JPH11297319A - Hydrogen storage electrode material, and alkaline storage battery - Google Patents

Hydrogen storage electrode material, and alkaline storage battery

Info

Publication number
JPH11297319A
JPH11297319A JP10095554A JP9555498A JPH11297319A JP H11297319 A JPH11297319 A JP H11297319A JP 10095554 A JP10095554 A JP 10095554A JP 9555498 A JP9555498 A JP 9555498A JP H11297319 A JPH11297319 A JP H11297319A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
electrode material
sintering
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10095554A
Other languages
Japanese (ja)
Inventor
Kaoru Kato
馨 加藤
Takehisa Minowa
武久 美濃輪
Noriaki Hamaya
典明 浜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10095554A priority Critical patent/JPH11297319A/en
Publication of JPH11297319A publication Critical patent/JPH11297319A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage electrode material, capable of properly controlling the ratio of rare-earth elements to transition metals in a hydrogen storage alloy after sintering, and to provide a negative electrode material for a metal-hydrogen alkaline storage battery having superior electrical capacity and charging-discharging cycle characteristic. SOLUTION: The composition of an alloy power is made identical among particles before sintering by dissolving a hydrogen storage alloy to be followed by quick cooling, so as to control the ratio of rare-earth elements to transition metals after sintering. The composition of the hydrogen storage alloy is preferably expressed by the formula R(Ni)a ,(Mn)b ,(Al)c (Co)d (M)e . (where, R is La or a mixture of La and one or more of rare earth elements (a), (b), (c), (d), (e) and (x) are coefficients expressing atomic ratios and respectively satisfies 1.8<=a<=5.5, 0.0<=b<=0.6, 0.0<=c<=0.4, 0.0<=d<=1.0, 0.0<=e<=0.2, and 4.0<=a+b+c+d+ e<=5.5; M is at least one kind of element selected from among the group comprising Si, Fe, Pb, Ti, Ca, Mg, Cu, In, Zn, Mo and Zr).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属水素アルカリ
蓄電池の負極材料として用いられる水素吸蔵電極の焼結
多孔体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered porous body of a hydrogen storage electrode used as a negative electrode material of a metal-hydrogen alkaline storage battery and a method for producing the same.

【0002】[0002]

【従来の技術】水素吸蔵合金は、電気化学的にその水素
を吸蔵、放出させることができることより2次電池の負
極電極材料として利用されている。この水素吸蔵合金は
電池の充放電の際、水素化、脱水素化されるためその体
積変動を伴う。そのためこの合金をそのままの状態で用
いると割れを生じ、微粉化し電極から脱落し、その放電
容量を低下させるという問題があった。
2. Description of the Related Art A hydrogen storage alloy is used as a negative electrode material of a secondary battery because it can electrochemically store and release hydrogen. The hydrogen storage alloy is hydrogenated and dehydrogenated during the charging and discharging of the battery, so that its volume changes. Therefore, when this alloy is used as it is, there is a problem that cracks occur, the powder is pulverized and falls off from the electrode, and its discharge capacity is reduced.

【0003】このような問題に対し、従来より一般にペ
ースト式電極の製造方法は、合金を数10μmに粉砕し
樹脂製の結着剤を用い、パンチングメタルや発泡ニッケ
ルと言った合金の支持体に塗着させることにより脱落を
防止している。しかしながら電池内において結着剤や支
持体およびセパレーターは水素吸蔵に預からないため、
一定体積に対する水素吸蔵合金の充填量は小さい。それ
に対し水素吸蔵合金を粉砕し、直接焼結させ電極とする
ことで、割れに対する強度を向上させる方法が考えられ
ていた。しかし、そのものだけでの焼結は、合金の充填
密度を、一般に望ましいと考えられている多孔率20〜
40%にするためには、1200℃以上の熱処理が必要
となる。そのような高温を加えると、金属の組織的な変
動が大きく起こり水素吸蔵特性を大きく低下させるとい
う問題を有する。そのため粉砕後、その全体または一部
を他の金属で被膜したり、他の金属粉や金属繊維等の焼
結助剤を添加することにより焼結温度を低下させること
が、提案されていたのである。この場合は結着剤や支持
体が必要で無いため合金の充填量は向上する。しかしな
がらこのような方法でも製造工程の複雑化によるコスト
の上昇や被膜部分及び助剤が水素の吸蔵に預からないた
め好ましくない。
[0003] In order to solve such a problem, a method of manufacturing a paste-type electrode has heretofore generally been used to pulverize an alloy to several tens of μm and use a resin binder to form a support for an alloy such as punching metal or nickel foam. Coating prevents falling off. However, since the binder, the support and the separator are not deposited in the hydrogen storage in the battery,
The filling amount of the hydrogen storage alloy with respect to a certain volume is small. On the other hand, there has been considered a method of improving the strength against cracking by pulverizing the hydrogen storage alloy and directly sintering it to form an electrode. However, sintering by itself alone reduces the packing density of the alloy to a porosity of 20 to
To achieve 40%, a heat treatment at 1200 ° C. or higher is required. When such a high temperature is applied, there is a problem that the systematic fluctuation of the metal occurs greatly and the hydrogen storage characteristics are greatly reduced. Therefore, after pulverization, it has been proposed to coat the whole or a part with another metal or to lower the sintering temperature by adding a sintering aid such as another metal powder or metal fiber. is there. In this case, since a binder and a support are not required, the filling amount of the alloy is improved. However, even such a method is not preferable because the cost is increased due to the complicated manufacturing process, and the coating portion and the auxiliary agent are not included in the storage of hydrogen.

