JPH1129890A - Electrolytic method - Google Patents

Electrolytic method

Info

Publication number
JPH1129890A
JPH1129890A JP9202573A JP20257397A JPH1129890A JP H1129890 A JPH1129890 A JP H1129890A JP 9202573 A JP9202573 A JP 9202573A JP 20257397 A JP20257397 A JP 20257397A JP H1129890 A JPH1129890 A JP H1129890A
Authority
JP
Japan
Prior art keywords
cathode
gas diffusion
caustic
caustic alkali
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9202573A
Other languages
Japanese (ja)
Inventor
Makoto Shimada
誠 島田
Takayuki Shimamune
孝之 島宗
Masashi Tanaka
正志 田中
Takahiro Ashida
高弘 芦田
Shuhei Wakita
修平 脇田
Yoshinori Nishiki
善則 錦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP9202573A priority Critical patent/JPH1129890A/en
Publication of JPH1129890A publication Critical patent/JPH1129890A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which caustic alkali is removed in a simpler and surer manner than a conventional measure from a surface of a cathode, while, in the production of the caustic alkali using a liquid transmission type gas diffusion cathode, the supply of a gas is obstructed and the electrolytic efficiency is lowered because the surface of the cathode is covered by the produced caustic alkali. SOLUTION: Elecrolysis is executed, while intermittently supplying diluted caustic alkali or water on the cathode side surface of the gas diffusion cathode, to dilute the produced caustic alkali with a high concentration and high viscosity to easily remove the alkali from the cathode surface, thereby preventing the clogging of the cathode surface in the case of producing caustic alkali using a vertical electrolyzer having the liquid transmission type gas diffusion cathode. It is desirable to efficiently remove the produced caustic alkali by using a branch pipe or shower, and uniformly supplying the diluted caustic alkali, etc., over the entire surface of the cathode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、液透過型ガス拡散陰極
を使用して食塩等を電解し苛性アルカリを製造する電解
方法に関し、より詳細には該電解に際して前記ガス拡散
陰極の細孔の生成する苛性アルカリによる閉塞を防止し
て効率良く苛性アルカリを製造するための電解方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolysis method for producing a caustic alkali by electrolyzing salt or the like using a liquid-permeable gas diffusion cathode, and more particularly, to a method of forming pores of the gas diffusion cathode during the electrolysis. The present invention relates to an electrolysis method for efficiently producing caustic alkali by preventing clogging with generated caustic alkali.

【0002】[0002]

【従来技術とその問題点】クロルアルカリ電解を代表と
する電解工業は素材産業として重要な役割を果たしてい
る。このような重要な役割を持つもののクロルアルカリ
電解に要する消費エネルギーが大きく、日本のようにエ
ネルギーコストが高い国ではその省エネルギー化が大き
な問題となる。例えばクロルアルカリ電解では環境問題
の解決とともに省エネルギー化を達成するために、水銀
法から隔膜法を経てイオン交換膜法へと転換され、約25
年で約40%の省エネルギー化を達成してきた。しかしこ
の省エネルギー化でも不十分で、エネルギーである電力
コストが全製造費の50%を占めているが、現行の方法を
使用する限りこれ以上の電力節約は不可能なところまで
来ている。より以上の省エネルギー化を達成するために
は電極反応を修正する等の抜本的な変化を行なわなけれ
ばならない。その例として燃料電池等で採用されている
ガス拡散電極の使用は現在考えられる中で最も可能性が
高く、電力節約が大きい手段である。
2. Description of the Related Art Electrolysis industry represented by chloralkali electrolysis plays an important role as a material industry. Although having such an important role, the energy consumption required for chloralkali electrolysis is large, and energy saving is a major problem in countries with high energy costs such as Japan. For example, in chlor-alkali electrolysis, in order to solve environmental problems and achieve energy saving, the mercury method was switched to the ion exchange membrane method via the diaphragm method, and about 25%.
Annual energy savings of about 40% have been achieved. However, even this energy saving is not enough, and the power cost, which is energy, accounts for 50% of the total manufacturing cost. However, no further power saving is possible if the current method is used. In order to achieve more energy savings, drastic changes must be made, such as correcting the electrode reaction. As an example, the use of a gas diffusion electrode employed in a fuel cell or the like is the most likely and possible means of saving electric power.

