JPH1129879A - Antibacterial treated metallic material and the antibacterial treatment - Google Patents

Antibacterial treated metallic material and the antibacterial treatment

Info

Publication number
JPH1129879A
JPH1129879A JP12437998A JP12437998A JPH1129879A JP H1129879 A JPH1129879 A JP H1129879A JP 12437998 A JP12437998 A JP 12437998A JP 12437998 A JP12437998 A JP 12437998A JP H1129879 A JPH1129879 A JP H1129879A
Authority
JP
Japan
Prior art keywords
metal material
antibacterial
layer
metallic material
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12437998A
Other languages
Japanese (ja)
Inventor
Kenichi Hijikata
研一 土方
Rie Mori
理恵 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP12437998A priority Critical patent/JPH1129879A/en
Publication of JPH1129879A publication Critical patent/JPH1129879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain high antibacterial characteristic for a long period without changing characteristics inherent in a material and to provide high antibacterial characteristic without deteriorating a metallic material nor raising the price of the metallic material. SOLUTION: The metallic material contains Ag only in the vicinity of the surface. An Ag layer is formed on the surface of a metallic material, such as stainless steel and Al, and then this metallic material is rolled, preferably, heat-treated in vacuum or in inert gas, or, as another method, a naturally occurring oxide film is removed from the surface of a metallic material and, after or during the formation of an Ag layer on the above surface of the metallic material from which the naturally occurring oxide film is removed, the metallic material is heat-treated in vacuum or in inert gas. By this method, the Ag layer is allowed to diffuse in the surface of the metallic material, and antibacterial treatment for the metallic material can be carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、細菌の繁殖しやす
い環境で使用される金属製品用の金属材料及びその表面
を抗菌処理する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal material for a metal product used in an environment where bacteria can easily propagate, and a method for antibacterial treatment of the surface of the metal material.

【0002】[0002]

【従来の技術】細菌の繁殖しやすい環境で使用される金
属製品として、浴槽、石けん箱、コップ等の浴室用品、
シンク、排水口ごみうけ、三角コーナー、調理器具等の
台所用品、洗濯機の洗濯槽、家庭用及び自動車用エアコ
ンの熱交換器、腕時計、眼鏡、アクセサリ等の装身具の
金属部分、医療用器具などが挙げられる。従来、この種
の金属材料の抗菌処理は、AgやCuを含む抗菌剤や防
かび剤を金属材料の表面に塗布していた。しかし、この
方法では抗菌層や防かび層が剥離しやすいために、金属
材料の製造時にAgやCuを添加して材料を合金化する
方法が採られていた。
2. Description of the Related Art Bath products such as bathtubs, soap boxes, cups, etc.
Sinks, drainage garbage, triangle corners, kitchen utensils such as cooking utensils, washing tubs for washing machines, heat exchangers for home and automotive air conditioners, metal parts for personal accessories such as watches, glasses, accessories, medical equipment, etc. Is mentioned. Conventionally, in this kind of antibacterial treatment of a metal material, an antibacterial agent or a fungicide containing Ag or Cu is applied to the surface of the metal material. However, in this method, since the antibacterial layer and the antifungal layer are easily peeled off, a method of adding Ag or Cu during the production of the metal material and alloying the material has been adopted.

【0003】[0003]

【発明が解決しようとする課題】この抗菌処理法では、
CuはAgに比べて安価であるものの、抗菌性に乏しい
ために大量に添加しなければならず、これにより金属材
料を変質させる恐れがある。一方、微量で抗菌性を発揮
するAgは一般の金属材料に比べて高価であり、Agの
合金化のためには、抗菌性能を要求されない金属材料内
部にまでAgを含ませる必要から、比較的多くのAgが
使用され、結果的に金属材料の価格を上げる恐れがあ
る。
In this antibacterial treatment method,
Cu is inexpensive compared to Ag, but has poor antibacterial properties and must be added in large quantities, which may alter the metal material. On the other hand, Ag which exerts antimicrobial properties in a small amount is more expensive than general metal materials, and for alloying Ag, it is necessary to include Ag even in metal materials that do not require antimicrobial performance. A lot of Ag is used, which may increase the price of the metal material.

【0004】本発明の目的は、材料本来の特性を変える
ことなく、高い抗菌性を長期間持続する抗菌処理した金
属材料を提供することにある。本発明の別の目的は、金
属材料特性を変えずに、かつ金属材料の価格を押上げず
に金属材料に高い抗菌性を付与し得る金属材料の抗菌処
理方法を提供することにある。
[0004] An object of the present invention is to provide a metal material which has been subjected to antibacterial treatment and which maintains high antibacterial properties for a long period of time without changing the intrinsic properties of the material. Another object of the present invention is to provide an antibacterial treatment method for a metal material that can impart high antibacterial properties to the metal material without changing the characteristics of the metal material and without increasing the price of the metal material.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
表面近傍にのみAgを含有している抗菌処理した金属材
料である。抗菌性の高いAgを金属材料の表面近傍にの
み低濃度に含有させるため、材料本来の特性を変えるこ
となく、高い抗菌性を長期間持続する金属材料が得られ
る。
The invention according to claim 1 is
It is an antibacterial-treated metal material containing Ag only in the vicinity of the surface. Since Ag having a high antibacterial property is contained at a low concentration only in the vicinity of the surface of the metal material, a metal material having high antibacterial property for a long period of time can be obtained without changing the intrinsic properties of the material.