【0004】また、合金を平均粒度20μm以下に微粉
化すれば、焼結の温度を1200℃以下としても焼結さ
せることが可能であるが、希土類を含む金属間化合物の
粉末は非常に酸化され易い合金であるし、粉砕時吸着す
る酸素量はその表面積に強い相関があることから酸化に
よる影響を免れない。しかし、微粉化を低酸素雰囲気で
行えば、微粉に吸着する酸素をある程度低下させること
はできることを本発明者は見出した。例えばアトマイズ
法等の液体急冷による微粉の製造において、平均粒径7
μmを得た場合、その合金に含まれる酸素濃度は微粉重
量に対し0.5重量%以下にすることが可能である。こ
の程度の酸素量であるならば、その酸素が酸化物を生成
したとしても、ペースト式の電池で使用されるバインダ
ーや支持体を用いないことや、セパレーターの使用量を
低減できることから、一定体積中に充填できる合金の量
が向上し、同一体積の電池の充電容量としては向上する
と考えられる。
If the alloy is pulverized to an average particle size of 20 μm or less, sintering can be performed even at a sintering temperature of 1200 ° C. or less. However, the powder of an intermetallic compound containing a rare earth element is extremely oxidized. It is an easily alloyable alloy, and the amount of oxygen adsorbed during pulverization has a strong correlation with its surface area, so the influence of oxidation cannot be avoided. However, the present inventor has found that if the pulverization is performed in a low oxygen atmosphere, the amount of oxygen adsorbed on the fine powder can be reduced to some extent. For example, in the production of fine powder by liquid quenching such as the atomizing method, the average particle size is 7
When μm is obtained, the concentration of oxygen contained in the alloy can be reduced to 0.5% by weight or less based on the weight of the fine powder. With such an amount of oxygen, even if the oxygen generates an oxide, a fixed volume is used because the binder and the support used in the paste-type battery are not used and the amount of the separator used can be reduced. It is considered that the amount of alloy that can be filled therein is improved, and the charge capacity of a battery of the same volume is improved.

【0005】しかしながら金属間化合物に含まれる希土
類は遷移金属に対し反応性に富むため、吸着した酸素は
主に希土類酸化物を形成しやすい。代表的な水素吸蔵合
金である、LaNi5 を考えた場合、La2 3 型の酸
化物が生成され易いが、酸素の原子量16、ランタンの
原子量は138.9であるので酸化により失われる合金
中のランタンは酸素重量比に対し約6倍となる。例えば
合金中0.5重量%の酸素が含まれる場合、通常水素吸
蔵合金は希土類を30重量%程度で構成しているので、
約1割の希土類を酸化により失うことになる。焼結中
は、酸化と同時に拡散による粒内の均一化が進行するた
め、その組成を焼結前の組成に対し遷移金属の比率が大
幅に多い化合物となる。一般にB/A比と呼ばれる合金
中の遷移金属のモル数を希土類のモル数で割った値は、
アルカリ蓄電池の負極材料の場合5.0の場合が多い
が、この比の値が5.0の近傍の場合、その値が大きく
なるにつれ、その合金の水素吸蔵平衡圧の上昇や水素吸
蔵量の低下をもたらす。通常水素吸蔵合金は平衡圧を、
遷移金属中のニッケルを他の金属との置換することによ
り調整しているが、置換量の増加は合金の水素吸蔵量を
さらに低下させ、アルカリ蓄電池の性能を低下させるこ
とにつながり好ましくない。
[0005] However, the rare earth contained in the intermetallic compound is highly reactive with the transition metal, and thus the adsorbed oxygen tends to mainly form a rare earth oxide. Considering LaNi 5 , which is a typical hydrogen storage alloy, an La 2 O 3 type oxide is easily formed, but an alloy whose atomic weight of oxygen is 16 and that of lanthanum is 138.9 is lost due to oxidation. The lanthanum is about 6 times the oxygen weight ratio. For example, when 0.5% by weight of oxygen is contained in the alloy, the hydrogen storage alloy is usually composed of about 30% by weight of a rare earth element.
About 10% of rare earths will be lost by oxidation. During sintering, the inside of the grains becomes uniform by diffusion at the same time as oxidation, so that the composition becomes a compound in which the ratio of the transition metal is much larger than the composition before sintering. The value obtained by dividing the number of moles of the transition metal in the alloy, generally called the B / A ratio, by the number of moles of the rare earth is
In the case of a negative electrode material for an alkaline storage battery, the ratio is often 5.0. When the value of this ratio is near 5.0, as the value increases, the hydrogen storage equilibrium pressure of the alloy increases and the hydrogen storage amount increases. Causes a decline. Normally, hydrogen storage alloys have an equilibrium pressure,
The adjustment is performed by substituting nickel in the transition metal with another metal. However, an increase in the substitution amount undesirably further reduces the hydrogen storage capacity of the alloy and lowers the performance of the alkaline storage battery.

【0006】AB5 型と呼ばれる希土類と遷移金属の金
属間化合物は、その組成の均一化領域が非常に狭く、通
常の製造方法である高周波溶解やアーク溶解にて溶解し
徐冷するならば、1150℃程度の高温で長時間溶体化
処理を施したとしても、偏析のない均一な鋳造塊を得よ
うとした場合、上記B/A比は最小でも4.9程度が限
度である。4.9以下の組成にした鋳造塊では偏析相が
多く残る。その様な偏析相が多い鋳造塊を粉砕した場
合、粉末は粒によって組成が大きく異なる。
[0006] Intermetallic compounds of rare earth and transition metals called AB 5 type is uniform region is very narrow in its composition, if slow cooling and dissolved at high frequency melting or the arc melting is a conventional manufacturing method, Even if the solution treatment is performed at a high temperature of about 1150 ° C. for a long time, the B / A ratio is at least about 4.9 at the minimum in order to obtain a uniform ingot without segregation. In a cast ingot having a composition of 4.9 or less, many segregated phases remain. When such a cast ingot having a large number of segregated phases is pulverized, the composition of the powder varies greatly depending on the grains.

