JP2008050695A - Antibacterial article and method of producing antibacterial thin film - Google Patents

Antibacterial article and method of producing antibacterial thin film Download PDF

Info

Publication number
JP2008050695A
JP2008050695A JP2007193551A JP2007193551A JP2008050695A JP 2008050695 A JP2008050695 A JP 2008050695A JP 2007193551 A JP2007193551 A JP 2007193551A JP 2007193551 A JP2007193551 A JP 2007193551A JP 2008050695 A JP2008050695 A JP 2008050695A
Authority
JP
Japan
Prior art keywords
thin film
antibacterial
intermetallic compound
film
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007193551A
Other languages
Japanese (ja)
Other versions
JP5025367B2 (en
Inventor
Michiko Yoshitake
道子 吉武
Hideyuki Kanematsu
秀行 兼松
Hajime Ikegai
初 生貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Institute of National Colleges of Technologies Japan
Original Assignee
National Institute for Materials Science
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Institute of National Colleges of Technologies Japan filed Critical National Institute for Materials Science
Priority to JP2007193551A priority Critical patent/JP5025367B2/en
Publication of JP2008050695A publication Critical patent/JP2008050695A/en
Application granted granted Critical
Publication of JP5025367B2 publication Critical patent/JP5025367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film which is formed on a surface of a product such as a container and equipment for food and has a layer in which Ag having antibacterial effect is alloyed with Sn, and to provide a method of producing the same, and an article whose surface is coated with the thin film. <P>SOLUTION: The antibacterial thin film is formed by forming an Ag-Sn multilayered thin film on the surface of the article through plating or physical vapor deposition and subjecting it to a heat-treatment in which this Ag-Sn multilayered thin film is heated and kept at 200-300°C and then cooled at a cooling rate of ≤50°C/min. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、物品の表面を被覆して、その物品の抗菌性を発現させる抗菌性薄膜を有する抗菌性物品とその抗菌性薄膜の作製方法に関する。   The present invention relates to an antibacterial article having an antibacterial thin film that covers the surface of the article and develops the antibacterial property of the article, and a method for producing the antibacterial thin film.

黄色ブドウ球菌、病原性大腸菌O−157等の細菌による食中毒事故を未然に防ぐために、食品用容器・器具に抗菌性を付与する技術が開発されている。表面にSnめっきを施した容器、器具は人体に無害であり、耐候性があるため、食品用容器・器具として多く使用されており、Snめっきを施した食品用容器・器具に抗菌性を付与する技術が開発されている。   In order to prevent food poisoning accidents caused by bacteria such as Staphylococcus aureus and pathogenic Escherichia coli O-157, techniques for imparting antibacterial properties to food containers and instruments have been developed. Containers and instruments with Sn plating on the surface are harmless to the human body and are weather resistant, so they are often used as food containers and instruments, and impart antibacterial properties to food containers and instruments with Sn plating. Technology has been developed.

表面にSnめっきを施した食品用容器・器具に抗菌性を付与するため、特許文献1では抗菌性のある金属微粉末をSnめっき皮膜へ添加する技術が開示されている。また、特許文献2では、金属製品の表面に2種以上の金属を合金として電析させる技術が開示されている。これらの技術を用いれば、Snめっき層に添加する微粉末あるいはSnと同時に電析させる金属の作用により、食品用容器、器具表面のSnめっき層に抗菌性を付与することが可能である。
特開平6−16509号公報(段落0012〜0015) 特開2005−139474号公報(段落0015〜0029)
In order to impart antibacterial properties to food containers and utensils whose surfaces are Sn-plated, Patent Document 1 discloses a technique of adding metal powder having antibacterial properties to a Sn plating film. Patent Document 2 discloses a technique for electrodepositing two or more metals as an alloy on the surface of a metal product. By using these techniques, it is possible to impart antibacterial properties to the Sn plating layer on the surface of food containers and appliances by the action of fine powder added to the Sn plating layer or metal deposited simultaneously with Sn.
JP-A-6-16509 (paragraphs 0012 to 0015) JP-A-2005-139474 (paragraphs 0015 to 0029)

上記従来のいずれのものも、抗菌性材と基質となるSnとの結合は混合又は積層によるものであり、衝撃や摩擦により、抗菌性材が容易に剥離、脱落するものであった。   In any of the above conventional materials, the bond between the antibacterial material and Sn as a substrate is based on mixing or lamination, and the antibacterial material is easily peeled off and dropped by impact or friction.

そこで、本発明は、耐久性を向上した、抗菌性物品とその抗菌性薄膜の作製方法を提供することを特徴とする。   Therefore, the present invention is characterized by providing an antibacterial article with improved durability and a method for producing the antibacterial thin film.

発明1の抗菌性物品は、抗菌性薄膜がSnを基質とし、Agを抗菌性材とし、これらがSn−Agの金属間化合物相にて一体化されてなることを特徴とする。   The antibacterial article of the invention 1 is characterized in that the antibacterial thin film uses Sn as a substrate, Ag as an antibacterial material, and these are integrated in an Sn-Ag intermetallic compound phase.

発明2は、発明1の抗菌性物品において,前記薄膜はSn薄膜の表面にSnとAgとの金属間化合物相を有することを特徴とする。
発明3は、発明1の抗菌性物品において,前記薄膜はSn薄膜の表面にAg薄膜を有し、両薄膜が、それらの金属間化合物相により一体化されていることを特徴とする。
The invention 2 is the antibacterial article of the invention 1, wherein the thin film has an intermetallic compound phase of Sn and Ag on the surface of the Sn thin film.
Invention 3 is the antibacterial article of Invention 1, wherein the thin film has an Ag thin film on the surface of the Sn thin film, and both thin films are integrated by their intermetallic compound phase.