【0003】従来の金属電極を使用する電解反応が、
陰極としてガス拡散電極を使用すると電解反応に変換
される。 2NaCl+2H2 0→Cl2 +2NaOH+H2
O =2.21V 2NaCl+ 1/2O2 +H2 O→Cl2 +2NaO
H EO =0.96V つまり金属電極をガス拡散電極に変換することにより、
理論分解電圧が2.21Vから0.96Vに減少し、理論的には
約65%の省エネルギー化が可能になる。従ってこのガス
拡散電極の使用によるクロルアルカリ電解の実用化に向
けて種々の検討が成されている。ガス拡散電極の構造は
一般に半疎水(撥水)型と言われるもので、表面に白金
等の触媒が担持された親水性の反応層と撥水性のガス拡
散層を接合した構造を有している。反応層及びガス拡散
層ともバインダーとして撥水性のポリテトラフルオロエ
チレン(PTFE)樹脂を使用し、このPTFE樹脂の
特性を利用してガス拡散層ではその割合を多くし、反応
層では少なくして両層を構成している。
[0003] The electrolytic reaction using a conventional metal electrode is
When a gas diffusion electrode is used as a cathode, it is converted into an electrolytic reaction. 2NaCl + 2H 2 0 → Cl 2 + 2NaOH + H 2
E O = 2.21V 2NaCl + 1 / 2O 2 + H 2 O → Cl 2 + 2NaO
The H E O = 0.96 V, that the metal electrodes by converting the gas diffusion electrode,
The theoretical decomposition voltage is reduced from 2.21V to 0.96V, and theoretically about 65% energy saving is possible. Therefore, various studies have been made toward the practical use of chloralkali electrolysis by using this gas diffusion electrode. The structure of the gas diffusion electrode is generally called a semi-hydrophobic (water-repellent) type, and has a structure in which a hydrophilic reaction layer carrying a catalyst such as platinum on the surface and a water-repellent gas diffusion layer are joined. I have. A water-repellent polytetrafluoroethylene (PTFE) resin is used as a binder for both the reaction layer and the gas diffusion layer, and the ratio is increased in the gas diffusion layer and reduced in the reaction layer by utilizing the characteristics of the PTFE resin. Make up the layers.

【0004】このようなガス拡散電極をクロルアルカリ
電解に使用すると幾つかの問題点が生じる。例えば高濃
度の苛性ソーダ中では撥水材であるPTFE樹脂が親水
化して撥水性を失いやすくなる。これを防止するために
前記ガス拡散層のガス室側に薄い多孔性のPTFEシー
トを貼ることが試みられている。又このガス拡散電極に
酸素や空気を供給しながら電解を進行させるが、副反応
として一部過酸化水素が生成しそれが構成材料である炭
素を腐食して炭酸ソーダを生成することがある。アルカ
リ溶液中では前記炭酸ソーダは沈澱してガス拡散層を閉
塞したり表面を親水化したりしてガス拡散電極の機能を
劣化させることがある。この炭酸ソーダが生成しなくて
も炭素表面に触媒を担持するのみで該触媒による炭素腐
食が生ずることも観察されている。
[0004] When such a gas diffusion electrode is used for chloralkali electrolysis, several problems arise. For example, in high-concentration caustic soda, PTFE resin as a water-repellent material becomes hydrophilic and easily loses water repellency. In order to prevent this, it has been attempted to attach a thin porous PTFE sheet to the gas diffusion layer on the gas chamber side. Electrolysis proceeds while supplying oxygen and air to the gas diffusion electrode. However, hydrogen peroxide is partially generated as a side reaction, which may corrode carbon as a constituent material to generate sodium carbonate. In an alkaline solution, the sodium carbonate precipitates and may block the gas diffusion layer or make the surface hydrophilic, thereby deteriorating the function of the gas diffusion electrode. It has also been observed that even if this sodium carbonate is not generated, only the catalyst is supported on the carbon surface, and that the catalyst causes carbon corrosion.

【0005】このガス拡散電極の閉塞の問題点を解決す
るために従来は使用する炭素の選択やその作製方法、並
びに炭素の樹脂の混合比率を調節することが行なわれた
が、いずれも根本的な解決にはならず、炭素腐食の見掛
け上の速度を遅らせるのみで、腐食を止めることはでき
なかった。炭素を使用しなければこのような腐食の問題
を解決できるため、炭素の代わりに銀を使用する方法が
提案されている。銀の使用により腐食の問題は解決でき
るものの、銀を使用するガス拡散電極は炭素を使用する
ガス拡散電極と異なり、焼結法で作製され、その作製方
法が極めて複雑でかつ撥水性部分と親水性部分の制御が
極めて行ないにくいという問題点がある。
In order to solve the problem of blockage of the gas diffusion electrode, conventionally, selection of carbon to be used, a method of producing carbon, and adjustment of a mixing ratio of carbon resin have been performed. It did not solve the problem, but only stopped the apparent rate of carbon corrosion, and could not stop it. Since the problem of corrosion can be solved without using carbon, a method using silver instead of carbon has been proposed. Although the problem of corrosion can be solved by using silver, the gas diffusion electrode using silver, unlike the gas diffusion electrode using carbon, is manufactured by a sintering method, the manufacturing method is extremely complicated, and the water-repellent part and the hydrophilic part are hydrophilic. There is a problem that control of the sex part is extremely difficult.

