JP6240423B2 - Ferritic stainless steel sheet with excellent antibacterial properties and method for producing the same - Google Patents

Ferritic stainless steel sheet with excellent antibacterial properties and method for producing the same Download PDF

Info

Publication number
JP6240423B2
JP6240423B2 JP2013148950A JP2013148950A JP6240423B2 JP 6240423 B2 JP6240423 B2 JP 6240423B2 JP 2013148950 A JP2013148950 A JP 2013148950A JP 2013148950 A JP2013148950 A JP 2013148950A JP 6240423 B2 JP6240423 B2 JP 6240423B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
mass
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013148950A
Other languages
Japanese (ja)
Other versions
JP2014141735A (en
Inventor
智彦 盛田
智彦 盛田
秦野 正治
正治 秦野
石丸 詠一朗
詠一朗 石丸
浩一 井内
浩一 井内
昭仁 山岸
昭仁 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2013148950A priority Critical patent/JP6240423B2/en
Priority to IN3729DEN2015 priority patent/IN2015DN03729A/en
Priority to KR1020157013788A priority patent/KR101762046B1/en
Priority to CN201380062495.4A priority patent/CN104884657B/en
Priority to PCT/JP2013/083205 priority patent/WO2014103722A1/en
Priority to TW102146937A priority patent/TWI503421B/en
Publication of JP2014141735A publication Critical patent/JP2014141735A/en
Application granted granted Critical
Publication of JP6240423B2 publication Critical patent/JP6240423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr

Description

本発明は、抗菌性に優れたフェライト系ステンレス鋼板およびその製造方法に関し、より詳しくは、手すり、蛇口などのカラン、金属製コイン、金属容器、金属食器、浴槽、家庭用電気器具、便座、医療器具、暖房機器などの衛生器具や建造物用建材などの素材として好適に用いられるフェライト系ステンレス鋼板ならびにその製造方法に関する。   The present invention relates to a ferritic stainless steel plate excellent in antibacterial properties and a method for producing the same, and more specifically, a currant such as a handrail and a faucet, a metal coin, a metal container, a metal tableware, a bathtub, a household electric appliance, a toilet seat, and a medical device The present invention relates to a ferritic stainless steel sheet that is suitably used as a material for sanitary equipment such as appliances and heating equipment and building materials for buildings, and a method for producing the same.

フェライト系ステンレス鋼板は、従来からシンクを中心とする厨房機器や電子レンジ側板等の家電機器などに広く使用されているが、最近は清潔感や意匠性、美観の点から手洗いバット等の医療器具や手すり等の内装建材にも使用されてきている。すなわち、雑菌が発生し易い場所や雑菌の発生が好ましくない場所でのステンレス鋼板の使用が増えはじめている。一方、近年はこのような雑菌の繁殖による人体への悪影響を懸念する傾向が強まっており、とりわけ、清潔さが必須とされる医療器具や厨房機器、また多数の人が集まる建造物用建材に対する抗菌性の要求が強い。このような流れから、これら清潔さが求められる部位に使用されるフェライト系ステンレス鋼自体に抗菌性を具備させる試みが行われてきた。   Ferritic stainless steel sheets have been widely used for household appliances such as kitchen equipment and microwave oven side panels, mainly sinks, but recently, medical instruments such as hand-washing bats from the standpoint of cleanliness, design, and beauty. It has also been used in interior building materials such as handrails. That is, the use of stainless steel sheets is increasing in places where germs are likely to occur or where germs are not preferred. On the other hand, in recent years, there has been a growing tendency to be concerned about the adverse effects on human bodies caused by the propagation of such bacteria, especially for medical equipment and kitchen equipment where cleanliness is essential, and for building materials for many people. Strong antibacterial requirements. From such a flow, attempts have been made to provide antibacterial properties to the ferritic stainless steel itself that is used in sites where these cleanliness is required.

このような試みとして、例えば、特許文献1や特許文献2等が挙げられる。これらには、抗菌剤を配合した樹脂をステンレス鋼の表面に塗布積層する方法、マトリックス中に抗菌成分を含むメッキを施す方法によって抗菌性を具備させる技術が開示されている。   Examples of such attempts include Patent Document 1 and Patent Document 2. These disclose techniques for providing antibacterial properties by a method in which a resin containing an antibacterial agent is applied and laminated on the surface of stainless steel and a method in which a matrix containing an antibacterial component is plated.

また、ステンレス鋼材自体に抗菌性を持たせる方法としては、特許文献3〜特許文献5が挙げられる。特許文献3及び特許文献4では、交番電解処理法で貴な電位をCu含有のフェライト系ステンレス鋼材やオーステナイト系ステンレス鋼材に印加することによってCuを電解液中に溶出させ、その後卑な電位を印加することによりステンレス鋼材の表面にCuを析出させることで抗菌性を持たせている。
また、特許文献5では、Cuを含有するフェライト系ステンレス鋼材やオーステナイト系ステンレス鋼板やマルテンサイト系ステンレス鋼板の表面を研磨仕上げした後に、光輝焼鈍もしくは硝弗酸酸洗を施すことによって、鋼表層にCuを3質量%以上に濃化させた層を形成する方法を開示している。
Moreover, as a method of giving antibacterial properties to the stainless steel material itself, Patent Documents 3 to 5 can be cited. In Patent Literature 3 and Patent Literature 4, Cu is eluted in the electrolyte by applying a noble potential to the ferritic stainless steel material or austenitic stainless steel material containing Cu by an alternating electrolytic treatment method, and then a base potential is applied. By doing so, Cu is deposited on the surface of the stainless steel material to provide antibacterial properties.
Moreover, in patent document 5, after polishing finishing the surface of the ferritic stainless steel material, austenitic stainless steel plate, and martensitic stainless steel plate containing Cu, the steel surface layer is subjected to bright annealing or nitric hydrofluoric acid washing. A method of forming a layer in which Cu is concentrated to 3% by mass or more is disclosed.

また、最近では、抗菌性ステンレス鋼は、様々な用途で使用されている。例えば、金属製コインには、その加工性の良さと安価なコストパフォーマンスから、フェライト系ステンレス鋼が多く用いられている。原料コストの安いフェライト系ステンレス鋼は、経済的な観点から有利性を持つ。
フェライト系ステンレス鋼を金属製コイン等へ適用する場合、打ち抜きや刻印性のために、例えばHv190以下程度の軟質化を求められることがある。特に、抗菌性発現のためCuを含有したフェライト系ステンレス鋼は、固溶強化や析出強化による硬化が問題となることが多い。
Recently, antibacterial stainless steel has been used in various applications. For example, ferritic stainless steel is often used for metal coins because of its good workability and low cost performance. Ferritic stainless steel with low raw material costs is advantageous from an economical point of view.
When ferritic stainless steel is applied to a metal coin or the like, softening of, for example, about Hv 190 or less may be required for punching or stamping. In particular, ferritic stainless steel containing Cu for antibacterial properties often has a problem of hardening due to solid solution strengthening or precipitation strengthening.

例えば、特許文献6は、0.66%以上のCuを含有したフェライト系ステンレス鋼のHv硬さを開示している。例えば、16.87Cr−0.66CuでHv171、13.57Cr−1.08CuでHv166となっている。   For example, Patent Document 6 discloses the Hv hardness of ferritic stainless steel containing 0.66% or more of Cu. For example, 16.87Cr-0.66Cu is Hv171, and 13.57Cr-1.08Cu is Hv166.

また、Cu含有フェライト系ステンレス鋼の製造方法として、特許文献7は、熱延後の冷却速度に限定して、熱延後500〜300℃の巻き取り温度まで3℃/s以上で冷却とすることにより、熱延板に存在するCuクラスタリングを最大5nm以下に制御し、靭性不良を回避する技術を提案している。   Moreover, as a manufacturing method of Cu containing ferritic stainless steel, patent document 7 is limited to the cooling rate after hot rolling, and is made to cool at 3 degrees C / s or more to the coiling temperature of 500-300 degreeC after hot rolling. Therefore, a technique for controlling the Cu clustering existing in the hot-rolled sheet to a maximum of 5 nm or less and avoiding toughness failure is proposed.

特開平5−228202号公報Japanese Patent Laid-Open No. 5-228202 特開平6−10191号公報JP-A-6-10191 特開平8−60302号公報JP-A-8-60302 特開平8−60303号公報JP-A-8-60303 特開平11−172380号公報JP-A-11-172380 特開2003−213378号公報JP 2003-213378 A 国際公開第2012/108479号International Publication No. 2012/108479

しかしながら、特許文献1や特許文献2に提示されているように、抗菌剤を配合した樹脂を表面に塗布したり、抗菌成分を含むめっき層を施した場合は、ステンレス鋼特有の表面光沢が失われる。そのため、表面光沢が求められる用途においては商品価値が失われてしまう。更に、抗菌性樹脂皮膜や抗菌成分を含むめっき層は、プレス加工時や使用時に割れたり、欠けたりして損傷を受けやすいことに加え、湿潤雰囲気に曝された場合には抗菌性成分が溶出し、外観が劣化するばかりか、本来の抗菌作用が失われてしまう。   However, as shown in Patent Document 1 and Patent Document 2, when a resin containing an antibacterial agent is applied to the surface or a plating layer containing an antibacterial component is applied, the surface gloss peculiar to stainless steel is lost. Is called. Therefore, commercial value is lost in applications where surface gloss is required. In addition, the antibacterial resin film and plating layers containing antibacterial components are susceptible to damage due to cracking and chipping during press processing and use, and the antibacterial components elute when exposed to a humid atmosphere. In addition, the appearance is deteriorated and the original antibacterial action is lost.

また、ステンレス鋼材自体に抗菌性を持たせている上記特許文献3〜特許文献5においても、課題が存在した。つまり、特許文献3と特許文献4に開示されている交番電解処理法は、電析によりCuをステンレス鋼の表面に析出させるものである。したがって、鋼表面からCuが剥がれ落ちやすく、例えば、表面をワイヤーブラシ、スチールタワシなどでこすると表面のCuが削られて、抗菌性が低下するという欠点があった。   There are also problems in the above-mentioned Patent Documents 3 to 5 in which the stainless steel material itself has antibacterial properties. In other words, the alternating electrolytic treatment methods disclosed in Patent Document 3 and Patent Document 4 deposit Cu on the surface of stainless steel by electrodeposition. Therefore, Cu is easily peeled off from the steel surface. For example, if the surface is rubbed with a wire brush, a steel scrubber or the like, the Cu on the surface is scraped and the antibacterial property is lowered.

また、特許文献5のような表面Cu濃度を一定値以上に制御すれば抗菌性が得られると開示した従来技術について本発明者らが検討したところ、これら従来技術では同じ板面内の板幅方向において、抗菌性に大きなバラつきが生じる可能性があることが分かった。即ち、従来技術の方法で得られる抗菌ステンレス鋼は、その板面内で抗菌性が良好な箇所もあれば不良な箇所も存在しやすいことが分かり、抗菌性を付与した最終製品に供する場合に、歩留まりが悪化してしまうことが分かった。   In addition, when the present inventors have examined the prior art disclosed that antibacterial properties can be obtained by controlling the surface Cu concentration to a certain value or more as in Patent Document 5, these prior arts have the same plate width within the same plate surface. It has been found that the antibacterial properties can vary greatly in direction. In other words, the antibacterial stainless steel obtained by the method of the prior art is found to have a portion having good antibacterial properties and a portion having a bad antibacterial property on the plate surface, and is used for a final product imparted with antibacterial properties. , It turns out that the yield will deteriorate.

このように、従来開示されているステンレス鋼自体に抗菌性を発現させる技術は、抗菌性が低下しやすかったり、歩留まりの点で不満が残るものであった。   As described above, the conventionally disclosed technique for causing the stainless steel itself to exhibit antibacterial properties is likely to be deteriorated in antibacterial properties or unsatisfactory in terms of yield.

また、フェライト系ステンレス鋼鈑に軟質化も求められる場合、硬さの制御が必要である。上述した硬さに関する従来技術には、以下の課題がある。
特許文献6に記載されているフェライト系ステンレス鋼は、Cu濃度が0.66〜1.08%で、Hvが190以下のものである。しかし、特許文献6に記載のフェライト系ステンレス鋼は後述する本発明の(a)式は満たしておらず、軟質化に加えて高い耐食性をも求められる場合に対応することが出来ないものであった。
In addition, when the ferritic stainless steel sheet is required to be softened, it is necessary to control the hardness. The above-described conventional technology related to hardness has the following problems.
The ferritic stainless steel described in Patent Document 6 has a Cu concentration of 0.66 to 1.08% and Hv of 190 or less. However, the ferritic stainless steel described in Patent Document 6 does not satisfy the formula (a) of the present invention, which will be described later, and cannot cope with the case where high corrosion resistance is required in addition to softening. It was.

特許文献7は、Cuクラスタリングを5nm以下に制御し靭性を向上させるために、熱延後から巻き取りまでの冷却速度を3℃/s以上と規定しているものの、冷延素材の軟質化に関する技術は開示されていない。   Patent Document 7 relates to softening of a cold-rolled material, although the cooling rate from hot rolling to winding is specified to be 3 ° C./s or more in order to control Cu clustering to 5 nm or less and improve toughness. The technology is not disclosed.

以上のように、Cu含有フェライト系ステンレス鋼について、抗菌性と軟質化を両立する技術はこれまで開示されていない。
そこで本発明では、抗菌性と軟質化を両立するフェライト系ステンレス鋼板およびその製造方法を提供することを課題とする。
As mentioned above, about the Cu containing ferritic stainless steel, the technique which makes antibacterial property and softening compatible is not disclosed until now.
Accordingly, an object of the present invention is to provide a ferritic stainless steel sheet that has both antibacterial properties and softening and a method for producing the same.

上記抗菌性の課題を解決するため、本発明者らは板面内で抗菌性が良好な箇所と不良な箇所の違いを鋭意検討した。その結果、以下の知見を得た。   In order to solve the above-mentioned antibacterial problem, the present inventors have intensively studied the difference between a portion having a good antibacterial property and a portion having a bad antibacterial property within the plate surface. As a result, the following knowledge was obtained.

