JPH11295212A - Surface inspection apparatus - Google Patents

Surface inspection apparatus

Info

Publication number
JPH11295212A
JPH11295212A JP10451298A JP10451298A JPH11295212A JP H11295212 A JPH11295212 A JP H11295212A JP 10451298 A JP10451298 A JP 10451298A JP 10451298 A JP10451298 A JP 10451298A JP H11295212 A JPH11295212 A JP H11295212A
Authority
JP
Japan
Prior art keywords
light
optical system
inspection object
reflected
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10451298A
Other languages
Japanese (ja)
Inventor
Yasuhiro Wasa
泰宏 和佐
Katsuya Takaoka
克也 高岡
Eiji Takahashi
英二 高橋
Sadaharu Baba
貞春 馬場
Toshihiko Mine
俊比古 峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10451298A priority Critical patent/JPH11295212A/en
Publication of JPH11295212A publication Critical patent/JPH11295212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface inspection apparatus by which the uneven state on the surface of an object to be inspected can be inspected precisely and stably even when the object to be inspected is installed in a tilted state with reference to the inspection apparatus. SOLUTION: An inspection apparatus is constituted in such a way that, for example, white light which is emitted from a point source 1 is changed into parallel light by a lens 2, that it is then reflected by a semitransparent mirror 3 so as to irradiate the surface P of an object to be inspected and that its reflected light is received by a light receiving face 7 via the semitransparent mirror 3, a lens 4, a pinhole 5 and a lens 6 so as to be observed. In the inspection apparatus, the angle of inclination from a prescribed position on the surface P of the object to be inspected is measured by a gap sensor 8a, a gap sensor 8b or the like, and the position of, e.g., the point source 1 is moved on the basis of its measured value. Thereby, the angle of incidence on the surface P of the object, to be inspected, of the parallel light is adjusted in such a way that the light receiving optical system of the pinhole 5, the light receiving face 7 or the like is situated on the optical axis of the parallel reflected light reflected by the surface P of the object to be inspected. Thereby, even when the object to be inspected is installed in a tilted state with reference to the inspection apparatus, the uneven state on the surface P of the object to be inspected can be inspected precisely and stably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,検査対象物の表面
に平行光を投光する投光光学系と,上記投光光学系から
投光され上記検査対象物の表面で反射された反射光の光
軸方向に配置され,上記反射光を受光する受光光学系と
を具備し,上記受光光学系で受光した反射光の輝度分布
に基づいて上記検査対象物の表面の凹凸状態を検査する
表面検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light projecting optical system for projecting parallel light onto a surface of an object to be inspected, and a reflected light projected from the light projecting optical system and reflected by the surface of the object to be inspected. A light receiving optical system arranged to receive the reflected light, the light receiving optical system being arranged in the direction of the optical axis, and inspecting the unevenness of the surface of the inspection object based on the luminance distribution of the reflected light received by the light receiving optical system. It relates to an inspection device.

【0002】[0002]

【従来の技術】平面物体の表面における微小な角度の変
位,即ち凹凸状態を測定する方法として,従来よりシュ
リーレン法を応用したものが提案されている。上記シュ
リーレン法とは,一般的には,気体,液体等の屈折率の
勾配の変化を知るための定性的な測定法として知られる
もので,透明な気体,液体等の検査対象物に平行光を投
光し,上記検査対象物を透過した光をレンズや凹面鏡で
一点に集め,その集光面にナイフエッジ等をおいてその
一部を遮って上記透過光を受光し,得られた画像の明暗
分布により検査対象物の屈折率の勾配の変化を検出する
ものである。上記検査対象物の一部に屈折率の変化があ
ると,そこを通る光は曲げられてナイフエッジで遮られ
るため,画像上の暗部として現れる。以上のようなシュ
リーレン法を応用した表面検査装置が,例えば,特開平
9−105724号公報に提案されている。この表面検
査装置A0は,図5に示すように,上記シュリーレン法
を応用した反射型の光学系を構成している。図5に示す
表面検査装置A0において,光源52から発せられた白
色光は,ピンホール53を経て点光源となり,レンズ5
4により平行光となる。そして,ハーフミラー55によ
り反射され,検査対象物表面51に対して垂直に照射さ
れる。検査対象物表面51で反射された光はハーフミラ
ー55を透過した成分がレンズ56を経て,レンズ57
を通り,受光面58で観察される。その際,検査対象物
表面51の平滑面(健全部)に平行入射した光はここで
正反射し(図6(a)),受光面58で明部となって現
れる。一方,検査対象物表面51の凹凸部分に平行入射
した光は,ここで正反射方向からずれた方向に反射され
るため(図6(b)),レンズ56,57から外れて受
光面58に到達できず,明部(健全部)の中の暗部(欠
陥)として観察される。尚,表面に凹凸があってもその
偏向角が小さい場合には,図7に斜線で示すように反射
光が受光面58上に集光されてしまい,検出が難しくな
るため,図7に2点鎖線で示すように集光点Aにピンホ
ール59を設けることにより,凹凸部からの反射光を完
全に遮断することができる。
2. Description of the Related Art As a method for measuring a minute angular displacement on a surface of a planar object, that is, a state of unevenness, a method applying the Schlieren method has been conventionally proposed. The above-mentioned Schlieren method is generally known as a qualitative measurement method for knowing a change in the refractive index gradient of a gas, a liquid, or the like. The light transmitted through the object to be inspected is collected at one point by a lens or a concave mirror, and a part of the light-collecting surface is cut off with a knife edge or the like, and the transmitted light is received. Is used to detect a change in the gradient of the refractive index of the object to be inspected based on the light / dark distribution. If there is a change in the refractive index of a part of the inspection object, the light passing therethrough is bent and blocked by the knife edge, so that it appears as a dark part on the image. A surface inspection apparatus to which the above-described Schlieren method is applied has been proposed in, for example, Japanese Patent Application Laid-Open No. 9-105724. As shown in FIG. 5, the surface inspection apparatus A0 constitutes a reflection type optical system to which the above-mentioned Schlieren method is applied. In the surface inspection apparatus A0 shown in FIG. 5, white light emitted from the light source 52 becomes a point light source through the
4 makes parallel light. Then, the light is reflected by the half mirror 55 and is irradiated perpendicularly to the inspection object surface 51. The light reflected by the inspection object surface 51 is transmitted through the half mirror 55 through a lens 56 and passes through a lens 57.
And is observed on the light receiving surface 58. At this time, the light incident parallel to the smooth surface (healthy portion) of the inspection object surface 51 is specularly reflected here (FIG. 6A) and appears as a bright portion on the light receiving surface 58. On the other hand, light incident parallel to the uneven portion of the inspection object surface 51 is reflected here in a direction deviated from the regular reflection direction (FIG. 6B). It cannot be reached and is observed as a dark part (defect) in a bright part (healthy part). If the deflection angle is small even if the surface has irregularities, the reflected light is condensed on the light receiving surface 58 as shown by oblique lines in FIG. By providing the pinhole 59 at the light condensing point A as shown by the dashed line, it is possible to completely block the reflected light from the uneven portion.