【0007】電極用の焼結体は反応面積を確保するた
め、焼結体の多孔率を20〜40%としなければならな
いが、この多孔率までの焼結では粒界を越えた拡散は少
なく、焼結後も均一な組織とはならず、希土類に富んだ
偏析相が残る。このような偏析相の存在は、電池特性の
低下をもたらす。また希土類に富む偏析相は融点が低い
ため、その偏析相の周囲のみ焼結が進み、内部の密度が
不均一となり、機械的強度が不十分となる。よって急冷
を行わない場合は、焼結後の組成を制御しようとして
も、制御できる範囲は狭く、B/A比が4.9の場合で
もB/A比5.0に対し2%希土類を多く含むだけであ
るので、焼結後にB/A比を5.0とするためには、合
金中の希土類が30重量%、希土類の平均原子量を14
0とすると、含まれる酸素含有量は約0.1重量%以下
としなくてはならない。希土類と遷移金属からなる水素
吸蔵合金において平均粒径を1〜20μmとした粉末の
焼結体において酸素含有量を0.1重量%以下にするこ
とは、工業的に非常に困難であるため、溶解後徐冷した
合金の特性改善には不十分である。
The sintered body for an electrode must have a porosity of 20 to 40% in order to secure a reaction area. However, in sintering up to this porosity, diffusion beyond the grain boundaries is small. Even after sintering, a uniform structure is not obtained, and a segregated phase rich in rare earth remains. The presence of such a segregated phase results in deterioration of battery characteristics. Further, since the segregation phase rich in rare earth has a low melting point, sintering proceeds only around the segregation phase, the density inside becomes uneven, and the mechanical strength becomes insufficient. Therefore, when the quenching is not performed, the controllable range is narrow even if the composition after sintering is controlled. In order to make the B / A ratio 5.0 after sintering, the rare earth in the alloy is 30% by weight and the average atomic weight of the rare earth is 14%.
Assuming zero, the oxygen content contained must be less than about 0.1% by weight. Since it is industrially very difficult to reduce the oxygen content to 0.1% by weight or less in a powder sintered body having an average particle size of 1 to 20 μm in a hydrogen storage alloy comprising a rare earth and a transition metal, It is not enough to improve the properties of the alloy that has been cooled slowly after melting.

【0008】[0008]

【発明が解決しようとする課題】本発明では、焼結後の
水素吸蔵合金の希土類と遷移金属の比を適性に制御でき
る水素吸蔵電極材料を提供し、優れた電気容量及び充放
電サイクル特性を有する金属水素アルカリ蓄電池の負極
材料を提供することを目的とする。
SUMMARY OF THE INVENTION According to the present invention, there is provided a hydrogen storage electrode material capable of appropriately controlling the ratio of a rare earth element to a transition metal in a hydrogen storage alloy after sintering, and having excellent electric capacity and charge / discharge cycle characteristics. It is an object of the present invention to provide a negative electrode material for a metal-hydrogen alkaline storage battery having the same.

【0009】[0009]

【課題を解決するための手段】本発明は水素吸蔵合金を
溶解後急速に冷却することにより、焼結前の合金粉末の
粒において他の粒と同一組成とし、焼結後の希土類と遷
移金属の比を制御することを特徴とする。本発明に係る
水素吸蔵合金の溶解及び急冷方法は、例えば、公知のロ
ール急冷等により薄板状の合金を作り、その後粉砕して
も良いし、また遠心噴霧法やガスアトマイズ法等による
粉体としても良い。本発明に係る水素吸蔵合金は急冷す
ることにより組織の微細化や均一化領域の拡大が可能で
あるため、合金の組成を制御する幅が大きくすることが
でき、酸素含有量を0.1重量%以上としても十分な制
御が行える。
According to the present invention, the hydrogen storage alloy is cooled rapidly after melting, so that the alloy powder particles before sintering have the same composition as other particles, and the sintered rare earth and transition metal The ratio is controlled. The method of melting and quenching the hydrogen storage alloy according to the present invention is, for example, to produce a thin plate-shaped alloy by known roll quenching or the like, and then may be pulverized, or as a powder by a centrifugal spraying method or a gas atomizing method. good. Since the hydrogen storage alloy according to the present invention can be refined in structure and expanded in a uniform region by quenching, the width of controlling the composition of the alloy can be increased, and the oxygen content can be reduced to 0.1% by weight. %, Sufficient control can be performed.

【0010】[0010]