(i)抗菌性を発現させるためには、鋼表面のCu濃化層のCu最大濃度は、最低限10質量%以上が必要である。
(ii)また、鋼表面のCu濃度制御は抗菌性発現に必要な条件ではあるが、それだけで十分ではないことが分かった。つまり、本発明者らの評価結果によれば、鋼表面のCu最大濃度が10質量%以上であっても、抗菌性が不良な場合が存在していた。これは、鋼表面のCu最大濃度以外に抗菌性発現の因子が存在することを意味しており、従来においてはそれらを掴めていなかったために、板面内で抗菌性のバラつきが大きくなってしまっていたものと推測された。そこで、本発明者らが、その因子を探るべく、更に鋼表層部の成分組成にまで視野を広げて調査を行ったところ、抗菌性は鋼表面のCu濃化層の主要成分であるFe,Crの存在状態とも強く関係していることを知見した。鋼表面のCu濃化層のCuは、抗菌性を左右する因子であるが、そのCuが鋼表面より溶け出して、菌の細胞活動を低下させることで、抗菌性発現と評価される。そのため、Cu濃化層中のCu周辺に存在するFeやCrとの関係は、抗菌性に大きく影響すると想定された。抗菌性を安定して得るためには、従来知られていたCu濃化層のCu最大濃度に加え、更にFe/Cr比を制御することが必要であると分かった。
(iii)更に、本発明者らの評価結果によれば、鋼表面のCu最大濃度が18質量%以上であれば、Fe/Cr比を制御しなかったとしても、抗菌性が不良な箇所は見当たらず、十分な抗菌性が得られることが分かった。
(I) In order to develop antibacterial properties, the Cu maximum concentration of the Cu concentrated layer on the steel surface needs to be at least 10% by mass.
(Ii) It was also found that control of the Cu concentration on the steel surface is a necessary condition for the development of antibacterial properties, but it is not sufficient. That is, according to the evaluation results of the present inventors, even when the maximum Cu concentration on the steel surface was 10% by mass or more, there were cases where the antibacterial property was poor. This means that there are antibacterial expression factors other than the maximum Cu concentration on the steel surface, and the antibacterial variation has increased in the plate surface because they have not been grasped in the past. It was speculated that it was. Therefore, the present inventors conducted an investigation with a view to the component composition of the steel surface layer part in order to investigate the factor, and antibacterial property is Fe, which is the main component of the Cu concentrated layer on the steel surface. It has been found that it is strongly related to the existence state of Cr. Cu in the Cu-enriched layer on the steel surface is a factor that affects antibacterial properties, but it is evaluated that the antibacterial properties are manifested by the dissolution of the Cu from the steel surface and reducing the cell activity of the bacteria. Therefore, it was assumed that the relationship with Fe and Cr existing around Cu in the Cu enriched layer greatly affects the antibacterial properties. In order to stably obtain antibacterial properties, it has been found that it is necessary to further control the Fe / Cr ratio in addition to the conventionally known Cu maximum concentration of the Cu concentrated layer.
(Iii) Further, according to the evaluation results of the present inventors, if the Cu maximum concentration on the steel surface is 18% by mass or more, even if the Fe / Cr ratio is not controlled, there are places where the antibacterial properties are poor. It was not found and sufficient antibacterial properties were obtained.

また、前記の抗菌性を有する素材(鋼板)を軟質化するため、本発明者らは更に、Cu含有フェライト系ステンレス鋼板の硬さに及ぼす熱処理の影響を鋭意検討した。具体的には、Cuの固溶・析出形態とそれらに及ぼす熱処理(加熱・冷却条件)について種々検討し、以下の知見を得た。   Further, in order to soften the antibacterial material (steel plate), the present inventors further studied the influence of heat treatment on the hardness of the Cu-containing ferritic stainless steel plate. Specifically, various studies were made on the solid solution / precipitation form of Cu and the heat treatment (heating / cooling conditions) exerted on them, and the following knowledge was obtained.

(a)硬質材と軟質材の組織比較より、Cuの析出形態に大きな違いが見られた。硬質材には、10〜100nmの微細Cu粒子が観察された。一方、軟質材にはCu析出が殆んど見られなかった。軟質材のCuはフェライトに固溶しているが、その固溶強化による硬化代は小さい。従って、硬化の主たる要因はCuの析出強化に起因すると考えられ、その析出抑制が軟質化に有効である。
なお上記Cu析出物の大きさはnmスケールであり、微小領域の組織観察に適したTEM(透過型電子顕微鏡)を用いて組織観察した。試料調整として、電解研磨法により薄膜試料を作成し、TEMにより最大20万倍まで拡大観察して、Cu析出物を観察した。
(b)Cu析出抑制により軟質化させるために、1.5%Cu含有フェライト系ステンレス鋼を基にして、軟質化に対して効果的な熱処理条件(下記(b−1)、b−2))を見出した。またこの熱処理条件は、Cu:0.3〜1.7質量%であるフェライト系ステンレス鋼でも同様に、軟質化に対して効果的である。
(b−1)仕上げ焼鈍について、溶体化温度を900〜1100℃とし、500℃未満まで冷却することで、硬さHvに関する下記(a)式を満たして軟質化することを知見した。900〜1100℃の溶体化温度は、Cu析出を再固溶するため、軟質化に有効と考えられる。また、3℃/s以上の平均冷却速度もCu析出を抑制する。
Hv≦40×(Cu−0.3)+135 ・・・ (a)
逆に、上記(a)式を満たさない場合、鋼中にはCu析出物が高密度で観察される。たとえ、Hv190以下に軟質化されていても、このように析出したCuは耐食性を低下させる。
(b−2)熱延板焼鈍についても、Cu析出を抑制する観点から、バッチ焼鈍ではなく連続焼鈍で行い、800〜1100℃加熱後400℃まで1℃/s以上の平均冷却速度で冷却する。これにより、本発明の規定する硬さに関する上記(a)式を満たす範囲で軟質化できる。
なお、本発明で規定するCu析出物は十分に小さいものが殆どであり、10〜1000nm程度の粗大な析出物は一部に観察される程度である。一方、従来技術では、抗菌性や高温特性改善のためにCu析出物を制御しているものの、その大きさは殆どが10〜1000nmであり、また析出密度が非常に高いものである。
(A) From the comparison of the structure of the hard material and the soft material, a large difference was found in the precipitation form of Cu. In the hard material, fine Cu particles of 10 to 100 nm were observed. On the other hand, Cu precipitation was hardly observed in the soft material. The soft material Cu is solid-dissolved in ferrite, but the hardening allowance due to the solid-solution strengthening is small. Therefore, it is considered that the main cause of hardening is due to Cu precipitation strengthening, and the suppression of precipitation is effective for softening.
Note that the size of the Cu precipitate was on a nanometer scale, and the structure was observed using a TEM (transmission electron microscope) suitable for observing the structure of a minute region. As a sample preparation, a thin film sample was prepared by an electropolishing method, and was magnified up to 200,000 times by TEM to observe a Cu precipitate.
(B) Based on 1.5% Cu-containing ferritic stainless steel for softening by suppressing Cu precipitation, heat treatment conditions effective for softening (the following (b-1) and b-2) ) Was found. Moreover, this heat treatment condition is also effective for softening in the ferritic stainless steel having Cu: 0.3 to 1.7% by mass.
(B-1) About finishing annealing, it was found that the solution temperature was 900 to 1100 ° C., and cooling to less than 500 ° C. satisfied the following formula (a) regarding the hardness Hv to soften. A solution temperature of 900 to 1100 ° C. is considered effective for softening because the Cu precipitate is dissolved again. An average cooling rate of 3 ° C./s or more also suppresses Cu precipitation.
Hv ≦ 40 × (Cu−0.3) +135 (a)
Conversely, when the above formula (a) is not satisfied, Cu precipitates are observed at a high density in the steel. Even if it is softened to Hv 190 or less, the deposited Cu reduces the corrosion resistance.
(B-2) Also from the viewpoint of suppressing Cu precipitation, hot-rolled sheet annealing is performed not by batch annealing but by continuous annealing, and is cooled at an average cooling rate of 1 ° C./s or higher up to 400 ° C. after heating at 800 to 1100 ° C. . Thereby, it can soften in the range which satisfy | fills the said (a) formula regarding the hardness which this invention prescribes | regulates.
In addition, most of the Cu precipitates defined in the present invention are sufficiently small, and coarse precipitates of about 10 to 1000 nm are only partially observed. On the other hand, in the prior art, Cu precipitates are controlled to improve antibacterial properties and high temperature characteristics, but the size is almost 10 to 1000 nm and the precipitation density is very high.

本発明は、以上の知見を基に得られたものであって、その内容は以下の通りである。
(1)質量%で、C:0.050%以下、Cr:10.0〜30.0%、Si:2.00%以下、P:0.030%以下、S:0.010%以下、Mn:2.00%以下、N:0.050%以下、Ni:2.0%以下、およびCu:0.3〜1.7%を含有し、残部がFe及び不可避不純物からなり、ステンレス鋼板の表面にCu濃化層が形成され、前記Cu濃化層のCu最大濃度Cmが10.0質量%以上であり、前記Cu最大濃度Cmを示す鋼板表面からの深さ位置におけるFe/Cr比が2.4以上であり、前記ステンレス鋼板の断面硬度がビッカース硬度スケールで下記(a)式を満たす抗菌性に優れたフェライト系ステンレス鋼板。
Hv硬さ≦40×(Cu−0.3)+135・・・(a)
(2)質量%で、C:0.050%以下、Cr:10.0〜30.0%、Si:2.00%以下、P:0.030%以下、S:0.010%以下、Mn:2.00%以下、N:0.050%以下、Ni:2.0%以下、およびCu0.1%以上.0%以下含有し、残部がFe及び不可避不純物からなり、ステンレス鋼板の表面にCu濃化層が形成され、前記Cu濃化層のCu最大濃度Cmが18.0質量%以上である抗菌性に優れたフェライト系ステンレス鋼板。
(3)前記Cuが、質量%で0.3〜1.7%であり、前記ステンレス鋼板の断面硬度がビッカース硬度スケールで下記()式を満たす前記(2)に記載の抗菌性に優れたフェライト系ステンレス鋼板。
Hv硬さ≦40×(Cu−0.3)+135 ・・・ (b)
(4)質量%で、更に、Ti:0.50%以下、Nb:1.00%以下、の1種又は2種以上を含有する前記(1)〜(3)の何れか一項に記載の抗菌性に優れたフェライト系ステンレス鋼板。
)質量%で、更に、Sn:1.00%以下、Mo:1.00%以下、Al:1.000%以下、Mg:0.010%以下、Co:1.000%以下、V:0.50%以下、Zr:0.10%以下、REM:0.100%以下、La:0.100%以下、B:0.0100%以下、Ca:0.010%以下、の1種又は2種以上を含有する前記(1)〜(4)の何れか一項に記載の抗菌性に優れたフェライト系ステンレス鋼板。
)金属製コイン用である前記(1)〜()の何れか1つに記載の抗菌性に優れたフェライト系ステンレス鋼板。
)熱間圧延工程、熱延板焼鈍工程、冷間圧延工程、仕上げ焼鈍工程及び仕上酸洗工程とを含むステンレス鋼板の製造方法であって、該ステンレス鋼板が、前記(1)、(4)、(5)の何れか1つに記載の成分組成を有し、該仕上酸洗工程が、5.0〜35.0質量%硫酸水溶液に浸漬する酸洗工程と、1.0〜15.0質量%の硝酸と0.5〜5.0質量%の弗酸水溶液とを含む酸液に浸漬する酸洗工程とを含み、該仕上げ焼鈍工程が、焼鈍温度900〜1100℃で行い、400℃まで3℃/秒以上の平均冷却速度で冷却する工程を含むものである前記(1)、(4)〜(6)の何れか一項に記載の抗菌性に優れたフェライト系ステンレス鋼板の製造方法。
熱間圧延工程、冷間圧延工程、及び仕上酸洗工程とを含むステンレス鋼板の製造方法であって、該ステンレス鋼板が、前記(2)〜(5)の何れか1項に記載の成分組成を有し、該仕上げ酸洗工程が、5.0〜35.0質量%硫酸水溶液に浸漬する酸洗工程と、1.0〜15.0質量%の硝酸と0.5〜5.0質量%の弗酸水溶液とを含む酸液に浸漬する酸洗工程とを含み、前記熱間圧延工程を、加熱温度1150〜1300℃、仕上げ圧延温度800〜1000℃、巻取り温度600℃以下で行う前記(2)〜(6)の何れか一項に記載の抗菌性に優れたフェライト系ステンレス鋼板の製造方法。
)更に熱延板焼鈍工程、及び仕上げ焼鈍工程を含み、該仕上げ焼鈍工程が、焼鈍温度900〜1100℃で行い、400℃まで3℃/秒以上の平均冷却速度で冷却する工程を含むものである前記(8)に記載の抗菌性に優れたフェライト系ステンレス鋼板の製造方法。
10)前記熱延板焼鈍工程において、連続焼鈍で行い、その連続焼鈍は、焼鈍温度を800〜1100℃で行い、次いで400℃まで1℃/秒以上の平均冷却速度で冷却する前記(7)または(9)に記載の抗菌性に優れたフェライト系ステンレス鋼板の製造方法。
The present invention has been obtained based on the above knowledge, and the contents thereof are as follows.
(1) By mass%, C: 0.050% or less, Cr: 10.0 to 30.0%, Si: 2.00% or less, P: 0.030% or less, S: 0.010% or less, Stainless steel sheet containing Mn: 2.00% or less, N: 0.050% or less, Ni: 2.0% or less, and Cu : 0.3-1.7% , the balance being Fe and inevitable impurities A Cu-enriched layer is formed on the surface of the Cu-enriched layer, and the Cu-enriched layer has a Cu maximum concentration Cm of 10.0% by mass or more, and the Fe / Cr ratio at a depth position from the steel sheet surface showing the Cu-enriched concentration Cm There Ri der 2.4 above, ferritic stainless steel sheet cross-sectional hardness and excellent antibacterial satisfying the following equation (a) in Vickers hardness scale of the stainless steel plate.
Hv hardness ≦ 40 × (Cu−0.3) +135 (a)
(2) By mass%, C: 0.050% or less, Cr: 10.0 to 30.0%, Si: 2.00% or less, P: 0.030% or less, S: 0.010% or less, Mn: 2.00% or less, N: 0.050% or less, Ni: 2.0% or less, and Cu0.1% or more 2. In antibacterial properties, containing 0% or less , the balance being Fe and inevitable impurities , a Cu concentrated layer is formed on the surface of the stainless steel plate, and the Cu maximum concentration Cm of the Cu concentrated layer is 18.0% by mass or more Excellent ferritic stainless steel sheet.
(3) the Cu is a 0.3 to 1.7 percent by mass%, the antimicrobial described before SL (2) cross-sectional hardness of the stainless steel sheet satisfying the following formula (b) in Vickers hardness scale Excellent ferritic stainless steel sheet.
Hv hardness ≦ 40 × (Cu−0.3) +135 ( b)
(4 ) The composition according to any one of (1) to (3), further containing one or more of Ti: 0.50% or less and Nb: 1.00% or less in mass%. Ferritic stainless steel plate with excellent antibacterial properties.
( 5 ) In mass%, Sn: 1.00% or less, Mo: 1.00% or less, Al: 1.000% or less, Mg: 0.010% or less, Co: 1.000% or less, V : 0.50% or less, Zr: 0.10% or less, REM: 0.100% or less, La: 0.100% or less, B: 0.0100% or less, Ca: 0.010% or less Or the ferritic stainless steel plate excellent in antibacterial property as described in any one of said (1)-(4) containing 2 or more types.
( 6 ) The ferritic stainless steel sheet having excellent antibacterial properties according to any one of (1) to ( 5 ), which is for metal coins.
( 7 ) A method for producing a stainless steel plate including a hot rolling step, a hot-rolled sheet annealing step, a cold rolling step, a finish annealing step, and a finish pickling step, wherein the stainless steel plate is the above (1) , ( 4) It has the component composition as described in any one of (5) , and the finish pickling step is dipped in a 5.0 to 35.0 mass% sulfuric acid aqueous solution, and 1.0 to 1.0 look containing a pickling step of immersing in an acid solution containing a 15.0 wt% nitric acid and hydrofluoric acid solution of 0.5 to 5.0 wt%, the finish annealing step, at annealing temperature 900 to 1100 ° C. performed, the step of cooling at an average cooling rate of more than 3 ° C. / sec to 400 ° C. the is Dressings containing (1), (4) antimicrobial excellent ferritic stainless steel sheet according to any one of - (6) Manufacturing method.
( 8 ) A method for producing a stainless steel plate including a hot rolling step, a cold rolling step, and a finish pickling step, wherein the stainless steel plate is described in any one of (2) to (5) above. The finish pickling step has a pickling step of immersing in a 5.0 to 35.0% by mass sulfuric acid aqueous solution, 1.0 to 15.0% by mass nitric acid, and 0.5 to 5%. A pickling step of immersing in an acid solution containing 0.0 mass% hydrofluoric acid aqueous solution, and the hot rolling step is performed at a heating temperature of 1150 to 1300 ° C., a finish rolling temperature of 800 to 1000 ° C., and a winding temperature of 600 ° C. The manufacturing method of the ferritic stainless steel plate excellent in antibacterial property as described in any one of said (2)-(6) performed below.
( 9 ) Further, including a hot-rolled sheet annealing step and a finish annealing step , the finish annealing step is performed at an annealing temperature of 900 to 1100 ° C, and includes a step of cooling to 400 ° C at an average cooling rate of 3 ° C / second or more. The method for producing a ferritic stainless steel sheet having excellent antibacterial properties as described in (8 ) above.
( 10 ) In the hot-rolled sheet annealing step, continuous annealing is performed. The continuous annealing is performed at an annealing temperature of 800 to 1100 ° C, and then cooled to 400 ° C at an average cooling rate of 1 ° C / second or more (7 ) Or (9) , a method for producing a ferritic stainless steel sheet having excellent antibacterial properties.

