JPH11350001A - Hydrogen storage sintering material and negative electrode for alkaline storage battery - Google Patents

Hydrogen storage sintering material and negative electrode for alkaline storage battery

Info

Publication number
JPH11350001A
JPH11350001A JP10154359A JP15435998A JPH11350001A JP H11350001 A JPH11350001 A JP H11350001A JP 10154359 A JP10154359 A JP 10154359A JP 15435998 A JP15435998 A JP 15435998A JP H11350001 A JPH11350001 A JP H11350001A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
sintering
grain size
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10154359A
Other languages
Japanese (ja)
Inventor
Kaoru Kato
馨 加藤
Takehisa Minowa
武久 美濃輪
Noriaki Hamaya
典明 浜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10154359A priority Critical patent/JPH11350001A/en
Publication of JPH11350001A publication Critical patent/JPH11350001A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To remarkably improve the packing density of a hydrogen storage alloy, to miniaturize an alkaline storage battery and to increase its capacity by pulverizing a hydrogen storage alloy lump in an inert gas atmosphere, simultaneously executing classification in a specified range and executing compacting and sintering. SOLUTION: The classification is executed in the range of the inequality I X: the standard deviation value (μm) of the grain size distribution of the alloy powder, and Y: the average grain size (μm) of the alloy powder), and the average grain size is controlled to 2 to 20 μm, preferably to 5 to 10 μm. As the hydrogen storage sintering material, the one of AB5 series of the formula II (R: any of La, Ce, Pr and Nd alone or a mixture of La and rare earth elements, where La is contained by >=20% in R, and M: Si or the like) is suitable. It is made molten metal at 1300 to 1600 deg.C in an inert gas atmosphere, which is slowly cooled to obtain an alloy lump, and, moreover, heating treatment is executed at 800 to 1100 deg.C. This is simultaneously classified to pulverize into 5 to 10 μm average grain size. The alloy powder is packed into a mold and is subjected to heat treatment at 900-1000 deg.C to obtain a sintered body. It has pores of 20 to 40% porosity, and its strength and cycle life are improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素を吸蔵・放出
する水素吸蔵燒結材料に関するものであり、特にアルカ
リ蓄電池の負極材料およびアルカリ蓄電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage and sintering material for storing and releasing hydrogen, and more particularly to a negative electrode material for an alkaline storage battery and an alkaline storage battery.

【0002】[0002]

【従来技術】水素吸蔵合金は、電気化学的にその水素を
吸蔵・放出させることができることにより、2次電池の
負極電極材料として利用されている。該合金は、電極の
充放電の際、水素化(充電)、脱水素化(放電)される
ためその体積変動を伴う。そのため、該合金をそのまま
の状態で負極として用いると割れを生じ、微粉化し電極
から脱落し放出容量を低下させるという問題があった。
2. Description of the Related Art A hydrogen storage alloy is used as a negative electrode material of a secondary battery because it can electrochemically store and release hydrogen. The alloy is hydrogenated (charged) and dehydrogenated (discharged) at the time of charging and discharging the electrodes, so that the volume of the alloy varies. Therefore, when the alloy is used as it is as a negative electrode, there is a problem that cracks are generated, the alloy is pulverized, drops from the electrode, and the release capacity is reduced.

【0003】このような問題に対し、従来より一般のペ
ースト式電極とよばれる製造方法は、水素吸蔵合金を数
10μmに粉砕し、ポリビニルアルコール等の結合剤を
用いペースト化し、パンチングメタルや発泡ニッケルと
いった支持体に該ペーストを塗布させることにより脱落
を防止していた。しかしながら、結合剤、支持体および
セパレータは、電池として用いた場合、水素吸蔵放出に
預からないため、一定体積(電池)に対する水素吸蔵合
金の充填量は小さい。それに対し、水素吸蔵合金を粉砕
し、直接焼結させて電極とすることで割れに対する強度
を向上させる方法が考えられていた。
[0003] In response to such a problem, a conventional manufacturing method generally called a paste-type electrode is to pulverize a hydrogen-absorbing alloy into a few tens of μm, form a paste using a binder such as polyvinyl alcohol, and form a punching metal or nickel foam. By applying the paste to such a support, the paste was prevented from falling off. However, when the binder, the support, and the separator are used as a battery, they do not contribute to hydrogen storage and release, so that the filling amount of the hydrogen storage alloy in a fixed volume (battery) is small. On the other hand, a method of improving the strength against cracking by crushing the hydrogen storage alloy and directly sintering it to form an electrode has been considered.