【0006】この問題点以外に従来のガス拡散電極を使
用する苛性アルカリ電解特に実用槽では、ガス室の電解
槽の高さ方向に圧力差があり、一定圧で一定量のガスを
供給しても電極表面全体に均一にガス供給を行なうこと
は極めて困難であるという問題点があった。このため実
験室規模では高さ方向に数種類の電極を並べて均一にガ
ス供給が行なわれるように工夫しているが、これを実用
槽に適用するのは複雑すぎ、未だ実用例はない。この高
さ方向の圧力差を緩和し大型化を容易にするためガス室
側にも供給ガスとともに電解液を供給して電解を行なう
ことが試みられている。しかしながらこの方法では圧力
の問題は解決するものの、電解液の存在のためガス拡散
電極のガス拡散層へのガス供給が不十分になり、ガス量
が不十分であるためその分電流密度を低く抑えなければ
ならず、実験室規模では30A/dm2程度の電流密度が可能
であっても大型槽では電流密度はその半分程度に抑えな
ければならないという問題点があった。
In addition to this problem, in a caustic alkaline electrolysis using a conventional gas diffusion electrode, particularly in a practical tank, there is a pressure difference in the height direction of the electrolytic cell in the gas chamber, and a constant amount of gas is supplied at a constant pressure. However, there is a problem that it is extremely difficult to supply gas uniformly over the entire electrode surface. For this reason, on a laboratory scale, several types of electrodes are arranged in the height direction so that gas is supplied uniformly. However, applying this to a practical tank is too complicated and there is no practical example yet. Attempts have been made to supply the electrolytic solution together with the supply gas to the gas chamber side to perform electrolysis in order to alleviate the pressure difference in the height direction and facilitate the size increase. However, although this method solves the problem of pressure, the presence of the electrolyte causes insufficient gas supply to the gas diffusion layer of the gas diffusion electrode, and the insufficient gas amount reduces the current density accordingly. Therefore, even if a current density of about 30 A / dm 2 is possible in a laboratory scale, there is a problem that the current density must be suppressed to about half of that in a large tank.

【0007】このガス供給が不十分になるという欠点を
解消するために、電極表面に凹凸を形成したり撥水化し
たりして供給ガスをガス拡散電極のガス拡散槽の近傍に
集めることが試みられている。しかしこの方法もガスが
ガス拡散電極を通って反応層へ到達するための駆動力と
はならず、ガス供給が不十分になるという問題点は依然
として解決されていない。この問題点を解決するために
本発明者らは、液透過型ガス拡散電極をイオン交換膜に
密着させ、液の圧力をイオン交換膜に掛けガス拡散電極
には全く圧力が掛からないようにしてきた。しかしこの
方法ではガス拡散電極を透過してきた製品である苛性ア
ルカリがガス拡散電極をある程度塞いでしまいガス供給
が時として滞る等の問題が生じている。これは電極表面
の疎水/親水の度合いを調節することによりある程度防
げるが完全ではなく、特に電解槽の大型化の際には電極
の閉塞は大きな問題点となる。
In order to solve the disadvantage that the gas supply becomes insufficient, it has been attempted to collect the supply gas in the vicinity of the gas diffusion tank of the gas diffusion electrode by forming irregularities on the electrode surface or making the electrode water-repellent. Have been. However, this method also does not serve as a driving force for the gas to reach the reaction layer through the gas diffusion electrode, and the problem of insufficient gas supply has not been solved. In order to solve this problem, the present inventors have attached a liquid-permeable gas diffusion electrode to an ion exchange membrane, and applied a liquid pressure to the ion exchange membrane so that no pressure was applied to the gas diffusion electrode. Was. However, in this method, there is a problem that caustic alkali, which is a product permeating the gas diffusion electrode, blocks the gas diffusion electrode to some extent and the gas supply is sometimes stopped. This can be prevented to some extent by adjusting the degree of hydrophobicity / hydrophilicity of the electrode surface, but it is not perfect. Particularly, when the size of the electrolytic cell is increased, clogging of the electrode becomes a serious problem.

【0008】[0008]

【発明の目的】本発明は、前述の従来技術の問題点、つ
まりガス拡散電極を使用する電解において生成物である
苛性アルカリが透過して到達するガス室側表面での生成
苛性アルカリの滞留による、特にガス供給の阻害に起因
する電解効率の低下を簡便かつ確実に防止できる電解方
法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art, that is, the generation of caustic on the gas chamber side surface where the product caustic permeates and reaches in the electrolysis using the gas diffusion electrode. In particular, an object of the present invention is to provide an electrolysis method that can easily and reliably prevent a decrease in electrolysis efficiency due to inhibition of gas supply.

【0009】[0009]

【問題点を解決するための手段】本発明に係わる電解方
法は、液透過型ガス拡散陰極を有する縦型電解槽を使用
する苛性アルカリ生成電解方法において、前記ガス拡散
陰極の陰極側表面に間欠的に希薄苛性アルカリ又は水を
供給しながら電解を行なうことを特徴とする電解方法で
ある。
The electrolysis method according to the present invention is directed to a caustic alkali generation electrolysis method using a vertical electrolytic cell having a liquid-permeable gas diffusion cathode, wherein an intermittent surface is provided on the cathode side of the gas diffusion cathode. This is an electrolysis method characterized by performing electrolysis while supplying a diluted caustic alkali or water.