発明4は、発明1から3のいずれかの抗菌性物品における抗菌性薄膜の作製方法であって,Sn膜とAg膜を重ねて形成し、次ぎにAgの溶融温度未満の温度にて加熱処理して,少なくともその両膜の界面をAg−Sn金属間化合物化することを特徴とする。   Invention 4 is a method for producing an antibacterial thin film in the antibacterial article according to any one of Inventions 1 to 3, wherein an Sn film and an Ag film are formed in layers, and then heat-treated at a temperature lower than the melting temperature of Ag. Then, it is characterized in that at least the interface between both films is made into an Ag—Sn intermetallic compound.

発明5は、発明4の抗菌性薄膜の作製方法において,前記加熱処理は、1×10℃以上の下記式1で求められたY℃にXmin以上恒温保持することを特徴とする。
[式1]
The invention 5 is the method for producing an antibacterial thin film of the invention 4, wherein the heat treatment is held at Y ° C. obtained by the following formula 1 of 1 × 10 2 ° C. or more for Xmin or more.
[Formula 1]

発明6は、発明5の作製方法において,次式2を満たす冷却速度Z℃/minとすることを特徴とする。
[式2]
The invention 6 is characterized in that, in the manufacturing method of the invention 5, the cooling rate satisfying the following formula 2 is set to Z ° C./min.
[Formula 2]

発明7は、発明4から6いずれかの抗菌性物品の抗菌性薄膜の作製方法において,Ag膜は,真空蒸着またはスパッタリングにより形成されてなることを特徴とする。
Invention 7 is a method for producing an antibacterial thin film of any one of Inventions 4 to 6, wherein the Ag film is formed by vacuum deposition or sputtering.

本発明によれば、Sn−Agが金属間化合物をバインダーとして結合され、膜全体が一体化されているので、抗菌性材が使用中に脱落もしくは剥落し、抗菌性を滅失するという問題をなくした。
また、SnをAgの金属間化合物とすることにより、Sn膜がある場合はその硬さを硬くし、より強度をますことができた。
According to the present invention, Sn-Ag is bonded with an intermetallic compound as a binder, and the entire film is integrated, so that there is no problem that the antibacterial material is dropped or peeled off during use and the antibacterial property is lost. did.
In addition, by using Sn as an intermetallic compound of Ag, if an Sn film is present, the hardness can be increased and the strength can be further increased.

以下、本発明を実施するための最良の形態(以下「実施形態」という)について図1を参照して説明する。
図1は実施形態の抗菌性薄膜が形成される工程を示す模式図であり、(a)は基材(6)上にSn薄膜(2)とAg薄膜(1)を積層した、金属間化合物を生成する前の状態の薄膜(5)を示す図、(b)は熱処理によりAg薄膜(1)とSn薄膜(2)の界面に金属間化合物相(3)が形成された抗菌性薄膜((4a))の状態を示す図、および(c)は熱処理によりAg薄膜全体が金属間化合物化して、Ag−Sn金属間化合物相(3)が最表面に形成された抗菌性薄膜((4b))の状態を示す図である。
The best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described below with reference to FIG.
FIG. 1 is a schematic diagram showing a process of forming an antibacterial thin film according to an embodiment, and (a) is an intermetallic compound in which a Sn thin film (2) and an Ag thin film (1) are laminated on a base material (6). (B) is an antibacterial thin film in which an intermetallic compound phase (3) is formed at the interface between the Ag thin film (1) and the Sn thin film (2) by heat treatment. The figure which shows the state of (4a)), and (c) are the antibacterial thin films ((4b) in which the Ag thin film intermetallic compound phase (3) was formed in the outermost surface by heat-treating the Ag thin film whole. It is a figure which shows the state of)).

実施形態の抗菌性薄膜(4a)および抗菌性薄膜(4b)を製造するには、まず図1(a)に示す基材(6)となる物品の表面にSn薄膜(2)を形成する。このSn薄膜(2)は、電気めっき、無電解めっき、溶融めっき、真空蒸着またはスパッタリングのいずれの方法で形成されるものであってもよい。Sn薄膜(2)の厚さは限定されない。Sn薄膜(2)自体は、基材(6)の抗菌性に影響しないからである。電気めっきの場合、シアン化合物を使用せず、硫化化合物または塩化化合物のめっき浴を用いてSn薄膜(2)を形成可能である。   In order to manufacture the antibacterial thin film (4a) and the antibacterial thin film (4b) of the embodiment, first, the Sn thin film (2) is formed on the surface of the article to be the base material (6) shown in FIG. This Sn thin film (2) may be formed by any method of electroplating, electroless plating, hot dipping, vacuum deposition or sputtering. The thickness of the Sn thin film (2) is not limited. This is because the Sn thin film (2) itself does not affect the antibacterial properties of the substrate (6). In the case of electroplating, the Sn thin film (2) can be formed using a plating bath of a sulfide compound or a chloride compound without using a cyanide compound.

基材(6)は、導電性または非導電性の物質で構成される。基材(6)が非導電性の物質の場合、Sn薄膜(2)は通常電気めっきでは直接には形成することはできず,気相めっき,無電解めっきなどの方法で,非導電性材料表面をメタライズして導電性を持たせ,その上に電気めっきによりSn薄膜を形成する。基材(6)は鉄鋼材、アルミニウム材、アルミニウム合金材、銅材、銅合金材、マグネシウム合金材、プラスチック材もしくはガラス材、これらの混合材を含むもの等である。   The substrate (6) is composed of a conductive or non-conductive substance. When the base material (6) is a non-conductive substance, the Sn thin film (2) cannot be formed directly by ordinary electroplating, but a non-conductive material by a method such as vapor phase plating or electroless plating. The surface is metallized to have conductivity, and an Sn thin film is formed thereon by electroplating. The substrate (6) is a steel material, an aluminum material, an aluminum alloy material, a copper material, a copper alloy material, a magnesium alloy material, a plastic material or a glass material, or a material containing a mixture thereof.