【0004】しかし、直接焼結させただけの焼結体は結
着剤や支持体が必要でないため、合金の充填量は向上す
るが、合金の充填密度を一般に望ましいとされている多
孔率20〜40%にするためには高温度における熱処理
が必要となる。そのような高温を合金に加えると、合金
中の金属の組織的な変動が大きく起こり水素吸蔵特性を
大きく低下させることが問題化されている。そのため、
合金粉末表面の全体または一部を他の金属例えばニッケ
ル等で被覆したり、他の金属粉等の焼結助剤を添加する
ことにより焼結温度を低下させることが提案されてい
た。しかし、この場合、電極の製造工程の複雑化、コス
トの上昇、合金被覆部分及び助剤が水素吸蔵放出に預か
らないため好ましくなかった。
[0004] However, a sintered body which is simply sintered directly does not require a binder or a support, so that the filling amount of the alloy is improved, but the packing density of the alloy is preferably 20%. Heat treatment at a high temperature is required in order to make it up to 40%. When such a high temperature is applied to the alloy, the systematic fluctuation of the metal in the alloy greatly occurs, and it has been problematic that the hydrogen storage characteristics are greatly reduced. for that reason,
It has been proposed to coat the whole or a part of the surface of the alloy powder with another metal, such as nickel, or to lower the sintering temperature by adding a sintering aid such as another metal powder. However, in this case, the manufacturing process of the electrode is complicated, the cost is increased, and the alloy-coated portion and the auxiliary agent are not included in the hydrogen storage and release, which is not preferable.

【0005】[0005]

【発明が解決しようとする課題】このように水素吸蔵合
金に対し他の金属の被覆や焼結助剤の添加等の対策がと
られて、さらに合金を微粉化すれば焼結温度は低下させ
ることができるが、主に希土類金属を多く含む合金(金
属間化合物)は微粉化により合金表面積は大きくなり、
非常に酸化されやすくなる。吸着された酸素は、焼結中
に合金と反応し、水素の吸蔵放出に預からない酸化物を
生成することや、該酸化物は不導体であるため焼結体の
電気抵抗が増大し、電池としての性能を低下させてい
た。また、吸着する酸素量を低減させるため低酸素雰囲
気で粉砕を行っても、有機溶剤中での粉砕は炭素汚染を
避けられず、同様に焼結後の合金の水素吸蔵放出の容量
を低下させたいた。さらに、従来から使われている合金
すなわち機械式粉砕による合金粉末は、特に粒度分布が
非常に大きくなり、1μm以下の微粉や粒子径の大きい
粉末が多数あり、金属組織のバラツキがあり、負極を作
製した場合に容量を低下させる等の悪影響を及ぼしてい
た。
As described above, countermeasures such as coating of another metal and addition of a sintering aid to the hydrogen storage alloy are taken, and the sintering temperature is lowered by further pulverizing the alloy. However, alloys containing a large amount of rare earth metals (intermetallic compounds) mainly have a large alloy surface area due to pulverization,
Very easily oxidized. The adsorbed oxygen reacts with the alloy during sintering to form an oxide that is not included in the occlusion and release of hydrogen, and the oxide is a non-conductor, so that the electrical resistance of the sintered body increases, The performance as a battery was degraded. In addition, even if grinding is performed in a low oxygen atmosphere to reduce the amount of adsorbed oxygen, grinding in an organic solvent inevitably causes carbon contamination, and similarly reduces the capacity of hydrogen absorption and release of the sintered alloy. Hit. In addition, the conventionally used alloys, that is, alloy powders obtained by mechanical pulverization, particularly have a very large particle size distribution, a large number of fine powders of 1 μm or less and powders having a large particle diameter, and there are variations in the metallographic structure. In the case of manufacturing, there was an adverse effect such as lowering the capacity.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために鋭意研究されたものであり、水素吸蔵合金
の酸化及び炭素汚染を防止することを目的としており、
水素吸蔵合金塊を不活性ガス雰囲気下で粉砕すると同時
に分級させ、成形、焼結させた水素吸蔵燒結材料、およ
び該水素吸蔵燒結材料を用いたアルカリ蓄電池用負極を
提供する。
DISCLOSURE OF THE INVENTION The present invention has been intensively studied in order to solve the above problems, and has as its object to prevent oxidation of a hydrogen storage alloy and carbon contamination.
Provided are a hydrogen storage sintered material obtained by pulverizing and classifying a hydrogen storage alloy lump in an inert gas atmosphere while simultaneously classifying and sintering, and a negative electrode for an alkaline storage battery using the hydrogen storage sintered material.