【0010】以下本発明を詳細に説明する。液透過型ガ
ス拡散陰極は、通常、隔膜であるイオン交換膜に密着し
て設置され、該イオン交換膜により溶液室である陽極室
とガス室である陰極室に区画された2室型電解槽の陰極
として使用される。このような電解槽を使用する苛性ア
ルカリ生成電解では、ガス(酸素)供給は前記ガス拡散
陰極のイオン交換膜と反対面から行なわれ、該供給ガス
は前記ガス拡散陰極内を通ってイオン交換膜に達し、該
イオン交換膜表面で電解反応により水酸イオンを生成す
る。この水酸イオンは、陽極側からのアルカリ金属イオ
ンと結合して苛性アルカリを生成し、この苛性アルカリ
は前記ガス拡散陰極内を前記供給ガスの流れと対向する
方向に流れてガス室、つまり前記ガス拡散陰極表面に達
する。この苛性アルカリは高濃度であり前記表面で液滴
となったり、該表面を流下して電解槽下部から取り出さ
れる。液滴となった苛性アルカリは勿論流下する苛性ア
ルカリもその一部がガス拡散陰極表面を覆ってしまい、
円滑なガス供給が阻害されることになる。十分なガス供
給が行なわれないと前述したイオン交換膜表面での水酸
イオン生成の効率が低下し、従って製品である苛性アル
カリの生成効率も低下する。
Hereinafter, the present invention will be described in detail. The liquid-permeable gas diffusion cathode is usually installed in close contact with an ion-exchange membrane that is a diaphragm, and is divided into an anode chamber that is a solution chamber and a cathode chamber that is a gas chamber by the ion-exchange membrane. Used as a negative electrode. In the caustic alkali generation electrolysis using such an electrolytic cell, gas (oxygen) is supplied from the surface opposite to the ion exchange membrane of the gas diffusion cathode, and the supplied gas passes through the gas diffusion cathode and passes through the ion exchange membrane. And hydroxyl ions are generated by an electrolytic reaction on the surface of the ion exchange membrane. The hydroxyl ions combine with alkali metal ions from the anode side to generate caustic alkali, and the caustic flows in the gas diffusion cathode in a direction opposite to the flow of the supply gas, and the gas chamber, It reaches the gas diffusion cathode surface. This caustic alkali has a high concentration and becomes droplets on the surface or flows down the surface and is taken out from the lower part of the electrolytic cell. Drops of caustic as well as caustic flowing down partially cover the gas diffusion cathode surface,
A smooth gas supply will be hindered. If the gas supply is not sufficient, the efficiency of the production of hydroxyl ions on the surface of the ion-exchange membrane described above is reduced, and the efficiency of the production of caustic alkali as a product is also reduced.

【0011】このガス拡散陰極表面を覆う苛性アルカリ
を如何に除去するかが、ガス拡散陰極を使用する苛性ア
ルカリ電解における効率を高く維持するために解決され
るべき問題点である。この問題点を解消するために、従
来は電極構造に特殊な工夫、例えば庇状の案内板を取り
付けて液滴等を電極表面から除去したり、前述した通り
電極面の親水/撥水の度合いを調節して、即ち電極内の
多孔部分の孔の大きさをガス用と液用に分けられるよう
な孔径分布にすると同時に電解液との接触角を電極表面
の撥水性の度合いを調節することにより所望の値にし
て、同様に液滴等の電極表面からの除去を行なうように
している。しかしこれらの手法のうち、前者は比較的損
傷を受けやすいガス拡散陰極表面に加工を施す必要があ
り、又後者は比較的結果を予想しにくくかつ加工に手間
が掛かる操作が必要になるため、十分かつ満足が成果が
必ずしも得られるわけではない。
How to remove the caustic covering the gas diffusion cathode surface is a problem to be solved in order to maintain high efficiency in caustic electrolysis using the gas diffusion cathode. Conventionally, in order to solve this problem, a special device is applied to the electrode structure, for example, an eaves-shaped guide plate is attached to remove droplets from the electrode surface, or as described above, the degree of hydrophilicity / water repellency of the electrode surface. In other words, the pore size of the porous portion in the electrode should be adjusted so that the pore size distribution can be divided for gas and liquid, and at the same time, the contact angle with the electrolyte and the degree of water repellency of the electrode surface should be adjusted. To a desired value, and droplets and the like are similarly removed from the electrode surface. However, of these methods, the former requires processing the gas diffusion cathode surface which is relatively susceptible to damage, and the latter requires operations that are relatively difficult to predict the results and require time-consuming processing. Sufficient and satisfactory results are not always achieved.