【0006】請求項2又は請求項8に係る発明は、請求
項1又は請求項3ないし7に係る発明であって、金属材
料がステンレス鋼又はAlである金属材料又はその抗菌
処理方法である。金属材料として、ステンレス鋼、A
l、Al合金又はZnめっき鋼を選定することにより、
Agをその表面内部に適切に拡散することができる。
The invention according to claim 2 or claim 8 is the invention according to claim 1 or claims 3 to 7, which is a metal material whose metal material is stainless steel or Al, or an antibacterial treatment method thereof. Stainless steel, A as metal material
By selecting 1, Al alloy or Zn plated steel,
Ag can be appropriately diffused inside the surface.

【0007】請求項3に係る発明は、金属材料表面にA
g層を形成した後、前記金属材料を圧延することを特徴
とする金属材料の抗菌処理方法である。圧延により、A
g層は金属材料とともに延伸し、ごく薄い層となって金
属材料全面に広がり、その内部に拡散する。金属材料は
表面を自然酸化膜で覆われていることが多いが、その場
合にもこの方法は有効である。なぜならば、自然酸化膜
は展延性に乏しいため、圧延時に細かく分断され、金属
材料内部へのAg層の拡散を妨げることはないからであ
る。この方法によれば、金属材料表面に自然酸化膜が存
在していても、それを除去する必要はない。
[0007] The invention according to claim 3 is that the metal material surface has A
An antibacterial treatment method for a metal material, comprising rolling the metal material after forming the g layer. By rolling, A
The g layer extends together with the metal material, becomes a very thin layer, spreads over the entire surface of the metal material, and diffuses inside. In many cases, the surface of a metal material is covered with a natural oxide film, and in this case, this method is effective. This is because the natural oxide film has poor ductility and is finely divided at the time of rolling and does not hinder the diffusion of the Ag layer into the metal material. According to this method, even if a natural oxide film exists on the surface of the metal material, it is not necessary to remove it.

【0008】請求項4に係る発明は、請求項3に係る発
明であって、金属材料を圧延した後、前記金属材料を真
空中或は不活性ガス中で熱処理する金属材料の抗菌処理
方法である。圧延後に熱処理を施すことにより、Ag層
を構成しているAg原子が確実に金属材料の内部に拡散
する。
[0010] The invention according to claim 4 is the invention according to claim 3, which is an antibacterial treatment method for a metal material, wherein the metal material is rolled and then heat-treated in a vacuum or an inert gas. is there. By performing the heat treatment after the rolling, the Ag atoms constituting the Ag layer are surely diffused into the metal material.

【0009】請求項5に係る発明は、表面に自然酸化膜
を有する金属材料の前記自然酸化膜を除去し、この自然
酸化膜を除去した金属材料の表面にAg層を形成した後
或は形成中にこの金属材料を真空中或は不活性ガス中で
熱処理することを特徴とする金属材料の抗菌処理方法で
ある。自然酸化膜を除去した後に金属材料表面にAg層
を形成するため、自然酸化膜が金属材料中へのAgの拡
散に対する障害とならず、金属材料の熱処理時にAg層
を構成するAg原子が金属材料中に均一かつ円滑に拡散
する。真空中或は不活性ガス中で熱処理することにより
Ag層又は金属材料の表面に雰囲気による変質層を形成
しない。
According to a fifth aspect of the present invention, there is provided a metal material having a natural oxide film on its surface, wherein the natural oxide film is removed and an Ag layer is formed on or after the surface of the metal material from which the natural oxide film has been removed. An antibacterial treatment method for a metal material, wherein the metal material is heat-treated in a vacuum or in an inert gas. Since the Ag layer is formed on the surface of the metal material after the removal of the natural oxide film, the natural oxide film does not hinder the diffusion of Ag into the metal material. Diffuses uniformly and smoothly throughout the material. By performing the heat treatment in a vacuum or in an inert gas, no altered layer due to the atmosphere is formed on the surface of the Ag layer or the metal material.

【0010】請求項6に係る発明は、請求項5に係る発
明であって、金属材料を湿式エッチング又は乾式エッチ
ングにより自然酸化膜を除去する金属材料の抗菌処理方
法である。金属材料を湿式又は乾式エッチングすること
により、金属材料表面に存在する自然酸化膜の大部分を
除去することができる。
The invention according to claim 6 is the invention according to claim 5, which is an antibacterial treatment method for a metal material in which a natural oxide film is removed by wet etching or dry etching. By performing wet or dry etching of the metal material, most of the natural oxide film present on the surface of the metal material can be removed.

【0011】請求項7に係る発明は、請求項3又は5に
係る発明であって、Ag層を物理蒸着(PVD:Physic
al Vapor Deposition)することにより形成する金属材
料の抗菌処理方法である。物理蒸着法によりAg層を形
成することにより、Ag層を数原子層程度の薄さで形成
することができる。
The invention according to claim 7 is the invention according to claim 3 or 5, wherein the Ag layer is formed by physical vapor deposition (PVD: Physic).
al Vapor Deposition) is an antibacterial treatment method for a metal material formed by the above method. By forming the Ag layer by a physical vapor deposition method, the Ag layer can be formed with a thickness of about several atomic layers.