【発明の実施の形態】本発明で用いる水素吸蔵合金の組
成は特に限定されるものではないが、ABn(nは1〜
6の正数を表す。)の構造を有する水素吸蔵合金を使用
することができる。特に、本発明ではAB5 系水素吸蔵
合金組成のものが電池寿命の点で好ましい。AB5 系水
素吸蔵合金において、A側元素として、La、Ce、N
d、Prから選ばれる希土類元素単独または該希土類元
素混合物(この場合、Laを希土類元素混合物中20重
量%以上含むことが好ましい。)が更に好ましい。な
お、A側元素として、上記以外の希土類元素を含んでも
よいし、希土類元素以外の元素を含んでもよい。B側元
素として、(Ni)a (Mn)b (Al)c (Co)d
(M)e からなる組成が好ましい。ここで、a、b、
c、d、eは、数であって、 1.8≦a≦5.5 0.0≦b≦0.6 0.0≦c≦0.4 0.0≦d≦1.0 0.0≦e≦0.2 4.0≦a+b+c+d+e≦5.5 の関係を満たす。また、Mは、Si、Fe、Pb、T
i、Ca、Mg、Cu、In、Zn、Mo、及びZrか
らなる一群から選ばれた少なくとも一種の元素である。
BEST MODE FOR CARRYING OUT THE INVENTION The composition of the hydrogen storage alloy used in the present invention is not particularly limited, but AB n (n is 1 to 5).
Represents a positive number of 6. ) Can be used. In particular, those of AB 5 type hydrogen absorbing alloy composition in the present invention is preferable in terms of battery life. In AB 5 hydrogen storage alloy, as the A side element, La, Ce, N
A rare earth element selected from d and Pr alone or a mixture of the rare earth elements (in this case, La is preferably contained in the rare earth element mixture in an amount of 20% by weight or more) is more preferable. Note that the A-side element may include a rare earth element other than the above, or may include an element other than the rare earth element. (Ni) a (Mn) b (Al) c (Co) d as the B-side element
A composition consisting of (M) e is preferred. Where a, b,
c, d and e are numbers, and 1.8 ≦ a ≦ 5.5 0.0 ≦ b ≦ 0.6 0.0 ≦ c ≦ 0.4 0.0 ≦ d ≦ 1.0. 0 ≦ e ≦ 0.2 4.0 ≦ a + b + c + d + e ≦ 5.5. M is Si, Fe, Pb, T
i, at least one element selected from the group consisting of Ca, Mg, Cu, In, Zn, Mo, and Zr.

【0011】本発明では、このような組成の各元素を混
合した後、アルゴン、ヘリウム等の不活性ガス雰囲気下
で1300〜1600℃の温度下で合金を溶湯化させ、
急冷法により水素吸蔵合金粉末を作成する。本発明では
急冷法による水素吸蔵合金粉末を得ることにより偏析の
少ない均質な合金が選られる。このような合金粉末を得
る急冷法には特に限定しないが、例えば、公知のロール
急冷等により薄板状の合金を作り、その後粉砕して水素
吸蔵合金粉末を得る。ロール急冷法(単ロール、双ロー
ル)を用いる場合には、アルゴン、ヘリウム、窒素等の
不活性ガス雰囲気下で、ジェットミル、アトライター等
を用いて、乾式・湿式粉砕で合金粉末を得るが、特に本
発明の場合ジェットミルを用いて得られた水素吸蔵合金
粉末を焼結させることが望ましい。また遠心噴霧法やガ
スアトマイズ法等により直接微粒子(球状、略球状)の
水素吸蔵合金粉末を得ることもできる。
In the present invention, after mixing each element having such a composition, the alloy is melted at a temperature of 1300 to 1600 ° C. in an atmosphere of an inert gas such as argon or helium.
A hydrogen storage alloy powder is prepared by a quenching method. In the present invention, a homogeneous alloy with less segregation is selected by obtaining a hydrogen storage alloy powder by a quenching method. The quenching method for obtaining such an alloy powder is not particularly limited. For example, a thin plate-shaped alloy is prepared by a known roll quenching method, and then pulverized to obtain a hydrogen storage alloy powder. When the roll quenching method (single roll, twin roll) is used, alloy powder is obtained by dry / wet pulverization using a jet mill, an attritor, or the like in an atmosphere of an inert gas such as argon, helium, or nitrogen. In particular, in the case of the present invention, it is desirable to sinter the hydrogen storage alloy powder obtained by using a jet mill. Fine particles (spherical, substantially spherical) of the hydrogen storage alloy powder can also be directly obtained by centrifugal spraying, gas atomizing, or the like.

【0012】また、本発明において急冷とは、100℃
/秒以上の冷却速度の条件下で冷却することをいうが、
特に103 〜105 ℃/秒の冷却条件が好ましい。10
0℃/秒未満では冷却能力が悪く、合金に偏析が起こる
傾向がある。ロール急冷法を用いる場合には、合金の溶
湯を冷却ロールに流し、ロールを回転させながら上記冷
却速度で急冷し、薄帯状合金を得る。遠心噴霧法は回転
ディスク上に合金溶湯を垂直に流し込み、該ディスクの
回転により合金を飛散させ急冷させる。また、ガスアト
マイズ法はアルゴン、ヘリウム等の高速ガスを10kg
f/cm2 以上のガス圧の条件下で合金溶湯に当てなが
ら合金の細流を急冷する。本発明では特にロール急冷法
により得られる合金薄帯を粉砕した水素吸蔵合金粉末を
用いることが好ましい。
In the present invention, rapid cooling refers to 100 ° C.
Cooling under the condition of a cooling rate of at least / second,
Particularly, a cooling condition of 10 3 to 10 5 ° C / sec is preferable. 10
If it is less than 0 ° C./sec, the cooling capacity is poor, and the alloy tends to segregate. In the case of using the roll quenching method, a molten alloy is flowed through a cooling roll, and quenched at the above-mentioned cooling rate while rotating the roll to obtain a thin strip alloy. In the centrifugal spraying method, a molten alloy is poured vertically on a rotating disk, and the alloy is scattered by the rotation of the disk to rapidly cool the alloy. The gas atomization method uses 10 kg of high-speed gas such as argon and helium.
The thin stream of the alloy is rapidly cooled while being exposed to the molten alloy under the condition of the gas pressure of f / cm 2 or more. In the present invention, it is particularly preferable to use a hydrogen storage alloy powder obtained by pulverizing an alloy ribbon obtained by a roll quenching method.

