JPH11294259A - Cogeneration power plant - Google Patents

Cogeneration power plant

Info

Publication number
JPH11294259A
JPH11294259A JP10099032A JP9903298A JPH11294259A JP H11294259 A JPH11294259 A JP H11294259A JP 10099032 A JP10099032 A JP 10099032A JP 9903298 A JP9903298 A JP 9903298A JP H11294259 A JPH11294259 A JP H11294259A
Authority
JP
Japan
Prior art keywords
carbon dioxide
hot water
power
plant
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10099032A
Other languages
Japanese (ja)
Other versions
JP3651746B2 (en
Inventor
Kazuaki Nakagawa
和明 中川
Toshiyuki Ohashi
俊之 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP09903298A priority Critical patent/JP3651746B2/en
Publication of JPH11294259A publication Critical patent/JPH11294259A/en
Application granted granted Critical
Publication of JP3651746B2 publication Critical patent/JP3651746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To suppress the discharge of carbon dioxide with high efficiency and at a low cost by providing a piping system for feeding hot water and the hot carbon dioxide discharged from a material capable of absorbing and discharging carbon dioxide to the outside of a plant. SOLUTION: This cogeneration power plant is provided with a reformer 1 and a power generating device 2 capable of providing electric power and hot water by the oxidation reaction of the reformed fuel. A carbon dioxide separating device 3 recovering and discharging the carbon dioxide generated in the process of oxidation reaction is provided between the reformer 1 and the power generating device 2. A power feed line 4 and a hot water feed pipe 5 are installed from the power generating device 2 toward the outside of the plant, and a carbon dioxide feed pipe 6 is installed from the carbon dioxide separating device 3 toward the outside of the plant. Carbon dioxide is efficiently recovered during the power generation process, the carbon dioxide heated at the time of recovery is discharged, and it is fed to customers together with hot water. The discharge of carbon dioxide can be suppressed with high efficiency and at a low cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、炭化水素を主成分
とする燃料を利用するコ・ジョネレーション発電プラン
トに関し、特に炭酸ガスを温水と共に効率的に供給でき
るようにしたコ・ジョネレーション発電プラントに係わ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a co-joining power generation plant utilizing a fuel containing hydrocarbon as a main component, and more particularly to a co-joining power plant capable of efficiently supplying carbon dioxide together with hot water. Related to power plants.

【0002】[0002]

【従来の技術】コ・ジョネレーション発電プラントは、
ガスタービン、燃料電池など炭化水素を主成分とす燃料
を酸化反応させて電力と温水に転換し、これを複数の需
要家に供給するプラントであり、燃料利用効率の高い地
域システムとして実用化され、今後も大きな期待を集め
ている。
2. Description of the Related Art A co-joining power plant is
A plant that converts fuels containing hydrocarbons as the main component, such as gas turbines and fuel cells, into electricity and hot water through an oxidation reaction, and supplies this to multiple consumers, and has been put into practical use as a regional system with high fuel efficiency. In the future, they are attracting great expectations.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記コ
・ジョネレーション発電プラントにおいてガスタービン
や燃料電池の酸化反応で随伴する炭酸ガスは、地球温暖
化の主たる原因物質とされて排出規制が求められてお
り、燃料利用効率の向上にとどまらず、より積極的な炭
酸ガスの回収・利用が必要になっている。
However, in the above-mentioned co-junction power generation plant, carbon dioxide accompanying the oxidation reaction of a gas turbine or a fuel cell is regarded as a main cause of global warming and emission control is required. Therefore, it is necessary to not only improve fuel use efficiency, but also to actively collect and use carbon dioxide gas.

【0004】本発明は、ガスタービンや燃料電池の酸化
反応で随伴する炭酸ガスを発電プロセス中で効率よく回
収し、この回収時に温熱された炭酸ガスを温水と随伴し
てプラント外部、例えば需要家に供給することによっ
て、高効率、低コストで炭酸ガスの排出抑制を実現し、
かつ熱エネルギーの大きな温水を需要家に供給すること
が可能なコ・ジェネレーション発電プラントを提供しよ
うとするものである。
According to the present invention, carbon dioxide gas accompanying the oxidation reaction of a gas turbine or a fuel cell is efficiently recovered during a power generation process. To achieve high-efficiency, low-cost control of carbon dioxide emissions,
Another object of the present invention is to provide a cogeneration power plant capable of supplying hot water with a large amount of heat energy to consumers.

【0005】[0005]

【課題を解決するための手段】本発明に係わるコ・ジェ
ネレーション発電プラントは、炭化水素系燃料の酸化反
応により電力と温水を生成する第1装置と、前記燃料を
前記第1装置により酸化反応させる過程で発生する炭酸
ガスを物理的もしくは化学的に吸収して温熱された炭酸
ガスを回収し、かつその炭酸ガスを放出することが可能
な物質が収納された第2装置と、前記温水と前記物質か
ら放出された温熱炭酸ガスとを随伴してプラント外部に
供給するための配管系統とを具備したことを特徴とする
ものである。
A cogeneration power plant according to the present invention comprises a first device for generating electric power and hot water by an oxidation reaction of a hydrocarbon-based fuel, and an oxidation reaction of the fuel by the first device. A second device containing a substance capable of physically or chemically absorbing carbon dioxide generated in the process and recovering the heated carbon dioxide gas and releasing the carbon dioxide gas; And a piping system for supplying the hot carbon dioxide gas released from the substance to the outside of the plant along with the hot carbon dioxide gas.