本発明の抗菌性に優れたフェライト系ステンレス鋼板、及び、その製造方法によれば、良好な抗菌性を板面内全域に渡って発揮するため、従来以上に良好な抗菌性を歩留まり良く得ることが出来る。また、本発明の望ましい形態によれば、鋼表面のCu最大濃度を従来に例を見ない程高濃化することが出来、これによって更に良好な抗菌性を得ることが出来る。また、フェライト系ステンレス鋼のCu含有量0.3〜1.7%を制限するとともに、熱延板焼鈍及び仕上げ焼鈍の条件を制御することで十分に軟質化を図ることが可能となり、優れた抗菌化と両立させることができる。これらの特徴を有する本発明のフェライト系ステンレス鋼板は、例えば金属製コインとして好適に用いることが出来る。   According to the ferritic stainless steel plate excellent in antibacterial properties of the present invention and the manufacturing method thereof, in order to demonstrate good antibacterial properties throughout the entire plate surface, it is possible to obtain better antibacterial properties than in the past with a good yield. I can do it. Moreover, according to the desirable form of this invention, Cu maximum density | concentration of the steel surface can be highly concentrated so that an example is not seen conventionally, and thereby further favorable antimicrobial property can be obtained. In addition, the Cu content of ferritic stainless steel is limited to 0.3 to 1.7%, and it is possible to sufficiently soften by controlling the conditions of hot-rolled sheet annealing and finish annealing. Can be compatible with antibacterial. The ferritic stainless steel sheet of the present invention having these characteristics can be suitably used as, for example, a metal coin.

図1は、本発明に係るステンレス鋼の表面から深さ方向におけるC,O及び主要元素の濃度分布の一例を示すグラフである。FIG. 1 is a graph showing an example of the concentration distribution of C, O and main elements in the depth direction from the surface of the stainless steel according to the present invention. 図2は、本発明に係るステンレス鋼の表面から深さ方向におけるO及び主要元素の濃度分布の一例を示すグラフである。FIG. 2 is a graph showing an example of the concentration distribution of O and main elements in the depth direction from the surface of the stainless steel according to the present invention. 図3は、本発明の実施例及び比較例についてのCu最大濃度、Fe/Cr比及び抗菌性評価との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the maximum Cu concentration, Fe / Cr ratio, and antibacterial evaluation for the examples and comparative examples of the present invention.

以下、本発明の実施形態である抗菌性に優れたフェライト系ステンレス鋼板及びその製造方法について詳細に説明する。なお、特に注記しない限り、元素の含有量%は質量%を意味する。   Hereinafter, the ferritic stainless steel plate excellent in antibacterial properties and a method for producing the same according to an embodiment of the present invention will be described in detail. Unless otherwise noted, the element content% means mass%.

第1実施形態のフェライト系ステンレス鋼板は、質量%で、Cuを0.1%以上5.0%以下含有し、ステンレス鋼板の表面にCu濃化層が形成され、Cu濃化層のCu最大濃度Cmが10.0質量%以上であり、Cu最大濃度Cmを示す鋼板表面からの深さ位置におけるFe/Cr比が2.4以上のフェライト系ステンレス鋼板である。
また、第2実施形態のフェライト系ステンレス鋼板は、質量%で、Cuを0.1%以上5.0%以下含有し、ステンレス鋼板の表面にCu濃化層が形成され、Cu濃化層のCu最大濃度Cmが18.0質量%以上のフェライト系ステンレス鋼板である。
The ferritic stainless steel plate according to the first embodiment contains, by mass%, Cu in a range of 0.1% to 5.0%, a Cu concentrated layer is formed on the surface of the stainless steel plate, and the Cu maximum of the Cu concentrated layer is A ferritic stainless steel sheet having a concentration Cm of 10.0% by mass or more and an Fe / Cr ratio of 2.4 or more at a depth position from the steel sheet surface showing the maximum Cu concentration Cm.
Further, the ferritic stainless steel sheet of the second embodiment contains 0.1% to 5.0% by mass of Cu, and a Cu concentrated layer is formed on the surface of the stainless steel sheet. This is a ferritic stainless steel sheet having a maximum Cu concentration Cm of 18.0% by mass or more.

第1実施形態または第2実施形態のフェライト系ステンレス鋼板においては、質量%で、更に、C:0.050%以下、Cr:10.0〜30.0%、Si:2.00%以下、P:0.030%以下、S:0.010%以下、Mn:2.00%以下、N:0.050%以下、Ni:2.0%以下を含有するものであってもよい。   In the ferritic stainless steel sheet of the first embodiment or the second embodiment, in mass%, C: 0.050% or less, Cr: 10.0 to 30.0%, Si: 2.00% or less, P: 0.030% or less, S: 0.010% or less, Mn: 2.00% or less, N: 0.050% or less, Ni: 2.0% or less may be contained.

また、第1実施形態または第2実施形態のフェライト系ステンレス鋼板においては、質量%で、更に、Ti:0.5%以下、Nb:1.00%以下の1種又は2種を含有していてもよい。   Moreover, in the ferritic stainless steel plate of 1st Embodiment or 2nd Embodiment, it is the mass%, and also contains 1 type or 2 types of Ti: 0.5% or less and Nb: 1.00% or less. May be.

更にまた、第1実施形態または第2実施形態のフェライト系ステンレス鋼板においては、質量%で、更に、Sn:1.00%以下、Mo:1.00%以下、Al:1.000%以下、Mg:0.010%以下、Co:1.000%以下、V:0.50%以下、Zr:0.10%以下、REM:0.100%以下、La:0.100%以下、B:0.0100%以下、Ca:0.010%以下の1種又は2種以上を含有していてもよい。   Furthermore, in the ferritic stainless steel sheet of the first embodiment or the second embodiment, the mass percentage is Sn: 1.00% or less, Mo: 1.00% or less, Al: 1.000% or less, Mg: 0.010% or less, Co: 1.000% or less, V: 0.50% or less, Zr: 0.10% or less, REM: 0.100% or less, La: 0.100% or less, B: One or more of 0.0100% or less and Ca: 0.010% or less may be contained.

ここで、Cu濃化層とは、フェライト系ステンレス鋼板の表層のうち、フェライト系ステンレス鋼板における平均Cu濃度よりも高いCu濃度を示す領域をいう。具体的には、本実施形態のフェライト系ステンレス鋼板を、グロー放電発光分析(GDS)により、鋼板表面より約800nmの深さまで、酸洗工程によって表面に濃化する元素や酸化物を構成する元素を検出する。検出元素について詳細は、後に述べる。O,Fe,Cr,Si,Mn,Nb,Ti,Al,Cuの濃度分布を測定すると、Cu、Fe、Crは、例えば図2に示すように深さ方向での濃度分布を示す。図2では、表面から深さ30nmまでのCu濃度が、30nm超の深さのCu濃度より大きくなっている。図2において30nm超の深さのCu濃度はステンレス鋼板の平均Cu濃度とみなすとすると、図2におけるCu濃化層は、表面から深さ30nmまでの領域となる。Cu濃化層はこのようにして決めればよい。   Here, Cu concentration layer means the area | region which shows Cu density | concentration higher than the average Cu density | concentration in a ferritic stainless steel plate among the surface layers of a ferritic stainless steel plate. Specifically, the ferritic stainless steel plate of this embodiment is an element constituting an element or oxide that is concentrated on the surface by a pickling process to a depth of about 800 nm from the steel plate surface by glow discharge emission analysis (GDS). Is detected. Details of the detection element will be described later. When the concentration distributions of O, Fe, Cr, Si, Mn, Nb, Ti, Al, and Cu are measured, Cu, Fe, and Cr show concentration distributions in the depth direction as shown in FIG. In FIG. 2, the Cu concentration from the surface to a depth of 30 nm is larger than the Cu concentration at a depth of more than 30 nm. In FIG. 2, if the Cu concentration at a depth of more than 30 nm is regarded as the average Cu concentration of the stainless steel plate, the Cu concentrated layer in FIG. 2 is a region from the surface to a depth of 30 nm. The Cu enriched layer may be determined in this way.

また、GDS分析により求められるCu濃度は、O,Fe,Cr,Si,Mn,Nb,Ti,Al,Cuの合計量に対するCuの濃度で表される。Cu濃化層のうち、Cu濃度が最大となる濃度をCu最大濃度Cmとする。更に、Cu最大濃度Cmを示す鋼板表面からの深さにおけるFe濃度とCr濃度の比を本実施形態ではFe/Cr比という。図2の例では、Cu最大濃度Cmは75.0%であり、Fe/Cr比は2.9である。   Further, the Cu concentration obtained by GDS analysis is represented by the concentration of Cu with respect to the total amount of O, Fe, Cr, Si, Mn, Nb, Ti, Al, and Cu. In the Cu concentrated layer, the concentration at which the Cu concentration is maximum is defined as the Cu maximum concentration Cm. Furthermore, the ratio of the Fe concentration and the Cr concentration at the depth from the steel plate surface showing the maximum Cu concentration Cm is referred to as the Fe / Cr ratio in this embodiment. In the example of FIG. 2, the maximum Cu concentration Cm is 75.0%, and the Fe / Cr ratio is 2.9.

O,Fe,Cr,Si,Mn,Nb,Ti,Al,Cuは、酸洗工程によって表面に濃化する元素や酸化物を構成する元素なので、Cu濃度を算出するために用いた。   Since O, Fe, Cr, Si, Mn, Nb, Ti, Al, and Cu are elements that are concentrated on the surface by the pickling process or elements that constitute oxides, they were used to calculate the Cu concentration.

なお、P,S,N,Niは、酸洗工程による表面濃化や、酸化物を構成して表面に濃化することが無いため、Cu濃度算出の際に考慮はしないことにする。   Note that P, S, N, and Ni are not considered in the calculation of the Cu concentration because they do not concentrate on the surface by the pickling process and do not form oxides on the surface.

Ti、Nb、Alは、本発明における任意添加元素であるが、酸化物を構成する元素であるため、Cu濃度算出の際に考慮する。これらの元素が含有されない場合は、これらの元素の濃度が0%としてCu濃度を算出する。   Ti, Nb, and Al are optional added elements in the present invention, but are elements that constitute oxides, and therefore are considered when calculating the Cu concentration. When these elements are not contained, the Cu concentration is calculated assuming that the concentration of these elements is 0%.

また、Cは汚染元素であるため、GDS分析で検出した後、Cを除いてCu濃度を算出することにする。   In addition, since C is a contaminating element, after detection by GDS analysis, Cu concentration is calculated by removing C.

次に、フェライト系ステンレス鋼板のCu含有量について説明する。
Cuは、本実施形態のフェライト系ステンレス鋼板において抗菌性を向上させるための最も重要な元素である。本実施形態ではCu濃化層のCu最大濃度Cmを10.0%以上にすることが必要であるが、鋼のCu含有量が0.1%未満の場合は、後述する本実施形態の製造方法を適用したとしても10.0%以上のCm値を得ることが出来ない。そのため、下限を0.1%とした。一方、Cu含有量が多すぎると製造過程において鋳片の割れが発生するため、上限を5.0%以下とした。好ましくは0.1〜1.7%であり、最も好ましくは0.2〜1.5%である。
Next, the Cu content of the ferritic stainless steel sheet will be described.
Cu is the most important element for improving antibacterial properties in the ferritic stainless steel sheet of the present embodiment. In this embodiment, it is necessary to set the Cu maximum concentration Cm of the Cu concentrated layer to 10.0% or more. However, when the Cu content of the steel is less than 0.1%, the production of this embodiment described later is performed. Even if the method is applied, a Cm value of 10.0% or more cannot be obtained. Therefore, the lower limit was made 0.1%. On the other hand, if the Cu content is too large, cracking of the slab occurs during the production process, so the upper limit was made 5.0% or less. Preferably it is 0.1-1.7%, Most preferably, it is 0.2-1.5%.

本実施形態において抗菌性を得るためには、鋼の表層の元素分布を厳密に制御する必要がある。まず、鋼表面のCu濃化層のCu最大濃度Cmを10.0%以上にする必要がある。10.0%に満たない場合、他の規定が満足されても抗菌性は発現しない。好ましくは11.0%以上、更に好ましくは、18.0%以上である。一方、Cu最大濃度Cmはいくら高くても抗菌性に悪影響を及ぼすことはないため、その上限は規定しない。   In order to obtain antibacterial properties in this embodiment, it is necessary to strictly control the element distribution of the steel surface layer. First, the Cu maximum concentration Cm of the Cu concentrated layer on the steel surface needs to be 10.0% or more. When it is less than 10.0%, antibacterial properties are not exhibited even if other regulations are satisfied. Preferably it is 11.0% or more, More preferably, it is 18.0% or more. On the other hand, no matter how high the maximum Cu concentration Cm does not adversely affect antibacterial properties, the upper limit is not specified.

また、種々抗菌性と鋼表層状態の関係を検討した結果、Cu最大濃度Cmに応じて、鋼表層のCu濃化層の主要成分であるFe、Crの存在状態を適切に制御する必要があることを発見した。そこで、Cu最大濃度CmとFe/Cr比とについて、図3のグラフを用いてさらに説明する。
図3は、後述する実施例の表2〜表15における試験No.1〜551のデータのうち、Cu最大濃度Cm:5〜40質量%付近、Fe/Cr比:1〜6付近のデータを中心に抽出してプロットしたものであって、Cu最大濃度Cm、Fe/Cr比及び抗菌性評価との関係を調査した結果を示すグラフである。図3のグラフ中の「○」は抗菌性が優れていたもの(本発明実施例)、「●」は抗菌性が特に優れていたもの(本発明実施例)、「×」は抗菌性が不良であったもの(本発明比較例)を示す。
Moreover, as a result of examining the relationship between various antibacterial properties and the steel surface layer state, it is necessary to appropriately control the presence state of Fe and Cr, which are main components of the Cu concentrated layer of the steel surface layer, according to the Cu maximum concentration Cm. I discovered that. Therefore, the Cu maximum concentration Cm and the Fe / Cr ratio will be further described with reference to the graph of FIG.
FIG. 3 shows test numbers in Tables 2 to 15 of Examples described later. Among the data of 1 to 551, the Cu maximum concentration Cm: around 5 to 40% by mass and the data of Fe / Cr ratio: around 1 to 6 are extracted and plotted, and the Cu maximum concentration Cm, Fe It is a graph which shows the result of having investigated the relationship with / Cr ratio and antibacterial evaluation. In the graph of FIG. 3, “◯” indicates that the antibacterial property is excellent (Example of the present invention), “●” indicates that the antibacterial property is particularly excellent (Invention example), and “×” indicates that the antibacterial property is excellent. What was inferior (this invention comparative example) is shown.