【0013】本発明は、上記の急冷法により、平均粒子
径1〜20μm、好ましくは10μm以下にした水素吸
蔵合金粉末を用いて成形焼結させる。平均粒子径20μ
mを超えた合金粉末を焼結体に使用すると、焼結による
合金粒子間の結着力が弱くなり、水素吸蔵放出時に伴う
体積膨張力や収縮力に耐え切れず電極に多くの割れが発
生し、電極として集電機能が保てなくなり電池寿命が悪
くなる場合があり不都合である。また、粒子経を1〜4
0μmの範囲に保たせるとよい。
In the present invention, the above-mentioned quenching method is used to form and sinter a hydrogen storage alloy powder having an average particle size of 1 to 20 μm, preferably 10 μm or less. Average particle size 20μ
When an alloy powder exceeding m is used for a sintered body, the binding force between the alloy particles due to sintering becomes weak, and the electrode cannot withstand the volume expansion and contraction forces caused by hydrogen storage and release, causing many cracks in the electrode. In addition, the current collecting function cannot be maintained as an electrode, and the battery life may be shortened. Further, the particle diameter is 1 to
It is good to keep it in the range of 0 μm.

【0014】本発明は、このような急冷法で得られた水
素吸蔵合金粉末を所望の形状になるように鋳型に投入
し、加圧成形し、真空下またはアルゴン、ヘリウム等の
不活性ガス雰囲気下で600〜1100℃、好ましくは
950〜1050℃下、0.5〜5時間合金粉末を直接
焼結させる。600℃未満では合金粒子同士の結合が起
こらないので焼結されず、1100℃を超えると合金粒
子間の焼結が進行して、電極として使用した場合、電解
液が充分浸透してゆかず電極容量が低下するので好まし
くない。
According to the present invention, the hydrogen-absorbing alloy powder obtained by such a quenching method is charged into a mold so as to have a desired shape, molded under pressure, and under vacuum or in an inert gas atmosphere such as argon or helium. The alloy powder is directly sintered at 600 to 1100 ° C, preferably 950 to 1050 ° C for 0.5 to 5 hours. If the temperature is lower than 600 ° C., no sintering occurs because bonding between the alloy particles does not occur. If the temperature exceeds 1100 ° C., the sintering between the alloy particles progresses. It is not preferable because the capacity is reduced.

【0015】このようにして得られた焼結体は、加圧成
形、焼結して作製して得られ直接電極に用いることがで
き、ニッケル等の集電支持体を使用せず、焼結体そのも
のが集電体の機能も兼ね備えており、単位体積あたりの
電極容量が大幅に向上するといった効果を有することが
できる。本発明に係る水素吸蔵合金は、急冷することに
より組織の微細化や均一化領域の拡大が可能であるた
め、合金の組成を制御する幅が大きくすることができ、
酸素含有量を0.1重量%以上としても十分な制御が行
える。急冷された合金粉末が燒結した場合でも、偏析の
ない均一な組織形態を保持しているためである。
The sintered body obtained in this manner can be obtained by pressure molding and sintering, and can be directly used for an electrode. The sintered body can be sintered without using a current collecting support such as nickel. The body itself also has the function of a current collector, and can have the effect of greatly improving the electrode capacity per unit volume. Hydrogen storage alloy according to the present invention, since it is possible to microstructure and enlarge the uniform region by quenching, it is possible to increase the width of controlling the composition of the alloy,
Even when the oxygen content is 0.1% by weight or more, sufficient control can be performed. This is because even when the quenched alloy powder is sintered, it maintains a uniform structure without segregation.

【0016】本発明は上記特徴を兼ね備えた水素吸蔵合
金焼結体電極にリード線を取り付けて負極とし、セパレ
ータを介し水酸化ニッケル等の正極を配置させて電極群
を作り、これを角形や円筒型の密閉形電池容器に収納し
て苛性カリ等の電解液を注入し、封缶することで充放電
が可能なアルカリ蓄電池を作製することができる。
According to the present invention, a lead is attached to a hydrogen storage alloy sintered body electrode having the above-mentioned features to form a negative electrode, and a positive electrode such as nickel hydroxide is disposed through a separator to form an electrode group. An alkaline storage battery that can be charged and discharged can be manufactured by injecting an electrolytic solution such as caustic potash into a sealed battery container of a mold type and sealing the can.

【0017】本発明電極においては、焼結後の水素吸蔵
合金の希土類と遷移金属の比を適性に制御できるため、
これをアルカリ蓄電池の負極材料として使用することに
より、優れた電気容量及び充放電サイクル特性が発現さ
れる。
In the electrode of the present invention, the ratio between the rare earth and the transition metal of the sintered hydrogen storage alloy can be appropriately controlled.
By using this as a negative electrode material of an alkaline storage battery, excellent electric capacity and charge / discharge cycle characteristics are exhibited.

【0018】[0018]

【実施例】以下実施例を用いて本発明を説明するが、本
発明は下記実施例により何ら限定されるものではなく、
その要旨を変更しない範囲において適宜変更して実施す
ることが可能なものである。 (実施例)市販のMm(ミッシュメタル:La63重量
%、Ce7重量%、Pr22重量%、Nd8重量%)と
Ni、Co、Mn、Alを所定の組成比に秤合したもの
を、アルゴン雰囲気下でアーク溶解炉にて加算し混合物
を溶解させ溶湯を得、該溶湯を公知の回転ロール(単ロ
ール、3000rpm、4×104 ℃/秒)にて急冷
し、合金の組成(原子比)がMm1.05Ni3.65Co0.75
Al0.3 Mn0.3 からなるリボン状の薄帯を得た。得ら
れた薄帯を窒素雰囲気においてジェットミルにより粉砕
し平均粒度が7μmの粉末を得た。この粉末を加圧成形
し、その後、真空雰囲気で1000℃2時間焼結して焼
結体を得た。得られた焼結体(表面を含む(以下同
様)。)の酸素濃度を測定したところ、0.30重量%
であった。尚、酸素濃度はJIS Z 2613に準拠
し測定した。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples.
The present invention can be appropriately changed and implemented without changing the gist. (Example) Commercially available Mm (Misch metal: 63% by weight of La, 7% by weight of Ce, 22% by weight of Pr, 8% by weight of Nd) and Ni, Co, Mn, and Al were weighed in a predetermined composition ratio under an argon atmosphere. The mixture is melted in an arc melting furnace to obtain a melt, and the melt is quenched by a known rotating roll (single roll, 3000 rpm, 4 × 10 4 ° C./sec), and the composition (atomic ratio) of the alloy becomes Mm 1.05 Ni 3.65 Co 0.75
A ribbon-shaped ribbon made of Al 0.3 Mn 0.3 was obtained. The obtained ribbon was pulverized by a jet mill in a nitrogen atmosphere to obtain a powder having an average particle size of 7 μm. This powder was pressed and then sintered at 1,000 ° C. for 2 hours in a vacuum atmosphere to obtain a sintered body. When the oxygen concentration of the obtained sintered body (including the surface (the same applies hereinafter)) was measured, it was 0.30% by weight.
Met. The oxygen concentration was measured according to JIS Z 2613.