【0006】本発明に係わる発電プラントにおいて、前
記第2装置に収納される前記物質は、炭酸ガスと反応し
て炭酸リチウムとして回収し、かつ炭酸ガスを放出して
炭酸ガスの反応前の形態に戻る性質を有する炭酸ガス吸
収材であることが好ましい。
[0006] In the power plant according to the present invention, the substance contained in the second device reacts with carbon dioxide to recover as lithium carbonate, and releases carbon dioxide to form before the reaction of carbon dioxide. It is preferable that the carbon dioxide absorbent has a returning property.

【0007】[0007]

【発明の実施の形態】以下、本発明に係わるコ・ジェネ
レーション発電プラントを図面を参照してを詳細に説明
する。図1は、改質器と、ガスタービンを含む発電装置
(またはリン酸型燃料電池の発電装置)とからなる第1
装置を備えたコ・ジェネレーション発電プラントであ
る。この発電プラントは、改質器1と、改質後の燃料の
酸化反応によって電力および温水を得る発電装置2と、
前記改質器2および発電装置2の間に介装され、前記酸
化反応の過程で生成する炭酸ガスを回収・放出する第2
装置である炭酸ガス分離装置3とを基本構成とする。前
記ガスタービンを含む発電装置2は、燃焼器、ガスター
ビンおよび廃熱回収ボイラを組み合わせたコンバインド
サイクルからなる。前記発電装置2から電力供給線4、
温水供給管5がプラント外部に向って敷設され、前記炭
酸ガス分離装置3から炭酸ガス供給管6がプラント外部
に向って敷設されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a cogeneration power plant according to the present invention will be described in detail with reference to the drawings. FIG. 1 shows a first power generator including a reformer and a power generator including a gas turbine (or a power generator of a phosphoric acid type fuel cell).
It is a cogeneration power plant equipped with the equipment. This power plant includes a reformer 1, a power generator 2 for obtaining electric power and hot water by an oxidation reaction of a reformed fuel,
A second device interposed between the reformer 2 and the power generator 2 for recovering and releasing carbon dioxide gas generated in the course of the oxidation reaction.
The basic configuration is a carbon dioxide separation device 3 which is a device. The power generation device 2 including the gas turbine includes a combined cycle including a combustor, a gas turbine, and a waste heat recovery boiler. A power supply line 4 from the power generator 2,
A hot water supply pipe 5 is laid to the outside of the plant, and a carbon dioxide gas supply pipe 6 from the carbon dioxide separation device 3 is laid to the outside of the plant.

【0008】図2は、改質器と、発電装置である溶融炭
酸塩型燃料電池とからなる第1装置を備えたコ・ジェネ
レーション発電プラントである。この発電プラントは、
改質器1と、改質後の水素もしくは一酸化炭素を燃料の
酸化反応によって電力および温水を得る燃料電池からな
る発電装置2と、この燃料電池からなる発電装置2のア
ノードガス回収系に連結され、前記酸化反応の過程で生
成する炭酸ガス(前記溶融炭酸塩型燃料電池からなる発
電装置2の燃料極出口側から排出される炭酸ガス)を回
収・放出するする第2装置である炭酸ガス分離装置3と
を基本構成とする。前記発電装置2から電力供給線4、
温水供給管5がプラント外部に向って敷設され、前記炭
酸ガス分離装置3から炭酸ガス供給管6がプラント外部
に向って敷設されている。なお、前記炭酸ガス分離装置
3で炭酸ガスを回収、分離した後の燃料成分(水素、一
酸化炭素)は前記溶融炭酸塩型燃料電池の燃料ガス(ア
ノードガス)として利用することが可能である。
FIG. 2 shows a cogeneration power plant equipped with a first device comprising a reformer and a molten carbonate fuel cell as a power generator. This power plant
Connected to a reformer 1, a power generator 2 composed of a fuel cell that obtains electric power and hot water by reforming hydrogen or carbon monoxide by a fuel oxidation reaction, and an anode gas recovery system of the power generator 2 composed of the fuel cell And a second device for recovering and releasing carbon dioxide gas generated in the course of the oxidation reaction (carbon dioxide gas discharged from the fuel electrode outlet side of the power generator 2 comprising the molten carbonate fuel cell). The separation device 3 is used as a basic configuration. A power supply line 4 from the power generator 2,
A hot water supply pipe 5 is laid to the outside of the plant, and a carbon dioxide gas supply pipe 6 from the carbon dioxide separation device 3 is laid to the outside of the plant. The fuel component (hydrogen, carbon monoxide) after the carbon dioxide gas is collected and separated by the carbon dioxide gas separator 3 can be used as a fuel gas (anode gas) of the molten carbonate fuel cell. .