Sn薄膜(2)を形成後、図1(a)に示すように前記したSn薄膜(2)の上にAg薄膜(1)を形成し、Ag−Sn積層薄膜(5)が形成される。このAg薄膜(1)の厚さは10nm以上であるのが好ましい。Ag薄膜(1)の厚さが10nm未満の場合、最終的に形成される実施形態の抗菌性薄膜(4a)および抗菌性薄膜(4b)の表面層が、Sn薄膜(2)単層の場合に比べて硬くならない。また、基材(6)に抗菌性を発現させるためには、Ag薄膜(1)の厚さが10nm以上必要である。Ag薄膜(1)は、電気めっき、無電解めっき、真空蒸着またはスパッタリングのいずれかの方法で形成される。   After forming the Sn thin film (2), the Ag thin film (1) is formed on the Sn thin film (2) as shown in FIG. 1 (a) to form the Ag-Sn laminated thin film (5). The thickness of the Ag thin film (1) is preferably 10 nm or more. When the thickness of the Ag thin film (1) is less than 10 nm, the surface layer of the antibacterial thin film (4a) and the antibacterial thin film (4b) of the embodiment finally formed is a Sn thin film (2) single layer Does not become harder than Moreover, in order for the base material (6) to exhibit antibacterial properties, the thickness of the Ag thin film (1) needs to be 10 nm or more. The Ag thin film (1) is formed by any method of electroplating, electroless plating, vacuum deposition or sputtering.

以上のようにして基材(6)上に形成された積層薄膜(5)は、200℃から300℃の温度で1時間以上加熱・保持した後、50℃/min以下の冷却速度で冷却する熱処理をされる。その結果、図1(b)および(c)に示すように、積層薄膜(5)を構成するAg薄膜(1)とSn薄膜(2)が互いに反応し拡散することによって、これらの薄膜の界面に金属間化合物相(3)が形成された抗菌性薄膜(4a)または抗菌性薄膜(4b)が形成される。ここで、加熱・保持の温度が低い場合、図1(b)に示すように、Ag−Sn積層薄膜(5)は金属間化合物相(3)の上にAg薄膜(1)が残留する抗菌性薄膜(4a)となる。また、加熱・保持の温度が高い場合、Ag−Sn積層薄膜(5)中のAg薄膜(1)とSn薄膜(2)の反応がさらに進行して、図1(c)に示すAg薄膜(1)がすべて金属間化合物相(3)となった抗菌性薄膜(4b)となる。
また、図1(c)よりみて明らかなとおり、Sn薄膜がAg薄膜に対してより薄い場合は、Sn単独の相が残存せず、全体が金属間化合物相となるか、Ag相と金属間化合物相との二相になる。
これは、実施例で示す通り、金属間化合物相は、SnとAgが相互に浸透して金属間化合物相を形成するからである。
The laminated thin film (5) formed on the base material (6) as described above is heated and held at a temperature of 200 ° C. to 300 ° C. for 1 hour or more and then cooled at a cooling rate of 50 ° C./min or less. Heat treated. As a result, as shown in FIGS. 1 (b) and 1 (c), the Ag thin film (1) and the Sn thin film (2) constituting the laminated thin film (5) react with each other and diffuse to form an interface between these thin films. An antibacterial thin film (4a) or an antibacterial thin film (4b) having an intermetallic compound phase (3) formed thereon is formed. Here, when the heating / holding temperature is low, as shown in FIG. 1B, the Ag-Sn laminated thin film (5) is an antibacterial in which the Ag thin film (1) remains on the intermetallic compound phase (3). Conductive thin film (4a). Further, when the heating / holding temperature is high, the reaction between the Ag thin film (1) and the Sn thin film (2) in the Ag—Sn laminated thin film (5) further proceeds, and the Ag thin film ( 1) becomes the antibacterial thin film (4b) in which all of the intermetallic compound phase (3) is formed.
Further, as apparent from FIG. 1 (c), when the Sn thin film is thinner than the Ag thin film, the Sn single phase does not remain and the whole becomes an intermetallic compound phase, or between the Ag phase and the metal. It becomes two phases with the compound phase.
This is because, as shown in the Examples, the intermetallic compound phase penetrates Sn and Ag to form an intermetallic compound phase.

前記した熱処理において加熱・保持の温度が200℃よりも低い場合または加熱・保持の時間が1時間よりも短い場合、Ag薄膜(1)とSn薄膜(2)の反応が十分に進行しないため金属間化合物相(3)が形成されにくい。また、前記熱処理において冷却速度が50℃/minよりも速いと抗菌性薄膜(4a)および抗菌性薄膜(4b)が基材(6)から剥離するおそれがある。また冷却速度が7℃/minよりも遅い場合には抗菌性薄膜(4b)は酸化するおそれがあるが、このように冷却が遅い場合窒素雰囲気等で熱処理を実施すれば抗菌性薄膜(4b)が酸化することはない。
抗菌性薄膜(4a)および抗菌性薄膜(4b)において、合金化後のSn薄膜(2)の厚さが1μm未満の場合、抗菌性薄膜(4a)および抗菌性薄膜(4b)の耐食性が不十分となるので、Sn薄膜(2)の厚さは、1μm以上であることが望ましい。
In the above heat treatment, when the heating / holding temperature is lower than 200 ° C. or when the heating / holding time is shorter than 1 hour, the reaction between the Ag thin film (1) and the Sn thin film (2) does not proceed sufficiently. Intermetallic phase (3) is hardly formed. Moreover, when the cooling rate is faster than 50 ° C./min in the heat treatment, the antibacterial thin film (4a) and the antibacterial thin film (4b) may be peeled off from the substrate (6). In addition, when the cooling rate is slower than 7 ° C./min, the antibacterial thin film (4b) may be oxidized, but when the cooling is slow as described above, if the heat treatment is performed in a nitrogen atmosphere or the like, the antibacterial thin film (4b) Will not oxidize.
In the antibacterial thin film (4a) and the antibacterial thin film (4b), when the thickness of the Sn thin film (2) after alloying is less than 1 μm, the antibacterial thin film (4a) and the antibacterial thin film (4b) have poor corrosion resistance. Therefore, the thickness of the Sn thin film (2) is desirably 1 μm or more.