(A)Cu最大濃度Cmが10.0%以上18.0%未満の場合(第1実施形態のステンレス鋼板)
第1実施形態のフェライト系ステンレス鋼板においては、Fe/Cr比を2.4以上にすることが必要である。図3に示すように、Fe/Cr比が2.4未満では、Cu最大濃度Cmが10.0%以上であっても抗菌性が発現されない。この理由は不明であるが、本発明者らの推定では、Fe/Cr比が2.4以上になることでFeとCrの結合が不安定になり、Cu濃化層中のCuも不安定になると考えられる。Cuは常温でFe,Crに比べて酸化されにくい、つまり酸素との結合を好まない元素である。Fe,Crが不安定状態の場合、FeやCrと結合されていた酸素が結合を解かれるため、Cu周辺の酸素量が増加する。よって、酸素との結合を嫌うCuは鋼表面からイオンとして水中に溶け出しやすくなると考えられる。イオンとして溶け出したCuは、菌の細胞活動を低下させるため、抗菌性を発現する。そのため、鋼表層のFe/Cr比を上記範囲内にすることで抗菌性発現に至るのではないかと考えている。Fe/Cr比は2.6以上9.5以下がより好ましく、3.0以上9.0以下更に好ましい。なお、Cu最大濃度Cmを10.0%以上にするとともにFe/Cr比を2.4以上にするには、後述する本実施形態の製造方法において酸洗条件を制御すればよい。
(A) When Cu maximum concentration Cm is 10.0% or more and less than 18.0% (stainless steel plate of the first embodiment)
In the ferritic stainless steel sheet of the first embodiment, the Fe / Cr ratio needs to be 2.4 or more. As shown in FIG. 3, when the Fe / Cr ratio is less than 2.4, antibacterial properties are not exhibited even if the Cu maximum concentration Cm is 10.0% or more. The reason for this is unknown, but according to the inventors' estimation, the Fe / Cr ratio becomes 2.4 or more, the bond between Fe and Cr becomes unstable, and the Cu in the Cu concentrated layer is also unstable. It is thought that it becomes. Cu is an element that is less oxidized than Fe and Cr at room temperature, that is, does not like the bond with oxygen. When Fe and Cr are in an unstable state, oxygen bonded to Fe and Cr is released, so that the amount of oxygen around Cu increases. Therefore, it is considered that Cu, which dislikes bonding with oxygen, easily dissolves in water as ions from the steel surface. Cu dissolved as ions reduces the cell activity of the fungus, and thus exhibits antibacterial properties. Therefore, it is thought that antibacterial expression may be achieved by setting the Fe / Cr ratio of the steel surface layer within the above range. The Fe / Cr ratio is more preferably 2.6 or more and 9.5 or less, and further preferably 3.0 or more and 9.0 or less. In addition, what is necessary is just to control pickling conditions in the manufacturing method of this embodiment mentioned later, in order to make Cu maximum density | concentration Cm 10.0% or more and to make Fe / Cr ratio 2.4 or more.

(B)Cu最大濃度Cmが18.0%以上の場合(第2実施形態のステンレス鋼板)
本発明のフェライト系ステンレス鋼板においては、Cu最大濃度Cmを高めることによって、更に抗菌性が向上する。具体的には第2実施形態のフェライト系ステンレス鋼板の如く、Cu最大濃度Cmを18.0%以上に制御すると、抗菌性が更に向上する。図3のグラフからも明らかなように、第1実施形態と比べてCu最大濃度Cmが更に高い18.0%以上の場合は、Fe/Cr比を特に制御する必要が無い。この理由は不明であるが、本発明者らの推定では、Cu最大濃度Cmが18.0%以上になると、鋼表層のCu濃化層のCu濃度が大きくなる一方でFe濃度及びCr濃度が低下し、これにより、Cu濃化層のFeやCrの影響が小さくなるためと考えている。そのため、Fe/Cr比と関係なく、Cu濃化層のCuは鋼表面よりイオンとして水中に溶け出し、菌の細胞活動を低下させるため、抗菌性を発現すると推測される。
(B) When Cu maximum concentration Cm is 18.0% or more (stainless steel plate of the second embodiment)
In the ferritic stainless steel sheet of the present invention, antibacterial properties are further improved by increasing the Cu maximum concentration Cm. Specifically, when the Cu maximum concentration Cm is controlled to 18.0% or more as in the ferritic stainless steel plate of the second embodiment, the antibacterial property is further improved. As apparent from the graph of FIG. 3, when the Cu maximum concentration Cm is higher than 18.0% as compared with the first embodiment, it is not necessary to control the Fe / Cr ratio. The reason for this is unknown, but according to the inventors' estimation, when the Cu maximum concentration Cm is 18.0% or more, the Cu concentration of the Cu concentrated layer on the steel surface layer is increased while the Fe concentration and the Cr concentration are increased. This is considered to be because the influence of Fe or Cr in the Cu concentrated layer is reduced. Therefore, regardless of the Fe / Cr ratio, Cu in the Cu-concentrated layer is presumed to exhibit antibacterial properties because it dissolves into the water as ions from the steel surface and reduces the cell activity of the fungus.

なお、Cu最大濃度Cmを18.0%以上にするためには、後述する本実施形態の製造方法において、酸洗条件とともに圧延条件を制御すればよい。なお、鋼表層に過度にFeが多いと、フェライト系ステンレス鋼板の耐腐食性を低下させるため、Fe/Crを10.0以下とすることが好ましい。一方、鋼表層に過度にFeが少ないと、鋼表面に比較的多く存在するCrが酸化されやすい状態となるため、Fe/Crを0.4以上とすることが好ましい。Fe/Crの好ましい範囲は0.4〜10.0であり、更に好ましくは0.5〜9.5である。   In addition, what is necessary is just to control rolling conditions with pickling conditions in the manufacturing method of this embodiment mentioned later in order to make Cu maximum density | concentration Cm 18.0% or more. In addition, when there is too much Fe in the steel surface layer, the corrosion resistance of the ferritic stainless steel sheet is reduced, so Fe / Cr is preferably 10.0 or less. On the other hand, if there is too little Fe in the steel surface layer, Cr that is relatively abundant on the steel surface is likely to be oxidized, so Fe / Cr is preferably 0.4 or more. The preferable range of Fe / Cr is 0.4-10.0, More preferably, it is 0.5-9.5.

(フェライト系ステンレス鋼板の軟質化)
上記のように鋼表面のCu制御による抗菌性発現に加えて、軟質化を図る場合には、仕上げ焼鈍でのCu析出抑制が効果的である。以下、第1、第2実施形態のフェライト系ステンレス鋼板における軟質化を図る具体的条件等について説明する。
まず、抗菌性と軟質化を両立するには、Cu含有量を0.3〜1.7%とすることが好ましい。Cu含有量が0.3%未満では、Cu固溶限を十分に下回るため、Cu析出による硬化がほとんど生じない。一方、C含有量が1.7%超では、Cu析出を抑制しても、Cuの固溶強化による硬化代が大きいために、本発明で規定する軟質化を達成するのが難しい。
Cuの析出形態としては、Cu含有量等にも影響されるが、10〜100nmの粒状もしくはロッド状である。硬質なステンレス鋼板は、Cu析出物の大きさにばらつきがあるものの、Cu析出密度の多いことを特徴とする。他方、軟質なステンレス鋼板では、Cu析出密度が小さく、その析出サイズも小さい。よって、Cu析出が硬化の主要因と考えられた。それを確かめるために、硬質なステンレス鋼板を素材として本発明で規定する条件で再熱処理し、熱処理前後での組織を比較した。その結果、同一成分でも硬質材と比べて、軟質材の方がCu析出密度も小さくなり、Cu析出サイズも小さくなるという差異が見られた。
またこのような軟質化のためのCu析出制御は、Cuを再固溶し、冷却過程で極力Cuを析出させないことが重要である。それに係る因子として、溶体化温度や冷却速度があり、後述の熱延板焼鈍条件及び仕上げ焼鈍条件に従って製造することで、軟質化を達成した。
本発明の軟質なステンレス鋼板の断面硬度は、ビッカース硬度スケールで、下記(a)式を満たす。なお(a)式は、種々行ったビッカース硬度測定結果を、各軸をCu濃度とビッカース硬度としたグラフにプロットした上で各プロットを耐食性の評価結果によって分類した結果、ビッカース硬度(Hv硬度、またはHvともいう)が190以下であると共に耐食性も具備する範囲として導くことが出来たものである。(a)式を満たさない場合、たとえHvが190以下と軟質であっても耐食性が劣化する。これは恐らくCuが過剰に析出したためであると推測される。
Hv硬さ≦40×(Cu−0.3)+135・・・(a)
なお、(a)式中の「Cu」は含有量(質量%)を示す。
(Softening of ferritic stainless steel sheet)
As described above, in addition to the antibacterial expression by Cu control on the steel surface, in the case of softening, it is effective to suppress Cu precipitation in finish annealing. Hereinafter, specific conditions for achieving softening in the ferritic stainless steel plates of the first and second embodiments will be described.
First, in order to achieve both antibacterial properties and softening, the Cu content is preferably set to 0.3 to 1.7%. If the Cu content is less than 0.3%, it is well below the Cu solid solubility limit, so that hardening due to Cu precipitation hardly occurs. On the other hand, if the C content exceeds 1.7%, even if Cu precipitation is suppressed, it is difficult to achieve the softening defined in the present invention because the hardening allowance due to the solid solution strengthening of Cu is large.
The precipitation form of Cu is 10 to 100 nm granular or rod-like, although it is affected by the Cu content and the like. Hard stainless steel sheets are characterized by a high Cu precipitation density, although the size of Cu precipitates varies. On the other hand, a soft stainless steel plate has a low Cu precipitation density and a small precipitation size. Therefore, Cu precipitation was considered as the main factor of hardening. In order to confirm this, a re-heat treatment was performed using a hard stainless steel plate as a raw material under the conditions specified in the present invention, and the structures before and after the heat treatment were compared. As a result, even with the same component, there was a difference that the soft material had a smaller Cu precipitation density and a smaller Cu precipitation size than the hard material.
Moreover, it is important for Cu precipitation control for such softening to re-dissolve Cu and not to precipitate Cu as much as possible in the cooling process. Factors related to this include solution temperature and cooling rate, and softening was achieved by manufacturing according to hot-rolled sheet annealing conditions and finish annealing conditions described later.
The cross-sectional hardness of the soft stainless steel plate of the present invention satisfies the following formula (a) on the Vickers hardness scale. The formula (a) is a result of various Vickers hardness measurement results plotted on a graph in which each axis is Cu concentration and Vickers hardness, and each plot is classified according to the corrosion resistance evaluation result, and Vickers hardness (Hv hardness, (Also referred to as Hv) is 190 or less and can be derived as a range having corrosion resistance. When the formula (a) is not satisfied, even if Hv is 190 or less, the corrosion resistance is deteriorated. This is presumably due to excessive precipitation of Cu.
Hv hardness ≦ 40 × (Cu−0.3) +135 (a)
In addition, "Cu" in (a) Formula shows content (mass%).

次に、第1、第2実施形態のフェライト系ステンレス鋼板の他の化学成分について説明する。本発明の本質的な特徴は、上述したように鋼板の表層における元素濃度分布の制御にある。以下、耐食性、加工性や製造性など、抗菌性以外の要素まで考えた場合に使用可能な鋼の成分組成について記載するが、抗菌性ステンレス鋼板として本発明の課題を解決するに当っては、その成分組成は下記の成分に限定されるものではない。   Next, other chemical components of the ferritic stainless steel plates of the first and second embodiments will be described. The essential feature of the present invention is the control of the element concentration distribution in the surface layer of the steel sheet as described above. Hereinafter, the corrosion resistance, workability and manufacturability, etc., including the component composition of steel that can be used when considering elements other than antibacterial properties, in solving the problems of the present invention as an antibacterial stainless steel plate, The component composition is not limited to the following components.

Cは、溶解原料等から不可避的に混入してくる不純物元素であり、少ない方が望ましく下限値は設けない。C量が0.050%を超えると、鋼の靱性および冷間加工性を悪化するため、上限を0.050%以下とするのがよい。C量は好ましくは、0.040%以下で、更に好ましくは0.020%以下とする。また、C量を過度に低減させることは製造コストの増加につながるため、0.001%以上にすることが好ましい。   C is an impurity element that is inevitably mixed in from the dissolved raw material and the like. If the amount of C exceeds 0.050%, the toughness and cold workability of steel deteriorate, so the upper limit is preferably made 0.050% or less. The C amount is preferably 0.040% or less, and more preferably 0.020% or less. In addition, excessively reducing the amount of C leads to an increase in manufacturing cost, so 0.001% or more is preferable.

Crは、耐食性および耐高温酸化性の向上のため、10.0%以上の添加が必要である。一方、Cr量が30.0%を超えると成形性が劣化する可能性があるので、10.0〜30.0%の範囲とするのがよい。Cr量は好ましくは12.0〜27.0%であり、最も好ましくは13.0〜25.0%である。   Cr needs to be added in an amount of 10.0% or more in order to improve corrosion resistance and high-temperature oxidation resistance. On the other hand, if the Cr content exceeds 30.0%, the formability may deteriorate, so the range of 10.0 to 30.0% is preferable. The amount of Cr is preferably 12.0 to 27.0%, and most preferably 13.0 to 25.0%.

Siは、脱酸元素として作用し、また耐高温酸化性を向上させる。この効果を得るためには、Siを0.01%以上含有させればよい。しかし、Siを多量に添加すると鋼板が硬質化して延性が劣化する場合がある。したがって、Si含有量を2.00%以下とするのがよい。Si量は好ましくは0.01〜1.50%であり、更に好ましくは0.10〜1.20%である。   Si acts as a deoxidizing element and improves high-temperature oxidation resistance. In order to obtain this effect, Si may be contained by 0.01% or more. However, when a large amount of Si is added, the steel sheet may become hard and ductility may deteriorate. Therefore, the Si content is preferably 2.00% or less. The amount of Si is preferably 0.01 to 1.50%, and more preferably 0.10 to 1.20%.

Pは、原料から不可避的に混入する元素である。Pは粒界偏析元素であり、あまり多く含有すると鋼板の冷間加工性や靭性を劣化させるため、0.030%以下にするのがよい。   P is an element inevitably mixed from the raw material. P is a grain boundary segregation element, and if it is contained too much, the cold workability and toughness of the steel sheet are deteriorated.

Sは、P同様に原料から不可避的に混入する元素である。Sは耐食性および成形性を劣化させる元素であるため、0.010%以下にするのがよい。   S, like P, is an element inevitably mixed from the raw material. Since S is an element that degrades corrosion resistance and moldability, it is preferable to make it 0.010% or less.

Mnは、脱酸剤として作用する。また、Sの結晶粒界への偏析による粒界脆化を防ぐことができる。これらの効果を得るためには、Mnを0.10%以上含有させればよい。しかし、あまり多いと鋼板の冷間加工性を低下させる。したがって、Mn含有量を2.00%以下にするのがよい。Mn量は好ましくは0.10〜1.80%あり、更に好ましくは0.12〜1.50%である。   Mn acts as a deoxidizer. Further, grain boundary embrittlement due to segregation of S to the crystal grain boundary can be prevented. In order to obtain these effects, Mn may be contained by 0.10% or more. However, if the amount is too large, the cold workability of the steel sheet is lowered. Therefore, the Mn content should be 2.00% or less. The amount of Mn is preferably 0.10 to 1.80%, more preferably 0.12 to 1.50%.