【0007】[0007]

【発明の実施の形態】本発明に係る水素吸蔵燒結材料
は、水素吸蔵合金を焼結させて得られるものである。使
用できる水素吸蔵合金塊の組成および製造方法として
は、特に限定するものではなく、ABn (nは、1〜6
であらわされる数である。)で表される構造を有する水
素吸蔵合金であればよい。特に本発明では、AB5 系の
水素吸蔵合金組成のものが電池寿命の点で好ましい。具
体的には、一般式 R(Ni)a (Mn)b (Al)c
(Co)d (M)eで表される水素吸蔵合金である。式
中、Rは、La、Ce、Pr、Ndのうちいずれか単
独、またはLaと一以上のY(イットリウム)を含む希
土類元素との混合物であり、特にLa以外に用いられる
希土類元素は、Ce、Pr、Ndから一種以上用い、R
中にLaを20重量%以上含むことが好ましい。Mは、
Si、Fe、Pb、Ti、Ca、Mg、Cu、In、Z
n、Cr、MoおよびZrからなる一群から選ばれた少
なくとも一種の元素である。また、a、b、c、d、e
は、Rを原子比1.0とした場合に、原子比を表す係数
であり、以下の関係を満たす数である。 1.8≦a≦6.0 0≦b≦0.6 0≦c≦0.4 0≦d≦1.0 0≦e≦0.2 4.0≦a+b+c+d+e≦6.0
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage sintered material according to the present invention is obtained by sintering a hydrogen storage alloy. The composition and production method of the hydrogen storage alloy lump that can be used are not particularly limited, and AB n (n is 1 to 6)
It is a number represented by Any hydrogen storage alloy having the structure represented by the formula (1) may be used. Particularly in the present invention are those of the hydrogen storage alloy composition of AB 5 type is preferred in terms of battery life. Specifically, the general formula R (Ni) a (Mn) b (Al) c
It is a hydrogen storage alloy represented by (Co) d (M) e . In the formula, R is any one of La, Ce, Pr, and Nd, or a mixture of La and one or more rare earth elements containing Y (yttrium). In particular, rare earth elements used other than La are Ce. , Pr, Nd
It is preferable to contain La in an amount of 20% by weight or more. M is
Si, Fe, Pb, Ti, Ca, Mg, Cu, In, Z
It is at least one element selected from the group consisting of n, Cr, Mo and Zr. A, b, c, d, e
Is a coefficient that represents the atomic ratio when R is 1.0, and is a number that satisfies the following relationship. 1.8 ≦ a ≦ 6.0 0 ≦ b ≦ 0.6 0 ≦ c ≦ 0.4 0 ≦ d ≦ 1.0 0 ≦ e ≦ 0.2 4.0 ≦ a + b + c + d + e ≦ 6.0

【0008】本発明では、上記組成からなる水素吸蔵合
金を、アーク溶解炉、高周波溶解炉等を用い、アルゴ
ン、ヘリウム等の不活性ガス雰囲気下で、1300〜1
600℃で溶解させ溶湯化し、除冷させ、水素吸蔵合金
塊を得る。さらに、合金組成の偏析を防止するため、合
金塊を800〜1100℃で加熱処理する。
In the present invention, a hydrogen storage alloy having the above-mentioned composition is prepared in an arc melting furnace, a high-frequency melting furnace or the like under an inert gas atmosphere such as argon, helium or the like at 1300-1.
It is melted at 600 ° C. to form a molten metal, and then cooled to obtain a hydrogen storage alloy lump. Further, in order to prevent segregation of the alloy composition, the alloy ingot is heat-treated at 800 to 1100 ° C.