以上のようにして基材(6)上に形成された抗菌性薄膜(4a)および抗菌性薄膜(4b)は、Ag薄膜(1)あるいは金属間化合物相(3)のAg元素の作用により、基材(6)に抗菌性を発現させる。この抗菌性は、Ag薄膜(1)あるいは金属間化合物相(3)から微量に溶出するAgイオンの作用によるものである。また、金属間化合物相(3)はAgとSnの金属間化合物の作用により、Sn薄膜(2)より硬化している。 The antibacterial thin film (4a) and the antibacterial thin film (4b) formed on the substrate (6) as described above are obtained by the action of the Ag element in the Ag thin film (1) or the intermetallic compound phase (3). Antibacterial properties are expressed in the substrate (6). This antibacterial property is due to the action of Ag + ions eluted in a trace amount from the Ag thin film (1) or the intermetallic compound phase (3). The intermetallic compound phase (3) is hardened from the Sn thin film (2) by the action of the intermetallic compound of Ag and Sn.

以下実施例により、本発明について具体的に説明する。本実施例においては、Ag薄膜(1)の厚さおよびAg−Sn積層薄膜(5)の熱処理条件を変化させた実験No.1乃至9の9種類の抗菌性薄膜(4a)および抗菌性薄膜(4b)を作製し、それらの効果について調査した。これら実験例の作製方法について以下説明する。   Hereinafter, the present invention will be specifically described by way of examples. In this example, the nine types of antibacterial thin films (4a) and antibacterial thin films of Experiment Nos. 1 to 9 in which the thickness of the Ag thin film (1) and the heat treatment conditions of the Ag—Sn laminated thin film (5) were changed. (4b) was prepared and their effects were investigated. A manufacturing method of these experimental examples will be described below.

前記した9種類の実施例はすべて、基材(6)として炭素鋼板SS400を用い、この炭素鋼板上に25℃の硫酸Snめっき浴中で1A/dmの電流密度で、厚さ5μmのSn薄膜(2)を形成したものである。
このようなSn薄膜(2)が形成された基材(6)である炭素鋼板を用いて、表1に示すようにAg薄膜(1)の厚さおよびAg−Sn積層薄膜(5)の加熱・保持条件を変化させた実験例1乃至実験例24の24種類のサンプルを作製した。これら実験例のAg薄膜(1)は、φ4インチのAgターゲットを用いて、0.5PaのAr雰囲気でRFスパッタリングを行うことにより形成されたものである。
また、比較例としてAg薄膜のないサンプル(加熱・保持熱処理なし)を作製した。
All the nine examples described above use a carbon steel plate SS400 as the base material (6), and Sn is 5 μm thick at a current density of 1 A / dm 2 in a sulfuric acid Sn plating bath at 25 ° C. on the carbon steel plate. A thin film (2) is formed.
As shown in Table 1, the thickness of the Ag thin film (1) and the heating of the Ag—Sn laminated thin film (5) were obtained using the carbon steel plate as the base material (6) on which the Sn thin film (2) was formed. -Twenty-four samples of Experimental Example 1 to Experimental Example 24 with different holding conditions were produced. The Ag thin films (1) of these experimental examples are formed by performing RF sputtering in an Ar atmosphere of 0.5 Pa using a φ4 inch Ag target.
As a comparative example, a sample without an Ag thin film (without heating / holding heat treatment) was prepared.

試験を実施したサンプルの内訳
なお、実験No.1から9及び20、21、23は本発明の実施例であり、その他は比較例である。
Breakdown of Samples Tested Experiment Nos. 1 to 9, and 20, 21, and 23 are examples of the present invention, and the others are comparative examples.

図2は実験例等の抗菌性薄膜の構成をX線回折により調べた結果であり、(a)は実験例6でAg−Sn積層薄膜の熱処理前サンプルの測定結果、(b)は実験例6の測定結果および(c)は実験例9の測定結果である。X線回折は、X線管電圧40kV、X線管電流40mA,4°/minの測定条件で行った。 FIG. 2 is a result of examining the structure of an antibacterial thin film such as an experimental example by X-ray diffraction. (A) is a measurement result of a sample before heat treatment of an Ag—Sn laminated thin film in Experimental Example 6, and (b) is an experimental example. The measurement result of 6 and (c) are the measurement results of Experimental Example 9. X-ray diffraction was performed under measurement conditions of an X-ray tube voltage of 40 kV, an X-ray tube current of 40 mA, and 4 ° / min.

図2(a)からわかるように、1μm厚のAg薄膜が5μm厚のSn薄膜上に形成され熱処理をされていないAg−Sn積層薄膜(5)は、AgおよびSnの各金属相のみが検出されこれらの金属間化合物相は検出されなかった。この状態は、Ag−Sn積層薄膜(5)が形成された直後の状態(図1(a)参照)に対応するものである。   As can be seen from FIG. 2 (a), only the Ag and Sn metal phases are detected in the Ag-Sn laminated thin film (5) in which the 1 μm thick Ag thin film is formed on the 5 μm thick Sn thin film and is not heat-treated. These intermetallic phases were not detected. This state corresponds to the state immediately after the Ag—Sn multilayer thin film (5) is formed (see FIG. 1A).