【0003】[0003]

【発明が解決しようとする課題】ところで,上記従来の
表面検査装置A0では,上記検査対象物表面51が入射
光の光軸に垂直であることが,正確な検査を行う上での
前提条件となる。しかしながら,上記のような表面検査
装置A0を実操業ラインに組み込んで用いる場合,常に
上記前提条件を満足させることは困難である。例えば,
コンベア上を流れてくる個々の検査対象物の表面検査を
連続的に行う場合,コンベアの傾き変動や振動に起因し
て上記検査対象物が容易に傾斜してしまう。もちろん,
コンベア上で上記検査対象物の傾斜を迅速且つ正確に調
整できれば問題はないが,コスト面などを考えると現実
的ではない。本発明は上記事情に鑑みてなされたもので
あり,その目的とするところは,検査対象物が検査装置
に対して傾いた状態で設置されたとしても,検査対象物
表面の凹凸状態を正確且つ安定して検査できる表面検査
装置を提供することである。
In the conventional surface inspection apparatus A0, it is necessary that the surface 51 of the inspection object be perpendicular to the optical axis of the incident light in order to perform an accurate inspection. Become. However, when the above-described surface inspection apparatus A0 is incorporated in an actual operation line and used, it is difficult to always satisfy the above prerequisites. For example,
When the surface inspection of each inspection object flowing on the conveyor is continuously performed, the inspection object is easily inclined due to variation in the inclination or vibration of the conveyor. of course,
There is no problem if the inclination of the inspection object can be quickly and accurately adjusted on the conveyor, but it is not realistic in view of cost and the like. The present invention has been made in view of the above circumstances, and an object of the present invention is to accurately and irregularly state the surface of an inspection object even if the inspection object is installed in a state inclined with respect to the inspection apparatus. An object of the present invention is to provide a surface inspection device capable of performing stable inspection.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,検査対象物の表面に平行光を投光する投光
光学系と,上記投光光学系から投光され上記検査対象物
の表面で反射された反射光の光軸方向に配置され,上記
反射光を受光する受光光学系とを具備し,上記受光光学
系で受光した反射光の輝度分布に基づいて上記検査対象
物の表面の凹凸状態を検査する表面検査装置において,
上記検査対象物表面の所定方向からの傾斜角を検出する
傾斜角検出手段と,上記傾斜角検出手段で検出された上
記検査対象物表面の傾斜角に基づいて,上記検査対象物
表面で反射された平行反射光の光軸上に上記受光光学系
が位置するように,上記投光光学系から上記検査対象物
表面への光の入射角及び/若しくは上記受光光学系の位
置を調整する調整手段とを具備してなることを特徴とす
る表面検査装置として構成されている。また,上記投光
光学系から上記検査対象物表面への光の入射角を調整す
る場合には,上記調整手段は,例えば上記投光光学系を
構成する光源の位置を移動させるように構成できる。或
いは,上記投光光学系を構成する光源を複数設置し,上
記調整手段が上記複数の光源から1つを選択するように
すれば,光源の移動に機械的な動作が伴わないため,よ
り高速な処理が可能となる。更には,上記調整手段を,
上記投光光学系を構成するミラーの角度を調整するよう
に構成することも可能である。また,上記傾斜角検出手
段としては,上記検査対象物表面との距離を複数位置で
検出し,該検出結果に基づいて上記傾斜角を検出するよ
うにすれば,非接触にて計測が可能であるが,もちろん
重力を利用したいわゆる傾斜計などを用いることもでき
る。
In order to achieve the above object, the present invention provides a light projecting optical system for projecting parallel light onto a surface of an object to be inspected, and a light projecting optical system projected from the light projecting optical system. A light receiving optical system arranged in the direction of the optical axis of the reflected light reflected by the surface of the object, and receiving the reflected light; and the inspection object based on the luminance distribution of the reflected light received by the light receiving optical system. In a surface inspection device that inspects the unevenness of the surface of
An inclination angle detecting means for detecting an inclination angle of the surface of the inspection object from a predetermined direction, and a light reflected by the surface of the inspection object based on the inclination angle of the surface of the inspection object detected by the inclination angle detecting means. Adjusting means for adjusting an incident angle of light from the light projecting optical system to the surface of the inspection object and / or a position of the light receiving optical system so that the light receiving optical system is positioned on the optical axis of the parallel reflected light. The surface inspection apparatus is characterized by comprising: Further, when adjusting the incident angle of light from the light projecting optical system to the surface of the inspection object, the adjusting means can be configured to move the position of a light source constituting the light projecting optical system, for example. . Alternatively, if a plurality of light sources constituting the light projecting optical system are provided and the adjusting means selects one from the plurality of light sources, the movement of the light sources does not involve a mechanical operation, so that a higher speed can be achieved. Processing can be performed. Further, the adjusting means is
It is also possible to configure so as to adjust the angle of the mirror constituting the light projecting optical system. Further, if the inclination angle detecting means detects the distance to the surface of the inspection object at a plurality of positions and detects the inclination angle based on the detection result, non-contact measurement is possible. Of course, a so-called inclinometer utilizing gravity can be used.