【0009】前記炭酸ガスが供給されるプラント外部と
は、例えば透光性の天蓋を有する空間に炭酸ガスを放出
させて農作物を栽培する農業生産者、炭酸ガスを原料と
してスチレン・尿素などの合成を行なう化学工業の企業
家等の炭酸ガスの需要家を挙げることができる。いずれ
の需要家も炭酸ガスのみならず、温熱も目的達成のため
に必要とする。
[0009] The outside of the plant to which the carbon dioxide gas is supplied is, for example, an agricultural producer who cultivates agricultural crops by releasing the carbon dioxide gas into a space having a translucent canopy, a synthesis of styrene and urea using carbon dioxide as a raw material. And carbon dioxide consumers such as entrepreneurs of the chemical industry. All consumers need not only carbon dioxide but also heat to achieve their goals.

【0010】前記改質器1は、メタン、石油、石炭等の
炭化水素系燃料を炭化水素系燃料を触媒作用により水
素、一酸化炭素および炭酸ガスを含むガスに変換するも
のであれば、いかなる形態のものでもよい。また、炭酸
ガスの必要性の程度によっては触媒作用により生成され
た一酸化炭素をさらに水素に転換する変成器を併設して
もよい。
The reformer 1 can be any type of reformer that converts a hydrocarbon-based fuel such as methane, petroleum, or coal into a gas containing hydrogen, carbon monoxide and carbon dioxide by catalytically converting the hydrocarbon-based fuel. It may be in a form. Further, depending on the necessity of carbon dioxide gas, a converter for further converting carbon monoxide generated by the catalytic action to hydrogen may be provided.

【0011】前記炭酸ガス分離装置3は、炭酸ガスを物
理的もしくは化学的に吸収して温熱された炭酸ガスを回
収し、かつその炭酸ガスを放出することが可能な物質が
収納されている。
The carbon dioxide separator 3 contains a substance capable of physically or chemically absorbing carbon dioxide to recover heated carbon dioxide and releasing the carbon dioxide.

【0012】炭酸ガスを物理的に吸収して温熱された炭
酸ガスを回収し、かつその炭酸ガスを放出することが可
能な物質としては、例えばゼオライト等を用いることが
できる。
As a substance capable of physically absorbing carbon dioxide gas, recovering heated carbon dioxide gas and releasing the carbon dioxide gas, for example, zeolite or the like can be used.

【0013】炭酸ガスを化学的に吸収して温熱された炭
酸ガスを回収し、かつその炭酸ガスを放出することが可
能な物質としては、例えば炭酸ガスと反応して炭酸リチ
ウムとして回収し、かつ炭酸ガスを放出して炭酸ガスの
反応前の形態に戻る性質を有する炭酸ガス吸収材等を用
いることができる。
The substance capable of chemically absorbing carbon dioxide to recover heated carbon dioxide and releasing the carbon dioxide is, for example, reacted with carbon dioxide and recovered as lithium carbonate, and A carbon dioxide absorbing material or the like having a property of releasing carbon dioxide and returning to the state before the reaction of carbon dioxide can be used.

【0014】特に、後者の炭酸ガス吸収材が好適であ
る。この吸収材は、アルミニウム、チタン、鉄、ニッケ
ルおよびジルコニウムから選ばれる酸化物を主体とする
リチウム化合物が挙げられる。これらの吸収材は、次式
(1)〜(5)に従って炭酸ガスを吸収して回収し、そ
の逆反応によって炭酸ガスを放出する。
In particular, the latter carbon dioxide absorbent is suitable. Examples of the absorbent include a lithium compound mainly composed of an oxide selected from aluminum, titanium, iron, nickel and zirconium. These absorbents absorb and collect carbon dioxide according to the following equations (1) to (5), and release carbon dioxide by the reverse reaction.

【0015】 2LiAlO3 (s)+CO2 (g) →Al23 (s)+Li2 CO3 (l) …(1) Li2 TiO3 (s)+CO2 (g) →TiO2 (s)+Li2 CO3 (l) …(2) 2LiFeO2 (s)+CO2 (g) →Fe23 (s)+Li2 CO3 (l) …(3) Li2 NiO2 s)+CO2 (g) →NiO(s)+Li2 CO3 (l) …(4) Li2 ZrO3 (s)+CO2 (g) →ZrO2 (s)+Li2 CO3 (l) …(5) ここで、前記(1)式の反応は350℃以下の温度で特
に起き易い。
2LiAlO 3 (s) + CO 2 (g) → Al 2 O 3 (s) + Li 2 CO 3 (l) (1) Li 2 TiO 3 (s) + CO 2 (g) → TiO 2 (s) + Li 2 CO 3 (l) ... (2) 2LiFeO 2 (s) + CO 2 (g) → Fe 2 O 3 (s) + Li 2 CO 3 (l) ... (3) Li 2 NiO 2 s) + CO 2 (g ) → NiO (s) + Li 2 CO 3 (l) (4) Li 2 ZrO 3 (s) + CO 2 (g) → ZrO 2 (s) + Li 2 CO 3 (l) (5) The reaction of the formula (1) tends to occur particularly at a temperature of 350 ° C. or lower.