一方、Ag−Sn積層薄膜(5)が200℃で2時間熱処理された実験No.6では、図2(b)に示すように、Ag薄膜(1)およびSn薄膜(2)の各金属相の他にAgSnの金属間化合物相が検出されている。この金属間化合物相は、熱処理によりAgおよびSnの各金属相が互いに反応したことにより生成したものであり、Ag薄膜(1)とSn薄膜(2)の界面に存在するのは明らかである。また、この界面にはX線回折では検出されていないが、AgとSnの固溶体もAg薄膜(1)およびSn薄膜(2)の界面に存在していると思われる。この状態は、実施形態の抗菌性薄膜(4a)(図1(b)参照)に対応するものである。 On the other hand, in Experiment No. 6 in which the Ag—Sn laminated thin film (5) was heat-treated at 200 ° C. for 2 hours, as shown in FIG. 2 (b), each metal phase of the Ag thin film (1) and the Sn thin film (2) In addition, an intermetallic compound phase of Ag 3 Sn has been detected. This intermetallic compound phase is formed by the reaction of the Ag and Sn metal phases with each other by heat treatment, and is clearly present at the interface between the Ag thin film (1) and the Sn thin film (2). Further, although not detected by X-ray diffraction at this interface, it is considered that a solid solution of Ag and Sn is also present at the interface of the Ag thin film (1) and the Sn thin film (2). This state corresponds to the antibacterial thin film (4a) of the embodiment (see FIG. 1 (b)).

また、図2(c)からわかるように、Ag−Sn積層薄膜(5)が300℃で2時間熱処理された実験No.9では、Ag薄膜(1)のAg金属相のピークが消失し、Sn薄膜(2)のSn金属相とAgSnの金属間化合物相のピークのみが検出されている。このことから、300℃の熱処理により、Ag薄膜(1)とSn薄膜(2)の反応が進みAg薄膜(1)がほぼ完全に金属間化合物化し、AgSnの金属間化合物相を含む金属間化合物相(3)が最表面に形成されたものである。この状態は、実施形態の抗菌性薄膜(4b)(図1(c)参照)に対応するものである。 Further, as can be seen from FIG. 2 (c), in the experiment No. 9 in which the Ag—Sn laminated thin film (5) was heat-treated at 300 ° C. for 2 hours, the peak of the Ag metal phase of the Ag thin film (1) disappeared, Only the peaks of the Sn metal phase of the Sn thin film (2) and the intermetallic compound phase of Ag 3 Sn are detected. From this, the heat treatment at 300 ° C. causes the reaction between the Ag thin film (1) and the Sn thin film (2), and the Ag thin film (1) is almost completely converted into an intermetallic compound, and a metal containing an intermetallic compound phase of Ag 3 Sn. The intermetallic phase (3) is formed on the outermost surface. This state corresponds to the antibacterial thin film (4b) of the embodiment (see FIG. 1 (c)).

加熱・冷却速度を50℃/min一定とし,加熱保持温度,加熱保持時間を100℃から250℃,10minから120minに変化させ,薄膜を調整し,X線回折で同定し,形成薄膜の同定を行った(実験No.10〜21).図3にその結果を示す.図3中,●で示したプロットは金属間化合物相(主としてAgSn薄膜)が形成された場合,白抜きの○はすず(Sn)層上の銀(Ag)薄膜が未反応のまま形成されている場合に対応する。
この結果、実験No.10〜19は金属間化合物相を有していないことが判明した。
この図から,金属間化合物相の形成される領域は,図中加熱保持温度と加熱保持時間で決まる平面において,指数関数的に減少する実験式で決まるXminとY℃よりも大きい領域であるといえる.
The heating / cooling rate is fixed at 50 ° C / min, the heating holding temperature and heating holding time are changed from 100 ° C to 250 ° C, from 10 min to 120 min, the thin film is adjusted, identified by X-ray diffraction, and the formed thin film is identified. (Experiment Nos. 10 to 21). Figure 3 shows the results. In FIG. 3, when the intermetallic compound phase (mainly Ag 3 Sn thin film) is formed, the white circle is formed with the silver (Ag) thin film on the tin (Sn) layer remaining unreacted. Corresponding to the case.
As a result, it was found that Experiment Nos. 10 to 19 did not have an intermetallic compound phase.
From this figure, the region where the intermetallic compound phase is formed is a region larger than Xmin and Y ° C. determined by an empirical formula that decreases exponentially in the plane determined by the heating holding temperature and heating holding time in the drawing. I can say that.

実験例から求められる,Ag−Snの金属間化合物相が形成される境界領域における,加熱保持温度と加熱保持時間の相関に関わるおおよその実験式は,前記式1である。 The approximate empirical formula related to the correlation between the heating and holding temperature and the heating and holding time in the boundary region where the Ag—Sn intermetallic compound phase is formed, which is obtained from the experimental example, is the above-mentioned formula 1.