【0019】(参考例)Mm(実施例と同様)、Ni、
Co、Mn、Alを所定の組成比に秤量したものをアー
ク溶解炉にて加算し、その鋳造塊を真空中1050℃で
10時間熱処理後徐冷した組成(原子比)が、Mm1.0
Ni3.65Co0.75Al0.3 Mn0.3 からなる鋳造塊を得
た。その鋳造塊を窒素雰囲気においてジェットミルで粉
砕し、平均粒度が7μmの粉末を得た。合金粉末の酸素
濃度は0.25重量%であった。
(Reference Example) Mm (same as the embodiment), Ni,
A composition (atomic ratio) obtained by weighing Co, Mn, and Al at a predetermined composition ratio in an arc melting furnace and subjecting the cast ingot to a heat treatment at 1050 ° C. for 10 hours in a vacuum and then slowly cooling was Mm 1.0
A cast mass consisting of Ni 3.65 Co 0.75 Al 0.3 Mn 0.3 was obtained. The cast lump was pulverized with a jet mill in a nitrogen atmosphere to obtain a powder having an average particle size of 7 μm. The oxygen concentration of the alloy powder was 0.25% by weight.

【0020】(比較例1)Mm(実施例と同様)、N
i、Co、Mn、Alを所定の組成比に秤量したものを
アーク溶解炉にて加算し、その鋳造塊を真空中1050
℃で10時間熱処理後徐冷した組成(原子比)が、Mm
1.05Ni3.65Co0.75Al0.3 Mn0.3 からなる鋳造塊
を得た。その鋳造塊を窒素雰囲気においてジェットミル
で粉砕し、平均粒度が7μmの粉末を得た。この粉末を
実施例と全く同じ方法にて成形、焼結し焼結体を得た。
得られた焼結体の酸素濃度は0.3重量%であった。
(Comparative Example 1) Mm (same as in Example), N
i, Co, Mn, and Al weighed to a predetermined composition ratio are added in an arc melting furnace, and the cast ingot is placed in a vacuum at 1050.
The composition (atomic ratio) slowly cooled after heat treatment at 10 ° C.
A cast ingot consisting of 1.05 Ni 3.65 Co 0.75 Al 0.3 Mn 0.3 was obtained. The cast lump was pulverized with a jet mill in a nitrogen atmosphere to obtain a powder having an average particle size of 7 μm. This powder was molded and sintered in exactly the same manner as in the example to obtain a sintered body.
The oxygen concentration of the obtained sintered body was 0.3% by weight.

【0021】(比較例2)Mm(実施例と同様)、N
i、Co、Mn、Alを所定の組成比に秤量したものを
アーク溶解炉にて加算し、その鋳造塊を真空中1050
℃で10時間熱処理後徐冷した組成(原子比)が、Mm
1.0 Ni3.65Co0.75Al0.3 Mn0.3 からなる鋳造塊
を得た。その鋳造塊を窒素雰囲気においてジェットミル
で粉砕し、平均粒度が7μmの粉末を得た。この粉末を
実施例と全く同じ方法にて成形、焼結し焼結体を得た。
得られた焼結体の酸素濃度は0.30重量%であった。
(Comparative Example 2) Mm (same as the embodiment), N
i, Co, Mn, and Al weighed to a predetermined composition ratio are added in an arc melting furnace, and the cast ingot is placed in a vacuum at 1050.
The composition (atomic ratio) slowly cooled after heat treatment at 10 ° C.
A cast mass consisting of 1.0 Ni 3.65 Co 0.75 Al 0.3 Mn 0.3 was obtained. The cast lump was pulverized with a jet mill in a nitrogen atmosphere to obtain a powder having an average particle size of 7 μm. This powder was molded and sintered in exactly the same manner as in the example to obtain a sintered body.
The oxygen concentration of the obtained sintered body was 0.30% by weight.