【0005】[0005]

【作用】本発明に係る表面検査装置によれば,上記傾斜
角検出手段によって検出された上記検査対象物表面の所
定方向からの傾斜角に基づいて,上記検査対象物表面で
反射された平行反射光の光軸上に上記受光光学系が位置
するように,上記調整手段により,上記投光光学系から
上記検査対象物表面への光の入射角,及び/若しくは上
記受光光学系の位置が調整される。従って,検査対象物
が検査装置に対して傾いた状態で設置されたとしても,
検査対象物表面の凹凸状態を正確且つ安定して検査でき
る。また上記投光光学系から上記検査対象物表面への光
の入射角を調整する場合には,上記調整手段は,例えば
上記投光光学系を構成する光源の位置を移動させるよう
に構成できるが,上記投光光学系を構成する光源を複数
設置し,上記調整手段が上記複数の光源から1つを選択
するようにすれば,光源の移動に機械的な動作が伴わな
いため,より高速な処理が可能となる。また,上記傾斜
角検出手段により,上記検査対象物表面との距離を複数
位置で検出し,該検出結果に基づいて上記傾斜角を検出
するようにすれば,非接触にて計測が可能である。
According to the surface inspection apparatus of the present invention, the parallel reflection reflected on the surface of the inspection object based on the inclination angle of the surface of the inspection object from the predetermined direction detected by the inclination angle detecting means. The adjusting means adjusts the incident angle of light from the light projecting optical system to the surface of the inspection object and / or the position of the light receiving optical system so that the light receiving optical system is positioned on the optical axis of light. Is done. Therefore, even if the inspection object is installed in a state inclined with respect to the inspection device,
It is possible to accurately and stably inspect the unevenness state of the surface of the inspection object. When adjusting the incident angle of light from the light projecting optical system to the surface of the inspection object, the adjusting means may be configured to move the position of a light source constituting the light projecting optical system, for example. If a plurality of light sources constituting the light projecting optical system are installed and the adjusting means selects one from the plurality of light sources, the movement of the light sources does not involve a mechanical operation, so that a higher speed can be achieved. Processing becomes possible. If the inclination angle detecting means detects the distance to the surface of the inspection object at a plurality of positions, and the inclination angle is detected based on the detection result, non-contact measurement is possible. .

【0006】[0006]