【0016】前記(2)式の反応は310℃以下の温度
で特に起き易い。前記(3)式の反応は400℃以下の
温度で特に起き易い。前記(4)式の反応は450℃以
下の温度で特に起き易い。
The reaction of the formula (2) is particularly likely to occur at a temperature of 310 ° C. or lower. The reaction of the formula (3) is particularly likely to occur at a temperature of 400 ° C. or less. The reaction of the formula (4) is particularly likely to occur at a temperature of 450 ° C. or lower.

【0017】前記(5)式の反応は550℃以下の温度
で特に起き易い。前記各炭酸ガス吸収材は、前記温度以
下で炭酸ガスを含むガスと接触させることにより炭酸ガ
スを吸収して回収し、これら温度以上に加熱することに
より炭酸ガスを放出することができる。つまり、放出さ
れた炭酸ガスは所定の温度に温熱された状態になる。
The reaction of the formula (5) is particularly likely to occur at a temperature of 550 ° C. or less. Each of the carbon dioxide absorbents absorbs and collects carbon dioxide by contacting with a gas containing carbon dioxide at the temperature or lower, and can release carbon dioxide by heating at or above these temperatures. That is, the released carbon dioxide gas is heated to a predetermined temperature.

【0018】前記電力供給線4、温水供給管5および炭
酸ガス供給管6は、それぞれ電力、温水、温熱された炭
酸ガスをプラント外部に供給できるものであれば、どの
ような形態であってよいが、炭酸ガス供給管6と温水供
給管5とは、前記温熱された炭酸ガスと前記温水とを随
伴してプラント外部に供給するための配管系統にするこ
とが必要である。
The power supply line 4, the hot water supply pipe 5, and the carbon dioxide gas supply pipe 6 may have any form as long as they can supply electric power, hot water, and heated carbon dioxide gas to the outside of the plant. However, it is necessary that the carbon dioxide gas supply pipe 6 and the hot water supply pipe 5 be a piping system for supplying the heated carbon dioxide gas and the hot water to the outside of the plant together.

【0019】具体的には、図3に示すように温水供給管
5と炭酸ガス供給管6とを直接接触させた形態でプラン
ト外部に向って敷設する。図4に示すように温水供給管
5と炭酸ガス供給管6とを直接接触させ、かつこれら配
管5,6周囲を断熱材7で覆った形態でプラント外部に
向って敷設する。これらの配管系統において、温水供給
管5と炭酸ガス供給管6とは必要に応じて両管の間で熱
伝達が可能な距離で近接は位置してもよい。ただし、熱
効率の観点から図3、図4に示すように直接接触させる
ことが好ましい。
Specifically, as shown in FIG. 3, the hot water supply pipe 5 and the carbon dioxide gas supply pipe 6 are laid to the outside of the plant in direct contact with each other. As shown in FIG. 4, the hot water supply pipe 5 and the carbon dioxide gas supply pipe 6 are brought into direct contact with each other. In these piping systems, the hot water supply pipe 5 and the carbon dioxide gas supply pipe 6 may be located as close to each other as necessary so that heat can be transferred between the two pipes. However, it is preferable to make direct contact as shown in FIGS. 3 and 4 from the viewpoint of thermal efficiency.

【0020】また、図5に示すように配管8内に温水9
と炭酸ガス10との両者を供給し、この配管8周囲を断
熱材7で覆った形態でプラント外部に向って敷設する。
図6に示すように内管11と外管12とからなる二重管
構造にし、前記内管11および外管12のいずれかに温
水、炭酸ガスを供給し、この二重管の周囲を断熱材7で
覆った形態でプラント外部に向って敷設する。
Further, as shown in FIG.
And carbon dioxide 10 are supplied, and the pipe 8 is laid toward the outside of the plant in a form covered with a heat insulating material 7.
As shown in FIG. 6, a double pipe structure including an inner pipe 11 and an outer pipe 12 is provided, and hot water and carbon dioxide gas are supplied to one of the inner pipe 11 and the outer pipe 12, and the periphery of the double pipe is insulated. It is laid to the outside of the plant in a form covered with the material 7.