【0022】第1図は上記の方法で得られた焼結体の水
素吸蔵特性を公知のジーベルト法により測定した結果で
ある。縦軸は水素圧力、横軸は水素吸蔵量(H/M’)
を表し、水素吸蔵量は、固相中の水素原子Hと合金原子
M’(例えば、実施例ではMm1.05Ni3.65Co0.75
0.3 Mn0.3 )との比である。同図より、実線で示し
た本発明の実施例による水素吸蔵合金焼結体は、水素吸
蔵平衡圧において、目標値とする参考例と近似してい
る。比較例1は実施例と同一組成比であるが、水素吸蔵
の平衡領域において平坦性に劣り、かつ吸蔵量において
も劣っている。第2図は、実施例と比較例1、比較例2
で得られた焼結体と公知の水酸化ニッケルを用い負極規
制の開放型アルカリ蓄電池を作製し、充放電サイクル試
験を行った結果である。充放電の条件としては、20℃
の一定温度において0.3Cで5時間充電し、休止時間
1時間経過後0.2Cで0.8Vまでの放電を繰り返し
行うものである。
FIG. 1 shows the results obtained by measuring the hydrogen storage characteristics of the sintered body obtained by the above-mentioned method by the known Sievert method. The vertical axis is hydrogen pressure, and the horizontal axis is hydrogen storage capacity (H / M ').
The hydrogen storage amounts are represented by hydrogen atoms H in the solid phase and alloy atoms M ′ (for example, in the embodiment, Mm 1.05 Ni 3.65 Co 0.75 A
l 0.3 Mn 0.3 ). As shown in the figure, the hydrogen storage alloy sintered body according to the embodiment of the present invention indicated by the solid line is similar to the reference example as the target value in the hydrogen storage equilibrium pressure. Comparative Example 1 has the same composition ratio as the example, but is inferior in flatness in the equilibrium region of hydrogen storage and in storage amount. FIG. 2 shows an example and comparative examples 1 and 2.
This is a result of preparing an open-type alkaline storage battery with a negative electrode regulation using the sintered body obtained in the above and a known nickel hydroxide, and performing a charge / discharge cycle test. The charge / discharge condition is 20 ° C
The battery is charged at 0.3 C for 5 hours at a constant temperature, and is repeatedly discharged to 0.2 V at 0.2 C after a lapse of 1 hour.

【0023】実施例は充放電特性においても水素吸蔵特
性同様に比較例1及び比較例2に対し容量の向上が見ら
れる。比較例1は比較例2に対し初期容量において若干
の向上があるが、実施例の向上に対し小幅であるし、実
施例は比較例に対しサイクル寿命においてかなりの向上
がみられるが、比較例1は比較例2に対しても極端にサ
イクル寿命が短い。これは、実施例と比較例1は焼結前
における合金のB/A比が4.76となっているが、実
施例の焼結体内は均一であることに対し、比較例1の焼
結体中には、希土類に富んだ偏析相が存在することによ
ると考えられる。開放式の蓄電池で評価をおこなったが
密閉式電池を作製したとき、焼結式電池は負極の充填密
度をペースト式電池に対し大幅に向上できるため、同一
体積のペースト式電池に対し、容量の向上が見込める
が、本発明は更なる改善が期待される。
In the example, the charge / discharge characteristics show an improvement in the capacity as compared with the comparative examples 1 and 2 as in the hydrogen storage characteristics. Comparative Example 1 has a slight improvement in the initial capacity as compared with Comparative Example 2, but is slightly smaller than the improvement in the Example. In the Example, the cycle life is considerably improved as compared with the Comparative Example. Sample No. 1 has an extremely shorter cycle life than Comparative Example 2. This is because the B / A ratio of the alloy before sintering is 4.76 in the example and the comparative example 1, but the sintered body of the example is uniform, This is probably due to the presence of a rare earth-rich segregated phase in the body. Although the evaluation was made with an open type storage battery, when a sealed type battery was manufactured, the capacity of the sintered type battery can be significantly improved compared to the paste type battery of the same volume because the packing density of the negative electrode can be greatly improved compared with the paste type battery. Although improvement can be expected, the present invention is expected to be further improved.

【0024】また、本発明は、従来の焼結電極である、
水素吸蔵合金を異種金属で、全体もしくはその一部をコ
ーティングする場合や、各種助剤を添加する場合との併
用も可能である。更に、Mm部やニッケル、コバルト等
の遷移金属部を異種元素で置換、もしくは異種元素の添
加を行う場合との併用も可能である。
Further, the present invention provides a conventional sintered electrode,
The hydrogen storage alloy may be used in combination with a case where the whole or a part of the hydrogen storage alloy is coated with a dissimilar metal or a case where various auxiliaries are added. Further, it is also possible to replace the Mm portion or the transition metal portion such as nickel or cobalt with a different element or to add a different element.

【0025】[0025]

【発明の効果】以上のように、本発明によればアルカリ
蓄電池として集電支持体を設けず水素吸蔵合金の充填量
を高めることができ、したがって容量密度を大幅に改善
し、かつサイクル寿命の優れたアルカリ2次電池用水素
吸蔵電極材料が得られる。
As described above, according to the present invention, it is possible to increase the filling amount of the hydrogen storage alloy without providing a current collecting support as an alkaline storage battery. Therefore, the capacity density is greatly improved, and the cycle life is shortened. An excellent hydrogen storage electrode material for an alkaline secondary battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼結体の水素吸蔵特性を公知のジーベルト法に
より測定した結果を示す。
FIG. 1 shows the results of measuring the hydrogen storage characteristics of a sintered body by a known Giebert method.