【0009】このようにして得られた水素吸蔵合金を、
本発明では、サイクロン等を具備したジェット粉砕機、
アトライターを用いて、平均粒子径2〜20μm、好ま
しくは5〜10μmの粒度範囲に同時に分級粉砕する。
さらに粒子径を1〜40μm以内に粒度を分布させるこ
とが好ましい。平均粒子径を5μm未満にすると合金の
酸化の影響が大きくなり、劣化する。20μmを超える
と合金粒子が粗大化しており、活性化の遅れを生じるこ
とや、焼結温度において1200℃以上の高温が必要と
なり好ましくない。
[0009] The hydrogen storage alloy thus obtained is
In the present invention, a jet crusher equipped with a cyclone or the like,
Using an attritor, the particles are simultaneously classified and pulverized into a particle size range of 2 to 20 μm, preferably 5 to 10 μm.
Further, the particle size is preferably distributed within a range of 1 to 40 μm. If the average particle size is less than 5 μm, the influence of the oxidation of the alloy becomes large and the alloy deteriorates. If it exceeds 20 μm, the alloy particles become coarse, which causes a delay in activation and requires a high temperature of 1200 ° C. or higher in sintering temperature, which is not preferable.

【0010】本発明では、水素吸蔵合金塊を窒素、アル
ゴン等の不活性ガス、特に窒素の高速気流で、ジェット
粉砕機またはアトライターを用いた粉砕方法をすること
により、下記粒度分布に水素吸蔵合金粉末を同時に分級
することができる。
In the present invention, a hydrogen storage alloy lump is subjected to a pulverization method using a jet pulverizer or an attritor with a high-speed gas stream of an inert gas such as nitrogen or argon, particularly nitrogen, so that the hydrogen storage alloy has the following particle size distribution. The alloy powder can be classified at the same time.

【数2】 [式中、Xは、合金粉末の粒度分布の標準偏差値(μ
m)を表し、Yは、合金粉末の平均粒子径(μm)を表
す。] 本発明ではサイクロン、ターボクラシファイヤー等の分
級機を粉砕機中に具備させ、粉砕と同時に粒度を分級し
ながら、粉砕粒度のバラツキをコントロールする。な
お、粉砕と同時に分級を行うことが、省スペース及び効
率等の点で好ましいが、粉砕と分級を別個に行う態様で
あってもよい。
(Equation 2) [In the formula, X is a standard deviation value (μ
m), and Y represents the average particle diameter (μm) of the alloy powder. In the present invention, a classifier such as a cyclone, a turbo classifier or the like is provided in the pulverizer to control the variation in the pulverized particle size while classifying the particle size simultaneously with the pulverization. Note that it is preferable to perform classification at the same time as pulverization in terms of space saving and efficiency, but an embodiment in which pulverization and classification are performed separately may be employed.

【0011】このような粉砕と同時に分級された水素吸
蔵合金粉末を用いることにより、焼結したのちでも、合
金中の酸素量を合金重量に対し0.3重量%以下に低減
させることができ、さらに有機溶剤中での粉砕を用いな
いので炭素汚染(炭素濃度0.01重量%以下)を防止
できる。合金中の酸素含有量を低減できるのは、ジェッ
トミル、アトライターにより、粒度分布を鋭角にでき、
また分級により比表面積の大きい微細な粒子を削除でき
たことによる。
By using the hydrogen storage alloy powder classified at the same time as the pulverization, the oxygen content in the alloy can be reduced to 0.3% by weight or less based on the weight of the alloy even after sintering. Further, since no pulverization in an organic solvent is used, carbon contamination (carbon concentration of 0.01% by weight or less) can be prevented. The oxygen content in the alloy can be reduced because the jet mill and attritor can sharpen the particle size distribution,
In addition, fine particles having a large specific surface area could be removed by classification.

【0012】上記式(1)における粒度分布を60%以
上の粒度分布の合金粉末を電極として用いた場合、粒径
が非常に細かい粒を多く含むことになるが、粒径が細か
いほど低温で焼結が進むため、焼結体の組織において部
分的なバラツキを生じ、電気化学的に必要な連続した空
孔を閉塞させたり、成形体の内部でも過度に焼結された
部分と未焼結部分が生じ、電極としての強度が低下す
る。また、上記式(1)における粒度分布を60%以上
の粒度分布の合金粉末を電極として用いた場合、粒径が
大きい粗大な粒を多く含むことにもなり、その粗大な粒
子の活性化の遅れは、初期容量の低下を生ずる傾向があ
る。振動ミル等の機械式粉砕を用いた場合には、微粉が
多く得られ、(1)式における粒度分布が65%以上に
なってしまい、上記欠点を有する電極が得られる。
When an alloy powder having a particle size distribution of 60% or more in the above formula (1) is used as an electrode, many particles having a very small particle size are contained. Due to the progress of sintering, partial variations occur in the structure of the sintered body, closing continuous pores required electrochemically, and unsintered parts inside the molded body with excessively sintered parts Some portions are formed, and the strength as an electrode is reduced. In addition, when an alloy powder having a particle size distribution of 60% or more in the above formula (1) is used as an electrode, many coarse particles having a large particle size are included, and the activation of the coarse particles is increased. The delay tends to cause a decrease in the initial capacity. When mechanical pulverization such as a vibration mill is used, a large amount of fine powder is obtained, and the particle size distribution in the formula (1) becomes 65% or more, so that an electrode having the above-mentioned disadvantage is obtained.