加熱保持温度,加熱保持時間を220℃,10minに固定して,加熱速度,冷却速度を変化させて薄膜を作製し,形成された薄膜をX線回折にて同定した(実験No.22,23).すでに図3において明らかなように,実験No.19により,加熱保持温度,加熱保持時間,220℃,10minにおいて形成される最表面層は,すず(Sn)とは未反応の銀(Ag)単相であった.一方,実験No.22においては,加熱速度を7℃/minに低下させ昇温し,加熱保持温度220℃にて10min保持し,50℃/minで降温した.この場合は金属間化合物が形成されなかった. The heating and holding temperature and the heating and holding time were fixed at 220 ° C. and 10 minutes, and the thin film was produced by changing the heating rate and the cooling rate, and the formed thin film was identified by X-ray diffraction (Experiment Nos. 22 and 23). ). As is apparent from FIG. 3, according to Experiment No. 19, the outermost surface layer formed at a heating holding temperature, a heating holding time, 220 ° C., and 10 min is an unreacted silver (Ag) single layer with tin (Sn). It was a phase. On the other hand, in Experiment No. 22, the heating rate was reduced to 7 ° C./min to increase the temperature, the heating holding temperature was maintained at 220 ° C. for 10 min, and the temperature was decreased at 50 ° C./min. In this case, no intermetallic compound was formed.

実験No.23においては,加熱速度は50℃/minとし,加熱保持温度200℃,加熱保持時間10minとして,処理後の昇温速度を4℃/minとして,冷却し形成される表面薄膜をX線回折により同定した.その結果,すず(Sn),銀(Ag)の金属間化合物相AgSnが形成された. In Experiment No. 23, the heating rate is 50 ° C./min, the heating holding temperature is 200 ° C., the heating holding time is 10 min, the temperature rising rate after treatment is 4 ° C./min, and the surface thin film formed by cooling is X It was identified by line diffraction. As a result, an intermetallic compound phase Ag 3 Sn of tin (Sn) and silver (Ag) was formed.

実験No.22,23の結果から,金属間化合物相形成においては,すず(Sn)の融点付近の2×102℃以上の温度が必要であり,これらの加熱保持温度への到達までの所要時間は薄膜形成には大きくは影響を与えない.一方加熱保持温度に到達後,保持時間と冷却速度(冷却に要する時間)のトータル量は金属間化合物相形成に大きな影響を与える. From the results of Experiments Nos. 22 and 23, the intermetallic compound phase formation requires a temperature of 2 × 10 2 ° C or higher near the melting point of tin (Sn), and the required time to reach these heating and holding temperatures. Time does not significantly affect thin film formation. On the other hand, after reaching the heated holding temperature, the total amount of holding time and cooling rate (time required for cooling) has a great influence on the formation of intermetallic compound phases.

従って,各加熱保持温度において,金属間化合物皮膜が形成される最低の冷却速度Z℃/minは,2×102℃以上において,前記式2で与えられ,この条件を満たす冷却速度で皮膜形成が可能である. Therefore, at each heating and holding temperature, the minimum cooling rate Z ° C./min at which an intermetallic compound film is formed is given by Equation 2 above 2 × 10 2 ° C., and the film is formed at a cooling rate that satisfies this condition. Is possible.

実験No.1乃至実験No.9および実験No.24の各サンプルにつき、荷重10gfを負荷するマイクロビッカース測定により表面の膜の硬さを測定した。また、前記各サンプルについて抗菌性の有無について調べた。   About each sample of experiment No. 1 thru | or experiment No. 9 and experiment No. 24, the hardness of the film | membrane of a surface was measured by the micro Vickers measurement which loads 10 gf of loads. Further, each sample was examined for the presence or absence of antibacterial properties.

抗菌性の有無は次のようにして調べた。
まず、大腸菌(Escherichia coli ATCC25922)を10mlの普通ブイヨンに接種し、35℃で18時間予備培養した。その後、この予備培養液を0.9%NaCl溶液で10倍に希釈し、大腸菌浮遊液を作製した。
75%エタノールで表面を消毒した表1の各サンプル(50mm×50mm)に前記した大腸菌浮遊液0.4mlを滴下し、直ちに滅菌したポリエチレンフィルム(40mm×40mm)を被せ、滅菌したシャーレの中に移し、35℃で相対湿度99%以上の条件で24時間保持する試験を実施した。ここで各サンプルに前記試験前に滴下した大腸菌浮遊液には、9.5×10個の大腸菌が存在していることが後記する大腸菌数の測定方法でわかった。
The presence or absence of antibacterial properties was examined as follows.
First, E. coli (Escherichia coli ATCC 25922) was inoculated into 10 ml of ordinary broth and pre-cultured at 35 ° C. for 18 hours. Thereafter, the pre-culture broth was diluted 10 4 times with 0.9% NaCl solution was prepared E.coli suspension.
To each sample (50 mm × 50 mm) of Table 1 whose surface was disinfected with 75% ethanol, 0.4 ml of the aforementioned E. coli suspension was dropped, and immediately covered with a sterilized polyethylene film (40 mm × 40 mm). The test which hold | maintains for 24 hours on 35 degreeC and the conditions of relative humidity 99% or more was implemented. Here, it was found by the method for measuring the number of E. coli described below that 9.5 × 10 4 E. coli were present in the E. coli suspension dropped onto each sample before the test.

この後、各サンプルおよび被覆ポリエチレンフィルムに付着した大腸菌を、0.2%Tween20(界面活性剤)を含む0.9%NaCl溶液10mlをシャーレ内に加えマイクロピペットで洗い出した。この洗い出した菌液0.1mlを普通寒天培地に接種後、スプレッダを用いて塗り広げた。この寒天培地を35℃で一晩放置した後、形成された大腸菌コロニの数を計数することにより、各サンプル上に前記試験後に存在した大腸菌数を決定した。試験前後における各サンプルの大腸菌数の増減により、抗菌性の有無を判断した。   Thereafter, 10 ml of 0.9% NaCl solution containing 0.2% Tween 20 (surfactant) was added to each sample and the coated polyethylene film in a petri dish and washed with a micropipette. 0.1 ml of the washed bacterial solution was inoculated on a normal agar medium and spread using a spreader. The agar medium was allowed to stand at 35 ° C. overnight, and then the number of E. coli colonies formed was counted to determine the number of E. coli present on each sample after the test. The presence or absence of antibacterial activity was determined by increasing or decreasing the number of E. coli in each sample before and after the test.