Nは、含有量が多くなると成形性を劣化させるので、0.050%以下にするのがよい。N量は好ましくは0.040%以下で、更に好ましくは0.030%以下である。一方、N量を過度に低減させることは、製造コストの増加につながるため、0.001%以上にすることが好ましい。   Since N deteriorates moldability when the content increases, it is preferable to make N 0.05% or less. The N amount is preferably 0.040% or less, and more preferably 0.030% or less. On the other hand, excessively reducing the amount of N leads to an increase in manufacturing cost, so 0.001% or more is preferable.

Niは、本実施形態のフェライト系ステンレス鋼板の熱間加工性を改善する。この効果を得るためには、Niを0.1%以上含有させればよい。しかし、Niを過剰に含有させるとフェライトの安定度が減少してしまうため、Ni量は2.0%以下にするのがよい。Ni量は好ましくは1.5%以下であり、更に好ましくは1.2%以下である。   Ni improves the hot workability of the ferritic stainless steel sheet of the present embodiment. In order to obtain this effect, Ni may be contained by 0.1% or more. However, if Ni is excessively contained, the stability of ferrite is reduced, so the Ni content is preferably 2.0% or less. The amount of Ni is preferably 1.5% or less, and more preferably 1.2% or less.

第1、第2実施形態のフェライト系ステンレス鋼板は、上述した成分元素以外にFe及び不可避的に混入する不純物からなる。   The ferritic stainless steel plates of the first and second embodiments are composed of Fe and impurities inevitably mixed in addition to the above-described component elements.

更に、第1、第2実施形態のフェライト系ステンレス鋼板には、更に任意成分としてTi、Nbを含有させてもよい。Ti,Nbは、炭窒化物生成元素であるため、成形性を改善させる元素であり、必要に応じてどちらか一方、または両方を含有させればよい。成形性を改善する効果を得るためには、Tiを0.002%以上、Nbを0.002%以上含有させればよい。しかし、Ti、Nbの過剰な添加は加工性の劣化や靭性の低下を招くため、これらを含有させる場合は、Ti:0.50%以下、Nb:1.00%以下とすることが好ましい。より好ましくはTi:0.45%以下、Nb:0.95%以下とし、更に好ましくはTi:0.40%以下、Nb:0.90%以下とする。   Further, the ferritic stainless steel plates of the first and second embodiments may further contain Ti and Nb as optional components. Since Ti and Nb are carbonitride-forming elements, Ti and Nb are elements that improve formability, and one or both of them may be contained as necessary. In order to obtain the effect of improving the formability, 0.002% or more of Ti and 0.002% or more of Nb may be contained. However, excessive addition of Ti and Nb leads to deterioration of workability and toughness. Therefore, when these are contained, Ti is preferably 0.50% or less and Nb: 1.00% or less. More preferably, Ti: 0.45% or less, Nb: 0.95% or less, still more preferably Ti: 0.40% or less, Nb: 0.90% or less.

更に、第1、第2実施形態のフェライト系ステンレス鋼板には、以下に示す元素を必要に応じて1種又は2種以上含有させてもよい。   Furthermore, the ferritic stainless steel sheets of the first and second embodiments may contain one or more elements shown below as required.

Snは、耐食性を向上させるために有効な元素である。この効果を得るためには、Snを0.005%以上含有させればよい。しかし1.00%を越えると靭性が劣化するので、1.00%以下とする。Sn量は好ましくは0.60%以下であり、更に好ましくは0.50%以下である。   Sn is an element effective for improving the corrosion resistance. In order to obtain this effect, 0.005% or more of Sn may be contained. However, if it exceeds 1.00%, the toughness deteriorates, so the content is made 1.00% or less. The Sn amount is preferably 0.60% or less, and more preferably 0.50% or less.

Moは、耐食性を向上させるために有効な元素である。この効果を得るためには、Moを0.002%以上含有させればよい。しかし、1.00%を超えると靭性が劣化するので、1.00%以下とする。Mo量は好ましくは0.70%以下であり、更に好ましくは0.50%以下である。   Mo is an effective element for improving the corrosion resistance. In order to obtain this effect, Mo may be contained by 0.002% or more. However, if it exceeds 1.00%, toughness deteriorates, so it is made 1.00% or less. The amount of Mo is preferably 0.70% or less, and more preferably 0.50% or less.

Alは、Moと同様に耐食性を向上させる作用を呈する。この効果を得るためには、Alを0.002%以上含有させればよい。しかし、1.000%を超えて過剰に含有させると、製造性や加工性を低下させる。Al量は好ましくは0.300%以下であり、更に好ましくは0.100%以下である。   Al, like Mo, exhibits an effect of improving the corrosion resistance. In order to obtain this effect, 0.002% or more of Al may be contained. However, if it is contained excessively exceeding 1.000%, manufacturability and workability are lowered. The amount of Al is preferably 0.300% or less, and more preferably 0.100% or less.

Mgは、溶鋼中でMg酸化物を形成し脱酸剤として作用する他、TiNの晶出核として作用し、凝固時にフェライト相を微細生成させることができる。凝固組織を微細化させることにより、粗大凝固組織に起因した鋼板の表面欠陥を防止できる他、加工性の向上をもたらすため必要に応じて含有させる。この効果を得るためには、Mgを0.001%以上含有させればよい。しかし、0.010%を超えて過剰に含有させると、製造性や加工性を低下させる。Mg量は好ましくは0.009%以下であり、更に好ましくは0.008%以下である。   Mg forms Mg oxide in molten steel and acts as a deoxidizer, and also acts as a crystallization nucleus of TiN, and can finely produce a ferrite phase during solidification. By making the solidification structure finer, it is possible to prevent surface defects of the steel sheet due to the coarse solidification structure, and to improve workability, it is contained as necessary. In order to obtain this effect, 0.001% or more of Mg may be contained. However, if it exceeds 0.010% and is contained excessively, manufacturability and workability are lowered. The amount of Mg is preferably 0.009% or less, and more preferably 0.008% or less.

Coは、Moと同様に耐食性を向上させる作用を呈する。この効果を得るためには、Coを0.002%以上含有させればよい。しかし、1.000%を超えて過剰に含有させると、合金コストの上昇や製造性の低下に繋がる。Co量は好ましくは0.400%以下であり、更に好ましくは0.200%以下である。   Co exhibits the effect of improving the corrosion resistance like Mo. In order to obtain this effect, 0.002% or more of Co may be contained. However, if it is contained excessively exceeding 1.000%, it leads to an increase in alloy cost and a decrease in manufacturability. The amount of Co is preferably 0.400% or less, and more preferably 0.200% or less.

Vは、炭窒化物を形成して、鋼材の強度を向上させる作用を呈する。この効果を得るためには、Vを0.002%以上含有させればよい。しかし、0.50%を超えて過剰に含有させると、製造性や加工性を低下させる。V量は好ましくは0.20%以下であり、更に好ましくは0.10%以下である。   V exhibits the effect | action which forms carbonitride and improves the intensity | strength of steel materials. In order to obtain this effect, V may be contained by 0.002% or more. However, if it exceeds 0.50% and it contains excessively, manufacturability and workability will be reduced. The amount of V is preferably 0.20% or less, and more preferably 0.10% or less.

Zrは、Vと同様に炭窒化物を形成して、鋼材の強度を向上させる作用を呈する。この効果を得るためには、Zrを0.003%以上含有させればよい。しかし、0.10%を超えて過剰に含有させると、製造性や加工性を低下させる。Zr量は好ましくは0.08%以下であり、更に好ましくは0.05%以下である。   Zr forms carbonitride like V, and exhibits the effect | action which improves the intensity | strength of steel materials. In order to obtain this effect, Zr may be contained by 0.003% or more. However, if it exceeds 0.10% and is contained excessively, manufacturability and workability are lowered. The amount of Zr is preferably 0.08% or less, more preferably 0.05% or less.

REM,La,B,Caはいずれも、鋼中のSの存在形態に影響を及ぼす元素であり、熱間加工性を向上させる場合に必要に応じて含有させる。この効果を得るためには、REM:0.003%以上、La:0.002%以上、B:0.0002%以上、Ca:0.002%以上を含有させればよい。これらの元素の上限は、REM:0.100%以下、La:0.100%以下、B:0.0100%以下、Ca:0.010%以下であり、好ましい上限はそれぞれ、REM:0.080%以下、La:0.095%以下、B:0.0095%以下、Ca:0.009%以下であり、更に好ましい範囲はそれぞれ、REM:0.050%以下、La:0.050%以下、B:0.0060%以下、Ca:0.007%以下である。なお、本発明でいうREMとは、Sc、Y、及び、原子番号58〜71の元素を意味する。   REM, La, B, and Ca are all elements that affect the form of S in the steel, and are included as necessary to improve hot workability. In order to obtain this effect, REM: 0.003% or more, La: 0.002% or more, B: 0.0002% or more, Ca: 0.002% or more may be contained. The upper limit of these elements is REM: 0.100% or less, La: 0.100% or less, B: 0.0100% or less, Ca: 0.010% or less, and preferable upper limits are REM: 0.00. 080% or less, La: 0.095% or less, B: 0.0095% or less, Ca: 0.009% or less, and more preferable ranges are REM: 0.050% or less, La: 0.050%, respectively. Hereinafter, B: 0.0060% or less, Ca: 0.007% or less. In addition, REM as used in the field of this invention means Sc, Y, and the element of atomic number 58-71.

以上、説明した本発明のフェライト系ステンレス鋼板は、抗菌性が求められるコイン用途に好適に適用することが出来る。また、本発明の軟質化されたフェライト系ステンレス鋼板であれば、コイン用途で更に軟質化が求められた場合にも適応することが可能である。   As described above, the ferritic stainless steel sheet of the present invention described above can be suitably applied to coin applications that require antibacterial properties. Further, the softened ferritic stainless steel sheet of the present invention can be applied even when further softening is required for coin applications.

次に、本実施形態のフェライト系ステンレス鋼の製造方法について説明する。   Next, the manufacturing method of the ferritic stainless steel of this embodiment is demonstrated.

第1実施形態のフェライト系ステンレス鋼を製造するには、上記の成分組成を有するステンレス鋼に対して熱間圧延工程、冷間圧延工程、及び仕上酸洗工程とを順次行う。ここで、仕上げ酸洗工程においては、5.0〜35.0質量%硫酸水溶液に浸漬する酸洗工程と、1.0〜15.0質量%の硝酸及び0.5〜5.0質量%弗酸水溶液を含む酸液に浸漬する酸洗工程とを行う。硫酸水溶液に浸漬する酸洗工程と、硝酸及び弗酸水溶液を含む酸液に浸漬する酸洗工程とは、この順で行ってもよく、逆順でもよい。   In order to manufacture the ferritic stainless steel of the first embodiment, a hot rolling process, a cold rolling process, and a finish pickling process are sequentially performed on the stainless steel having the above component composition. Here, in the finishing pickling step, the pickling step immersed in a 5.0 to 35.0% by mass sulfuric acid aqueous solution, 1.0 to 15.0% by mass nitric acid and 0.5 to 5.0% by mass. A pickling step of immersing in an acid solution containing a hydrofluoric acid aqueous solution. The pickling step of immersing in an aqueous sulfuric acid solution and the pickling step of immersing in an acid solution containing nitric acid and an aqueous hydrofluoric acid solution may be performed in this order, or in reverse order.

また、第2実施形態のフェライト系ステンレス鋼を製造するには、上記第1実施形態の製造条件の他に、熱間圧延工程において、加熱温度1150〜1300℃、仕上げ熱延温度800〜1000℃、巻取り温度600℃以下の条件で熱間圧延を行う。   Moreover, in order to manufacture the ferritic stainless steel of the second embodiment, in addition to the manufacturing conditions of the first embodiment, in the hot rolling step, a heating temperature of 1150 to 1300 ° C. and a finish hot rolling temperature of 800 to 1000 ° C. The hot rolling is performed under the condition where the coiling temperature is 600 ° C. or less.

ステンレス鋼板の表面を酸洗処理する理由としては、熱処理によって付着したスケール皮膜を除去することと、FeやCrを優先的に酸洗溶解させて表面のCu濃度を高くすることが目的である。そのような酸としては従来から様々な酸液が提案されている。しかし、本発明者らが実験を繰り返し行ったところ、特定濃度の硫酸酸洗工程と、特定濃度の硝弗酸酸洗工程とを経た場合に、他の酸液を用いた場合と比較して、スケール除去の効率と鋼表層のCu濃化の促進が顕著に向上することが判明した。また、この場合、前述したその他の表面特性も得られ、抗菌性を発現することが分かった。この知見を基にした本発明の製造方法によって、抗菌性に優れたステンレス鋼を確実に得ることが可能となる。   The reason for pickling the surface of the stainless steel sheet is to remove the scale film adhering by heat treatment and to increase the Cu concentration on the surface by preferentially pickling and dissolving Fe and Cr. Conventionally, various acid solutions have been proposed as such acids. However, when the present inventors repeatedly conducted the experiment, when the sulfuric acid pickling step with a specific concentration and the nitric hydrofluoric acid pickling step with a specific concentration were performed, compared with the case of using another acid solution. It has been found that the scale removal efficiency and the promotion of Cu concentration in the steel surface layer are significantly improved. Moreover, in this case, the other surface characteristics described above were also obtained, and it was found that antibacterial properties were exhibited. The production method of the present invention based on this knowledge makes it possible to reliably obtain stainless steel having excellent antibacterial properties.

酸洗で用いる酸液は以下の条件とする必要がある。つまり、硫酸水溶液については、濃度を5.0〜35.0質量%の範囲内にする必要がある。硫酸水溶液の濃度が5.0質量%未満の場合、酸水溶液によるスケールや鋼の溶解反応がほとんど進行しないため、表面にCuが濃化しないおそれがある。一方、硫酸水溶液の濃度が35.0質量%を超えると、酸水溶液による溶解反応が著しく進行し、溶解による著しい凹凸が生じる。この程度の凹凸は、製品板の筋状またはムラ状の模様となるため、製品品位を低下させる。そのため、硫酸水溶液の濃度は好ましくは、6.0〜34.0質量%であり、更に好ましくは8.0〜33.0質量%である。   The acid solution used for pickling must be under the following conditions. That is, the aqueous sulfuric acid solution needs to have a concentration in the range of 5.0 to 35.0% by mass. When the concentration of the sulfuric acid aqueous solution is less than 5.0% by mass, the dissolution reaction of the scale and the steel by the aqueous acid solution hardly proceeds, so that Cu may not be concentrated on the surface. On the other hand, when the concentration of the sulfuric acid aqueous solution exceeds 35.0% by mass, the dissolution reaction with the acid aqueous solution proceeds remarkably, resulting in significant unevenness due to dissolution. This level of unevenness results in a streak or uneven pattern on the product plate, thus reducing product quality. Therefore, the concentration of the sulfuric acid aqueous solution is preferably 6.0 to 34.0% by mass, and more preferably 8.0 to 33.0% by mass.

硝弗酸水溶液については、硝酸濃度を1.0〜15.0質量%とし、弗酸濃度を0.5〜5.0質量%にする必要がある。硝酸濃度が1.0質量%未満の場合、硫酸の場合と同じく溶解反応がほとんど進行しないため、表面にCuが濃化しない。一方、硝酸濃度が15.0質量%を超えると、溶解反応が著しく進行し、製品品位を低下させる。   The nitric hydrofluoric acid aqueous solution needs to have a nitric acid concentration of 1.0 to 15.0 mass% and a hydrofluoric acid concentration of 0.5 to 5.0 mass%. When the nitric acid concentration is less than 1.0% by mass, since the dissolution reaction hardly proceeds as in the case of sulfuric acid, Cu does not concentrate on the surface. On the other hand, when the nitric acid concentration exceeds 15.0% by mass, the dissolution reaction proceeds remarkably and the product quality is lowered.