【0013】本発明では、水素吸蔵合金塊を、窒素、ア
ルゴン、ヘリウム等の不活性ガス下で粉砕するのである
が、特に窒素ガス雰囲気下としたことは、粉砕時におけ
る粉末の昇温を防止でき、合金組成への酸素などの不純
物の混入を抑制するためであり、厳密に不活性雰囲気下
に限らず、この目的を達成できる態様であればよい。
In the present invention, the hydrogen storage alloy lump is pulverized under an inert gas such as nitrogen, argon, helium, etc. In particular, the use of a nitrogen gas atmosphere prevents the powder from rising during the pulverization. This is to suppress the entry of impurities such as oxygen into the alloy composition, and is not limited to a strictly inert atmosphere, but may be any mode that can achieve this purpose.

【0014】本発明では、このような粒度分布にした合
金粉末を直接焼結させることにより、集電支持体を必須
とせずに電極に用いることができる。したがって、本発
明は合金粉末を直接焼結することができ、充填量の高い
所望の形状の焼結体が得られることができる。該粒度分
布を有する合金粉末を鋳型に充填し加熱処理することで
焼結体を得る。合金粉末を焼結させる温度は600〜1
100℃、好ましくは900〜1100℃である。加熱
温度を600℃以下にすると、焼結が起こらず合金同士
の結合反応を行うことができない。また、1100℃を
超えると、合金の金属組成の偏析が起こり均質な焼結電
極が得られない。この場合、焼結雰囲気を、10-4〜1
-5torrの真空下、非酸化性雰囲気、特にアルゴン、ヘ
リウム等の不活性ガス雰囲気下で処理することが好まし
い。
In the present invention, by directly sintering the alloy powder having such a particle size distribution, the current collector can be used for the electrode without making it essential. Therefore, according to the present invention, the alloy powder can be directly sintered, and a sintered body having a desired shape and a high filling amount can be obtained. A sintered body is obtained by filling a mold with the alloy powder having the particle size distribution and performing heat treatment. The temperature for sintering the alloy powder is 600 to 1
The temperature is 100 ° C, preferably 900 to 1100 ° C. When the heating temperature is set to 600 ° C. or lower, sintering does not occur and a bonding reaction between alloys cannot be performed. On the other hand, when the temperature exceeds 1100 ° C., segregation of the metal composition of the alloy occurs, and a homogeneous sintered electrode cannot be obtained. In this case, the sintering atmosphere is 10 -4 to 1
The treatment is preferably performed under a non-oxidizing atmosphere under a vacuum of 0 -5 torr, particularly under an inert gas atmosphere such as argon or helium.