【0012】[0012]

【発明の実施の形態】本発明の金属材料は、Ag以外の
金属材料であって、ステンレス鋼又はAlであることが
好ましい。これ以外にAl合金、Znめっき鋼などでも
よい。ステンレス鋼を例示すれば、SUS301(組成:17Cr-7
Ni)、SUS303(組成:18Cr-8Ni-高S)、SUS304(組成:18Cr-8
Ni)、SUS304L(組成:18Cr-9Ni-低C)、SUS310S(組成:25Cr
-20Ni)、SUS316(組成:18Cr-12Ni-2.5Mo)、SUS321(組成:
18Cr-9Ni-Ti)、SUSXM7(組成:18Cr-9Ni-3.5Cu)、SUSXM15
J1(組成:18Cr-13Ni-4Si)等のオーステナイト系JISス
テンレス鋼、SUS410L(組成:13Cr-低C)、SUS430(組成:18
Cr)、SUS430F(組成:18Cr-高S)、SUS434(組成:18Cr-1Mo)
等のフェライト系JISステンレス鋼、SUS410(組成:13
Cr)、SUS420J1(組成:13Cr-0.2C)、SUS420J2(組成:13Cr-
0.3C)、SUS440A(組成:18Cr-0.7C)、SUS440B(組成:18Cr-
0.8C)、SUS440C(組成:18Cr-1C)等のマルテンサイト系J
ISステンレス鋼、SUS630(組成:17Cr-4Ni-4Cu-Nb)、SU
S631(組成:17Cr-7Ni-1Al)等の析出硬化系JISステン
レス鋼が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The metal material of the present invention is a metal material other than Ag, and is preferably stainless steel or Al. Other than this, an Al alloy, Zn-plated steel, or the like may be used. SUS301 (composition: 17Cr-7
Ni), SUS303 (composition: 18Cr-8Ni-high S), SUS304 (composition: 18Cr-8
Ni), SUS304L (composition: 18Cr-9Ni-low C), SUS310S (composition: 25Cr)
-20Ni), SUS316 (composition: 18Cr-12Ni-2.5Mo), SUS321 (composition:
18Cr-9Ni-Ti), SUSXM7 (Composition: 18Cr-9Ni-3.5Cu), SUSXM15
Austenitic JIS stainless steel such as J1 (composition: 18Cr-13Ni-4Si), SUS410L (composition: 13Cr-low C), SUS430 (composition: 18
Cr), SUS430F (composition: 18Cr-high S), SUS434 (composition: 18Cr-1Mo)
Ferritic JIS stainless steel, SUS410 (composition: 13
Cr), SUS420J1 (composition: 13Cr-0.2C), SUS420J2 (composition: 13Cr-
0.3C), SUS440A (composition: 18Cr-0.7C), SUS440B (composition: 18Cr-
0.8C), martensitic J such as SUS440C (composition: 18Cr-1C)
IS stainless steel, SUS630 (composition: 17Cr-4Ni-4Cu-Nb), SU
Precipitation hardening JIS stainless steel such as S631 (composition: 17Cr-7Ni-1Al) is exemplified.

【0013】本発明の第一の金属材料の抗菌処理方法
は、金属材料の表面にAg層を形成したのち金属材料を
圧延する方法である。圧延によって金属材料表面の自然
酸化膜が破れAgが金属材料内部へ拡散する。これによ
り金属材料表面の自然酸化膜を取り除く処理を行わなく
ても表面近傍にのみAgを含有し抗菌性を有する金属材
料を得ることができる。この金属材料を圧延した後、金
属材料を真空中或は不活性ガス中で熱処理することが、
Ag層を構成しているAg原子が確実に金属材料の内部
に拡散するため、好ましい。本発明の第二の金属材料の
抗菌処理方法は、表面の自然酸化膜を除去した後、この
金属材料の表面にAg層を形成し、熱処理する方法であ
る。この方法で抗菌処理した金属材料表面近傍のAgの
分布状態はAg層厚と熱処理条件に依存する。金属材料
表面近傍のAgの分布状態は次の式(1)及び(2)で
表される。x軸は金属材料表面に垂直にとり金属材料表
面をx=0、金属材料内部を正とした。
The first method for antibacterial treatment of a metal material according to the present invention is a method of rolling a metal material after forming an Ag layer on the surface of the metal material. The rolling breaks the natural oxide film on the surface of the metal material, and Ag diffuses into the metal material. Thus, a metal material containing Ag only in the vicinity of the surface and having antibacterial properties can be obtained without performing a treatment for removing a natural oxide film on the surface of the metal material. After rolling this metal material, heat treatment of the metal material in a vacuum or an inert gas,
It is preferable because Ag atoms constituting the Ag layer are surely diffused into the metal material. The second method of antibacterial treatment of a metal material of the present invention is a method of removing a natural oxide film on the surface, forming an Ag layer on the surface of the metal material, and performing a heat treatment. The distribution of Ag in the vicinity of the surface of the metal material subjected to the antibacterial treatment by this method depends on the Ag layer thickness and the heat treatment conditions. The distribution state of Ag near the surface of the metal material is expressed by the following equations (1) and (2). The x-axis is perpendicular to the surface of the metal material, and the surface of the metal material is x = 0, and the inside of the metal material is positive.