また、弗酸についても、硫酸や硝酸の場合と同じ理由で、濃度が0.5質量%未満と5.0質量%超とでは水溶液濃度として適さない。   Also for hydrofluoric acid, for the same reason as sulfuric acid and nitric acid, concentrations of less than 0.5% by mass and more than 5.0% by mass are not suitable as aqueous solution concentrations.

好ましくは、硝酸濃度が1.2〜14.5質量%、弗酸濃度が0.7〜4.7質量%であり、更に好ましくは硝酸濃度が1.5〜14.0質量%、弗酸濃度が0.9〜4.5質量%である。   Preferably, the nitric acid concentration is 1.2 to 14.5% by mass, the hydrofluoric acid concentration is 0.7 to 4.7% by mass, and more preferably the nitric acid concentration is 1.5 to 14.0% by mass. The concentration is 0.9 to 4.5% by mass.

また、これら酸液に鋼板を浸漬させる時間は、Cu濃化層におけるCu最大濃度Cmやその他物性を考慮しつつ、硫酸水溶液、硝弗酸水溶液それぞれについて、10〜1000秒の範囲で適宜選択すればよい。また、各酸水溶液の温度についても一般的な条件であれば問題なく、特に限定するものではない。例えば、40〜80℃の範囲で行えば良い。   In addition, the time for immersing the steel sheet in these acid solutions is appropriately selected within a range of 10 to 1000 seconds for each of the sulfuric acid aqueous solution and the nitric hydrofluoric acid aqueous solution in consideration of the Cu maximum concentration Cm and other physical properties in the Cu concentrated layer. That's fine. Also, the temperature of each acid aqueous solution is not particularly limited as long as it is a general condition. For example, what is necessary is just to carry out in the range of 40-80 degreeC.

なお、本実施形態の製造方法の特徴は、硫酸水溶液と硝弗酸水溶液による仕上げ酸洗によって鋼表層の物性を上述した範囲に厳密に制御できることを見出した点にある。そのため、例えば硫酸水溶液と硝弗酸水溶液の酸洗順番を逆にすることが可能である。また、本実施形態のフェライト系ステンレス鋼板の物性範囲を外れない限りにおいて、硫酸水溶液と硝弗酸水溶液に加え、更に第3、第4の酸洗処理を行っても構わない。   A feature of the manufacturing method of the present embodiment is that it has been found that the physical properties of the steel surface layer can be strictly controlled within the above-described range by finishing pickling with an aqueous sulfuric acid solution and an aqueous nitric hydrofluoric acid solution. Therefore, for example, the pickling order of the sulfuric acid aqueous solution and the nitric hydrofluoric acid aqueous solution can be reversed. In addition to the sulfuric acid aqueous solution and the nitric hydrofluoric acid aqueous solution, third and fourth pickling treatments may be performed as long as the physical property range of the ferritic stainless steel plate of the present embodiment is not deviated.

次に、熱間圧延工程について説明する。
本発明者らが検討した結果、熱間圧延工程の諸条件を厳密に制御することにより、熱延段階において表層Cuが濃化することが分かった。そのため、熱延で表層Cu濃度を濃化した状態の冷延板を前記仕上げ酸洗に供することにより、表層Cu濃度を更に増加させて、抗菌性をより向上できることが分かった。
Next, the hot rolling process will be described.
As a result of investigations by the present inventors, it has been found that the surface layer Cu is concentrated in the hot rolling stage by strictly controlling various conditions of the hot rolling process. Therefore, it was found that by subjecting the cold-rolled sheet with the surface Cu concentration concentrated by hot rolling to the finish pickling, the surface Cu concentration can be further increased and the antibacterial properties can be further improved.

具体的には、熱間圧延する際に、加熱温度1150〜1300℃、仕上げ温度800〜1000℃、巻取り温度600℃以下で行い、仕上げ酸洗を上述の条件で行うことにより、Cu最大濃度Cmを18.0%まで上昇できることが分かった。   Specifically, when hot rolling, the maximum temperature of Cu is obtained by performing heating at 1150 to 1300 ° C., finishing temperature of 800 to 1000 ° C., winding temperature of 600 ° C. or less, and finishing pickling under the above-mentioned conditions. It was found that Cm can be increased to 18.0%.

熱間圧延工程後の酸洗仕上げによってCu最大濃度を増加させるためには、熱延板製造時に表層のCu濃度を高くすることと、Cuを固溶した状態で存在させることが重要である。加熱温度1150℃以上であれば、通常の保持時間で、スラブにわずかに残るCu析出物を再固溶することができる。しかし、1300℃超では、粒粗大化によって表面疵等の原因となり、加熱エネルギーも無駄である。   In order to increase the Cu maximum concentration by pickling finishing after the hot rolling process, it is important to increase the Cu concentration in the surface layer during hot-rolled sheet production and to make Cu present in a solid solution state. When the heating temperature is 1150 ° C. or higher, Cu precipitates slightly remaining in the slab can be re-dissolved in a normal holding time. However, if it exceeds 1300 ° C., it causes surface flaws due to grain coarsening, and heating energy is useless.

次いで、仕上げ温度と巻取り温度の範囲について説明する。本実施形態のフェライト系ステンレス鋼板は、従来の熱延板製工程で製造した場合、鋼中に含有されるCuがCu析出物として冷却時に生成するため、鋼中に固溶するCu量が減少する。一方、熱延板製造時の仕上げ温度を800〜1000℃とし、水吹き付けなどの通常設備を使用して、比較的早く熱延板を冷却し、600℃以下で巻取ることにより、Cu析出物は生成しないことが確かめられた。このようにして得られた熱延ステンレス鋼板は、通常の酸洗でもCu濃度の高い冷延板となることが分かっており、更に上記に規定する酸洗によって、Cu最大濃度Cmが18.0%以上の今までにない高濃度のCuを表層に有するフェライト系ステンレス鋼板となることが分かった。   Next, the range of finishing temperature and winding temperature will be described. When the ferritic stainless steel sheet of the present embodiment is manufactured by a conventional hot-rolled sheet manufacturing process, Cu contained in the steel is produced as a Cu precipitate during cooling, so the amount of Cu dissolved in the steel is reduced. To do. On the other hand, the finishing temperature at the time of hot-rolled sheet production is set to 800 to 1000 ° C., normal equipment such as water spraying is used, the hot-rolled sheet is cooled relatively quickly, and wound at 600 ° C. or less to obtain Cu precipitates. Was not generated. The hot-rolled stainless steel sheet thus obtained has been found to be a cold-rolled sheet having a high Cu concentration even with normal pickling, and the maximum Cu concentration Cm is 18.0 by pickling as defined above. It turned out that it becomes a ferritic stainless steel plate which has Cu of the high concentration which is not more than% as a surface layer.

この理由は不明であるが、本発明者らの推定では、以下のように考えられる。1150〜1300℃のスラブ加熱時、Cuに比べて酸化しやすいFeやCrは、優先的に酸化される。そのため、スケール直下には、酸化されなかったCuが残留するため、表面Cu濃度も高くなる。さらに、仕上げ熱延温度を800〜1000℃とし、かつ600℃以下で巻取ることで、Cu析出物温度域を短時間で通過することになり、Cu析出が抑制される。そのため、表面Cu濃度が高く、Cu析出物も無い熱延ステンレス鋼板を製造できる。   The reason for this is unknown, but the present inventors presume as follows. During slab heating at 1150 to 1300 ° C., Fe and Cr that are easily oxidized compared to Cu are preferentially oxidized. For this reason, Cu that has not been oxidized remains immediately below the scale, so that the surface Cu concentration also increases. Furthermore, by setting the finish hot rolling temperature to 800 to 1000 ° C. and winding at 600 ° C. or less, the Cu precipitate temperature range is passed in a short time, and Cu precipitation is suppressed. Therefore, a hot rolled stainless steel sheet having a high surface Cu concentration and no Cu precipitates can be produced.

また、鋼板温度が600℃以下であれば、鋼中でのCu拡散速度が遅くなり、Cu析出物の生成が抑制されるものの、長時間保定されるとCu析出物が生成されるため、仕上げ熱延後に注水巻取りとし、さらにコイルを水冷することが好ましい。   Moreover, if the steel plate temperature is 600 ° C. or less, the Cu diffusion rate in the steel is slowed and the formation of Cu precipitates is suppressed, but Cu precipitates are generated when held for a long time, so that the finish It is preferable to perform water injection winding after hot rolling and to cool the coil with water.

熱間圧延工程におけるより好ましい条件はそれぞれ、加熱温度1200℃超、仕上げ圧延温度:800℃超、巻取り温度:600℃以下であり、最も好ましくはそれぞれ、加熱温度1250〜1300℃、仕上げ圧延温度:900〜1000℃、巻取り温度:500℃以下である。   More preferable conditions in the hot rolling step are heating temperature above 1200 ° C., finish rolling temperature: above 800 ° C., winding temperature: 600 ° C. or less, most preferably heating temperature of 1250 to 1300 ° C., finishing rolling temperature, respectively. : 900 to 1000 ° C, winding temperature: 500 ° C or lower.

また、上述してきた本実施形態に係る抗菌性を有するステンレス鋼板は、冷間圧延後の仕上げ焼鈍工程の条件において、900〜1100℃で焼鈍し、3℃/秒以上の平均冷却速度で400℃まで冷却することで、本発明で規定する硬さ以下に軟質化させることができる。   Moreover, the stainless steel plate having antibacterial properties according to the present embodiment described above is annealed at 900 to 1100 ° C. under the condition of the finish annealing step after cold rolling, and 400 ° C. at an average cooling rate of 3 ° C./second or more. It can be made soft to below the hardness prescribed | regulated by this invention by cooling to.

溶体化温度(仕上げ焼鈍温度)は、Cuを固溶できる温度以上であれば、硬度に及ぼす影響は少ない。そこで、硬さに及ぼす溶体化温度の影響を把握するため、700〜1100℃の範囲内で種々温度にて溶体化熱処理(仕上げ焼鈍)し、その後水冷した。その結果、900℃以上の溶体化温度で硬さは殆んど変わらないことが分かった。また、溶体化温度による影響は硬さの影響は、Hv10未満であった。
また、溶体化熱処理後の冷却の際の平均冷却速度を、3℃/秒以上とすることで本発明の規定する下記式(a)式を満たすHv硬さとなり、軟質化させることができる。
Hv硬さ≦40×(Cu−0.3)+135 ・・・(a)

硬さに及ぼす平均冷却速度の影響を把握するため、900〜1100℃で溶体化熱処置後、種々冷却方法で冷却した。その結果、3℃/秒以上の平均冷却速度で、後述する冷却終了温度まで冷却することにより軟質化することが分かった。3℃/秒以上の平均冷却速度は、ガス吹き付け等の通常設備で制御可能である。また、高冷却速度ほど、Cu析出は抑制される傾向にあり、軟質化に有効である。そのため、平均冷却速度の上限は特に設けず、使用する冷却設備の性能等を考慮して適宜決定してよい。
If the solution temperature (finish annealing temperature) is equal to or higher than the temperature at which Cu can be dissolved, the influence on hardness is small. Therefore, in order to grasp the influence of the solution temperature on the hardness, solution heat treatment (finish annealing) was performed at various temperatures within a range of 700 to 1100 ° C., and then water cooling was performed. As a result, it was found that the hardness hardly changed at a solution temperature of 900 ° C. or higher. Further, the effect of the solution temperature was less than Hv10.
Moreover, it becomes Hv hardness which satisfy | fills the following formula (a) prescribed | regulated by this invention by making the average cooling rate at the time of cooling after solution heat treatment into 3 degrees C / second or more, and it can soften.
Hv hardness ≦ 40 × (Cu−0.3) +135 (a)

In order to grasp the influence of the average cooling rate on the hardness, it was cooled by various cooling methods after the solution heat treatment at 900 to 1100 ° C. As a result, it turned out that it softens by cooling to the cooling end temperature mentioned later with the average cooling rate of 3 degrees C / sec or more. The average cooling rate of 3 ° C./second or more can be controlled by ordinary equipment such as gas blowing. Moreover, Cu precipitation tends to be suppressed as the cooling rate increases, and is effective for softening. Therefore, the upper limit of the average cooling rate is not particularly set, and may be appropriately determined in consideration of the performance of the cooling equipment to be used.

溶体化熱処理後の冷却において冷却終了温度は、400℃以下とする。
硬さに及ぼす冷却終了温度の影響を把握するため、900〜1100℃で溶体化熱処理後に平均3℃/秒以上の冷却速度で種々温度まで冷却制御し、その後自然冷却(平均冷却速度3℃/秒未満)した。その結果、400℃以下の冷却終了温度とした場合に、本発明の規定する上記(a)式を満たすHv硬さに軟質化させることができた。
一方、冷却速度終了温度が500〜700℃では、著しい硬質化を確認した。この硬質化した試験片では、10〜100nmのCu析出物が観察された。このことから、500〜700℃の温度域はCu析出のノーズ温度域と考えられ、該Cu析出ノーズ温度域を素早く通過させる、つまり冷却速度を大きくすることが軟質化に有効である。
以上のより、本実施形態に係る仕上げ焼鈍工程におけるより好ましい条件は、加熱温度(仕上げ焼鈍温度):910〜1080℃、冷却完了温度:390℃以下、平均冷却速度:3.2℃/秒以上であり、最も好ましくはそれぞれ、加熱温度:920〜1060℃、冷却完了温度:380℃以下、平均冷却速度:3.5℃/秒以上である。
In the cooling after the solution heat treatment, the cooling end temperature is 400 ° C. or less.
In order to grasp the influence of the cooling end temperature on the hardness, cooling is controlled to various temperatures at a cooling rate of 3 ° C./second or more after the solution heat treatment at 900 to 1100 ° C., and then natural cooling (average cooling rate of 3 ° C. / Less than a second). As a result, when the cooling end temperature was 400 ° C. or lower, it was possible to soften to Hv hardness satisfying the above formula (a) defined by the present invention.
On the other hand, when the cooling rate end temperature was 500 to 700 ° C., significant hardening was confirmed. In this hardened specimen, Cu deposits of 10 to 100 nm were observed. From this, the temperature range of 500 to 700 ° C. is considered as a nose temperature range for Cu precipitation, and it is effective for softening to quickly pass the Cu precipitation nose temperature range, that is, to increase the cooling rate.
From the above, more preferable conditions in the finish annealing step according to the present embodiment are heating temperature (finish annealing temperature): 910 to 1080 ° C., cooling completion temperature: 390 ° C. or less, average cooling rate: 3.2 ° C./second or more. Most preferably, the heating temperature is 920 to 1060 ° C., the cooling completion temperature is 380 ° C. or less, and the average cooling rate is 3.5 ° C./second or more.

軟質化のために、更に熱間圧延後の熱延板焼鈍条件を追加することで、Cu析出抑制により好ましい形態となる。
熱延板焼鈍条件を規定することで、Cu析出物の大きさは、後工程である仕上げ焼鈍で溶体化可能なサイズに制御される。なお熱延板焼鈍は、バッチ焼鈍ではなく連続焼鈍で行い、800〜1100℃まで加熱後、400℃まで1℃/秒以上の平均冷却速度で冷却する。
加熱温度が800℃未満では再結晶が不十分であり、一方1100℃超では結晶粒が粗大化するため、その後の製造性に悪影響を及ぼす。また、冷却終了温度は、Cu析出を抑制するために400℃とした。1℃/秒以下の平均冷却速度ではCu析出物が粗大化し、その後の仕上げ焼鈍でもCu析出物を十分に溶体化できない。
熱延板焼鈍工程における好ましい条件はそれぞれ、加熱温度810〜1090℃、冷却温度:390℃以下、平均冷却速度:1.1℃/秒以上、最も好ましくはそれぞれ、加熱温度820〜1080℃、冷却温度:380℃以下、平均冷却速度:1.2℃/秒以上とする。
In order to soften, by further adding hot-rolled sheet annealing conditions after hot rolling, it becomes a more preferable form by suppressing Cu precipitation.
By prescribing the hot-rolled sheet annealing conditions, the size of the Cu precipitates is controlled to a size that can be solutionized by finish annealing, which is a subsequent process. In addition, hot-rolled sheet annealing is performed not by batch annealing but by continuous annealing. After heating to 800 to 1100 ° C., cooling to 400 ° C. is performed at an average cooling rate of 1 ° C./second or more.
If the heating temperature is less than 800 ° C., recrystallization is insufficient, while if it exceeds 1100 ° C., the crystal grains become coarse, which adversely affects the subsequent productivity. The cooling end temperature was set to 400 ° C. in order to suppress Cu precipitation. At an average cooling rate of 1 ° C./second or less, Cu precipitates are coarsened, and Cu precipitates cannot be sufficiently solutioned even by subsequent finish annealing.
Preferred conditions in the hot-rolled sheet annealing step are heating temperature 810 to 1090 ° C., cooling temperature: 390 ° C. or less, average cooling rate: 1.1 ° C./second or more, most preferably heating temperature 820 to 1080 ° C., cooling respectively. Temperature: 380 ° C. or lower, average cooling rate: 1.2 ° C./second or higher.

以上説明したように、第1、第2実施形態の抗菌性に優れたフェライト系ステンレス鋼板及びその製造方法によれば、良好な抗菌性を板面内全域に渡って発揮するため、従来以上に良好な抗菌性を歩留まり良く得ることが出来る。また、第2実施形態のフェライト系ステンレス鋼板及びその製造方法によれば、鋼表面のCu最大濃度を従来に例を見ない程高濃化することが出来、これによって更に良好な抗菌性を得ることが出来る。また、抗菌性と軟質化の両立は、Cu含有フェライト系ステンレス鋼のCu含有量が0.3〜1.7%が好ましい。   As described above, according to the ferritic stainless steel plate having excellent antibacterial properties according to the first and second embodiments and the manufacturing method thereof, good antibacterial properties are exhibited over the entire area of the plate surface. Good antibacterial properties can be obtained with good yield. In addition, according to the ferritic stainless steel sheet and the manufacturing method thereof according to the second embodiment, the maximum Cu concentration on the steel surface can be increased to an unprecedented level, thereby obtaining even better antibacterial properties. I can do it. In order to achieve both antibacterial properties and softening, the Cu content of the Cu-containing ferritic stainless steel is preferably 0.3 to 1.7%.

(実施例1)
表1A及び表1Bに示す組成の鋼を真空溶解にて溶製し、1100〜1350℃の加熱温度および、仕上げ熱延温度700〜1020℃で熱間圧延し、巻取温度400〜700℃で巻き取った。次に大気中において980℃で10秒間保持する熱延板焼鈍を行い、通常の酸洗を行った後、冷間圧延を施して仕上げ焼鈍を施し、板厚1.0〜1.3mmの冷延板とした。その後、40〜80℃の硫酸および硝弗酸で酸洗して、フェライト系ステンレス鋼板を製造した。なお、表1A及び表1Bにおいて「−」と表記した欄は、当該元素を添加しなかったため、測定していないことを表す。
Example 1
Steels having the compositions shown in Table 1A and Table 1B are melted by vacuum melting, hot-rolled at a heating temperature of 1100 to 1350 ° C and a finishing hot rolling temperature of 700 to 1020 ° C, and at a winding temperature of 400 to 700 ° C. Winded up. Next, hot-rolled sheet annealing is performed in the atmosphere at 980 ° C. for 10 seconds, and after normal pickling, cold rolling is performed and finish annealing is performed, and a sheet thickness of 1.0 to 1.3 mm is cooled. It was a sheet. Then, it pickled with 40-80 degreeC sulfuric acid and nitric hydrofluoric acid, and manufactured the ferritic stainless steel plate. In Tables 1A and 1B, the column labeled “-” indicates that measurement was not performed because the element was not added.

得られたフェライト系ステンレス鋼板について、下記の評価を行った。なお、本実施例においては、板面内全てにおいて良好な抗菌性を発現しているかどうかを確認するため、抗菌性に差が生じる板幅方向を網羅して評価を行った。つまり、各鋼板の長さ方向任意の点において、50mm角の試験片を板幅方向に網羅するように多数切り出した。そして、これら試験片全てに対して評価を行った。   The following evaluation was performed about the obtained ferritic stainless steel sheet. In this example, in order to confirm whether or not good antibacterial properties were expressed in the entire plate surface, evaluation was performed covering the plate width direction in which a difference in antibacterial properties occurred. That is, a large number of 50 mm square test pieces were cut out in the plate width direction at arbitrary points in the length direction of each steel plate. And all these test pieces were evaluated.

(表面成分濃度の測定)
上述した試験片それぞれに対して、グロー放電発光分析(GDS)により、鋼表面より約800nmまでのC,O,Fe,Cr,Si,Mn,Nb,Ti,Al,Cu濃度分布を測定した。Cu濃化層内のCu、Fe,Cr濃度は、図1の例に示すように深さ方向で変化していた。次いで、Cを除いて濃度分布を再度計算すると、図2に示す例のような深さ方向に変化し、ステンレス鋼表面にCu濃化層が形成されていることが判明した。また、Cu濃化層のCu最大濃度をCmとした。更に、Cu最大濃度Cmが得られた深さにおけるFe濃度とCr濃度の比より得られるFe/Cr比も求めた。
なお、図2は、本発明鋼の例であり、Cu最大濃度Cmは75.0%であった。また、Cu最大濃度Cmが得られる位置でのFeとCrの濃度から計算されるFe/Cr比は2.9であった。
(Measurement of surface component concentration)
For each of the above test pieces, the C, O, Fe, Cr, Si, Mn, Nb, Ti, Al, and Cu concentration distribution from the steel surface to about 800 nm was measured by glow discharge emission analysis (GDS). The Cu, Fe, and Cr concentrations in the Cu enriched layer changed in the depth direction as shown in the example of FIG. Next, when the concentration distribution was calculated again excluding C, it changed in the depth direction as in the example shown in FIG. 2, and it was found that a Cu concentrated layer was formed on the stainless steel surface. Further, the maximum Cu concentration of the Cu concentrated layer was Cm. Furthermore, the Fe / Cr ratio obtained from the ratio of the Fe concentration and the Cr concentration at the depth where the maximum Cu concentration Cm was obtained was also obtained.
FIG. 2 is an example of the steel of the present invention, and the maximum Cu concentration Cm was 75.0%. Moreover, Fe / Cr ratio calculated from the density | concentration of Fe and Cr in the position where Cu maximum density | concentration Cm is obtained was 2.9.

(抗菌性の評価)
抗菌性の評価はISO 22196に従った。上述した試験片それぞれに対して、供試菌液を1ミリリットル塗布し、25℃で36時間静置後、菌液を拭き取り希釈液中に振り出した。所定量の振り出し液を計測用培地に混釈し、35℃で24時間培養を行い、抗菌活性値が2.0以上の鋼を菌の増殖を抑制する優れた抗菌性をもつものと評価した。また、抗菌活性値が4.0以上の場合は、特に優れた抗菌性をもつものと評価した。なお、表中には各鋼材について1つずつしか数値の記載がないが、測定した試験片のうち、抗菌性評価で最も抗菌性が低かったものを記載し、表面成分濃度の結果については当該最も抗菌性が低かった試験片の測定結果を示している。これは、各鋼材の板幅方向で最も抗菌性が低いもので抗菌活性値が2.0以上あれば、その鋼材の板面全体で抗菌性があるということになるからである。
(Antimicrobial evaluation)
Antibacterial evaluation was in accordance with ISO 22196. 1 ml of the test bacterial solution was applied to each of the above-mentioned test pieces, and after standing at 25 ° C. for 36 hours, the bacterial solution was wiped off and shaken out into the diluted solution. A predetermined amount of the shake-out solution was mixed with the measurement medium and cultured at 35 ° C. for 24 hours, and the steel having an antibacterial activity value of 2.0 or more was evaluated as having excellent antibacterial properties to suppress the growth of bacteria. . In addition, when the antibacterial activity value was 4.0 or more, it was evaluated as having particularly excellent antibacterial properties. In the table, there is only one numerical value for each steel material, but among the measured specimens, the one with the lowest antibacterial property in the antibacterial evaluation is described, and the result of the surface component concentration The measurement result of the test piece with the lowest antibacterial property is shown. This is because if the antibacterial activity is the lowest in the plate width direction of each steel material and the antibacterial activity value is 2.0 or more, the entire plate surface of the steel material is antibacterial.

評価した結果を表2〜15に示す。表2〜(試験No.1〜276)は、第一酸洗液として硝弗酸を用い、第二酸洗液として硫酸を用い、この順で酸洗した場合の評価結果である。また、表15(試験No.277〜551)は、酸洗の順序を入れ替えて第一酸洗液を硫酸、第二酸洗液を硝弗酸として、この順で酸洗した場合の評価結果である。なお、表2〜15において「−」と表記した欄は、当該処理を行わなかったことを表す。 The results of evaluation are shown in Table 2-15. Tables 2 to 8 (Test Nos. 1 to 276) show the evaluation results when pickling in this order using nitric hydrofluoric acid as the first pickling solution and sulfuric acid as the second pickling solution. Tables 9 to 15 (Test Nos. 277 to 551) show that the pickling order is changed, the first pickling solution is sulfuric acid, and the second pickling solution is nitric hydrofluoric acid. It is an evaluation result. In Tables 2 to 15 , the column labeled “-” represents that the processing was not performed.

発明方法で規定する熱延条件を満たす製造方法で製造した試験No.181〜206、No.457〜481については、最大Cu濃度Cmが18%を超え、特に優れた抗菌性を発現した(抗菌性評価:●)。 Test No. manufactured by the manufacturing method satisfying the hot rolling conditions specified by the method of the present invention. 181-206, No. About 457-481, maximum Cu density | concentration Cm exceeded 18%, and the especially outstanding antimicrobial property was expressed (antimicrobial evaluation:-).

一方、本発明方法で規定する酸洗条件から外れた条件で製造した比較例である試験No.207〜276、No.482〜551の鋼板では、抗菌活性値は2.0を下回った(抗菌性評価:×)。特に、試験No.207〜221及び試験No.497〜511の鋼板では、酸洗処理として硝弗酸処理のみ行ったため、最大Cu濃度Cmが10%未満となり、抗菌性が本発明例に比べて低くなった。   On the other hand, test No. which is a comparative example manufactured under conditions deviating from the pickling conditions defined by the method of the present invention. 207-276, no. In the steel sheets of 482 to 551, the antibacterial activity value was less than 2.0 (antibacterial evaluation: x). In particular, test no. 207-221 and test no. In the steel plates of 497 to 511, only the nitric hydrofluoric acid treatment was performed as the pickling treatment, so that the maximum Cu concentration Cm was less than 10%, and the antibacterial property was lower than that of the present invention example.

(実施例2)
次に、本発明の軟質化効果を確認するため、表1A、表1Bの一部鋼種の製造に際して、熱延板焼鈍工程と仕上焼鈍工程の条件を表16に示す条件に変更した。
なお、実施例2においては、熱間圧延工程、冷間圧延工程、仕上酸洗工程は本発明範囲内の条件で実施した。
製造後の各鋼板について、断面硬さと耐食性の評価を行った。なお、断面硬さは、板厚中心でビッカース硬さ試験をN5実施し、平均値を測定した。耐食性はJISZ2371に準拠して、308K、5%NaOH溶液を72時間連続噴霧する試験を行い、その発錆状況を観察した。
評価結果を表16に示す。
(Example 2)
Next, in order to confirm the softening effect of the present invention, the conditions of the hot-rolled sheet annealing step and the finish annealing step were changed to the conditions shown in Table 16 when manufacturing some of the steel types in Tables 1A and 1B.
In Example 2, the hot rolling step, the cold rolling step, and the finish pickling step were performed under conditions within the scope of the present invention.
About each steel plate after manufacture, cross-sectional hardness and corrosion resistance were evaluated. In addition, the cross-sectional hardness measured the average value by performing N5 of the Vickers hardness test in the center of board thickness. Corrosion resistance was tested in accordance with JISZ2371 by continuously spraying 308K, 5% NaOH solution for 72 hours, and the rusting condition was observed.
The evaluation results are shown in Table 16 .

本発明の好ましい仕上焼鈍条件を満たさない例では、断面Hv硬さが190を超える、又は、(a)式を満たさない結果となった。
一方、本発明の好ましい仕上焼鈍条件で製造した本発明例である試験No.552、555、556、559、560、563、564、567、568、571、572、575、576、579、580、583の鋼板のHv硬さは、190以下であり、且つ、(a)式を満たした。その結果、その他の本発明の好ましい製造条件を外れる例と比較して、点状の発錆が顕著に少なく、耐食性がより向上している結果となった。この結果より、本発明の好ましい製造条件であれば、例えばコイン用として軟質化と高い耐食性を求められる場合にも適用出来る鋼板を製造出来ることが分かった。
In the example which does not satisfy the preferable finish annealing conditions of the present invention, the cross-sectional Hv hardness exceeded 190, or the result of not satisfying the formula (a) was obtained.
On the other hand, Test No. which is an example of the present invention produced under the preferable finish annealing condition of the present invention. The Hv hardness of the steel plates 552, 555, 556, 559, 560, 563, 564, 567, 568, 571, 572, 575, 576, 579, 580, 583 is 190 or less, and the formula (a) Met. As a result, as compared with other examples that deviated from the preferable production conditions of the present invention, dot-like rusting was remarkably reduced, and the corrosion resistance was further improved. From this result, it was found that a steel sheet applicable to softening and high corrosion resistance, for example, for coins can be manufactured under the preferable manufacturing conditions of the present invention.

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Figure 0006240423
Figure 0006240423

Claims (10)

質量%で、
C:0.050%以下、
Cr:10.0〜30.0%、
Si:2.00%以下、
P:0.030%以下、
S:0.010%以下、
Mn:2.00%以下、
N:0.050%以下、
Ni:2.0%以下、および
Cu:0.3〜1.7%を含有し、残部がFe及び不可避不純物からなり
ステンレス鋼板の表面にCu濃化層が形成され、前記Cu濃化層のCu最大濃度Cmが10.0質量%以上であり、前記Cu最大濃度Cmを示す鋼板表面からの深さ位置におけるFe/Cr比が2.4以上であり、
前記ステンレス鋼板の断面硬度がビッカース硬度スケールで下記(a)式を満たす抗菌性に優れたフェライト系ステンレス鋼板。
Hv硬さ≦40×(Cu−0.3)+135・・・(a)
% By mass
C: 0.050% or less,
Cr: 10.0 to 30.0%,
Si: 2.00% or less,
P: 0.030% or less,
S: 0.010% or less,
Mn: 2.00% or less,
N: 0.050% or less,
Ni: 2.0% or less, and Cu : 0.3-1.7% , the balance consists of Fe and inevitable impurities ,
A Cu concentrated layer is formed on the surface of the stainless steel plate, the Cu maximum concentration Cm of the Cu concentrated layer is 10.0% by mass or more, and Fe / Fe at a depth position from the steel plate surface showing the Cu maximum concentration Cm. Ri der Cr ratio is 2.4 or more,
A ferritic stainless steel sheet having excellent antibacterial properties in which the cross-sectional hardness of the stainless steel sheet satisfies the following formula (a) on the Vickers hardness scale .
Hv hardness ≦ 40 × (Cu−0.3) +135 (a)
質量%で、
C:0.050%以下、
Cr:10.0〜30.0%、
Si:2.00%以下、
P:0.030%以下、
S:0.010%以下、
Mn:2.00%以下、
N:0.050%以下、
Ni:2.0%以下、および
Cu0.1%以上.0%以下含有し、残部がFe及び不可避不純物からなり
ステンレス鋼板の表面にCu濃化層が形成され、前記Cu濃化層のCu最大濃度Cmが18.0質量%以上である抗菌性に優れたフェライト系ステンレス鋼板。
% By mass
C: 0.050% or less,
Cr: 10.0 to 30.0%,
Si: 2.00% or less,
P: 0.030% or less,
S: 0.010% or less,
Mn: 2.00% or less,
N: 0.050% or less,
Ni: 2.0% or less, and Cu : 0.1% or more 2 . Containing 0% or less , the balance consisting of Fe and inevitable impurities ,
A ferritic stainless steel plate having excellent antibacterial properties, wherein a Cu concentrated layer is formed on the surface of the stainless steel plate, and the Cu maximum concentration Cm of the Cu concentrated layer is 18.0% by mass or more.
前記Cuが、質量%で0.3〜1.7%であり、前記ステンレス鋼板の断面硬度がビッカース硬度スケールで下記()式を満たす請求項2に記載の抗菌性に優れたフェライト系ステンレス鋼板。
Hv硬さ≦40×(Cu−0.3)+135・・・(
The ferritic stainless steel having excellent antibacterial properties according to claim 2 , wherein the Cu is 0.3 to 1.7% by mass and the cross-sectional hardness of the stainless steel plate satisfies the following formula ( b ) on a Vickers hardness scale. steel sheet.
Hv hardness ≦ 40 × (Cu−0.3) +135 ( b )
質量%で、更に、
Ti:0.50%以下、
Nb:1.00%以下、
の1種又は2種以上を含有する請求項1〜3の何れか一項に記載の抗菌性に優れたフェライト系ステンレス鋼板。
In mass%,
Ti: 0.50% or less,
Nb: 1.00% or less,
The ferritic stainless steel sheet excellent in antibacterial property according to any one of claims 1 to 3 , comprising one or more of the following.
質量%で、更に、
Sn:1.00%以下、
Mo:1.00%以下、
Al:1.000%以下、
Mg:0.010%以下、
Co:1.000%以下、
V:0.50%以下、
Zr:0.10%以下、
REM:0.100%以下、
La:0.100%以下、
B:0.0100%以下、
Ca:0.010%以下、
の1種又は2種以上を含有する請求項1〜4の何れか一項に記載の抗菌性に優れたフェライト系ステンレス鋼板。
In mass%,
Sn: 1.00% or less,
Mo: 1.00% or less,
Al: 1.000% or less,
Mg: 0.010% or less,
Co: 1.000% or less,
V: 0.50% or less,
Zr: 0.10% or less,
REM: 0.100% or less,
La: 0.100% or less,
B: 0.0100% or less,
Ca: 0.010% or less,
The ferritic stainless steel plate excellent in antibacterial property as described in any one of Claims 1-4 containing 1 type (s) or 2 or more types.
金属製コイン用である請求項1〜の何れか1項に記載の抗菌性に優れたフェライト系ステンレス鋼板。 The ferritic stainless steel sheet having excellent antibacterial properties according to any one of claims 1 to 5 , which is for metal coins. 熱間圧延工程、熱延板焼鈍工程、冷間圧延工程、仕上げ焼鈍工程及び仕上酸洗工程とを含むステンレス鋼板の製造方法であって、
該ステンレス鋼板が、請求項1、4、5の何れか1項に記載の成分組成を有し、
該仕上げ酸洗工程が、5.0〜35.0質量%硫酸水溶液に浸漬する酸洗工程と、
1.0〜15.0質量%の硝酸と0.5〜5.0質量%の弗酸水溶液とを含む酸液に浸漬する酸洗工程とを含み、
該仕上げ焼鈍工程が、焼鈍温度900〜1100℃で行い、400℃まで3℃/秒以上の平均冷却速度で冷却する工程を含むものである請求項1、4〜6の何れか一項に記載の抗菌性に優れたフェライト系ステンレス鋼板の製造方法。
A method for producing a stainless steel sheet including a hot rolling step, a hot rolled sheet annealing step, a cold rolling step, a finish annealing step, and a finish pickling step,
The stainless steel plate has the component composition according to any one of claims 1 , 4 , and 5 ,
The pickling step wherein the finishing pickling step is immersed in a 5.0 to 35.0% by weight sulfuric acid aqueous solution;
1.0 to 15.0 saw including a pickling step of immersing in an acid solution containing a mass% of hydrofluoric acid solution of nitric acid and 0.5 to 5.0 wt%,
The finish annealing step is performed at an annealing temperature of 900 to 1100 ° C., antimicrobial according the step of cooling at an average cooling rate of more than 3 ° C. / sec to 400 ° C. to any one of claims 1,4~6 is Dressings containing Of ferritic stainless steel sheet with excellent properties.
熱間圧延工程、冷間圧延工程、及び仕上酸洗工程とを含むステンレス鋼板の製造方法であって、
該ステンレス鋼板が、請求項2〜5の何れか1項に記載の成分組成を有し、
該仕上げ酸洗工程が、5.0〜35.0質量%硫酸水溶液に浸漬する酸洗工程と、
1.0〜15.0質量%の硝酸と0.5〜5.0質量%の弗酸水溶液とを含む酸液に浸漬する酸洗工程とを含み、
前記熱間圧延工程を、加熱温度1150〜1300℃、仕上げ圧延温度800〜1000℃、巻取り温度600℃以下で行う請求項2〜6の何れか一項に記載の抗菌性に優れたフェライト系ステンレス鋼板の製造方法。
A method for producing a stainless steel sheet including a hot rolling step, a cold rolling step, and a finish pickling step,
The stainless steel sheet has the component composition according to any one of claims 2 to 5,
The pickling step wherein the finishing pickling step is immersed in a 5.0 to 35.0% by weight sulfuric acid aqueous solution;
A pickling step of immersing in an acid solution containing 1.0 to 15.0% by mass nitric acid and 0.5 to 5.0% by mass hydrofluoric acid aqueous solution,
The ferrite system excellent in antibacterial properties according to any one of claims 2 to 6, wherein the hot rolling step is performed at a heating temperature of 1150 to 1300 ° C, a finish rolling temperature of 800 to 1000 ° C, and a winding temperature of 600 ° C or less. Manufacturing method of stainless steel sheet.
更に熱延板焼鈍工程、及び仕上げ焼鈍工程を含み、該仕上げ焼鈍工程が、焼鈍温度900〜1100℃で行い、400℃まで3℃/秒以上の平均冷却速度で冷却する工程を含むものである請求項8に記載の抗菌性に優れたフェライト系ステンレス鋼板の製造方法。 Furthermore, it includes a hot-rolled sheet annealing step and a finish annealing step, and the finish annealing step includes an annealing temperature of 900 to 1100 ° C. and cooling to 400 ° C. at an average cooling rate of 3 ° C./second or more. 8. A method for producing a ferritic stainless steel sheet having excellent antibacterial properties according to 8 . 前記熱延板焼鈍工程において、連続焼鈍で行い、その連続焼鈍は、焼鈍温度を800〜1100℃で行い、次いで400℃まで1℃/秒以上の平均冷却速度で冷却する請求項7または9に記載の抗菌性に優れたフェライト系ステンレス鋼板の製造方法。 In the hot rolled sheet annealing step, carried out in continuous annealing, the continuous annealing, the annealing temperature is performed at 800 to 1100 ° C., and then to claim 7 or 9 is cooled at an average cooling rate of more than 1 ° C. / sec to 400 ° C. The manufacturing method of the ferritic stainless steel plate excellent in the antimicrobial property of description.
JP2013148950A 2012-12-26 2013-07-17 Ferritic stainless steel sheet with excellent antibacterial properties and method for producing the same Active JP6240423B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013148950A JP6240423B2 (en) 2012-12-26 2013-07-17 Ferritic stainless steel sheet with excellent antibacterial properties and method for producing the same
IN3729DEN2015 IN2015DN03729A (en) 2012-12-26 2013-12-11
KR1020157013788A KR101762046B1 (en) 2012-12-26 2013-12-11 Ferritic stainless steel sheet having excellent anti-bacterial activity, and method for producing same
CN201380062495.4A CN104884657B (en) 2012-12-26 2013-12-11 Ferrite series stainless steel plate that antibiotic property is excellent and manufacture method thereof
PCT/JP2013/083205 WO2014103722A1 (en) 2012-12-26 2013-12-11 Ferritic stainless steel sheet having excellent anti-bacterial activity, and method for producing same
TW102146937A TWI503421B (en) 2012-12-26 2013-12-18 Ferritic stainless steel having excellent antibacterial activity and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012282843 2012-12-26
JP2012282843 2012-12-26
JP2013148950A JP6240423B2 (en) 2012-12-26 2013-07-17 Ferritic stainless steel sheet with excellent antibacterial properties and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014141735A JP2014141735A (en) 2014-08-07
JP6240423B2 true JP6240423B2 (en) 2017-11-29

Family

ID=51020811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013148950A Active JP6240423B2 (en) 2012-12-26 2013-07-17 Ferritic stainless steel sheet with excellent antibacterial properties and method for producing the same

Country Status (5)

Country Link
JP (1) JP6240423B2 (en)
KR (1) KR101762046B1 (en)
IN (1) IN2015DN03729A (en)
TW (1) TWI503421B (en)
WO (1) WO2014103722A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795600B (en) * 2014-09-05 2019-03-29 杰富意钢铁株式会社 Cold rolled stainless steel sheet material
JP6314806B2 (en) * 2014-12-05 2018-04-25 Jfeスチール株式会社 Ferritic stainless steel sheet
JP7058537B2 (en) * 2018-03-30 2022-04-22 日鉄ステンレス株式会社 Ferritic stainless steel with excellent salt damage and corrosion resistance
KR102109898B1 (en) * 2018-06-26 2020-05-12 주식회사 포스코 LOW-Cr FERRITIC STAINLESS STEEL WITH EXCELLENT VIBRATION DAMPING PROPERTY AND MANUFACTURING METHOD THEREOF
JP7224141B2 (en) * 2018-10-26 2023-02-17 日鉄ステンレス株式会社 Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
CN113939607B (en) 2019-07-24 2022-06-28 日本制铁株式会社 Martensitic stainless steel pipe and method for producing martensitic stainless steel pipe
EP4095289A4 (en) * 2020-01-21 2023-07-26 NIPPON STEEL Stainless Steel Corporation Stainless steel material having antibacterial properties and antiviral properties and method for manufacturing same
TWI750077B (en) * 2020-04-15 2021-12-11 日商日鐵不鏽鋼股份有限公司 Fertilizer-based stainless steel material and manufacturing method thereof
CN112458258A (en) * 2020-12-08 2021-03-09 安徽华飞机械铸锻有限公司 Corrosion-resistant treatment method for antibacterial stainless steel
CN112981219A (en) * 2021-02-04 2021-06-18 北京科技大学 Preparation method of ferrite antibacterial stainless steel by precision investment casting
WO2023170996A1 (en) * 2022-03-07 2023-09-14 日鉄ステンレス株式会社 Ferritic stainless steel sheet and exhaust parts
CN115948635B (en) * 2023-03-09 2023-05-09 太原科技大学 Copper-containing antibacterial stainless steel and surface treatment process thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608288B2 (en) * 1978-12-27 1985-03-01 日新製鋼株式会社 Manufacturing method of stainless steel plate for coins
JPH05230681A (en) * 1992-02-19 1993-09-07 Nippon Steel Corp Pickling method for ferritic stainless steel hot rolled stock
JP3418928B2 (en) * 1994-01-26 2003-06-23 日新製鋼株式会社 Ferritic stainless steel sheet for cold forging and its manufacturing method
JPH0860303A (en) * 1994-08-11 1996-03-05 Nisshin Steel Co Ltd Ferritic stainless steel having antibacterial characteristic and its production
JP3799090B2 (en) * 1995-11-20 2006-07-19 新日本製鐵株式会社 Manufacturing method of high purity ferritic stainless steel sheet with excellent surface quality
JP4038832B2 (en) * 1996-08-08 2008-01-30 住友金属工業株式会社 Stainless steel material with excellent antibacterial properties and method for producing the same
JP3152631B2 (en) * 1997-06-06 2001-04-03 日本冶金工業株式会社 Antibacterial stainless steel and method for producing the same
JP3322157B2 (en) * 1997-03-31 2002-09-09 住友金属工業株式会社 Method for producing ferritic stainless steel strip containing Cu
JP3309769B2 (en) * 1997-06-13 2002-07-29 住友金属工業株式会社 Cu-containing stainless steel sheet and method for producing the same

Also Published As

Publication number Publication date
KR101762046B1 (en) 2017-07-26
WO2014103722A1 (en) 2014-07-03
JP2014141735A (en) 2014-08-07
TWI503421B (en) 2015-10-11
TW201428111A (en) 2014-07-16
IN2015DN03729A (en) 2015-09-18
KR20150083457A (en) 2015-07-17
CN104884657A (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP6240423B2 (en) Ferritic stainless steel sheet with excellent antibacterial properties and method for producing the same
JP5879390B2 (en) Hot-pressed galvanized steel sheet with excellent surface characteristics, hot-press formed parts using the same, and manufacturing method thereof
EP2952602A1 (en) Ferritic stainless steel sheet with excellent workability and process for producing same
EP3438313A1 (en) Nb-containing ferritic stainless steel sheet and manufacturing method therefor
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP5862846B2 (en) Ferritic stainless steel and manufacturing method thereof
KR102286876B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP7278476B2 (en) Ferritic stainless steel material and manufacturing method thereof
KR102288000B1 (en) Material for cold rolled stainless steel sheet and manufacturing method thereof
JP5018257B2 (en) Ferritic stainless steel sheet excellent in abrasiveness and corrosion resistance and method for producing the same
JP4306411B2 (en) Steel plate for heat treatment and its manufacturing method
JP3797063B2 (en) Steel plate for enamel with excellent nail skipping resistance, adhesion and workability, and its manufacturing method
JP6160655B2 (en) Hot rolled steel sheet and manufacturing method thereof
JP6658693B2 (en) Stainless steel plate
JP2001011573A (en) Steel sheet for enameling excellent in fishscale resistance and adhesion and its production
JP6123754B2 (en) Si-containing hot-rolled steel sheet having excellent chemical conversion property and method for producing the same
JP7482666B2 (en) Ferritic stainless steel and method for producing same
JP5446499B2 (en) Steel sheet with excellent delayed fracture resistance and method for producing the same
JP2022092418A (en) Martensitic stainless steel and method for producing the same
JP5962635B2 (en) Manufacturing method of hot-rolled steel sheet
JP2021155832A (en) Ferrite stainless steel and method for manufacturing the same
JP2002115036A (en) Fe-Ni ALLOY SHEET HAVING EXCELLENT RUST RESISTANCE AND ITS PRODUCTION METHOD
JP2002194577A (en) METHOD FOR MANUFACTURING Fe-Ni ALLOY SHEET

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R150 Certificate of patent or registration of utility model

Ref document number: 6240423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250