【0015】このようにして得られた焼結体は、多孔質
焼結体になっており、電極として好ましい多孔率20〜
40%を気孔を有している。また、粒度分布のバラツキ
幅が狭く、平均的に焼結することができることで、強度
が向上し、電池とした場合のサイクル寿命の向上も期待
できる。この焼結体に直接リード線をとりつけ負極と
し、その外側にセパレータ、水酸化ニッケル正極とを構
成させ苛性カリ等の電解液を注入し、アルカリ蓄電池を
得ることができる。本発明では、水素吸蔵合金のみを焼
結し、電極として構成しているため、従来のペースト式
電極による蓄電池と比較し、どれも単位体積当りの水素
吸蔵合金の充填密度を大幅に改善することができるた
め、装置の小型かもしくは高容量化と合わせて電極の製
造方法が容易に安価なアルカリ蓄電池を提供することが
できる。本発明の原理は、密閉式電池を作製したとして
も、同様に効果が期待できる。
[0015] The sintered body thus obtained is a porous sintered body and has a porosity of 20 to 20 which is preferable as an electrode.
40% have pores. Further, since the dispersion width of the particle size distribution is narrow and sintering can be performed on average, strength is improved, and improvement in cycle life in the case of a battery can be expected. A lead wire is directly attached to the sintered body to form a negative electrode, a separator and a nickel hydroxide positive electrode are formed outside the negative electrode, and an electrolytic solution such as caustic potash is injected to obtain an alkaline storage battery. In the present invention, since only the hydrogen storage alloy is sintered and configured as an electrode, compared with a conventional storage battery using a paste-type electrode, any of the above-described methods significantly improves the packing density of the hydrogen storage alloy per unit volume. Therefore, it is possible to provide an inexpensive alkaline storage battery in which the manufacturing method of the electrodes can be easily performed along with the reduction in the size or the increase in the capacity of the device. The principle of the present invention can be expected to have the same effect even when a sealed battery is manufactured.

【0016】[0016]

【実施例】(実施例1〜2、比較例1〜2)市販のMm
(La35重量%、Ce50%、Pr5%、Nd10
%)原子比1に対し、Niを3.65、Coを0.7
5、Alを0.3、Mnを0.3となるように秤量し、
アーク溶解炉にて溶解し、CaCu5 構造の合金塊を得
た。得られた水素吸蔵合金塊をサイクロンを具備したジ
ェット粉砕機で窒素ガス雰囲気のもと、酸素濃度2.5
%以下の雰囲気にて平均粒度が7μmになるように粉砕
し、該合金粒子の粒度分布における標準偏差値を4.9
μm、4.3μm、4.1μm、3.5μmの粉末を得
た。この時の標準偏差を平均粒径で割った値はそれぞれ
約70.0%、61.4%、58.6%、50.0%に
コントロールした。これらの合金粉末を加圧成形し、そ
の後10-4torrの真空雰囲気において950℃で加熱処
理をし水素吸蔵合金の焼結体M1〜M4を得、気孔率3
0%の焼結体を得た。燒結−赤外線吸収法により燒結体
(合金)を測定したところ、炭素汚染は見られなかっ
た。 なお、気孔率は、(気孔率)={1−(焼結密度)/
(理論密度)}・100 焼結密度は、JIS Z 2505に準拠して求めた。
EXAMPLES (Examples 1-2, Comparative Examples 1-2) Commercially available Mm
(La 35% by weight, Ce 50%, Pr 5%, Nd10
%) For an atomic ratio of 1, Ni is 3.65 and Co is 0.7.
5, Weigh Al to 0.3, Mn to 0.3,
Melting was performed in an arc melting furnace to obtain an alloy lump having a CaCu 5 structure. The obtained hydrogen-absorbing alloy lump was subjected to a jet pulverizer equipped with a cyclone under a nitrogen gas atmosphere under an oxygen concentration of 2.5.
% Of the alloy particles in an atmosphere having a particle size distribution of 4.9% or less.
μm, 4.3 μm, 4.1 μm, and 3.5 μm were obtained. The values obtained by dividing the standard deviation at this time by the average particle size were controlled to about 70.0%, 61.4%, 58.6%, and 50.0%, respectively. These alloy powders are pressed and then heat-treated at 950 ° C. in a vacuum atmosphere of 10 −4 torr to obtain sintered bodies M1 to M4 of a hydrogen storage alloy, and have a porosity of 3
A 0% sintered body was obtained. When the sintered body (alloy) was measured by the sintering-infrared absorption method, no carbon contamination was observed. The porosity is (porosity) = {1− (sintered density) /
(Theoretical density)} · 100 The sintered density was determined in accordance with JIS Z 2505.

【0017】表1は、焼結体M1〜M4を負極とし、公
知の水酸化ニッケルを用い、負極規制の開放型アルカリ
蓄電池を作製し、20℃の一定条件下で0.3Cで5時
間充電を行い、休止時間1時間経過後、0.2Cで0.
8Vまでの放電を繰り返し、充放電サイクル試験を行っ
た結果であり、1サイクル目の容量を初期容量、最高容
量及び100サイクル目において最高容量に対し何%容
量が低下したかを示す低下比を表に表した。
Table 1 shows that an open-type alkaline storage battery with a negative electrode regulation was prepared by using a known nickel hydroxide with the sintered bodies M1 to M4 as negative electrodes, and charged at 0.3 C for 5 hours under a constant condition of 20 ° C. , And after a lapse of one hour, the pressure is reduced to 0.2 at 0.2C.
It is a result of conducting a charge / discharge cycle test by repeating discharge up to 8 V. The first cycle capacity is the initial capacity, the maximum capacity, and the reduction ratio indicating the percentage of the capacity decreased with respect to the maximum capacity at the 100th cycle. It is shown in the table.