【0014】[0014]

【数1】 (Equation 1)

【0015】C:金属材料表面からの距離xにおけるA
gの濃度(g/cm3) α:金属材料を表面に垂直な断面積1cm2の棒に分割
したときに棒1本あたりに拡散しているAgの全量(A
g層厚に依存する)
C: A at a distance x from the metal material surface
g concentration (g / cm 3 ) α: The total amount of Ag diffused per rod when the metal material is divided into rods having a cross-sectional area of 1 cm 2 perpendicular to the surface (A
g Depends on layer thickness)

【0016】[0016]

【数2】 (Equation 2)

【0017】D:金属材料中のAgの拡散係数(熱処理
温度に依存する) t:熱処理時間 この関係を利用して金属材料表面近傍のAg分布状態を
制御することができる。すなわちAg層厚と熱処理条件
を制御することによって所望の深さに所望の濃度のAg
を含有する抗菌性の金属材料表面を得ることができる。
例として表面から50μmの深さにおけるAg重量濃度
が1ppbであるような抗菌性Al材料を得るための抗
菌処理条件をいくつか示す。
D: Diffusion coefficient of Ag in the metal material (depends on the heat treatment temperature) t: Heat treatment time Using this relationship, the Ag distribution near the metal material surface can be controlled. That is, by controlling the Ag layer thickness and the heat treatment conditions, the Ag having a desired concentration can be formed at a desired depth.
Can be obtained.
As an example, several antimicrobial treatment conditions for obtaining an antimicrobial Al material having an Ag weight concentration of 1 ppb at a depth of 50 μm from the surface are shown.

【0018】 (a)Ag層厚 :10Å 熱処理温度:400℃ 熱処理時間:1.5時間 (b)Ag層厚 :50Å 熱処理温度:400℃ 熱処理時間:1.3時間 (c)Ag層厚 :10Å 熱処理温度:500℃ 熱処理時間:4.3分 ただし金属材料中のAg濃度は小さいので、Ag重量濃
度=C/純Alの密度とした。また400℃におけるA
l中のAgの拡散係数には1×10-10cm2/sec、
500℃におけるAl中のAgの拡散係数には2×10
-9cm2/sec、Agの密度には10.5g/cm3
Alの密度には2.7g/cm3の値をそれぞれ用い
た。
(A) Ag layer thickness: 10 ° Heat treatment temperature: 400 ° C. Heat treatment time: 1.5 hours (b) Ag layer thickness: 50 ° Heat treatment temperature: 400 ° C. Heat treatment time: 1.3 hours (c) Ag layer thickness: 10 ° Heat treatment temperature: 500 ° C. Heat treatment time: 4.3 minutes However, since the Ag concentration in the metal material is small, the Ag weight concentration = C / pure Al density. A at 400 ° C.
The diffusion coefficient of Ag in 1 is 1 × 10 −10 cm 2 / sec,
The diffusion coefficient of Ag in Al at 500 ° C. is 2 × 10
-9 cm 2 / sec, the density of Ag is 10.5 g / cm 3 ,
A value of 2.7 g / cm 3 was used for the density of Al.

【0019】浴槽、石けん箱、コップ等の浴室用品、シ
ンク、排水口ごみうけ、三角コーナー、調理器具等の台
所用品、洗濯機の洗濯槽、腕時計、眼鏡、アクセサリ等
の装身具の金属部分、医療用器具等に請求項1の金属材
料を用いる場合は使用中に傷がついたり、磨耗したりし
ても抗菌性が失われることがないよう予め金属材料表面
から深い位置にまで十分な濃度のAgを拡散させておく
必要がある。
Bathroom supplies such as bathtubs, soap boxes, cups, etc., kitchen utensils such as sinks, drainage garbage, triangular corners, cooking utensils, metal parts of accessories such as washing tubs of washing machines, watches, glasses, accessories, etc. When the metal material according to claim 1 is used for a tool or the like, a sufficient concentration of the metal material from the surface of the metal material to a deep position in advance is prevented so that the antibacterial property is not lost even if the metal material is scratched or worn during use. Ag needs to be diffused.