【発明の実施の形態】以下,添付図面を参照して本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は,本発明を
具体化した一例であって,本発明の技術的範囲を限定す
る性格のものではない。ここに,図1は本発明の実施の
形態に係る表面検査装置A1の概略構成を示す模式図,
図2は移動ステージ10の一例を示す図,図3は点光源
アレイ10′の一例を示す図,図4は本発明の実施例に
係る表面検査装置A2の概略構成を示す模式図である。
本実施の形態に係る表面検査装置A1は,図1に示すよ
うに,移動ステージ10上に設置され上下方向に移動可
能な点光源1と,上記点光源1からの光を平行光にする
レンズ2と,上記レンズ2からの平行光を検査対象物表
面P方向に反射させるハーフミラー3と,上記検査対象
物表面Pからの反射光を1カ所(集光点a)で集光さ
せ,受光面7に到達させるレンズ4,6と,上記集光点
aの位置に設置され,所定の反射光のみを通過させるピ
ンホール5と,上記検査対象物表面Pからの反射光を受
光する受光面7と,上記検査対象物表面Pの端部近傍に
上記検査対象物表面Pに対向して設けられ,上記検査対
象物表面Pとのギャップを測定するギャップセンサ8
a,8bと,上記ギャップセンサ8a,8bのセンサ出
力G1,G2に基づいて上記移動ステージ10の制御を
行う制御部9とを具備して構成されている。ここで,上
記点光源1,レンズ2,ハーフミラー3により投光光学
系が,上記レンズ4,ピンホール5,レンズ6,受光面
7により受光光学系が構成されている。尚,上記点光源
1は,例えばハロゲン光源を光ファイバーで導光し,フ
ァイバー出口にピンホールを配置して実質的に点光源と
したり,或いはLEDやレーザを用いることもできる。
上記点光源1から発せられた白色光は,レンズ2により
平行光にされた後,ハーフミラー3により反射され,検
査対象物表面Pに照射される。上記検査対象物表面Pで
反射された光は上記ハーフミラー3を透過した成分がレ
ンズ4により集光点aに集光され,ピンホール5で所定
の反射光のみに絞られた後,レンズ6を経て受光面7で
受光され,観察される。ここで,上記検査対象物表面P
が上記点光源1からの入射光に対して垂直に設置されて
いる場合には,検査対象物表面Pの平滑面(健全部)に
平行入射した光はここで正反射し(図6(a)),受光
面7で明部となって現れ,検査対象物表面Pの凹凸部分
に平行入射した光は,ここで正反射方向からずれた方向
に反射されるため(図6(b)),上記ピンホール5か
ら外れて受光面7に到達できず,明部(健全部)の中の
暗部(欠陥)として観察される。しかしながら,上記検
査対象物表面Pが上記点光源1からの入射光に対して垂
直でない(傾斜している)場合には,検査対象物表面P
の平滑面(健全部)で反射された光が上記ピンホール5
を通過できないため,正確な検査が不可能となる。そこ
で,本実施の形態に係る表面検査装置A1では,上記ギ
ャップセンサ8a,8b,上記制御部9,及び上記移動
ステージ10に設置された点光源1を用いて,上記のよ
うな不具合を解消している。以下,詳述する。
Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. FIG. 1 is a schematic diagram showing a schematic configuration of a surface inspection apparatus A1 according to an embodiment of the present invention,
2 is a diagram showing an example of the moving stage 10, FIG. 3 is a diagram showing an example of a point light source array 10 ', and FIG. 4 is a schematic diagram showing a schematic configuration of a surface inspection apparatus A2 according to an embodiment of the present invention.
As shown in FIG. 1, a surface inspection apparatus A1 according to the present embodiment includes a point light source 1 installed on a moving stage 10 and movable in a vertical direction, and a lens for converting light from the point light source 1 into parallel light. 2, a half mirror 3 for reflecting parallel light from the lens 2 in the direction of the surface P of the inspection object, and condensing the light reflected from the surface P of the inspection object at one point (condensing point a) and receiving the light. Lenses 4 and 6 that reach the surface 7, a pinhole 5 that is provided at the position of the condensing point a and allows only predetermined reflected light to pass, and a light receiving surface that receives reflected light from the surface P of the inspection object A gap sensor 8 provided near the end of the surface P of the inspection object so as to face the surface P of the inspection object and measuring a gap between the surface P of the inspection object;
a, 8b and a control unit 9 for controlling the moving stage 10 based on the sensor outputs G1, G2 of the gap sensors 8a, 8b. Here, the point light source 1, lens 2, and half mirror 3 constitute a light projecting optical system, and the lens 4, pinhole 5, lens 6, and light receiving surface 7 constitute a light receiving optical system. For the point light source 1, for example, a halogen light source is guided by an optical fiber, and a pinhole is arranged at the fiber outlet, and a substantially point light source can be used. Alternatively, an LED or a laser can be used.
The white light emitted from the point light source 1 is converted into parallel light by the lens 2, reflected by the half mirror 3, and irradiated on the surface P of the inspection object. The light reflected on the inspection object surface P is transmitted through the half mirror 3, and the light is condensed at a focal point “a” by a lens 4. Are received by the light receiving surface 7 and observed. Here, the inspection object surface P
Is perpendicular to the incident light from the point light source 1, light incident parallel to the smooth surface (healthy part) of the surface P of the inspection object is specularly reflected here (FIG. 6 (a)). )), Light that appears as a bright portion on the light receiving surface 7 and is incident parallel to the uneven portion of the surface P of the inspection object is reflected in a direction deviated from the regular reflection direction here (FIG. 6B). , Cannot reach the light-receiving surface 7 out of the pinhole 5, and is observed as a dark part (defect) in a bright part (healthy part). However, when the inspection object surface P is not perpendicular (inclined) to the incident light from the point light source 1, the inspection object surface P
The light reflected on the smooth surface (healthy portion) of the pinhole 5
, It is impossible to perform an accurate inspection. Therefore, the surface inspection apparatus A1 according to the present embodiment solves the above-described problem by using the gap sensors 8a and 8b, the control unit 9, and the point light source 1 installed on the moving stage 10. ing. The details are described below.