【0012】本発明はこれらの従来技術の問題点を解消
できる電解方法であり、液透過型ガス拡散陰極を使用す
る苛性アルカリ生成電解を効率良く、つまり高電流密度
及び低槽電圧で行なうことを可能にする。ガス拡散陰極
表面に達した苛性アルカリの一部は該表面の撥水性によ
り自重で陰極表面を流下するが、該生成苛性アルカリの
濃度が30〜35%程度と高く従って粘性も高いため、容易
には表面を流下できず、少なくとも一部が陰極表面に留
まって該陰極を被覆してガス供給を阻害することにな
る。換言すると前記苛性アルカリの濃度を低下させ希釈
苛性アルカリとすると、該希釈苛性アルカリは粘性が低
下するため容易に陰極表面を流下して除去できることに
なる。
The present invention is an electrolysis method which can solve these problems of the prior art. It is an object of the present invention to efficiently perform caustic alkali generation electrolysis using a liquid-permeable gas diffusion cathode, that is, at a high current density and a low cell voltage. to enable. A portion of the caustic alkali that has reached the gas diffusion cathode surface flows down the cathode surface by its own weight due to the water repellency of the surface, but the concentration of the generated caustic alkali is as high as about 30 to 35%, and therefore the viscosity is high. Cannot flow down the surface, and at least a part thereof stays on the surface of the cathode to cover the cathode and obstruct gas supply. In other words, when the concentration of the caustic alkali is reduced to be a diluted caustic, the diluted caustic has a reduced viscosity, so that the diluted caustic can easily be removed by flowing down the cathode surface.

【0013】本発明は、このような着想により成された
もので、ガス拡散陰極を使用するハロゲン化アルカリの
電解による苛性アルカリ製造電解方法において、前記ガ
ス拡散陰極表面に留まって該ガス拡散陰極を被覆し円滑
なガス供給を阻害する恐れのある高濃度苛性アルカリに
希薄苛性アルカリ又は水を間欠的に供給して、前記高濃
度苛性アルカリを希釈して陰極表面を比較的円滑に流下
できる低濃度苛性アルカリにすることを意図するもので
ある。通常液透過型ガス拡散陰極を使用する場合、経験
的に30から40A/dm2 の電流密度では、30分から1時間は
槽電圧の上昇がなく、それ以降槽電圧が上昇する。本発
明では、特にこの電圧上昇を抑制するために、前述の通
り陰極表面に、希薄苛性アルカリ又は水を間欠的に供給
するのである。
The present invention has been made based on such an idea. In an electrolysis method for producing caustic alkali by electrolysis of an alkali halide using a gas diffusion cathode, the gas diffusion cathode stays on the surface of the gas diffusion cathode. Dilute caustic or water is intermittently supplied to high-concentration caustic which may hinder smooth gas supply, and the low-concentration caustic is diluted to dilute the high-concentration caustic and flow down the cathode surface relatively smoothly. It is intended to be caustic. When a normal liquid-permeable gas diffusion cathode is used, empirically, at a current density of 30 to 40 A / dm 2 , the cell voltage does not increase for 30 minutes to 1 hour, and thereafter increases. In the present invention, in order to suppress the voltage rise, dilute caustic or water is intermittently supplied to the cathode surface as described above.

【0014】供給する液は水特に純水であると希釈効果
が最大であり、つまり供給量を最少にできるため望まし
い。しかし、希釈苛性アルカリ水溶液、例えば25%以下
の苛性アルカリ水溶液も使用でき、この濃度の苛性アル
カリ水溶液であれば粘性も十分低く、陰極表面に存在す
る高濃度苛性アルカリを希釈して除去する機能を有する
が、特に望ましい濃度は20%以下である。25%を越える
濃度の苛性アルカリにも陰極表面の高濃度苛性アルカリ
を除去する機能はあるが、供給液量を増加させる必要が
あり、効果が若干弱くなる。前記希薄苛性アルカリ又は
水は単に上方から吹き付けることも可能であるが、この
ようにすると電解槽上部には前記希釈水等が十分に供給
されて除去効果は顕著になるが、電解槽下部には前記希
釈水が十分供給されず依然として高濃度苛性アルカリが
残って槽電圧低下の原因となる恐れがある。従って前記
希釈水等を陰極表面に供給する際には、分岐管やシャワ
ー等を利用して陰極表面全体に均一に分散させることが
望ましい。なお陰極の高さ方向に関しては、下部の方が
高濃度苛性アルカリで被覆されやすいため、下部への希
釈水の供給量を上部への供給量より若干増加させること
も有効である。
It is desirable that the liquid to be supplied is water, especially pure water, since the dilution effect is maximum, that is, the supply amount can be minimized. However, a diluted caustic aqueous solution, for example, a caustic aqueous solution of 25% or less can also be used. With this concentration of caustic aqueous solution, the viscosity is sufficiently low, and the function of diluting and removing the high-concentration caustic existing on the cathode surface is provided. However, a particularly desirable concentration is 20% or less. Caustic alkali having a concentration of more than 25% has a function of removing high-concentration caustic on the cathode surface, but the amount of the supplied liquid needs to be increased, and the effect is slightly weakened. The dilute caustic or water can be simply sprayed from above.However, in this case, the diluting water or the like is sufficiently supplied to the upper part of the electrolytic cell, and the removing effect becomes remarkable. There is a possibility that the diluted water is not sufficiently supplied, and a high concentration of caustic remains, which may cause a decrease in cell voltage. Therefore, when supplying the dilution water or the like to the cathode surface, it is desirable to uniformly disperse the diluted water over the entire cathode surface by using a branch pipe, a shower, or the like. In the height direction of the cathode, since the lower portion is more likely to be covered with high-concentration caustic, it is also effective to slightly increase the amount of dilution water supplied to the lower portion than the amount supplied to the upper portion.