【0020】この金属材料は通常空気中に放置した場
合、空気中の酸素と反応して表面に自然酸化膜が形成さ
れる。この自然酸化膜を除去する方法として、湿式エッ
チング又は乾式エッチングが好ましい。湿式エッチング
で自然酸化膜を除去する場合、エッチャントとしてステ
ンレス鋼に対しては塩酸と硝酸の混酸が、またAlに対
しては水酸化ナトリウムや塩酸等が用いられ、乾式エッ
チングで自然酸化膜を除去する場合、逆スパッタリング
法、プラズマエッチング法等が用いられる。これらのエ
ッチングを行う前に有機溶媒で超音波洗浄をすることが
好ましい。Ag層の形成は、物理蒸着法により行うこと
が好ましい。物理蒸着法には、真空蒸着、イオンプレー
ティング、スパッタリング等がある。これらの方法でA
gを蒸発させた後、金属材料の表面に凝縮させ、Ag層
を形成する。なお、Ag層の形成は物理蒸着法に限ら
ず、電解めっき、無電解めっきなどのめっき法、或はA
gを含む液をコーティングしてもよい。必要な抗菌層の
厚さ、抗菌力の強さなどに応じてこのAg層は適当な厚
さに形成される。
When this metal material is usually left in the air, it reacts with oxygen in the air to form a natural oxide film on the surface. As a method for removing the natural oxide film, wet etching or dry etching is preferable. When removing the natural oxide film by wet etching, a mixed acid of hydrochloric acid and nitric acid is used as an etchant for stainless steel, and sodium hydroxide or hydrochloric acid is used for Al, and the natural oxide film is removed by dry etching. In this case, a reverse sputtering method, a plasma etching method, or the like is used. It is preferable to perform ultrasonic cleaning with an organic solvent before performing these etchings. The formation of the Ag layer is preferably performed by a physical vapor deposition method. The physical vapor deposition method includes vacuum vapor deposition, ion plating, sputtering and the like. A in these ways
After evaporating g, it is condensed on the surface of the metal material to form an Ag layer. The formation of the Ag layer is not limited to the physical vapor deposition method, but may be a plating method such as electrolytic plating, electroless plating, or the like.
The liquid containing g may be coated. The Ag layer is formed to an appropriate thickness depending on the required thickness of the antibacterial layer, the strength of the antibacterial activity, and the like.

【0021】[0021]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>金属材料として30mm×30mm×0.
3mmのSUS304基板を用意した。この基板(金属
材料)をイソプロピルアルコール液に浸漬し、超音波洗
浄した後、36%HCl:60%HNO3:H2O=1:
1:3に調製された室温のエッチャントに10分間浸漬
して湿式エッチングした。エッチング後、基板を蒸留水
で洗浄し、乾燥した。次いでこの基板を純Agをターゲ
ットとするスパッタリング装置に入れ、ここで真空度5
×10-6Torrにした。このスパッタリング装置でタ
ーゲットと基板間の距離を9cmにし、Ar(2×10
-3Torr)をスパッタリングガスとして、ターゲット
電力100Wで高周波スパッタリングを行い、厚さ約5
0オングストロームのAg層を形成した。スパッタリン
グ中の基板(金属材料)は400℃に維持した。Ag層
を形成後、同一のスパッタリング装置内で上記真空度を
維持しながら、400℃で30分間、基板(金属材料)
を熱処理した。
Next, examples of the present invention will be described together with comparative examples. <Example 1> 30 mm x 30 mm x 0.
A 3 mm SUS304 substrate was prepared. This substrate (metal material) is immersed in an isopropyl alcohol solution and subjected to ultrasonic cleaning, and then 36% HCl: 60% HNO 3 : H 2 O = 1:
The substrate was immersed in a 1: 3 room temperature etchant for 10 minutes to perform wet etching. After the etching, the substrate was washed with distilled water and dried. Next, the substrate was placed in a sputtering apparatus using pure Ag as a target.
× 10 −6 Torr. With this sputtering apparatus, the distance between the target and the substrate was set to 9 cm, and Ar (2 × 10
-3 Torr) as a sputtering gas, and high-frequency sputtering is performed at a target power of 100 W to a thickness of about 5
A 0 Å Ag layer was formed. The substrate (metal material) during sputtering was maintained at 400 ° C. After forming the Ag layer, the substrate (metal material) is kept at 400 ° C. for 30 minutes while maintaining the above-mentioned degree of vacuum in the same sputtering apparatus.
Was heat treated.

【0022】<実施例2>金属材料として25mm×2
5mm×2mmのAl基板を用い、エッチャントに36
%HCl:H2O=1:4を用い、このエッチャントの
浸漬時間を30分間にした以外は、実施例1と同様にし
て湿式エッチングを行い、以下実施例1と同様にAg層
を形成し、更に基板を熱処理した。
<Embodiment 2> 25 mm × 2 as a metal material
Using a 5 mm x 2 mm Al substrate, 36 as an etchant
% HCl: H 2 O = 1: 4, and wet etching was performed in the same manner as in Example 1 except that the immersion time of this etchant was set to 30 minutes. Thereafter, an Ag layer was formed in the same manner as in Example 1. Then, the substrate was heat-treated.

【0023】<実施例3>金属材料として実施例2と同
形同大のAl基板を用い、エッチャントに10重量%N
aOH溶液を用いた以外は、実施例1と同様にして湿式
エッチングを行った。湿式エッチング後、スパッタリン
グ中の基板(金属材料)の温度を室温にした以外は実施
例1と同様にスパッタリングして厚さ1000オングス
トロームのAg層を形成した。なおAg層形成後の熱処
理は行わなかった。Ag層形成後、Al基板の厚さが
0.5mmになるまで圧延した。
Example 3 An Al substrate of the same shape and size as in Example 2 was used as a metal material, and 10 wt% N was used as an etchant.
The wet etching was performed in the same manner as in Example 1 except that the aOH solution was used. After the wet etching, sputtering was performed in the same manner as in Example 1 except that the temperature of the substrate (metal material) during sputtering was set to room temperature, to form an Ag layer having a thickness of 1000 Å. The heat treatment after the formation of the Ag layer was not performed. After the formation of the Ag layer, rolling was performed until the thickness of the Al substrate became 0.5 mm.

【0024】<実施例4>金属材料として実施例2と同
形同大のAl基板を用い、湿式エッチングを行わなかっ
た以外は、実施例3と同様に金属材料を処理した。
Example 4 A metal material was treated in the same manner as in Example 3 except that an Al substrate having the same shape and the same size as that of Example 2 was used as the metal material and wet etching was not performed.

【0025】<比較例1>エッチングもAg層形成も熱
処理も行わなかった無処理の実施例1と同一の金属材料
を比較例1とした。 <比較例2>湿式エッチングを行わなかった以外は、実
施例1と同一の金属材料を用いて実施例1と同様に金属
材料を処理した。 <比較例3>スパッタリング時に金属材料(基板)温度
を室温にした以外、実施例1と同一の金属材料を用いて
実施例1と同様に金属材料を処理した。
<Comparative Example 1> The same metal material as in Example 1 in which no etching, Ag layer formation, or heat treatment was performed was used as Comparative Example 1. <Comparative Example 2> A metal material was treated in the same manner as in Example 1 except that wet etching was not performed. <Comparative Example 3> A metal material was treated in the same manner as in Example 1 except that the temperature of the metal material (substrate) was set to room temperature during sputtering.

【0026】<抗菌性確認試験>実施例1〜実施例4及
び比較例1〜比較例3の抗菌処理済の、又は無処理の金
属材料をサンプルとして次の菌数測定法に準拠した抗菌
性確認試験を行った。即ち、各サンプルの表面に106
個/mlの黄色ブドウ球菌液を滴下し、30℃で17時
間、サンプルを菌に接触させ、その後菌を培養し、蒸留
水で回収し、それぞれの菌数を測定した。30℃で17
時間接触した後の生菌数を表1に示す。
<Test for Confirming Antibacterial Activity> Using the antibacterial-treated or untreated metal materials of Examples 1 to 4 and Comparative Examples 1 to 3 as samples, the antibacterial activity was determined according to the following bacteria count method. A confirmation test was performed. That is, 10 6
A sample / ml of Staphylococcus aureus solution was dropped, and the sample was brought into contact with the bacteria at 30 ° C. for 17 hours. Thereafter, the bacteria were cultured, collected with distilled water, and the number of each bacteria was measured. 17 at 30 ° C
Table 1 shows the viable cell count after contact for an hour.

【0027】<金属材料表面のAg拡散層の確認>実施
例1及び比較例2のサンプルを抗菌性確認試験のサンプ
ルとは別に用意した。これらのサンプルの表面を柔らか
い布で払拭して、金属材料中に拡散しないでその表面に
残留しているAg層を除去した。次いで各サンプルを蒸
留水で超音波洗浄し、乾燥した後、それぞれ表面分析法
であるオージェ分析法によりサンプルの表面から深さ方
向の組成分布を調べた。その結果を図1(実施例1)、
図2(比較例2)及び表1に示す。図1及び図2におい
て、横軸はArガスによるスパッタリング時間を、縦軸
は元素濃度(atomic%)をそれぞれ示す。
<Confirmation of Ag Diffusion Layer on Metal Material Surface> The samples of Example 1 and Comparative Example 2 were prepared separately from the samples for the antibacterial confirmation test. The surface of these samples was wiped with a soft cloth to remove the Ag layer remaining on the surface without diffusing into the metal material. Next, each sample was subjected to ultrasonic cleaning with distilled water and dried, and the composition distribution in the depth direction from the surface of the sample was examined by Auger analysis, which is a surface analysis method. The result is shown in FIG. 1 (Example 1),
The results are shown in FIG. 2 (Comparative Example 2) and Table 1. 1 and 2, the horizontal axis represents the sputtering time by Ar gas, and the vertical axis represents the element concentration (atomic%).

【0028】<圧延後の金属材料表面のAgの分布状態
の確認>実施例3及び実施例4のサンプルを抗菌性確認
試験のサンプルとは別に用意した。圧延後の金属材料
は、大体100mm×25mm×0.5mm程度の大き
さであった。これらの金属材料の表面の両端と中央の計
3点についてAgの有無をXPS分析(X線光電子分
析)法で分析し、圧延によってAg層が金属材料ととも
に延伸し金属材料の全面に広がったかどうかを確認し
た。その結果を表1に示す。
<Confirmation of Ag Distribution on Metal Material Surface after Rolling> Samples of Examples 3 and 4 were prepared separately from the samples for the antibacterial confirmation test. The metal material after rolling was approximately 100 mm × 25 mm × 0.5 mm. The presence or absence of Ag was analyzed by XPS analysis (X-ray photoelectron analysis) at a total of three points at both ends and the center of the surface of these metal materials, and whether or not the Ag layer was stretched together with the metal material by rolling and spread over the entire surface of the metal material. It was confirmed. Table 1 shows the results.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から比較例1〜3では1ml当り10
5個前後の菌が測定され、抗菌性がなかったのに対し
て、実施例1及び実施例2では菌は全く見られず、抗菌
性があることが判った。またオージェ分析結果から、A
rスパッタリング時間0〜2分のサンプル表面近傍にお
けるAg濃度(atomic%)を図1と図2で比較すると、
図1の方がAg濃度が高く、金属材料に抗菌効果を付与
するのに十分な濃度のAg拡散層が形成されていること
が判った。
From Table 1, in Comparative Examples 1 to 3, 10 per ml was used.
About 5 bacteria were measured and had no antibacterial activity, whereas no bacteria were observed in Examples 1 and 2 and it was found that they had antibacterial activity. Also, from the Auger analysis result, A
Ag concentration (atomic%) in the vicinity of the sample surface for r sputtering time of 0 to 2 minutes is compared between FIG. 1 and FIG.
FIG. 1 shows that the Ag concentration is higher and the Ag diffusion layer is formed at a concentration sufficient to impart an antibacterial effect to the metal material.

