwater
JP2007203135A (en) Treatment method of waste liquid containing boron fluoride ion
JP2001113242A (en) Method for treating fly ash containing heavy metal, and the like
JPH0975954A (en) Method of removing seleno sulfate ion in selenium-containing waste solution
JP3215066B2 (en) Treatment method for wastewater containing selenium
JP3995803B2 (en) Method for treating selenium-containing liquid
JP4214319B2 (en) Method for treating selenium-containing water
JPH0199688A (en) Treatment of waste water containing cadmium
CN113526562B (en) Method for preparing scorodite by treating arsenic-containing smoke dust through ozone microbubble oxidation method
JPH07215703A (en) Method for removing selenium from selenic acid containing solution
JPS63258692A (en) Treatment of organic sewage
JP2004000883A (en) Method for treating solution containing selenium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term