各サンプルについて、前記した膜の硬さの測定結果および抗菌性の有無の試験結果を表1に示す。   Table 1 shows the measurement results of the film hardness and the antibacterial test results for each sample.

表1の結果から、実験No.1乃至実験No.9のサンプルに形成された抗菌性薄膜(4a)または抗菌性薄膜(4b)の硬さは、Sn薄膜単層に比べて硬くなっている。
Sn薄膜単層の実験No.24(比較例)では試験後の大腸菌数が増えていることから抗菌性はない。しかし、実験No.1乃至実験No.9はいずれも試験後に大腸菌が死滅しており、抗菌性があるのは明らかである。
From the results of Table 1, the hardness of the antibacterial thin film (4a) or the antibacterial thin film (4b) formed in the samples of Experiment No. 1 to Experiment No. 9 is harder than that of the Sn thin film single layer. .
In the experiment No. 24 (comparative example) of the Sn thin film single layer, there is no antibacterial activity because the number of E. coli after the test is increased. However, in each of Experiment No. 1 to Experiment No. 9, E. coli was killed after the test, and it is clear that it has antibacterial properties.

実施形態の抗菌性薄膜が形成される工程を示す模式図であり、(a)は基材上にAg−Sn積層薄膜が形成された状態を示す図、(b)は熱処理によりAg薄膜とSn薄膜の界面に合金層が形成された状態を示す図、および(c)は熱処理によりAg薄膜層が消失し、Ag−Sn合金層が最表面に形成された状態を示す図である。It is a schematic diagram which shows the process in which the antibacterial thin film of embodiment is formed, (a) is a figure which shows the state in which the Ag-Sn laminated thin film was formed on the base material, (b) is an Ag thin film and Sn by heat processing The figure which shows the state in which the alloy layer was formed in the interface of a thin film, and (c) are figures which show the state in which the Ag thin film layer lose | disappeared by heat processing and the Ag-Sn alloy layer was formed in the outermost surface. 実験例等の抗菌性薄膜の構成をX線回折により調べた結果であり、(a)は実験No.6でAg−Sn積層薄膜の熱処理前サンプルの測定結果、(b)は実験例No.6の測定結果、および(c)は実験No.9の測定結果である。It is the result of having investigated the structure of the antibacterial thin film of an experiment example etc. by X-ray diffraction, (a) is a measurement result of the sample before heat processing of Ag-Sn laminated thin film by experiment No. 6, (b) is experiment example No. The measurement result of 6 and (c) are the measurement results of Experiment No. 9. 実験例の抗菌性薄膜の構成をX線回折により調べた結果であり,実験No.3,6,9,10〜21の測定結果がプロットしてある。It is the result of having investigated the structure of the antibacterial thin film of the experiment example by X-ray diffraction, and the measurement result of experiment No. 3, 6, 9, 10-21 is plotted.

符号の説明Explanation of symbols

(1)Ag薄膜
(2)Sn薄膜
(3)金属間化合物相
(4a),(4b)抗菌性薄膜
(5)Ag−Sn積層薄膜
(6)基材
(1) Ag thin film (2) Sn thin film (3) Intermetallic compound phase (4a), (4b) Antibacterial thin film (5) Ag-Sn laminated thin film (6) Base material

Claims (7)

基材表面に抗菌性薄膜が設けられてなる抗菌性物品において,前記抗菌性薄膜がSnを基質とし、Agを抗菌性材とし、これらがSn−Agの金属間化合物相にて一体化されてなることを特徴とする。 In an antibacterial article in which an antibacterial thin film is provided on the surface of a base material, the antibacterial thin film is made of Sn as a substrate, Ag is an antibacterial material, and these are integrated in an Sn-Ag intermetallic phase. It is characterized by becoming. 請求項1に記載の抗菌性物品において,前記薄膜はSn薄膜の表面にSnとAgとの金属間化合物相を有することを特徴とする。 2. The antibacterial article according to claim 1, wherein the thin film has an intermetallic compound phase of Sn and Ag on the surface of the Sn thin film. 請求項1に記載の抗菌性物品において,前記薄膜はSn薄膜の表面にAg薄膜を有し、両薄膜が、それらの金属間化合物相により一体化されてなることを特徴とする。 2. The antibacterial article according to claim 1, wherein the thin film has an Ag thin film on the surface of the Sn thin film, and the two thin films are integrated by their intermetallic compound phase. 請求項1から3のいずれかに記載の抗菌性物品における抗菌性薄膜の作製方法であって,Sn膜とAg膜を重ねて形成し、次ぎにAgの溶融温度未満の温度にて加熱処理して,少なくともその両膜の界面をAg−Sn金属間化合物化することを特徴とする。 A method for producing an antibacterial thin film in an antibacterial article according to any one of claims 1 to 3, wherein an Sn film and an Ag film are formed in layers, and then heat-treated at a temperature lower than the melting temperature of Ag. Thus, at least the interface between the two films is formed into an Ag-Sn intermetallic compound. 請求項4に記載の抗菌性薄膜の作製方法において,前記加熱処理は、2×10℃以上の下記式1で求められたY℃にXmin以上恒温保持することを特徴とする。
[式1]
5. The method for producing an antibacterial thin film according to claim 4, wherein the heat treatment is held at Y ° C. obtained by the following formula 1 of 2 × 10 2 ° C. or more for Xmin or more.
[Formula 1]
請求項5に記載の作製方法において,次式2を満たす冷却速度Z℃/minとすることを特徴とする。
[式2]
The manufacturing method according to claim 5, wherein a cooling rate satisfying the following formula 2 is set to Z ° C./min.
[Formula 2]
請求項4から6にいずれかに記載の抗菌性物品の抗菌性薄膜の作製方法において,Ag膜は,真空蒸着またはスパッタリングにより形成されてなることを特徴とする。   The method for producing an antibacterial thin film for an antibacterial article according to any one of claims 4 to 6, wherein the Ag film is formed by vacuum deposition or sputtering.
JP2007193551A 2006-07-25 2007-07-25 Method for producing antibacterial thin film in antibacterial article Expired - Fee Related JP5025367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007193551A JP5025367B2 (en) 2006-07-25 2007-07-25 Method for producing antibacterial thin film in antibacterial article