【0031】更にXPS分析結果から、圧延によって、
Ag層は金属材料とともに延伸して金属材料全面に広が
り、金属材料全面に抗菌性が付与されることが判った。
更に実施例3と実施例4を比較することにより、金属材
料表面の自然酸化膜の有無によらず、圧延法は抗菌処理
法として有効であり、この方法によれば金属材料表面に
自然酸化膜が存在していてもそれを除去する必要はない
ことが確認された。
Further, from the XPS analysis results, by rolling,
It was found that the Ag layer was stretched together with the metal material and spread over the entire surface of the metal material, so that the entire surface of the metal material had antibacterial properties.
Further, by comparing Example 3 with Example 4, the rolling method is effective as an antibacterial treatment method regardless of the presence or absence of the natural oxide film on the surface of the metal material. It was determined that there was no need to remove any, if any.

【0032】[0032]

【発明の効果】以上述べたように、本発明によれば、抗
菌性の高いAgを金属材料の表面近傍にのみ低濃度に含
有させるため、材料本来の特性を変えることなく、高い
抗菌性を長期間持続する金属材料が得られる。また本発
明の抗菌処理方法によれば、従来の抗菌処理法のように
AgやCuを多量に加えずに済むので金属材料を変質さ
せない。また抗菌性のあるAgを抗菌作用を要求される
金属材料の表面近傍にのみ低濃度で拡散させるので、金
属材料全体をAg合金化する必要がなく、多量のAgを
使用しない。そのため金属材料の価格を押上げずに金属
材料に高い抗菌性を付与することができる。またAg原
子を材料中に拡散させ、抗菌層と金属材料の界面を存在
させないため、抗菌処理した金属材料を加工して金属製
品を作製した場合も、この金属製品を長期間使用した場
合にも、抗菌性が劣化しない利点もある。
As described above, according to the present invention, Ag having a high antibacterial property is contained only in the vicinity of the surface of a metal material at a low concentration, so that a high antibacterial property can be obtained without changing the original properties of the material. A long-lasting metal material is obtained. Further, according to the antibacterial treatment method of the present invention, unlike a conventional antibacterial treatment method, it is not necessary to add a large amount of Ag or Cu, so that the metal material is not deteriorated. Further, since antibacterial Ag is diffused at a low concentration only in the vicinity of the surface of the metal material required to have antibacterial action, it is not necessary to alloy the entire metal material with Ag, and a large amount of Ag is not used. Therefore, high antibacterial properties can be imparted to the metal material without increasing the price of the metal material. In addition, since the Ag atoms are diffused into the material and the interface between the antibacterial layer and the metal material is not present, the metal product is manufactured by processing the antibacterial-treated metal material or when the metal product is used for a long time. Also, there is an advantage that the antibacterial property does not deteriorate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の熱処理後のサンプルのオージェ分析
結果を示す図。
FIG. 1 is a diagram showing Auger analysis results of a sample after heat treatment in Example 1.

【図2】比較例2の熱処理後のサンプルのオージェ分析
結果を示す図。
FIG. 2 is a diagram showing Auger analysis results of a sample after heat treatment of Comparative Example 2.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 表面近傍にのみAgを含有している抗菌
処理した金属材料。
1. An antibacterial metal material containing Ag only near its surface.
【請求項2】 金属材料がステンレス鋼又はAlである
請求項1記載の金属材料。
2. The metal material according to claim 1, wherein the metal material is stainless steel or Al.
【請求項3】 金属材料表面にAg層を形成した後、前
記金属材料を圧延することを特徴とする金属材料の抗菌
処理方法。
3. An antibacterial treatment method for a metal material, comprising forming an Ag layer on the surface of the metal material and then rolling the metal material.
【請求項4】 金属材料を圧延した後、前記金属材料を
真空中或は不活性ガス中で熱処理する請求項3記載の金
属材料の抗菌処理方法。
4. The antibacterial treatment method for a metal material according to claim 3, wherein after the metal material is rolled, the metal material is heat-treated in a vacuum or in an inert gas.
【請求項5】 表面に自然酸化膜を有する金属材料の前
記自然酸化膜を除去し、前記自然酸化膜を除去した金属
材料の表面にAg層を形成した後或は形成中に前記金属
材料を真空中或は不活性ガス中で熱処理することを特徴
とする金属材料の抗菌処理方法。
5. After removing the natural oxide film of the metal material having a natural oxide film on the surface, and forming the Ag material on or during the formation of the Ag layer on the surface of the metal material from which the natural oxide film has been removed, An antibacterial treatment method for a metal material, wherein the heat treatment is performed in a vacuum or an inert gas.
【請求項6】 金属材料を湿式エッチング又は乾式エッ
チングにより自然酸化膜を除去する請求項5記載の金属
材料の抗菌処理方法。
6. The method according to claim 5, wherein the natural oxide film is removed from the metal material by wet etching or dry etching.
【請求項7】 Ag層を物理蒸着することにより形成す
る請求項3又は5記載の金属材料の抗菌処理方法。
7. The method according to claim 3, wherein the Ag layer is formed by physical vapor deposition.
【請求項8】 金属材料がステンレス鋼又はAlである
請求項3ないし7いずれか記載の金属材料の抗菌処理方
法。
8. The antibacterial treatment method for a metal material according to claim 3, wherein the metal material is stainless steel or Al.
JP12437998A 1997-05-12 1998-05-07 Antibacterial treated metallic material and the antibacterial treatment Pending JPH1129879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12437998A JPH1129879A (en) 1997-05-12 1998-05-07 Antibacterial treated metallic material and the antibacterial treatment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12038097 1997-05-12
JP9-120380 1997-05-12
JP12437998A JPH1129879A (en) 1997-05-12 1998-05-07 Antibacterial treated metallic material and the antibacterial treatment