【0007】上記ギャップセンサ8a,8b(傾斜角検
出手段の一例)は,それぞれ上記検査対象物表面Pの端
部近傍に上記検査対象物表面Pに対向して設けられてい
る。上記ギャップセンサ8a,と8bとの距離はL1で
あり,更に,上記ギャップセンサ8a,8bは,上記検
査対象物表面Pが上記点光源1からの入射光に対して垂
直に設置されている状態でそれぞれのセンサ出力(上記
検査対象物表面Pとの距離の測定値)G1,G2が等し
くなるように設置されている。検査対象物が例えばコン
ベアなどにより所定位置に設置されると,まず上記ギャ
ップセンサ8a,8bにより上記検査対象物表面Pとの
距離G1,G2が測定される。上記ギャップセンサ8
a,8b間の距離はL1であるから,上記検査対象物表
面Pの傾斜角θは次式により求められる。 θ=tan-1((G2−G1)/L1) …(1) 傾斜角θ≠0の状態で設置された検査対象物表面Pにお
いて,傾斜角θ=0の状態と同様の正確な検査結果を得
るためには,上記検査対象物表面Pで反射された平行反
射光の光軸が上記ピンホール5を通過して上記受光面7
に到達できるように,例えば上記点光源1の位置を移動
させることにより上記検査対象物表面Pへの平行光の入
射角をずらせばよい。ここで,上記点光源1の移動量X
1は次式により求められる。 X1=tan2θ×L2 …(2) ここで,L2:点光源1とレンズ2との距離(レンズ2
の焦点距離) 上記制御部9は,上記ギャップセンサ8a,8bからの
出力G1,G2と上記(1),(2)式により上記X1
を算出し,上記移動ステージ10により上記点光源1を
上記X1だけ移動させる。これにより,上記検査対象物
表面Pが傾斜していない場合と同様,図1に示すように
上記検査対象物表面Pで反射された平行反射光の光軸は
上記ピンホール5を通過して上記受光面7に到達する。
従って,この状態で通常通りの検査を行えば,上記検査
対象物表面Pの傾斜角の有無や大小に関わらず常に正確
な検査結果が得られる。ここで,上記制御部9及び上記
移動ステージ10が調整手段の一例である。以上説明し
たように,本実施の形態に係る表面検査装置A1では,
ギャップセンサ8a,8bにより上記検査対象物表面P
の傾斜角を検出し,該傾斜角と上記(1),(2)式よ
り得られた移動量X1だけ上記点光源1を移動させるこ
とにより,上記検査対象物表面Pで反射された平行反射
光の光軸上に上記ピンホール5,受光部7等の受光光学
系が位置するように調整されるため,上記検査対象物表
面Pの傾斜角の有無や大小に関わらず,常に正確な検査
結果が得られる。
The gap sensors 8a and 8b (an example of an inclination angle detecting means) are provided near the end of the surface P of the inspection object and opposed to the surface P of the inspection object. The distance between the gap sensors 8a and 8b is L1, and the gap sensors 8a and 8b are in a state where the surface P of the inspection object is installed perpendicular to the incident light from the point light source 1. The sensor outputs (measured values of the distance from the inspection object surface P) G1 and G2 are set to be equal. When the inspection object is set at a predetermined position by, for example, a conveyor, distances G1 and G2 with respect to the inspection object surface P are measured by the gap sensors 8a and 8b. The gap sensor 8
Since the distance between a and 8b is L1, the inclination angle θ of the inspection object surface P is obtained by the following equation. θ = tan −1 ((G2−G1) / L1) (1) On the surface P of the inspection object installed with the inclination angle θ ≠ 0, the same accurate inspection result as in the state with the inclination angle θ = 0 In order to obtain the light receiving surface 7, the optical axis of the parallel reflected light reflected on the inspection object surface P passes through the pinhole 5 and
The incident angle of the parallel light on the inspection object surface P may be shifted by, for example, moving the position of the point light source 1 so as to reach. Here, the moving amount X of the point light source 1
1 is obtained by the following equation. X1 = tan2θ × L2 (2) where L2 is the distance between the point light source 1 and the lens 2 (the lens 2
The control unit 9 calculates the X1 from the outputs G1 and G2 from the gap sensors 8a and 8b and the X1 from the equations (1) and (2).
Is calculated, and the point light source 1 is moved by the moving stage 10 by the distance X1. As a result, similarly to the case where the surface P of the inspection object is not inclined, the optical axis of the parallel reflected light reflected by the surface P of the inspection object passes through the pinhole 5 as shown in FIG. The light reaches the light receiving surface 7.
Therefore, if inspection is performed as usual in this state, an accurate inspection result can be always obtained regardless of the presence or absence of the inclination angle of the surface P of the inspection object. Here, the control unit 9 and the moving stage 10 are examples of an adjusting unit. As described above, in the surface inspection apparatus A1 according to the present embodiment,
The surface P of the inspection object is determined by the gap sensors 8a and 8b.
Is detected, and the point light source 1 is moved by the amount of movement and the movement amount X1 obtained from the above equations (1) and (2), so that the parallel reflection reflected on the inspection object surface P is obtained. Since the light receiving optical system such as the pinhole 5 and the light receiving section 7 is adjusted on the optical axis of the light, an accurate inspection is always performed regardless of the presence or absence of the inclination angle of the surface P of the inspection object. The result is obtained.