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006201465 2006-07-25
JP2006201465 2006-07-25
JP2007193551A JP5025367B2 (en) 2006-07-25 2007-07-25 Method for producing antibacterial thin film in antibacterial article

Publications (2)

Publication Number Publication Date
JP2008050695A true JP2008050695A (en) 2008-03-06
JP5025367B2 JP5025367B2 (en) 2012-09-12

Family

ID=39235014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007193551A Expired - Fee Related JP5025367B2 (en) 2006-07-25 2007-07-25 Method for producing antibacterial thin film in antibacterial article

Country Status (1)

Country Link
JP (1) JP5025367B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755343B2 (en) 2012-04-06 2017-09-05 Autonetworks Technologies, Ltd. Plated member and plated terminal for connector
CN111621655A (en) * 2020-04-30 2020-09-04 东北大学 Preparation method and application of antibacterial titanium alloy based on micro-area primary battery theory
DE112021000513T5 (en) 2020-03-11 2022-12-01 Autonetworks Technologies, Ltd. Metal material, terminal and method of manufacturing metal material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129879A (en) * 1997-05-12 1999-02-02 Mitsubishi Materials Corp Antibacterial treated metallic material and the antibacterial treatment
JP2005126763A (en) * 2003-10-23 2005-05-19 Furukawa Electric Co Ltd:The Coating material, electric/electronic component using the same, rubber contact component using the same, and coating material manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129879A (en) * 1997-05-12 1999-02-02 Mitsubishi Materials Corp Antibacterial treated metallic material and the antibacterial treatment
JP2005126763A (en) * 2003-10-23 2005-05-19 Furukawa Electric Co Ltd:The Coating material, electric/electronic component using the same, rubber contact component using the same, and coating material manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755343B2 (en) 2012-04-06 2017-09-05 Autonetworks Technologies, Ltd. Plated member and plated terminal for connector
DE112021000513T5 (en) 2020-03-11 2022-12-01 Autonetworks Technologies, Ltd. Metal material, terminal and method of manufacturing metal material
CN111621655A (en) * 2020-04-30 2020-09-04 东北大学 Preparation method and application of antibacterial titanium alloy based on micro-area primary battery theory

Also Published As

Publication number Publication date
JP5025367B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
KR101508099B1 (en) Metal foil for electromagnetic shielding, electromagnetic shielding material and shield cable
TWI612884B (en) Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material, and shielded cable
JP5760355B2 (en) Steel plate for containers
JP5017638B2 (en) Method for producing antibacterial Sn-Cu alloy thin film formed article and antibacterial Sn-Cu alloy thin film formed article produced thereby
EP2659018A2 (en) Al PLATING LAYER/AL-MG PLATING LAYER MULTI-LAYERED STRUCTURE ALLOY PLATED STEEL SHEET HAVING EXCELLENT PLATING ADHESIVENESS AND CORROSION RESISTANCE, AND METHOD OF MANUFACTURING THE SAME
JP5025367B2 (en) Method for producing antibacterial thin film in antibacterial article
KR101856405B1 (en) Metal foil for electromagnetic wave shielding, electromagnetic wave shielding member, and shielded cable
TW201239117A (en) Antibacterial article and method for making the same
CN1875128A (en) A stainless steel strip coated with a metallic layer
EP3084032A1 (en) Steel substrate provided with corrosion resistant coating with high melting temperature
JP6974467B2 (en) Multi-layered plated steel sheet and its manufacturing method
JP2015015300A (en) Metal foil for electromagnetic wave shield, electromagnetic wave shield material, and shield cable
JP2013127095A (en) Method for manufacturing surface-treated steel sheet
JP5534627B1 (en) Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable
TW201239111A (en) Antibacterial article and method for making the same
TW201239126A (en) Antibacterial article and method for making the same
EP2673785B1 (en) Material for providing an electrically conducting contact layer, a contact element with such layer, method for providing the contact element, and uses of the material
JP2007321212A (en) Ni-PLATED STEEL SHEET HAVING EXCELLENT SLIDABILITY AND CONTACT RESISTANCE AND ITS PRODUCTION METHOD
JP4911560B2 (en) Antibacterial aluminum wrought material and method for producing the same
JP5887287B2 (en) Metal foil for electromagnetic shielding and electromagnetic shielding material
EP2158342A1 (en) Method for coating a construction material with a functional metal and the product manufactured by the method
Zhang et al. Antibacterial property and tribological behavior of duplex-surface-treated AISI 304 stainless steel
JP2005517085A (en) A method of heat-treating a cold-rolled sheet having a surface coating made of Ni and / or Co, a sheet metal that can be manufactured by the method, and a battery metal container that can be manufactured by the method
WO2015181969A1 (en) Metal foil for electromagnetic wave shielding, electromagnetic wave shielding member, and shielded cable
JP5534626B1 (en) Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material and shielded cable

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees