JPH11297330A - Polymer lithium ion secondary battery - Google Patents

Polymer lithium ion secondary battery

Info

Publication number
JPH11297330A
JPH11297330A JP10094497A JP9449798A JPH11297330A JP H11297330 A JPH11297330 A JP H11297330A JP 10094497 A JP10094497 A JP 10094497A JP 9449798 A JP9449798 A JP 9449798A JP H11297330 A JPH11297330 A JP H11297330A
Authority
JP
Japan
Prior art keywords
copper foil
battery
organic
rustproof
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10094497A
Other languages
Japanese (ja)
Inventor
Hideki Nishihama
秀樹 西濱
Sadamu Kuze
定 久世
Katsuhiro Higaki
勝弘 檜垣
Akimichi Yokoyama
映理 横山
Hiroshi Sugiyama
拓 杉山
Tetsuo Kawai
徹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP10094497A priority Critical patent/JPH11297330A/en
Publication of JPH11297330A publication Critical patent/JPH11297330A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the conformability between a rustproof agent and a polymer electrolyte and to improve battery performance, such as the storage performance and cycle characteristic of a battery by using a copper foil processed with the organic rustproof agent on the surface as the current collector of a negative electrode. SOLUTION: A copper foil, processed with an organic rustproof agent on the surface, is used as the negative electrode current collector of a battery. Benzotriazole or its derivative is suitable as the organic rustproof agent. The surface of the copper foil is covered with an organic material for interrupting the contact between the copper foil and air, thus the organic rustproof agent exhibits rustproof effects, and it differs from the rustproof process by sacrificial rustproofing or an oxide film, such as a rustproof metal element. No undesirable electrochemical reaction occurs in the battery, but rather presents effects for exhibiting a good battery characteristic. For the surface treatment of the copper foil by the organic rustproof agent, for example, the copper foil is dipped in a solution containing the organic rustproof agent, or the copper foil is coated with the solution containing the organic rustproof agent then dried.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、小型、軽量で薄型
化が可能なポリマーリチウムイオン二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer lithium ion secondary battery which is small, lightweight and thin.

【0002】[0002]

【従来の技術】従来より、電解質を固体化すると漏液の
心配のない電池が得られることから、究極の電池と目さ
れていたが、イオン伝導度が溶液系のものに比べて数桁
低いなどの問題があったため、汎用性のある電池の出現
までには至らなかった。
2. Description of the Related Art Conventionally, when an electrolyte is solidified, a battery free from liquid leakage can be obtained. Therefore, the battery has been regarded as the ultimate battery. However, the ion conductivity is several orders of magnitude lower than that of a solution type. Due to such problems, it did not reach the appearance of a versatile battery.

【0003】ところが、近年になってポリマーを有機溶
媒系の電解液とともにゲル化させることによってイオン
伝導度が10-3S/cm程度に向上したイオン伝導度の
高いポリマー電解質が得られるようになり、これを電池
の電解質として使用することによって特性の良い電池が
得られるようになったことから、ポリマー電池が再び脚
光を浴びるようになってきた。
However, in recent years, by polymerizing a polymer together with an organic solvent-based electrolyte, a polymer electrolyte having a high ionic conductivity with an improved ionic conductivity of about 10 −3 S / cm has been obtained. By using this as an electrolyte of a battery, a battery having good characteristics has been obtained, and a polymer battery has come into the spotlight again.

【0004】[0004]

【発明が解決しようとする課題】ところで、ポリマーリ
チウムイオン二次電池の場合、負極の集電体としては一
般に銅箔が用いられているが、銅箔は表面積が広くその
ままの状態で空気中に保存すると、表面が容易に酸化さ
れ、変色しかつ電気伝導性が低下する。
By the way, in the case of a polymer lithium ion secondary battery, a copper foil is generally used as a current collector of a negative electrode, but the copper foil has a large surface area and is exposed to air in a state as it is. Upon storage, the surface is easily oxidized, discolored and reduced in electrical conductivity.

【0005】そこで、その対策として銅箔の表面を亜鉛
メッキ、クロムメッキ、ニッケルメッキ、クロメート処
理などの表面処理が行われている。
Therefore, as a countermeasure, the surface of the copper foil is subjected to surface treatment such as zinc plating, chromium plating, nickel plating, and chromate treatment.

【0006】通常の防錆処理を目的とする場合は、これ
らの表面処理で目的を達成できるが、電池の集電体とし
て用いる場合には、上記防錆金属元素はいずれも電気化
学反応上好ましくなく、電池内で亜鉛やクロム、ニッケ
ルなどの溶出を招き、電池反応の阻害や、電池内でのガ
ス発生、再析出に伴うデンドライトによる電池内短絡な
どを引き起こす原因になっている。すなわち、上記銅箔
の防錆処理用に用いられる金属元素は、亜鉛、ニッケル
などにみられるように銅よりも卑な金属元素であり、電
池内ではこれらの金属元素の溶出が生じる。特に亜鉛の
場合、犠牲防食による防錆効果が大きく、電池内では容
易に亜鉛の溶出が生じる。そして、これらの溶出した金
属元素は電池内で不純物として作用し、副反応の原因に
なったり、金属元素の好ましからざる位置での析出な
ど、電気化学反応上好ましくない挙動を示し、上記のよ
うに、電池反応の阻害や、電池内でのガス発生、電池内
短絡などを引き起こす原因になっている。
For the purpose of ordinary rust prevention treatment, these surface treatments can achieve the purpose, but when used as a current collector for a battery, any of the above rust prevention metal elements is preferable in terms of electrochemical reaction. In addition, zinc, chromium, nickel, and the like are eluted in the battery, causing inhibition of the battery reaction, gas generation in the battery, and a short circuit in the battery due to dendrite accompanying re-deposition. That is, the metal element used for the rust prevention treatment of the copper foil is a metal element lower than copper as seen in zinc, nickel, and the like, and these metal elements are eluted in the battery. Particularly in the case of zinc, sacrificial corrosion protection has a large rust prevention effect, and zinc is easily eluted in the battery. Then, these eluted metal elements act as impurities in the battery, cause side reactions, or exhibit undesired behavior in electrochemical reactions such as deposition of metal elements in undesirable positions, as described above. In addition, this may cause inhibition of the battery reaction, gas generation in the battery, and short-circuit in the battery.

【0007】従って、本発明は、上記のような従来技術
の問題点を解決し、金属元素によることなく、銅箔を表
面処理して電池性能の良好なポリマーリチウムイオン二
次電池を提供することを目的とする。
Accordingly, the present invention solves the above-mentioned problems of the prior art, and provides a polymer lithium ion secondary battery having good battery performance by treating a copper foil surface without using a metal element. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、負極の集電体と
して、表面を有機防錆剤で処理した銅箔を用いることに
よって、上記課題を解決し、本発明を完成するにいたっ
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a copper foil whose surface has been treated with an organic rust inhibitor is used as a negative electrode current collector. Thus, the present invention has been accomplished by solving the above problems.

【0009】すなわち、有機防錆剤は、その構造上金属
元素を有しておらず、従って前記の防錆金属元素のよう
に電池内で不純物として挙動することがなく、また、ポ
リマーリチウムイオン二次電池が有機物を主材料として
構成されているので、電池内ではポリマー電解質とのな
じみがよく、前記防錆金属元素のように電池性能に悪影
響を及ぼすことはない。
That is, the organic rust preventive has no metal element in its structure, and therefore does not behave as an impurity in a battery unlike the above-mentioned rust preventive metal element. Since the secondary battery is composed of an organic material as a main material, the battery is well compatible with the polymer electrolyte in the battery and does not adversely affect battery performance unlike the rust-preventive metal element.

【0010】[0010]

【発明の実施の態様】本発明において、有機防錆剤とし
ては、たとえば、ベンゾトリアゾール(BTA)または
その誘導体(たとえば、メチルベンゾトリアゾール、ク
ロルベンゾトリアゾールなど)、各種のシランカップリ
ング剤などのいずれも使用可能であるが、特にベンゾト
リアゾールまたはその誘導体が適している。これらの有
機防錆剤は、銅箔の表面を有機材料で覆うことにより銅
箔と空気との接触を遮断することによって防錆効果を発
揮するもので、前記防錆金属元素のような犠牲防食や酸
化皮膜による防錆とは異なり、電池内で好ましくない電
気化学反応を起こすことなく、むしろ、良好な電池特性
を発揮させる効果があるものと考えられる。そして、有
機防錆剤による銅箔の表面処理は、たとえば、有機防錆
剤を含む溶液中に銅箔を浸漬するか、または上記有機防
錆剤を含む溶液を銅箔に塗布した後、乾燥することによ
って行われる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, examples of the organic rust preventive include benzotriazole (BTA) or a derivative thereof (eg, methylbenzotriazole, chlorobenzotriazole, etc.), and various silane coupling agents. Although benzotriazole or a derivative thereof is particularly suitable. These organic rust preventives exhibit a rust-preventive effect by blocking the contact between the copper foil and air by covering the surface of the copper foil with an organic material. It is considered that unlike the rust prevention by the oxide film or the oxide film, it does not cause an undesirable electrochemical reaction in the battery, but rather has an effect of exhibiting good battery characteristics. Then, the surface treatment of the copper foil with the organic rust inhibitor is performed, for example, by immersing the copper foil in a solution containing the organic rust inhibitor or applying the solution containing the organic rust inhibitor to the copper foil, followed by drying. It is done by doing.

【0011】[0011]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

【0012】実施例1〜2および比較例1〜2 負極活物質であるコークス6gに、導伝材のアセチレン
ブラック0.6g、プロピレンカーボネートを電解液溶
媒として含む電解液5gおよびポリフッ化ビニリデン
0.8gを加え、混合してペースト状の負極合剤を調製
した。上記電解液はプロピレンカーボネートとエチレン
カーボネートとの体積比1:1の混合溶媒にLiPF6
を1.22モル/リットル溶解させて調製したものであ
る。
Examples 1-2 and Comparative Examples 1-2 Into 6 g of coke as a negative electrode active material, 0.6 g of acetylene black as a conductive material, 5 g of an electrolyte containing propylene carbonate as an electrolyte solvent, and 0.1 g of polyvinylidene fluoride. 8 g was added and mixed to prepare a paste-like negative electrode mixture. The electrolytic solution was prepared by mixing LiPF 6 in a mixed solvent of propylene carbonate and ethylene carbonate at a volume ratio of 1: 1.
Was dissolved in 1.22 mol / l.

【0013】集電体としては表面をベンゾトリアゾー
ルで処理した銅箔(実施例1)、表面をシランカップ
リング剤で処理した銅箔(実施例2)、比較用に表面
を亜鉛メッキした銅箔(比較例1)、表面をクロムメ
ッキした銅箔(比較例2)を用意した。銅箔そのものは
いずれも厚みが25μmで、それぞれの表面処理は次の
ように行った。
As current collectors, a copper foil whose surface was treated with benzotriazole (Example 1), a copper foil whose surface was treated with a silane coupling agent (Example 2), and a copper foil whose surface was galvanized for comparison (Comparative Example 1) A copper foil (Comparative Example 2) having a chrome-plated surface was prepared. Each of the copper foils had a thickness of 25 μm, and the respective surface treatments were performed as follows.

【0014】まず、ベンゾトリアゾール処理は、60℃
に加熱した銅箔に100ppmのベンゾトリアゾールを
含む水溶液を吹き付けることによって行い、シランカッ
プリング処理は、銅箔をシランカップリング剤濃度が
2.0g/lの溶液に30秒間浸漬することによって行
った。また、亜鉛メッキはメッキ厚が400mg/m2
で、クロムメッキはメッキ厚が10mg/m2 であっ
た。
First, the benzotriazole treatment is performed at 60 ° C.
By spraying an aqueous solution containing 100 ppm of benzotriazole on the heated copper foil, and the silane coupling treatment was performed by immersing the copper foil in a solution having a silane coupling agent concentration of 2.0 g / l for 30 seconds. . The zinc plating has a plating thickness of 400 mg / m 2.
The chromium plating had a plating thickness of 10 mg / m 2 .

【0015】上記〜の表面処理した銅箔の一方の面
(この面に上記表面処理がなされている)に前記ペース
ト状の負極合剤を塗布し、加熱してゲル化させることに
より銅箔にゲル状の負極合剤層を形成して、シート状の
負極を作製した。
The paste-like negative electrode mixture is applied to one surface of the above-mentioned surface-treated copper foil (this surface is subjected to the above-mentioned surface treatment), and the mixture is heated to gel to form a copper foil. A gel-like negative electrode mixture layer was formed to produce a sheet-like negative electrode.

【0016】対極としての正極については、まず、正極
活物質であるLiCoO2 10gに、導伝材のアセチレ
ンブラック2g、前記負極の場合と同様の電解液6gお
よびポリフッ化ビニリデン1.2gを加え、混合してペ
ースト状の正極合剤を調製し、そのペースト状の正極合
剤をアルミニウム箔の一方の面に塗布し、加熱してゲル
化させることによりアルミニウム箔にゲル状の正極合剤
層を形成して、シート状の正極を作製した。
With respect to the positive electrode as a counter electrode, first, 10 g of LiCoO 2 as a positive electrode active material, 2 g of acetylene black as a conductive material, 6 g of the same electrolytic solution as in the case of the negative electrode, and 1.2 g of polyvinylidene fluoride were added. A paste-like positive electrode mixture is prepared by mixing, the paste-like positive electrode mixture is applied to one surface of an aluminum foil, and heated to gel to form a gel-like positive electrode mixture layer on the aluminum foil. The sheet was formed into a sheet-shaped positive electrode.

【0017】ポリマー電解質層としては、芯材となる不
織布に、3種類のアクリル系モノマー混合物とその重合
開始剤である過酸化ベンゾイルと前記同様の電解液との
混合溶液を含浸させ、加熱してモノマーを重合させると
ともに全体をゲル化させることによりシート状に作製し
たものを用い、このポリマー電解質層と前記の正極およ
び負極を用いポリマーリチウムイオン二次電池を作製
し、その貯蔵性能およびサイクル特性を調べた。その結
果を表1に示す。
As the polymer electrolyte layer, a nonwoven fabric serving as a core material is impregnated with a mixed solution of a mixture of three kinds of acrylic monomers, benzoyl peroxide as a polymerization initiator thereof, and an electrolytic solution similar to the above, and heated. A polymer lithium ion secondary battery was prepared using the polymer electrolyte layer and the above-mentioned positive electrode and negative electrode using a polymer prepared by polymerizing the monomer and gelling the whole, and then examining the storage performance and cycle characteristics. Examined. Table 1 shows the results.

【0018】貯蔵性能は、電池を充電状態にして20℃
で90日間貯蔵し、貯蔵後の放電容量の貯蔵前の放電容
量に対する保持率を調べることによって評価するもの
で、試料個数は各電池とも2個ずつで、放電容量は電池
を0.2Cで4.2VまでCCCVで充電し、0.2C
でCCで終止電圧2.75Vまで放電させて測定した。
サイクル特性は、電池を20℃、0.2Cで500サイ
クル充放電させたときの放電容量の初期放電容量に対す
る保持率で評価した。
The storage performance of the battery is 20 ° C. with the battery charged.
For 90 days, and evaluated by examining the retention ratio of the discharge capacity after storage to the discharge capacity before storage. The number of samples was 2 for each battery, and the discharge capacity was 0.2 C at 4 C. Charge with CCCV to 0.2V, 0.2C
The battery was discharged to a final voltage of 2.75 V at CC and measured.
The cycle characteristics were evaluated by the retention ratio of the discharge capacity to the initial discharge capacity when the battery was charged and discharged at 20 ° C. and 0.2 C for 500 cycles.

【0019】[0019]

【表1】 [Table 1]

【0020】表1に示す結果から明らかなように、表面
を有機防錆剤で処理した銅箔を用いた実施例1〜2は、
貯蔵性能、サイクル特性のいずれも優れていた。
As is clear from the results shown in Table 1, Examples 1 and 2 using copper foils whose surfaces were treated with an organic rust inhibitor,
Both storage performance and cycle characteristics were excellent.

【0021】[0021]

【発明の効果】以上説明したように、本発明では、負極
の集電体として、表面を有機防錆剤で処理した銅箔を用
いることによって、貯蔵性能やサイクル特性の優れたポ
リマーリチウムイオン二次電池を提供することができ
た。
As described above, in the present invention, by using a copper foil having a surface treated with an organic rust inhibitor as a current collector of a negative electrode, a polymer lithium ion secondary battery having excellent storage performance and cycle characteristics is obtained. The following batteries could be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 映理 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 杉山 拓 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 川合 徹夫 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Eri Yokoyama 1-88 Ushitora, Ibaraki City, Osaka Prefecture Inside Hitachi Maxell Co., Ltd. (72) Inventor Taku Sugiyama 1-88 Ushitora, Ibaraki City, Osaka Prefecture Hitachi Maxell Co., Ltd. (72) Inventor Tetsuo Kawai 1-88 Ushitora, Ibaraki-shi, Osaka Hitachi Maxell Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シート状の正極、シート状の負極および
シート状のポリマー電解質層を有し、上記負極が集電体
の少なくとも一方の面に負極合剤層を形成してなるポリ
マーリチウムイオン二次電池において、上記負極の集電
体として、表面を有機防錆剤で処理した銅箔を用いたこ
とを特徴とするポリマーリチウムイオン二次電池。
1. A polymer lithium ion battery comprising a sheet-shaped positive electrode, a sheet-shaped negative electrode and a sheet-shaped polymer electrolyte layer, wherein the negative electrode has a negative electrode mixture layer formed on at least one surface of a current collector. In a secondary battery, a polymer lithium ion secondary battery is characterized in that a copper foil whose surface is treated with an organic rust inhibitor is used as a current collector of the negative electrode.
JP10094497A 1998-04-07 1998-04-07 Polymer lithium ion secondary battery Withdrawn JPH11297330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10094497A JPH11297330A (en) 1998-04-07 1998-04-07 Polymer lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10094497A JPH11297330A (en) 1998-04-07 1998-04-07 Polymer lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH11297330A true JPH11297330A (en) 1999-10-29

Family

ID=14111954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10094497A Withdrawn JPH11297330A (en) 1998-04-07 1998-04-07 Polymer lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH11297330A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743369B2 (en) 2000-12-22 2004-06-01 Sanyo Electric Co., Ltd. Method for manufacturing electrode for secondary battery
CN100399604C (en) * 2005-10-09 2008-07-02 北京中科天华科技发展有限公司 Method for treating surface of copper foil of affluxion body in lithium ion batteries
JP2013534031A (en) * 2010-06-30 2013-08-29 ベリー スモール パーティクル カンパニー リミテッド Improved adhesion of active electrode materials to metal electrode substrates
US8916288B2 (en) 2012-02-07 2014-12-23 Samsung Sdi Co., Ltd. Lithium rechargeable battery and method of making the same
CN114830383A (en) * 2020-01-17 2022-07-29 富士胶片株式会社 Nonaqueous electrolyte secondary battery, collector, and method for manufacturing nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743369B2 (en) 2000-12-22 2004-06-01 Sanyo Electric Co., Ltd. Method for manufacturing electrode for secondary battery
CN100399604C (en) * 2005-10-09 2008-07-02 北京中科天华科技发展有限公司 Method for treating surface of copper foil of affluxion body in lithium ion batteries
JP2013534031A (en) * 2010-06-30 2013-08-29 ベリー スモール パーティクル カンパニー リミテッド Improved adhesion of active electrode materials to metal electrode substrates
US8916288B2 (en) 2012-02-07 2014-12-23 Samsung Sdi Co., Ltd. Lithium rechargeable battery and method of making the same
CN114830383A (en) * 2020-01-17 2022-07-29 富士胶片株式会社 Nonaqueous electrolyte secondary battery, collector, and method for manufacturing nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
Yabuuchi et al. Electrochemical properties of LiCoO2 electrodes with latex binders on high-voltage exposure
AU702636B2 (en) Material and method for low internal resistance LI-ION battery
CN1839497B (en) Electrode, and method for preparing the same
US20110159361A1 (en) Nonaqueous electrolyte secondary battery and method for producing the same
WO1996005624A1 (en) Electrolytic cell and electrolytic process
JP4037452B2 (en) Electrolyte cell and electrolysis method
JP2002516643A (en) Particulate interfaces for electrolyte cells and electrolysis processes
WO2011078356A1 (en) Copper foil for negative electrode current collector for use in non-aqueous solvent secondary battery, process for production of the copper foil, and process for production of non-aqueous solvent secondary battery negative electrode
JPH0428172A (en) Secondary battery
US5798190A (en) Process for the preparation of a current collector in contact with the cathode material
JP2001155772A (en) Lithium secondary battery
JPH11135129A (en) Polymer binder for organic electrolyte battery electrode
JP2003249223A (en) Lithium ion secondary battery and its manufacturing method
JPH11297330A (en) Polymer lithium ion secondary battery
JP3186811B2 (en) Method of charging lithium secondary battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JP2015198020A (en) Surface treatment copper foil for negative electrode, negative electrode and lithium ion secondary battery using the same
WO2023282246A1 (en) Composition for forming electrode
JPH11158652A (en) Production of electrode material for secondary battery
Soon et al. Grafting nitrophenyl groups on carbon surfaces by diazonium chemistry to suppress irreversible reactions in high-voltage LiNi0. 5Mn1. 5O4 positive electrodes
JP4107004B2 (en) Negative electrode current collector for lithium ion secondary battery and method for producing negative electrode current collector for lithium ion secondary battery
JP2555710B2 (en) Zinc electrode
WO1999062133A1 (en) Battery plate and battery
JP4083297B2 (en) Method for producing polymer electrode
Lu et al. Application of Modified Styrene-Acrylic-Rubber-based Latex Binder to LiCoO2 Composite Electrodes for Lithium-ion Batteries

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607