【0015】[0015]

【実施例】次に本発明に係わる電解方法の実施例を記載
するが、該実施例は本発明を限定するものではない。
EXAMPLES Next, examples of the electrolysis method according to the present invention will be described, but the examples do not limit the present invention.

【0016】[0016]

【実施例1】ニッケルフォームをプレスにより嵩密度を
純金属の25%とした厚さ0.6 mmの板状基材とし、この基
材の表面に平均粒径10μmのニッケル粒子を、撥水性フ
ッ素樹脂をバインダーとして焼結し、この片面に平均粒
子約1μmの銀粉を触媒として担持して、液透過型ガス
拡散陰極とした。このガス拡散陰極の触媒担持面がイオ
ン交換膜側に密着するように、幅5cm高さ25cmの電解槽
に取り付けて2室法電解槽を構成した。イオン交換膜は
デュポン社製のナフィオン961 とし、該イオン交換膜の
反対側に、厚さ0.5 mmのチタン製エクスパンドメッシュ
に酸化イリジウムと酸化ルテニウムの複合酸化物を被覆
した不溶性電極(いわゆるDSE)を密着して設置し
た。
Example 1 A 0.6 mm-thick plate-shaped base material having a bulk density of 25% of pure metal by pressing a nickel foam was pressed, and nickel particles having an average particle size of 10 μm were coated on the surface of the base material with a water-repellent fluororesin. Was sintered as a binder, and a silver powder having an average particle size of about 1 μm was supported as a catalyst on one side of the sintered body to obtain a liquid-permeable gas diffusion cathode. This gas diffusion cathode was attached to an electrolytic cell having a width of 5 cm and a height of 25 cm so that the catalyst-carrying surface of the gas diffusion cathode was in close contact with the ion-exchange membrane side to constitute a two-chamber electrolytic cell. The ion-exchange membrane is Nafion 961 manufactured by DuPont. On the opposite side of the ion-exchange membrane, an insoluble electrode (so-called DSE) in which a 0.5 mm thick expanded mesh made of titanium is coated with a composite oxide of iridium oxide and ruthenium oxide is used. It was installed closely.

【0017】陰極室上部には斜め下向きに液ノズルを設
け陰極表面に希釈水を供給できるようにした。この状態
で前記電解槽の陽極室に食塩水を200 g/リットルで循
環し、陰極室には理論量の約1.5 倍の純酸素を供給し、
かつ前記ノズルから5分に一度約4mlの純水を噴出して
間欠的に陰極表面に供給するようにした。この条件で電
解を継続したところ、槽電圧は2.25Vで安定した。又電
解槽上半分と下半分の電流密度差を測定したところ、上
半分に対して下半分は約2%程度低かったが、この電流
密度差は実用範囲内であると判断した。供給した水を加
えた総合の苛性ソーダ濃度は32%であり、常法により得
られる苛性ソーダ濃度と同じであった。
A liquid nozzle is provided obliquely downward at the upper part of the cathode chamber so that dilution water can be supplied to the cathode surface. In this state, a saline solution was circulated at 200 g / liter to the anode chamber of the electrolytic cell, and about 1.5 times the theoretical amount of pure oxygen was supplied to the cathode chamber.
In addition, about 4 ml of pure water was ejected from the nozzle once every 5 minutes to intermittently supply the water to the cathode surface. When the electrolysis was continued under these conditions, the cell voltage was stabilized at 2.25 V. When the current density difference between the upper half and the lower half of the electrolytic cell was measured, the lower half was about 2% lower than the upper half, but it was judged that this current density difference was within the practical range. The total caustic soda concentration to which the supplied water was added was 32%, which was the same as the caustic soda concentration obtained by a conventional method.

【0018】[0018]

【比較例1】間欠的な洗浄を行なわず、純酸素に十分な
水分を添加したこと以外は実施例1と同一条件で電解を
行なったところ、槽電圧は当初2.2 Vであったが、1時
間後には2.4 Vとなり、上下の電流密度差は上半分に対
して下半分が20から25%低く大きなアンバランスがあっ
た。本比較例では間欠的洗浄がないため、ガス拡散陰極
表面が苛性ソーダ溶液で覆われてしまい、ガス供給が不
十分になるため、槽電圧低下が生ずるものと考えられ
る。
[Comparative Example 1] Electrolysis was performed under the same conditions as in Example 1 except that sufficient water was added to pure oxygen without intermittent cleaning, and the cell voltage was initially 2.2 V. After a lapse of time, the voltage became 2.4 V, and the difference between the upper and lower current densities was lower by 20 to 25% in the lower half than in the upper half, and there was a large imbalance. In this comparative example, since there is no intermittent cleaning, the surface of the gas diffusion cathode is covered with the caustic soda solution, and the gas supply becomes insufficient.