Publications (1)

Publication Number Publication Date
JPH1129879A true JPH1129879A (en) 1999-02-02

Family

ID=26457979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12437998A Pending JPH1129879A (en) 1997-05-12 1998-05-07 Antibacterial treated metallic material and the antibacterial treatment

Country Status (1)

Country Link
JP (1) JPH1129879A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064640A1 (en) * 1998-06-05 1999-12-16 Kawasaki Steel Corporation Stainless steel product having excellent antimicrobial activity and method for production thereof
JP2000054082A (en) * 1998-06-05 2000-02-22 Kawasaki Steel Corp Stainless steel material excellent in antibacterial characteristic, and its production
JP2005257137A (en) * 2004-03-10 2005-09-22 Osaka Gas Co Ltd Member for stove trivet and stove trivet
JP2008050695A (en) * 2006-07-25 2008-03-06 National Institute For Materials Science Antibacterial article and method of producing antibacterial thin film
EP2169092A3 (en) * 2004-12-16 2010-08-25 AGC Glass Europe Substrate with antimicrobial properties

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064640A1 (en) * 1998-06-05 1999-12-16 Kawasaki Steel Corporation Stainless steel product having excellent antimicrobial activity and method for production thereof
JP2000054082A (en) * 1998-06-05 2000-02-22 Kawasaki Steel Corp Stainless steel material excellent in antibacterial characteristic, and its production
US6306341B1 (en) * 1998-06-05 2001-10-23 Kawasaki Steel Corporation Stainless steel product having excellent antimicrobial activity and method for production thereof
JP2005257137A (en) * 2004-03-10 2005-09-22 Osaka Gas Co Ltd Member for stove trivet and stove trivet
EP2169092A3 (en) * 2004-12-16 2010-08-25 AGC Glass Europe Substrate with antimicrobial properties
EP2165987A3 (en) * 2004-12-16 2011-03-30 AGC Glass Europe Substrate with antimicrobial properties
JP2008050695A (en) * 2006-07-25 2008-03-06 National Institute For Materials Science Antibacterial article and method of producing antibacterial thin film

Similar Documents

Publication Publication Date Title
JP6240423B2 (en) Ferritic stainless steel sheet with excellent antibacterial properties and method for producing the same
US6447664B1 (en) Methods for coating metallic articles
TWI764530B (en) Stainless steel material with antibacterial and antiviral properties and manufacturing method thereof
EP0926256B1 (en) Antibacterial metallic materials and method of production thereof
JPH1129879A (en) Antibacterial treated metallic material and the antibacterial treatment
JPH1129887A (en) Method for preventing elution of lead from metallic piping equipment such as metallic valve and coupling
JP2000313940A (en) Duplex stainless steel material and its manufacture
US20050284548A1 (en) Stainless steel product having excellent antibacterial activity and method for production thereof
JP3471470B2 (en) Method for improving antibacterial properties of Cu-containing stainless steel
CN106191793B (en) Film forming apparatus and cleaning method thereof
JPH083728A (en) Zinc-magnesium plated steel sheet excellent in corrosion resistance and its production
CN100582283C (en) Hot dip coating apparatus
EP1108802A1 (en) Stainless steel material with excellent antibacterial property and process for producing the same
JP2015206070A (en) Method for manufacturing antibacterial titanium alloy material
JPH09118987A (en) Improvement of antibacterial property for copper containing stainless steel
JPH11106987A (en) Manufacture of wire with antibacterial property
JP4375827B2 (en) Alloy surface treatment method and alloy with excellent surface aging resistance
JP3398620B2 (en) Stainless steel material excellent in antibacterial property and method for producing the same
JPH09249981A (en) Production of copper-containing stainless steel improved in antibacterial property
KR20100027226A (en) Method for coating a construction material with a functional metal and the product manufactured by the method
JP3003176B2 (en) Manufacturing method of steel with excellent corrosion resistance
JPH09310182A (en) Production of stainless steel or worked article thereof excellent in antibacterial property
JPH11172459A (en) Production of antimicrobial stainless steel or titanium material
JP2002180223A (en) Galvanized steel and its production method
JPH11256279A (en) Stainless steel plate with antibacterial characteristic, and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020319