【0008】[0008]

【実施例】上記実施の形態では,簡単のため,上記検査
対象物表面Pの傾きを水平1軸回りの回転のみに限定し
て説明したが,実際には2軸回りに傾斜し得る場合が一
般的であり,その場合には上記ギャップセンサは最低3
個必要となる。また,それに応じて上記点光源1の移動
ステージも図2に示すような2軸方向に移動可能なもの
が必要となる。また,上記のように点光源1の位置を移
動させるのではなく,図3に示すように点光源1をX−
Y面内(光軸と略垂直な面内)に格子状に配列した点光
源アレイ10′を設置し,上記制御部9により1つの光
源のみを選択的に点灯させるようにしてもよい。この場
合,点光源の移動に機械的な動作が伴わないため,極め
て応答性がよく,処理の高速化が可能となる。また,点
光源の移動以外に,例えばハーフミラー3の角度を調整
することにより上記検査対象物表面Pへの平行光の入射
角を変更するようにしてもよい。また,上記検査対象物
表面Pへの平行光の入射角を変更するのではなく,受光
光学系,即ちレンズ4,6,ピンホール5,受光面7を
移動させることにより上記検査対象物表面Pで反射され
た平行反射光の光軸上に上記受光光学系が位置するよう
に調整可能としても,上記実施の形態と同様の効果が期
待できる。もちろん,入射角の変更と併用可能であるこ
とはいうまでもない。また,傾斜角検出手段は上述した
非接触方式のギャップセンサ以外にも,例えば重力を利
用したいわゆる傾斜計など,周知の様々なセンサを用い
ることが可能である。また,上記表面検査装置A1のよ
うにハーフミラーを使用せず,図4に示す表面検査装置
A2のように斜め方向から平行光を入射させるようにし
てもよい。この場合,斜め入射のため,例えば検査対象
面が圧延面のような一方向に周期的な粗面構造を持つ場
合,反射光が回折してある方向のみが強調されることと
なって正常面であっても輝度分布が生じるため,周期的
な粗面には対応できないという欠点はあるものの,部品
点数を少なくできるというメリットがある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the above embodiment, for simplicity, the inclination of the inspection object surface P is limited to only rotation about one horizontal axis. In general, the gap sensor should be at least 3
Required. In addition, the moving stage of the point light source 1 needs to be movable in two axial directions as shown in FIG. Further, instead of moving the position of the point light source 1 as described above, the point light source 1 is
A point light source array 10 ′ arranged in a lattice in the Y plane (in a plane substantially perpendicular to the optical axis) may be provided, and only one light source may be selectively turned on by the control unit 9. In this case, since the movement of the point light source does not involve any mechanical operation, the response is extremely good and the processing can be speeded up. In addition to the movement of the point light source, the angle of incidence of the parallel light on the inspection object surface P may be changed by adjusting the angle of the half mirror 3, for example. Also, instead of changing the angle of incidence of the parallel light on the inspection object surface P, the light receiving optical system, that is, the lens 4, 6, the pinhole 5, and the light receiving surface 7 are moved so that the inspection object surface P Even if the light receiving optical system can be adjusted so as to be located on the optical axis of the parallel reflected light reflected by the above, the same effect as in the above embodiment can be expected. Of course, it is needless to say that it can be used together with the change of the incident angle. In addition to the non-contact type gap sensor described above, various known sensors such as a so-called inclinometer using gravity can be used as the inclination angle detecting means. Further, instead of using a half mirror as in the above-described surface inspection apparatus A1, parallel light may be incident from an oblique direction as in a surface inspection apparatus A2 shown in FIG. In this case, since the surface to be inspected has a periodic rough surface structure in one direction such as a rolled surface due to oblique incidence, only the direction in which the reflected light is diffracted is emphasized and the normal surface is emphasized. However, there is a drawback that a periodic distribution cannot be dealt with because a luminance distribution occurs, but there is a merit that the number of parts can be reduced.

【0009】[0009]

【発明の効果】以上説明したように,本発明は,検査対
象物の表面に平行光を投光する投光光学系と,上記投光
光学系から投光され上記検査対象物の表面で反射された
反射光の光軸方向に配置され,上記反射光を受光する受
光光学系とを具備し,上記受光光学系で受光した反射光
の輝度分布に基づいて上記検査対象物の表面の凹凸状態
を検査する表面検査装置において,上記検査対象物表面
の所定方向からの傾斜角を検出する傾斜角検出手段と,
上記傾斜角検出手段で検出された上記検査対象物表面の
傾斜角に基づいて,上記検査対象物表面で反射された平
行反射光の光軸上に上記受光光学系が位置するように,
上記投光光学系から上記検査対象物表面への光の入射角
及び/若しくは上記受光光学系の位置を調整する調整手
段とを具備してなることを特徴とする表面検査装置とし
て構成されているため,検査対象物が検査装置に対して
傾いた状態で設置されたとしても,検査対象物表面の凹
凸状態を正確且つ安定して検査できる。また,上記投光
光学系から上記検査対象物表面への光の入射角を調整す
る場合には,上記調整手段は,例えば上記投光光学系を
構成する光源の位置を移動させるように構成できるが,
上記投光光学系を構成する光源を複数設置し,上記調整
手段が上記複数の光源から1つを選択するようにすれ
ば,光源の移動に機械的な動作が伴わないため,より高
速な処理が可能となる。また,上記傾斜角検出手段とし
ては,上記検査対象物表面との距離を複数位置で検出
し,該検出結果に基づいて上記傾斜角を検出するように
すれば,非接触にて計測が可能である。
As described above, according to the present invention, there is provided a light projecting optical system for projecting parallel light to a surface of an inspection object, and a light projecting from the light projecting optical system and reflected by the surface of the inspection object. And a light receiving optical system arranged in the optical axis direction of the reflected light and receiving the reflected light, and the unevenness of the surface of the inspection object based on the luminance distribution of the reflected light received by the light receiving optical system A surface inspection device for inspecting a surface of the object to be inspected;
On the basis of the inclination angle of the surface of the inspection object detected by the inclination angle detecting means, the light receiving optical system is positioned on the optical axis of the parallel reflected light reflected on the surface of the inspection object.
The surface inspection apparatus is provided with adjusting means for adjusting an incident angle of light from the light projecting optical system to the surface of the inspection object and / or a position of the light receiving optical system. Therefore, even if the inspection object is installed in a state inclined with respect to the inspection device, the unevenness state of the inspection object surface can be inspected accurately and stably. Further, when adjusting the incident angle of light from the light projecting optical system to the surface of the inspection object, the adjusting means can be configured to move the position of a light source constituting the light projecting optical system, for example. But,
If a plurality of light sources constituting the light projecting optical system are provided and the adjusting means selects one from the plurality of light sources, the movement of the light sources does not involve a mechanical operation, so that higher-speed processing is possible. Becomes possible. Further, if the inclination angle detecting means detects the distance to the surface of the inspection object at a plurality of positions and detects the inclination angle based on the detection result, non-contact measurement is possible. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る表面検査装置A1
の概略構成を示す模式図。
FIG. 1 shows a surface inspection apparatus A1 according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a schematic configuration of FIG.

【図2】 移動ステージ10の一例を示す図。FIG. 2 is a view showing an example of a moving stage 10;

【図3】 点光源アレイ10′の一例を示す図。FIG. 3 is a diagram showing an example of a point light source array 10 '.

【図4】 本発明の実施例に係る表面検査装置A2の概
略構成を示す模式図。
FIG. 4 is a schematic diagram showing a schematic configuration of a surface inspection apparatus A2 according to an embodiment of the present invention.

【図5】 従来の表面検査装置A0の概略構成を示す模
式図。
FIG. 5 is a schematic diagram showing a schematic configuration of a conventional surface inspection apparatus A0.

【図6】 検査対象物表面からの光の反射特性を示す説
明図。
FIG. 6 is an explanatory diagram showing reflection characteristics of light from the surface of the inspection object.

【図7】 上記表面検査装置A0の動作原理を示す説明
図。
FIG. 7 is an explanatory diagram showing the operation principle of the surface inspection apparatus A0.

【符号の説明】[Explanation of symbols]

1…点光源 2,4,6…レンズ 3…ハーフミラー 5…ピンホール 7…受光面 8a,8b…ギャップセンサ(傾斜角検出手段の一例) 9…制御部 10…移動ステージ 10′…点光源アレイ P…検査対象物表面 DESCRIPTION OF SYMBOLS 1 ... Point light source 2, 4, 6 ... Lens 3 ... Half mirror 5 ... Pinhole 7 ... Light receiving surface 8a, 8b ... Gap sensor (an example of an inclination angle detection means) 9 ... Control part 10 ... Moving stage 10 '... Point light source Array P: Inspection object surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬場 貞春 栃木県真岡市鬼怒ケ丘15番地 株式会社神 戸製鋼所真岡製造所内 (72)発明者 峰 俊比古 栃木県真岡市鬼怒ケ丘15番地 株式会社神 戸製鋼所真岡製造所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Sadaharu Baba 15 Kinuigaoka, Moka City, Tochigi Prefecture Kobe Steel Moka Works Co., Ltd. Kobe Steel Moka Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 検査対象物の表面に平行光を投光する投
光光学系と,上記投光光学系から投光され上記検査対象
物の表面で反射された反射光の光軸方向に配置され,上
記反射光を受光する受光光学系とを具備し,上記受光光
学系で受光した反射光の輝度分布に基づいて上記検査対
象物の表面の凹凸状態を検査する表面検査装置におい
て,上記検査対象物表面の所定方向からの傾斜角を検出
する傾斜角検出手段と,上記傾斜角検出手段で検出され
た上記検査対象物表面の傾斜角に基づいて,上記検査対
象物表面で反射された平行反射光の光軸上に上記受光光
学系が位置するように,上記投光光学系から上記検査対
象物表面への光の入射角及び/若しくは上記受光光学系
の位置を調整する調整手段とを具備してなることを特徴
とする表面検査装置。
A light projecting optical system for projecting parallel light onto a surface of the inspection object; and a light projecting from the light projecting optical system and arranged in an optical axis direction of reflected light reflected by the surface of the inspection object. A light receiving optical system for receiving the reflected light, wherein the surface inspection device inspects the unevenness of the surface of the inspection object based on a luminance distribution of the reflected light received by the light receiving optical system. An inclination angle detecting means for detecting an inclination angle of the surface of the object from a predetermined direction, and a parallel light reflected on the surface of the inspection object based on the inclination angle of the surface of the inspection object detected by the inclination angle detecting means. Adjusting means for adjusting an incident angle of light from the light projecting optical system to the surface of the inspection object and / or a position of the light receiving optical system so that the light receiving optical system is positioned on the optical axis of the reflected light. A surface inspection device characterized by comprising:
【請求項2】 上記調整手段が,上記投光光学系を構成
する光源の位置を移動させる請求項1記載の表面検査装
置。
2. The surface inspection apparatus according to claim 1, wherein said adjusting means moves a position of a light source constituting said light projecting optical system.
【請求項3】 上記投光光学系を構成する光源が複数設
置され,上記調整手段が,上記複数の光源から1つを選
択する請求項1記載の表面検査装置。
3. A surface inspection apparatus according to claim 1, wherein a plurality of light sources constituting said light projecting optical system are provided, and said adjusting means selects one of said plurality of light sources.
【請求項4】 上記調整手段が,上記投光光学系を構成
するミラーの角度を調整する請求項1記載の表面検査装
置。
4. The surface inspection apparatus according to claim 1, wherein said adjusting means adjusts an angle of a mirror constituting said light projecting optical system.
【請求項5】 上記傾斜角検出手段が,上記検査対象物
表面との距離を複数位置で検出し,該検出結果に基づい
て上記傾斜角を検出する請求項1〜4のいずれかに記載
の表面検査装置。
5. The apparatus according to claim 1, wherein the inclination angle detecting means detects a distance from the surface of the inspection object at a plurality of positions, and detects the inclination angle based on the detection result. Surface inspection equipment.
JP10451298A 1998-04-15 1998-04-15 Surface inspection apparatus Pending JPH11295212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10451298A JPH11295212A (en) 1998-04-15 1998-04-15 Surface inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10451298A JPH11295212A (en) 1998-04-15 1998-04-15 Surface inspection apparatus

Publications (1)

Publication Number Publication Date
JPH11295212A true JPH11295212A (en) 1999-10-29

Family

ID=14382558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10451298A Pending JPH11295212A (en) 1998-04-15 1998-04-15 Surface inspection apparatus

Country Status (1)

Country Link
JP (1) JPH11295212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147850A (en) * 2005-11-25 2007-06-14 Dainippon Printing Co Ltd Hologram reader
KR20140028245A (en) * 2012-08-28 2014-03-10 엘지디스플레이 주식회사 Proximity type exposure apparatus and exposure method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147850A (en) * 2005-11-25 2007-06-14 Dainippon Printing Co Ltd Hologram reader
KR20140028245A (en) * 2012-08-28 2014-03-10 엘지디스플레이 주식회사 Proximity type exposure apparatus and exposure method using the same

Similar Documents

Publication Publication Date Title
US5125741A (en) Method and apparatus for inspecting surface conditions
KR100571863B1 (en) Apparatus for measuring film thickness formed on object, apparatus and method of measuring spectral reflectance of object, and apparatus and method of inspecting foreign material on object
US6643354B2 (en) Calibration and alignment of X-ray reflectometric systems
US6985231B2 (en) Method and apparatus for measuring the optical quality of a reflective surface
JPH0743251B2 (en) Optical displacement meter
JP2009008643A (en) Optical scanning type plane inspecting apparatus
WO2008001731A1 (en) Surface inspecting apparatus and surface inspecting method
JPH11295212A (en) Surface inspection apparatus
CN108759690B (en) Coating thickness gauge based on double-light-path infrared reflection method with good working effect
JP3469714B2 (en) Photoconductor surface inspection method and photoconductor surface inspection device
KR100328926B1 (en) Method for measuring degree of on-line plating of plated steel sheet using laser
KR101881752B1 (en) defect sensing module based on line-beam and defect sensing device using its arrays for detection of the defects on surface
JPS60142204A (en) Dimension measuring method of object
JP2003161610A (en) Optical measurement device
JP3039211B2 (en) Painted surface property measuring device
JP2005091060A (en) Glass bottle inspection device
JP2911283B2 (en) Non-contact step measurement method and device
US6813072B2 (en) Method for adjusting a microscope and microscope with a device for adjusting a light beam
JPH0471453B2 (en)
JPH01235807A (en) Depth measuring instrument
JPH11304640A (en) Inspection apparatus for optical element
JP2008275492A (en) Autocollimator
KR100281594B1 (en) Automatic lighting control device for image inspection system and method
JPS63168529A (en) Inspection of optical fiber connector
RU2136124C1 (en) Laser centering skid for x-ray source