【表1】 [Table 1]

【0018】表1より、本発明に基づき、粒度分布にお
ける標準偏差を平均粒径で割った値が60%以下に作製
されたM3〜M4(実施例1、2)は、本発明の範囲外
であるM1〜M2(比較例1、2)に比べ、初期容量に
優れている。これは、M1、M2に粗大な粒子を多く含
み、その粗大な粒子の活性化の遅れや微細な粒子による
細孔の閉塞が原因と考えられる。M3、M4は、最大容
量においてもすぐれている。M1、M2には粗大な粒子
のほかに微細な粒子も多く含まれているので、単位重量
当りの表面積が大きいため、焼結時酸化により劣化した
ものであると考えられる。また、同様にサイクル寿命に
おいても粒度分布のバラツキ幅が狭く、平均的に焼結す
ることができることで、強度が向上したことによる。本
発明の原理は、密閉式電池を作製したとしても、同様に
効果が期待できる。
From Table 1, according to the present invention, M3 to M4 (Examples 1 and 2) in which the value obtained by dividing the standard deviation in the particle size distribution by the average particle size was 60% or less were out of the scope of the present invention. M1 to M2 (Comparative Examples 1 and 2). This is considered to be due to the fact that M1 and M2 contain many coarse particles, and the activation of the coarse particles is delayed and the pores are blocked by fine particles. M3 and M4 are also excellent in the maximum capacity. Since M1 and M2 contain many fine particles in addition to coarse particles, they have a large surface area per unit weight, and are considered to have been deteriorated by oxidation during sintering. Similarly, the variation in particle size distribution in the cycle life is narrow, and sintering can be performed on average, thereby improving strength. The principle of the present invention can be expected to have the same effect even when a sealed battery is manufactured.

【0019】[0019]

【発明の効果】このような粉砕と同時に分級された水素
吸蔵合金粉末を用いることにより、焼結したのちでも、
合金中の酸素量を合金重量に対し0.3重量%以下に低
減させることができ、さらに有機溶剤中での粉砕を用い
ないので炭素汚染(炭素濃度0.01重量%以下)を防
止できる。また、分級により微細な粒子や粗大な粒子を
削除した粒度分布を有する合金粉末を直接焼結させるこ
とにより、集電支持体を必須とせずに電極に用いること
ができる。従って、従来のペースト式電極による蓄電池
と比較し、どれも単位体積当りの水素吸蔵合金の充填密
度を大幅に改善することができるため、装置の小型かも
しくは高容量化と合わせて電極の製造方法が容易に安価
なアルカリ蓄電池を提供することができる。また、本発
明における燒結体は、アルカリ蓄電池用負極だけでな
く、水素吸蔵システム等にも応用できるものである。さ
らに、分級の効果として、粒度分布のバラツキ幅が狭い
水素吸蔵合金粉末が得られるので、平均的に焼結するこ
とができる。従って、燒結体の強度が向上し、電池とし
た場合のサイクル寿命の向上も期待できる。
By using the hydrogen storage alloy powder classified at the same time as the pulverization, even after sintering,
The amount of oxygen in the alloy can be reduced to 0.3% by weight or less based on the weight of the alloy, and further, since no pulverization in an organic solvent is used, carbon contamination (carbon concentration of 0.01% by weight or less) can be prevented. Further, by directly sintering an alloy powder having a particle size distribution from which fine particles and coarse particles have been removed by classification, a current collecting support can be used without being essential. Therefore, as compared with the conventional storage battery using the paste-type electrode, the packing density of the hydrogen storage alloy per unit volume can be greatly improved. Can easily provide an inexpensive alkaline storage battery. Further, the sintered body according to the present invention can be applied not only to a negative electrode for an alkaline storage battery, but also to a hydrogen storage system and the like. Furthermore, as an effect of classification, a hydrogen storage alloy powder having a narrow variation in particle size distribution can be obtained, so that sintering can be performed on average. Therefore, the strength of the sintered body is improved, and the cycle life of a battery can be expected to be improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金塊を不活性ガス雰囲気下で
粉砕すると同時に分級させ、水素吸蔵合金粉末を得、成
形、焼結させた水素吸蔵燒結材料。
1. A hydrogen storage and sintering material obtained by pulverizing a hydrogen storage alloy lump in an inert gas atmosphere and classifying it at the same time to obtain a hydrogen storage alloy powder, molding and sintering.
【請求項2】 上記分級が、式(1) 【数1】 [式中、Xは、合金粉末の粒度分布の標準偏差値(μ
m)を表し、Yは、合金粉末の平均粒子径(μm)を表
す。]の範囲の分級である請求項1に記載の水素吸蔵燒
結材料。
2. The classification according to the formula (1) [In the formula, X is a standard deviation value (μ
m), and Y represents the average particle diameter (μm) of the alloy powder. 2. The hydrogen storage and sintering material according to claim 1, wherein the classification is within the range of [1].
【請求項3】 上記粉砕が、平均粒径2〜20μmに粉
砕するものである請求項1または請求項2に記載の水素
吸蔵燒結材料。
3. The sintered material according to claim 1, wherein the pulverization is performed to pulverize the particles to an average particle size of 2 to 20 μm.
【請求項4】 請求項1〜3のいずれかに記載の水素吸
蔵燒結材料を用いたアルカリ蓄電池用負極。
4. A negative electrode for an alkaline storage battery using the hydrogen storage and sintering material according to claim 1.
JP10154359A 1998-06-03 1998-06-03 Hydrogen storage sintering material and negative electrode for alkaline storage battery Pending JPH11350001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10154359A JPH11350001A (en) 1998-06-03 1998-06-03 Hydrogen storage sintering material and negative electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10154359A JPH11350001A (en) 1998-06-03 1998-06-03 Hydrogen storage sintering material and negative electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH11350001A true JPH11350001A (en) 1999-12-21