【図2】焼結体と公知の水酸化ニッケルを用い負極規制
の開放型アルカリ蓄電池を作製し、充放電サイクル試験
を行った結果を示す。
FIG. 2 shows the results of a charge / discharge cycle test of an open-type alkaline storage battery with a regulated anode using a sintered body and a known nickel hydroxide.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 急冷法により得た水素吸蔵合金の粉末
を、成形、焼結した水素吸蔵電極材料。
1. A hydrogen storage electrode material obtained by molding and sintering a hydrogen storage alloy powder obtained by a quenching method.
【請求項2】 上記水素吸蔵合金の組成が、一般式 R(Ni)a (Mn)b (Al)c (Co)d (M)e (式中、Rは、La単独又はLaと一以上の希土類元素
との混合物である。a、b、c、d、e及びxは、原子
比を表す係数であり、それぞれ 1.8≦a≦5.5 0.0≦b≦0.6 0.0≦c≦0.4 0.0≦d≦1.0 0.0≦e≦0.2 4.0≦a+b+c+d+e≦5.5 からなる数を表す。また、Mは、Si、Fe、Pb、T
i、Ca、Mg、Cu、In、Zn、Mo、及びZrか
らなる一群から選ばれた少なくとも一種の元素であ
る。)で表せる水素吸蔵合金である請求項1に記載の水
素吸蔵電極材料。
2. The composition of the hydrogen-absorbing alloy has a general formula R (Ni) a (Mn) b (Al) c (Co) d (M) e (wherein R is La alone or one or more of La) A, b, c, d, e, and x are coefficients representing an atomic ratio, and 1.8 ≦ a ≦ 5.5 0.0 ≦ b ≦ 0.60, respectively. 0.0 ≦ c ≦ 0.4 0.0 ≦ d ≦ 1.0 0.0 ≦ e ≦ 0.2 4.0 ≦ a + b + c + d + e ≦ 5.5 where M is Si, Fe, Pb, T
i, at least one element selected from the group consisting of Ca, Mg, Cu, In, Zn, Mo, and Zr. 2. The hydrogen storage electrode material according to claim 1, which is a hydrogen storage alloy represented by the formula:
【請求項3】 上記水素吸蔵合金の粉末が、1〜20μ
mの平均粒径を有する請求項1又は請求項2に記載の水
素吸蔵電極材料。
3. The method according to claim 1, wherein the powder of the hydrogen storage alloy is 1 to 20 μm.
The hydrogen storage electrode material according to claim 1 or 2, having an average particle size of m.
【請求項4】請求項1〜3のいずれかに記載の水素吸蔵
電極材料を負極に用いたアルカリ蓄電池。
4. An alkaline storage battery using the hydrogen storage electrode material according to claim 1 for a negative electrode.
JP10095554A 1998-04-08 1998-04-08 Hydrogen storage electrode material, and alkaline storage battery Withdrawn JPH11297319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10095554A JPH11297319A (en) 1998-04-08 1998-04-08 Hydrogen storage electrode material, and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10095554A JPH11297319A (en) 1998-04-08 1998-04-08 Hydrogen storage electrode material, and alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH11297319A true JPH11297319A (en) 1999-10-29

Family

ID=14140807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10095554A Withdrawn JPH11297319A (en) 1998-04-08 1998-04-08 Hydrogen storage electrode material, and alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH11297319A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445709B1 (en) * 2002-02-23 2004-08-25 주식회사 알덱스 Material with high performance and large capacity for secondary battery
WO2007040277A1 (en) * 2005-10-06 2007-04-12 Mitsui Mining & Smelting Co., Ltd. LOW-Co HYDROGEN ABSORBING ALLOY
JPWO2008018494A1 (en) * 2006-08-09 2010-01-07 株式会社ジーエス・ユアサコーポレーション Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445709B1 (en) * 2002-02-23 2004-08-25 주식회사 알덱스 Material with high performance and large capacity for secondary battery
WO2007040277A1 (en) * 2005-10-06 2007-04-12 Mitsui Mining & Smelting Co., Ltd. LOW-Co HYDROGEN ABSORBING ALLOY
JPWO2008018494A1 (en) * 2006-08-09 2010-01-07 株式会社ジーエス・ユアサコーポレーション Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP5581588B2 (en) * 2006-08-09 2014-09-03 株式会社Gsユアサ Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy

Similar Documents

Publication Publication Date Title
US5840166A (en) Rare earth metal-nickel hydrogen storage alloy, process for producing the same, and anode for nickel-hydrogen rechargeable battery
US8277582B2 (en) Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery, and production method of hydrogen absorbing alloy
WO1997008353A1 (en) Rare earth metal/nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen secondary battery
EP0765947B1 (en) Rare earth metal-nickel hydrogen storage alloy, process for producing the same, and anode for nickel-hydrogen rechargeable battery
JP3432873B2 (en) Hydrogen storage alloy for alkaline storage batteries
US5470404A (en) Rare earth metal-nickel hydrogen occlusive alloy ingot
KR100355049B1 (en) Alkali Metal Oxide / Metal Hydride Batteries
JP4828714B2 (en) Hydrogen storage alloy, method for producing the same, and negative electrode for nickel metal hydride secondary battery
JP3834329B2 (en) AB5 type hydrogen storage alloy with excellent life characteristics
JPH11297319A (en) Hydrogen storage electrode material, and alkaline storage battery
US20040217327A1 (en) Method for fabricating negative electrode for secondary cell
JPH07268519A (en) Hydrogen storage alloy for battery, its production and nickel hydrogen battery
JP2001240927A (en) Hydrogen storage alloy for negative electrode of battery capable of increasing service capacity and improving low temperature high ratio service capacity by small number of charging and discharging times by high ratio initial activating treatment
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
US6472102B2 (en) Hydridable alloy
JP2002535495A (en) AB5-type rare earth-transition intermetallic compound for secondary battery negative electrode
JPH02253558A (en) Manufacture of hydrogen storage electrode
JP3816138B6 (en) Metal oxide-metal hydride alkaline battery and method for producing hydrogen storage alloy negative electrode for the battery
JPH11350001A (en) Hydrogen storage sintering material and negative electrode for alkaline storage battery
JPH11350056A (en) Hydrogen storage sintered body and cathode for alkaline battery
JP2000129379A (en) Hydrogen storage alloy
JP2000345265A (en) Hydrogen storage alloy enabling high rate discharge of battery
JP2000345263A (en) Hydrogen storage alloy enabling high rate discharge of battery
JPH1025528A (en) Hydrogen storage alloy
JP2000087102A (en) Hydrogen storage alloy powder and electrode using same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070518