【0019】[0019]

【実施例2】実施例1の純水の代わりに、純水と得られ
る高濃度苛性ソーダを混合して調製した濃度約15%の希
釈苛性ソーダ溶液を使用し、更に純酸素の代わりに、純
酸素に水分を添加した湿潤ガスを使用した。これにより
希釈効果の他に生成苛性ソーダ濃度のより以上の均一化
を意図した。前述した通り、希釈苛性ソーダ溶液を純水
の代わりに、湿潤酸素を純酸素の代わりにそれぞれ使用
したこと以外は実施例1と同一条件で電解を行なったと
ころ、槽電圧は2.15Vで当初から安定し、得られた苛性
ソーダ濃度は実施例1と同じ32%であった。槽電圧が実
施例1より低いのは湿潤ガスによりイオン交換膜近傍で
生成した苛性ソーダ濃度が低くなりイオン交換膜の電気
抵抗が低下したためと考えられる。
EXAMPLE 2 Instead of the pure water of Example 1, a diluted caustic soda solution having a concentration of about 15% prepared by mixing pure water and the obtained high-concentration caustic soda was used. Further, pure oxygen was used instead of pure oxygen. A moist gas to which water was added was used. This was intended to further homogenize the generated caustic soda concentration in addition to the dilution effect. As described above, electrolysis was performed under the same conditions as in Example 1 except that the diluted caustic soda solution was used instead of pure water and wet oxygen was used instead of pure oxygen, and the cell voltage was stable at 2.15 V from the beginning. The obtained caustic soda concentration was 32%, the same as in Example 1. It is considered that the reason why the cell voltage was lower than that in Example 1 was that the concentration of caustic soda generated in the vicinity of the ion exchange membrane due to the wet gas was lowered, and the electric resistance of the ion exchange membrane was lowered.

【0020】[0020]

【発明の効果】本発明の電解方法は、液透過型ガス拡散
陰極を有する縦型電解槽を使用する苛性アルカリ生成電
解方法において、前記ガス拡散陰極の陰極側表面に間欠
的に希薄苛性アルカリ又は水を供給しながら電解を行な
うことを特徴とする電解方法である。
According to the electrolysis method of the present invention, there is provided a method for producing caustic alkali using a vertical electrolytic cell having a liquid-permeable gas diffusion cathode, wherein the cathode side surface of the gas diffusion cathode is intermittently diluted with caustic or alkaline. This is an electrolysis method characterized by performing electrolysis while supplying water.

【0021】本発明方法により、ガス拡散陰極の陰極側
表面に間欠的に希薄苛性アルカリ又は水を供給しながら
電解を行なうと、ガス拡散陰極表面に存在する高濃度苛
性アルカリが希釈され低濃度苛性アルカリとなって陰極
表面を流下して除去され、陰極閉塞がなくなってガス供
給が円滑になることから、供給ガスが容易にガス拡散陰
極全面に、従って反応が生ずるイオン交換膜表面に達し
やすくなり、理論量を僅かに越える量の供給ガスのみで
十分に反応を進行させることができるようになる。従っ
て反応が十分に進行することによる効率上昇、供給ガス
自体のコスト減及びガスを供給するための手段の簡略化
等の理由で大きな省エネルギー化を達成できる。しかも
希釈苛性アルカリ等を陰極表面に供給するという簡便な
手法であるため、要するコストが僅かであるとともに、
確実に除去効果が生じ、大きなメリットが得られる。
According to the method of the present invention, when electrolysis is carried out while intermittently supplying dilute caustic or water to the cathode side surface of the gas diffusion cathode, the high concentration caustic existing on the gas diffusion cathode surface is diluted and the low concentration caustic is diluted. Since it becomes alkali and is removed by flowing down the surface of the cathode, and the cathode is not clogged and the gas supply becomes smooth, the supplied gas easily reaches the entire surface of the gas diffusion cathode, and therefore reaches the surface of the ion exchange membrane where the reaction occurs. Thus, the reaction can be sufficiently advanced only by the amount of the supply gas slightly exceeding the stoichiometric amount. Therefore, large energy savings can be achieved because the efficiency of the reaction proceeds sufficiently, the cost of the supplied gas itself is reduced, and the means for supplying the gas is simplified. Moreover, since it is a simple method of supplying diluted caustic or the like to the cathode surface, the required cost is small,
The removal effect surely occurs, and a great merit can be obtained.