Family

ID=15582442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10154359A Pending JPH11350001A (en) 1998-06-03 1998-06-03 Hydrogen storage sintering material and negative electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH11350001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066675A (en) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd Manufacturing method of hydrogen storage alloy for alkaline storage battery, and hydrogen storage alloy for alkaline storage battery, and alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066675A (en) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd Manufacturing method of hydrogen storage alloy for alkaline storage battery, and hydrogen storage alloy for alkaline storage battery, and alkaline storage battery

Similar Documents

Publication Publication Date Title
EP0783040A1 (en) Rare earth metal-nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen secondary battery
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
JPWO2007018292A1 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP6276031B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JPH06231763A (en) Hydrogen storage alloy for alkaline storage battery
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
WO2007023901A1 (en) Hydrogen storing alloy, process for producing the same and secondary battery
JP3603013B2 (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JP3054477B2 (en) Hydrogen storage alloy electrode
WO2020195542A1 (en) Hydrogen-intercalated alloy for alkaline battery, alkaline battery using same as negative electrode, and vehicle
JPH11350001A (en) Hydrogen storage sintering material and negative electrode for alkaline storage battery
JPH11297319A (en) Hydrogen storage electrode material, and alkaline storage battery
JP3301792B2 (en) Hydrogen storage alloy electrode
JP2955351B2 (en) Hydrogen storage alloy for secondary batteries
EP0761833A1 (en) Hydrogen occluding alloy and electrode made of the alloy
JP3816138B6 (en) Metal oxide-metal hydride alkaline battery and method for producing hydrogen storage alloy negative electrode for the battery
JP3816138B2 (en) Metal oxide-metal hydride alkaline battery and method for producing hydrogen storage alloy negative electrode for the battery
JP2000129379A (en) Hydrogen storage alloy
JP3024402B2 (en) Manufacturing method of hydrogen storage alloy
JP2000345265A (en) Hydrogen storage alloy enabling high rate discharge of battery
CN114946051A (en) Hydrogen-absorbing alloy for alkaline storage battery
JPH11350056A (en) Hydrogen storage sintered body and cathode for alkaline battery
JP2001216960A (en) Hydrogen absorbing alloys and secondary cell of nickel hydrogen
JP2000268819A (en) Hydrogen storage alloy electrode
JP2000345263A (en) Hydrogen storage alloy enabling high rate discharge of battery