【0021】前述した形態で、特に図4〜図6の形態に
することによって、温水の冷却を効果的に抑制すること
が可能になる。以上説明した本発明に係わるコ・ジェネ
レーション発電プラントは、炭化水素系燃料の酸化反応
により電力と温水を生成する第1装置と、前記燃料を前
記第1装置により酸化反応させる過程で発生する炭酸ガ
スを物理的もしくは化学的に吸収して温熱された炭酸ガ
スを回収し、かつその炭酸ガスを放出することが可能な
物質が収納された第2装置と、前記温水と前記温熱され
た炭酸ガスを随伴してプラント外部に供給するための配
管系統とを具備した構成を有する。
By using the above-described embodiment, particularly, the embodiment shown in FIGS. 4 to 6, it is possible to effectively suppress the cooling of the hot water. The cogeneration power plant according to the present invention described above includes a first device that generates electric power and hot water by an oxidation reaction of a hydrocarbon-based fuel, and a carbon dioxide gas generated in a process of oxidizing the fuel by the first device. Recovers the heated carbon dioxide gas physically or chemically, and stores a second device containing a substance capable of releasing the carbon dioxide gas, and the hot water and the heated carbon dioxide gas. And a piping system for supplying it to the outside of the plant.

【0022】このような構成によれば、温水と前記温熱
された炭酸ガスを随伴させる配管系統を敷設することに
よって、供給過程で温水が冷却されるのを温熱された炭
酸ガスにより抑制できるため、炭酸ガスのみならず、熱
エネルギーの大きい温水をプラント外部に供給すること
ができる。また、炭化水素系燃料の酸化反応により電力
と温水を生成する第1装置から排出される炭酸ガスを効
率よく回収して炭酸ガスの排出を抑制することができ
る。
According to such a configuration, the cooling of the hot water in the supply process can be suppressed by the heated carbon dioxide gas by laying the piping system for accommodating the hot water and the heated carbon dioxide gas. In addition to carbon dioxide gas, hot water with high thermal energy can be supplied to the outside of the plant. Further, it is possible to efficiently collect the carbon dioxide gas discharged from the first device that generates the electric power and the hot water by the oxidation reaction of the hydrocarbon-based fuel, thereby suppressing the carbon dioxide gas discharge.

【0023】[0023]

【実施例】以下、本発明の好ましい実施例を前述した図
面を参照して詳細に説明する。 (実施例1)LNGを燃料とするコンバインドサイクル
発電により前述した図1に示す発電プラントを組立て
た。改質器1で水蒸気によるメタン改質、一酸化炭素の
転化を行なってH2 79%,CO2%,CO2 18%,
CH4 1%(体積比率、ドライベース)を生成し、これ
らガスを平均粒径1μmのリチウムジルコネートが4ト
ン充填された炭酸ガス分離装置3に供給して炭酸ガスを
分離回収した。炭酸ガスを分離した改質ガスをコンバイ
ンドサイクルの発電装置2に供給し、発電を行なった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. (Example 1) The power plant shown in FIG. 1 described above was assembled by combined cycle power generation using LNG as fuel. In the reformer 1, methane reforming with steam and conversion of carbon monoxide are performed to obtain 79% of H 2 , 2% of CO, 18% of CO 2 ,
1% of CH 4 (volume ratio, dry base) was generated, and these gases were supplied to a carbon dioxide gas separator 3 filled with 4 tons of lithium zirconate having an average particle diameter of 1 μm to separate and collect carbon dioxide gas. The reformed gas from which the carbon dioxide gas was separated was supplied to the power generator 2 of the combined cycle to generate power.

【0024】前記炭酸ガス分離装置3で回収した炭酸ガ
スを放出して100℃の温熱炭酸ガスとし、かつ前記発
電装置2における発電時に蒸気タービン復水器の熱を利
用して80℃の温水を作り、これら温水と温熱炭酸ガス
を前述した図4に示す温水供給管5と炭酸ガス供給管6
とが互いに接触され、それらの周囲を断熱材7で覆った
配管系統でプラント外部に供給した。
The carbon dioxide gas collected by the carbon dioxide separation device 3 is released to produce hot carbon dioxide gas of 100 ° C., and at the time of power generation in the power generation device 2, hot water of 80 ° C. is generated by utilizing the heat of the steam turbine condenser. The hot water and hot carbon dioxide gas are supplied to the hot water supply pipe 5 and the carbon dioxide gas supply pipe 6 shown in FIG.
Were brought into contact with each other and supplied to the outside of the plant by a piping system in which the periphery thereof was covered with a heat insulating material 7.

【0025】(実施例2)LNGを燃料とするリン酸型
燃料電池により前述した図1に示す発電プラントを組立
てた。改質器1で水蒸気によるメタン改質、一酸化炭素
の転化を行なってH2 79%,CO 0%,CO2 20
%,CH4 1%(体積比率、ドライベース)を生成し、
これらガスを平均粒径1μmのリチウムジルコネートが
2トン充填された炭酸ガス分離装置3に供給して炭酸ガ
スを分離回収した。炭酸ガスを分離した改質ガスをリン
酸型燃料電池からなる発電装置2に供給し、発電を行な
った。
(Example 2) The above-described power plant shown in Fig. 1 was assembled using a phosphoric acid fuel cell using LNG as fuel. In the reformer 1, methane reforming with steam and conversion of carbon monoxide are performed to obtain 79% of H 2 , 0% of CO, and 20% of CO 2.
%, CH 4 1% (volume ratio, dry base)
These gases were supplied to a carbon dioxide separator 3 filled with 2 tons of lithium zirconate having an average particle size of 1 μm to separate and collect carbon dioxide. The reformed gas from which the carbon dioxide gas was separated was supplied to the power generator 2 composed of a phosphoric acid type fuel cell to generate power.