【0022】前述の希薄苛性アルカリ又は水は単に上方
から吹き付けるのではなく、分岐管やシャワーを通して
実質的に陰極表面全体に行なうようにすることが良く、
これにより陰極全面から高濃度苛性アルカリが除去され
て、陰極全体の電流分布をほぼ均一にできる。電解槽で
は陰極の上部表面より下部表面の方が高濃度苛性アルカ
リが滞留しやすいため、下部表面への供給量を多くする
と、更に効率が向上する。本発明方法を採用しても、生
成苛性アルカリ濃度の低下という欠点が生ずることはな
く、安定した運転が可能になる。
The above-mentioned diluted caustic or water is preferably sprayed not only from above but substantially over the entire cathode surface through a branch pipe or a shower.
As a result, high-concentration caustic alkali is removed from the entire surface of the cathode, and the current distribution over the entire cathode can be made substantially uniform. In the electrolytic cell, high-concentration caustic is more likely to accumulate on the lower surface than on the upper surface of the cathode. Therefore, when the supply amount to the lower surface is increased, the efficiency is further improved. Even if the method of the present invention is adopted, the drawback that the concentration of the formed caustic alkali is reduced does not occur, and stable operation is possible.

フロントページの続き (72)発明者 脇田 修平 神奈川県藤沢市辻堂元町5−5−9 II −3号 (72)発明者 錦 善則 神奈川県藤沢市藤沢1丁目1番の23の304Continuation of the front page (72) Inventor Shuhei Wakita 5-5-9, Tsujido Motomachi, Fujisawa-shi, Kanagawa Prefecture II-3-3 (72) Inventor Yoshinori Nishiki 1-31-1 304 Fujisawa, Fujisawa-shi, Kanagawa

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液透過型ガス拡散陰極を有する縦型電解
槽を使用する苛性アルカリ生成電解方法において、前記
ガス拡散陰極の陰極側表面に間欠的に希薄苛性アルカリ
又は水を供給しながら電解を行なうことを特徴とする電
解方法。
In a caustic alkali generating electrolysis method using a vertical electrolytic cell having a liquid-permeable gas diffusion cathode, electrolysis is performed while intermittently supplying dilute caustic or water to the cathode side surface of the gas diffusion cathode. An electrolysis method characterized by performing.
【請求項2】 希薄苛性アルカリ又は水の供給を分岐管
を通して実質的に陰極表面全体に行なうようにした請求
項1に記載の電解方法。
2. The electrolytic method according to claim 1, wherein the supply of the diluted caustic alkali or water is performed through a branch pipe substantially over the entire cathode surface.
【請求項3】 陰極の上部表面より下部表面への希薄苛
性アルカリ又は水の供給量を多くするようにした請求項
1に記載の電解方法。
3. The electrolysis method according to claim 1, wherein the amount of dilute caustic or water supplied to the lower surface of the cathode is larger than that of the lower surface.
JP9202573A 1997-07-11 1997-07-11 Electrolytic method Pending JPH1129890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9202573A JPH1129890A (en) 1997-07-11 1997-07-11 Electrolytic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9202573A JPH1129890A (en) 1997-07-11 1997-07-11 Electrolytic method

Publications (1)

Publication Number Publication Date
JPH1129890A true JPH1129890A (en) 1999-02-02

Family

ID=16459739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9202573A Pending JPH1129890A (en) 1997-07-11 1997-07-11 Electrolytic method

Country Status (1)

Country Link
JP (1) JPH1129890A (en)

Similar Documents

Publication Publication Date Title
EP1033419B1 (en) Soda electrolytic cell provided with gas diffusion electrode
JP3553775B2 (en) Electrolyzer using gas diffusion electrode
JP3689541B2 (en) Seawater electrolyzer
JP2003041388A (en) Electrolysis cell with ion exchange membrane and electrolysis method
US5766429A (en) Electrolytic cell
US5693213A (en) Electrolytic process of salt water
EP2639337A2 (en) Method for the electrolysis of alkali chlorides with oxygen consumption electrodes
US5565082A (en) Brine electrolysis and electrolytic cell therefor
JP3621784B2 (en) Liquid-permeable gas diffusion electrode
US5676808A (en) Electrolytic cell using gas diffusion electrode
JP5160542B2 (en) Chloro-alkaline electrolytic cell with oxygen diffusion cathode
JP2002275670A (en) Ion exchange membrane electrolytic cell and electrolysis method
US5879521A (en) Gas-diffusion cathode and salt water electrolytic cell using the gas-diffusion cathode
US5584976A (en) Gas diffusion electrode
US6797136B2 (en) Electrolytic cell
JPH1129890A (en) Electrolytic method
JP3553781B2 (en) Electrolysis method using gas diffusion cathode
JP3625633B2 (en) Gas diffusion electrode structure and manufacturing method thereof
JP2012077381A (en) Method for manufacturing transport- and storage-stable oxygen-consuming electrode
JP3677120B2 (en) Liquid-permeable gas diffusion cathode
JP3706716B2 (en) Electrolysis method
JP4029944B2 (en) Liquid-permeable gas diffusion cathode structure
JP2007119817A (en) Gas diffusion cathode for reducing oxygen in brine electrolysis, and brine electrolysis method
JPH11200080A (en) Gas diffusion electrode structural body
JP3304481B2 (en) Electrolyzer for hydrogen peroxide production and method for electrolytic production of hydrogen peroxide