【0026】前記炭酸ガス分離装置3で回収した炭酸ガ
スを放出して100℃の温熱炭酸ガスとし、かつ前記発
電装置2における電池本体の廃熱を利用して80℃の温
水を作り、これら温水と温熱炭酸ガスを前述した図4に
示す温水供給管5と炭酸ガス供給管6とが互いに接触さ
れ、それらの周囲を断熱材7で覆った配管系統で需要家
に供給した。
The carbon dioxide gas recovered by the carbon dioxide separation device 3 is released to produce hot carbon dioxide gas of 100 ° C., and the waste heat of the battery body in the power generation device 2 is used to produce hot water of 80 ° C. The hot water supply pipe 5 and the carbon dioxide gas supply pipe 6 shown in FIG. 4 described above were brought into contact with each other, and supplied to the customer through a piping system in which the periphery thereof was covered with a heat insulating material 7.

【0027】(実施例3)LNGを燃料とする溶融炭酸
塩型燃料電池により前述した図2に示す発電プラントを
組立てた。改質器1で水蒸気によるメタン改質、一酸化
炭素の転化を行なってH2 79%,CO 0%,CO2
20%,CH4 1%(体積比率、ドライベース)を生成
し、溶融炭酸塩型燃料電池からなる発電装置2の燃料極
(アノード)側に導入し、発電を行なった。前記溶融炭
酸塩型燃料電池からなる発電装置2の燃料極出口側から
排出されたガスを平均粒径1μmのリチウムジルコネー
トが2トン充填された炭酸ガス分離装置3に供給して炭
酸ガスを分離回収した。この炭酸ガス分離装置3で炭酸
ガスを分離した後の燃料成分(水素、一酸化炭素)を前
記溶融炭酸塩型燃料電池の燃料極側にリサイクルした。
Example 3 The above-described power plant shown in FIG. 2 was assembled using a molten carbonate fuel cell using LNG as fuel. In the reformer 1, methane reforming with steam and conversion of carbon monoxide are performed to obtain 79% of H 2 , 0% of CO, and CO 2.
20% and 1% of CH 4 (volume ratio, dry base) were produced and introduced into the fuel electrode (anode) side of the power generator 2 composed of a molten carbonate type fuel cell to generate power. The gas discharged from the fuel electrode outlet side of the power generator 2 comprising the molten carbonate fuel cell is supplied to a carbon dioxide separator 3 filled with 2 tons of lithium zirconate having an average particle diameter of 1 μm to separate carbon dioxide. Collected. The fuel components (hydrogen and carbon monoxide) after the carbon dioxide was separated by the carbon dioxide separator 3 were recycled to the fuel electrode side of the molten carbonate fuel cell.

【0028】前記炭酸ガス分離装置3で回収した炭酸ガ
スを放出して100℃の温熱炭酸ガスとし、かつ前記発
電装置2における電池本体の廃熱を利用して80℃の温
水を作り、これら温水と温熱炭酸ガスを前述した図4に
示す温水供給管5と炭酸ガス供給管6とが互いに接触さ
れ、それらの周囲を断熱材7で覆った配管系統で需要家
に供給した。
The carbon dioxide gas collected by the carbon dioxide separation device 3 is released to produce hot carbon dioxide gas of 100 ° C., and the waste heat of the battery body in the power generation device 2 is used to produce hot water of 80 ° C. The hot water supply pipe 5 and the carbon dioxide gas supply pipe 6 shown in FIG. 4 described above were brought into contact with each other, and supplied to the customer through a piping system in which the periphery thereof was covered with a heat insulating material 7.

【0029】(比較例1)炭酸ガス分離装置を配設しな
い以外、実施例1と同様な発電プラントを組み立て、L
NGを燃料とするコンバインドサイクル発電を行なっ
た。ただし、炭酸ガス分離装置を配設しなかったために
炭酸ガス供給管も発電プラント内に組み込まなかった。
(Comparative Example 1) A power plant similar to that of Example 1 was assembled except that a carbon dioxide separation device was not provided.
Combined cycle power generation using NG as fuel was performed. However, the carbon dioxide supply pipe was not incorporated in the power plant because the carbon dioxide separator was not provided.

【0030】(比較例2)炭酸ガス分離装置を配設しな
い以外、実施例2と同様な発電プラントを組み立て、リ
ン酸型燃料電池で発電を行なった。ただし、炭酸ガス分
離装置を配設しなかったために炭酸ガス供給管も発電プ
ラント内に組み込まなかった。
Comparative Example 2 A power plant similar to that of Example 2 was assembled except that no carbon dioxide gas separation device was provided, and power was generated by a phosphoric acid fuel cell. However, the carbon dioxide supply pipe was not incorporated in the power plant because the carbon dioxide separator was not provided.

【0031】(比較例3)炭酸ガス供給管および温水供
給管をそれぞれ独立して需要家に向けて敷設した以外、
実施例3と同様な発電プラントを組み立て、LNGを燃
料とするリン酸型燃料電池で発電を行なった。
(Comparative Example 3) Except that the carbon dioxide gas supply pipe and the hot water supply pipe were laid independently toward consumers,
A power plant similar to that of Example 3 was assembled, and power was generated by a phosphoric acid fuel cell using LNG as fuel.

【0032】(比較例4)炭酸ガス供給管および温水供
給管をそれぞれ独立して需要家に向けて敷設した以外、
実施例2と同様な発電プラントを組み立て、LNGを燃
料とする溶融炭酸塩型燃料電池で発電を行なった。
(Comparative Example 4) Except that the carbon dioxide gas supply pipe and the hot water supply pipe were laid independently toward consumers,
A power plant similar to that of Example 2 was assembled, and power was generated by a molten carbonate fuel cell using LNG as fuel.

【0033】実施例1および比較例1において、1MW
出力の電力を確保するようにコンバインドサイクル発電
を行なった際の発電効率、炭酸ガス排出量を調べた。ま
た、炭酸ガス回収率および温水の供給時温度と需要家で
の温水温度の差から算出した温水供給熱効率を調べた。
これらの結果を下記表1に示す。
In Example 1 and Comparative Example 1, 1 MW
The power generation efficiency and carbon dioxide emission when combined cycle power generation was performed to secure the output power were examined. In addition, the hot water supply heat efficiency calculated from the difference between the carbon dioxide gas recovery rate and the hot water supply temperature and the hot water temperature at the customer was examined.
The results are shown in Table 1 below.

【0034】また、実施例2,3および比較例2〜4に
おいて、500KW出力の電力を確保するように燃料電
池で発電を行なった際の発電効率、炭酸ガス排出量を調
べた。また、炭酸ガス回収率および温水の供給時温度と
需要家での温水温度の差から算出した温水供給熱効率を
調べた。これらの結果を下記表1に示す。
Further, in Examples 2 and 3 and Comparative Examples 2 to 4, the power generation efficiency and the amount of carbon dioxide emission when power was generated by the fuel cell so as to secure a power of 500 KW were examined. In addition, the hot water supply heat efficiency calculated from the difference between the carbon dioxide gas recovery rate and the hot water supply temperature and the hot water temperature at the customer was examined. The results are shown in Table 1 below.

【0035】[0035]

【表1】 [Table 1]

【0036】前記表1から明らかなように本発明に係わ
る実施例1〜3のコ・ジェネレーション発電プラント
は、比較例1〜4の発電プラントに比べて炭酸ガスの排
出量の抑制と大きな熱エネルギーを持つ温水の供給を達
成することができることがわかる。
As is apparent from Table 1, the cogeneration power plants of Examples 1 to 3 according to the present invention have a lower carbon dioxide emission and a larger heat energy than the power plants of Comparative Examples 1 to 4. It can be seen that the supply of hot water with

【0037】[0037]

【発明の効果】以上詳述したように本発明によれば、ガ
スタービンや燃料電池の酸化反応で随伴する炭酸ガスを
発電プロセス中で効率よく回収し、この回収時に温熱さ
れた炭酸ガスを放出し、温水と随伴して需要家に供給す
ることによって、高効率、低コストで炭酸ガスの排出抑
制を実現し、かつ熱エネルギーの大きな温水を需要家に
供給することが可能なコ・ジェネレーション発電プラン
トを提供できる。
As described above in detail, according to the present invention, the carbon dioxide gas accompanying the oxidation reaction of a gas turbine or a fuel cell is efficiently recovered during the power generation process, and the heated carbon dioxide gas is released during the recovery. Co-generation power generation that achieves high-efficiency, low-cost reduction of carbon dioxide emissions and supplies hot water with large heat energy to consumers by supplying it to consumers along with hot water We can provide a plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるコ・ジェネレーション発電プラ
ントを示す概略図。
FIG. 1 is a schematic diagram showing a cogeneration power plant according to the present invention.

【図2】本発明に係わる別のコ・ジェネレーション発電
プラント示す概略図。
FIG. 2 is a schematic diagram showing another cogeneration power plant according to the present invention.

【図3】温熱された炭酸ガスと温水とを随伴して需要家
に供給するための配管系統を示す概略図。
FIG. 3 is a schematic diagram showing a piping system for supplying heated carbon dioxide gas and hot water to a customer together.

【図4】温熱された炭酸ガスと温水とを随伴して需要家
に供給するための配管系統を示す概略図。
FIG. 4 is a schematic diagram showing a piping system for supplying heated carbon dioxide gas and hot water to a customer.

【図5】温熱された炭酸ガスと温水とを随伴して需要家
に供給するための配管系統を示す概略図。
FIG. 5 is a schematic view showing a piping system for supplying heated carbon dioxide gas and hot water to a customer.

【図6】温熱された炭酸ガスと温水とを随伴して需要家
に供給するための配管系統を示す概略図。
FIG. 6 is a schematic diagram showing a piping system for supplying heated carbon dioxide gas and hot water to a customer together.

【符号の説明】[Explanation of symbols]

1…改質器、 2…発電装置、 3…炭酸ガス分離装置、 4…電力供給線、 5…温水供給管 6…温熱炭酸ガス供給管 7…断熱材。 DESCRIPTION OF SYMBOLS 1 ... Reformer, 2 ... Power generation apparatus, 3 ... Carbon dioxide separation apparatus, 4 ... Power supply line, 5 ... Hot water supply pipe 6 ... Hot carbon dioxide gas supply pipe 7 ... Heat insulation material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素系燃料の酸化反応により電力と
温水を生成する第1装置と、 前記燃料を前記第1装置により酸化反応させる過程で発
生する炭酸ガスを物理的もしくは化学的に吸収して温熱
された炭酸ガスを回収し、かつその炭酸ガスを放出する
ことが可能な物質が収納された第2装置と、 前記温水と前記物質から放出された温熱炭酸ガスとを随
伴してプラント外部に供給するための配管系統とを具備
したことを特徴とするコ・ジョネレーション発電プラン
ト。
1. A first device that generates electric power and hot water by an oxidation reaction of a hydrocarbon-based fuel, and physically or chemically absorbs a carbon dioxide gas generated in a process of oxidizing the fuel by the first device. A second device containing a substance capable of recovering and heating the heated carbon dioxide and releasing the carbon dioxide; and externally accommodating the hot water and the heated carbon dioxide released from the substance. And a piping system for supplying the power to the co-generation power plant.
【請求項2】 前記第2装置に収納される前記物質は、
炭酸ガスと反応して炭酸リチウムとして回収し、かつ炭
酸ガスを放出して炭酸ガスの反応前の形態に戻る性質を
有する炭酸ガス吸収材であることを特徴とする請求項1
記載のコ・ジョネレーション発電プラント。
2. The substance contained in the second device,
2. A carbon dioxide absorbing material having a property of reacting with carbon dioxide to recover as lithium carbonate, releasing carbon dioxide, and returning to a state before the reaction of carbon dioxide.
Co-generation power plant as described.
JP09903298A 1998-04-10 1998-04-10 Co-generation power plant Expired - Fee Related JP3651746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09903298A JP3651746B2 (en) 1998-04-10 1998-04-10 Co-generation power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09903298A JP3651746B2 (en) 1998-04-10 1998-04-10 Co-generation power plant

Publications (2)

Publication Number Publication Date
JPH11294259A true JPH11294259A (en) 1999-10-26
JP3651746B2 JP3651746B2 (en) 2005-05-25

Family

ID=14236026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09903298A Expired - Fee Related JP3651746B2 (en) 1998-04-10 1998-04-10 Co-generation power plant

Country Status (1)

Country Link
JP (1) JP3651746B2 (en)

Also Published As

Publication number Publication date
JP3651746B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP3092670B2 (en) Method of generating electricity in fuel cell and fuel cell
TW578324B (en) Zero/low emission and co-production energy supply station
RU2589884C2 (en) Recycling system for increasing efficiency of fuel cell with co2 capture
JP2009509299A (en) Heat-prepared hydrogen generation fuel cell system
CN106025313A (en) Integrated gasification fuel cell power generation system capable of realizing CO2 trapping before combustion
SK279757B6 (en) Process and apparatus for the combined generation of electrical and mechanical energy
JP2004534186A (en) No / low emission and co-production energy supply station
CN109301283A (en) A kind of band CO2The integral coal gasification fuel cell system of trapping
EP1540760A2 (en) Power generation apparatus
JP6644144B2 (en) Energy storage using REP with engine
US10193176B2 (en) System and method for production of ultra-pure hydrogen from biomass
JPH0696790A (en) Method for generation of electric energy from biological raw material
KR20120014840A (en) Combined power generation system of thermal power plants with co2 capture and storage equipments and molten carbonate fuel cell power plants with hydrocarbon generation equipments
CN109659590A (en) A kind of integral coal gasification solid oxide fuel cell power generating system and method
JP4744971B2 (en) Low quality waste heat recovery system
JP2004014124A (en) Method for power generation and generator
KR101438110B1 (en) Combined power generation system
KR20170080939A (en) Ship
JP2008282599A (en) Fuel-cell electric power generation system using methanol/dimethyl ether as material
JPH11294259A (en) Cogeneration power plant
JP3926917B2 (en) Combustion system
Jones et al. Sub-watt power using an integrated fuel processor and fuel cell
JP3257604B2 (en) Fuel cell generator
KR20170076922A (en) Ship
JP3837662B2 (en) FUEL CELL POWER GENERATOR AND METHOD OF OPERATING FUEL CELL POWER GENERATOR

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

LAPS Cancellation because of no payment of annual fees