JPH1129358A - Positive characteristic thermistor material - Google Patents

Positive characteristic thermistor material

Info

Publication number
JPH1129358A
JPH1129358A JP9185251A JP18525197A JPH1129358A JP H1129358 A JPH1129358 A JP H1129358A JP 9185251 A JP9185251 A JP 9185251A JP 18525197 A JP18525197 A JP 18525197A JP H1129358 A JPH1129358 A JP H1129358A
Authority
JP
Japan
Prior art keywords
specific resistance
composite
temperature coefficient
thermistor material
positive temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9185251A
Other languages
Japanese (ja)
Other versions
JP3841238B2 (en
Inventor
Toshiteru Ueno
寿輝 上野
Takashi Tokuda
隆 徳田
Noboru Ichinose
昇 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokushin Industries Corp
Hokushin Industry Co Ltd
Original Assignee
Hokushin Industries Corp
Hokushin Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokushin Industries Corp, Hokushin Industry Co Ltd filed Critical Hokushin Industries Corp
Priority to JP18525197A priority Critical patent/JP3841238B2/en
Publication of JPH1129358A publication Critical patent/JPH1129358A/en
Application granted granted Critical
Publication of JP3841238B2 publication Critical patent/JP3841238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the material large in the increase range of specific resistance on the rise of temperature by combining one or more kinds of metals selected from Bi, Pb, Zn, Al and Sn with one kind or more insulating ceramics to form a composite. SOLUTION: This thermistor material comprises a composite of the formula: xM(1-x)Cer [(x) is 0.05-0.9; M is a metal; Cer is an insulating ceramic] obtained by combining one more kinds of metals selected from Bi, Pb, Zn, Al and Sn with at least one or more kinds of insulating ceramics. This thermistor material has a small specific resistance of 10<-3> to 10<-2> in a normal state, but has a relatively wide increase width of the specific resistance on the rise of temperature. The insulating ceramic includes tantalum oxide, alumina, silica, aluminosilicates, feldspar, silica, kaolin, forsterite, a ceramic obtained adding an alkaline earth metal to steatite, and a ceramic obtained by adding clay, CaO and MgO to alumina.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子、電気製品の
加熱防止、安全素子に適用される新規な正特性サーミス
タ(PTCサーミスタ)に関し、ヒータ、モータ等の起
動用素子、TVの消磁回路等などの一般的な正特性サー
ミスタに用いて好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel PTC thermistor (PTC thermistor) applied to a device for preventing heating of electronic and electric products and for a safety device, and relates to a device for starting a heater, a motor, etc., a degaussing circuit for a TV, and the like. It is suitable for use in a general positive characteristic thermistor such as the above.

【0002】[0002]

【従来の技術】サーミスタには、その温度係数により、
負特性サーミスタ(NTCサーミスタ)と正特性サーミ
スタ(PTCサーミスタ)とがある。負特性サーミスタ
は負の温度係数を有し、温度上昇と共に比抵抗が減少す
る材料であり、一方、正特性サーミスタは正の温度係数
を有し、特定温度で比抵抗が急激に上昇する材料であ
る。
2. Description of the Related Art A thermistor has a temperature coefficient.
There are a negative characteristic thermistor (NTC thermistor) and a positive characteristic thermistor (PTC thermistor). A negative temperature coefficient thermistor is a material that has a negative temperature coefficient and decreases in specific resistance with increasing temperature, while a positive temperature coefficient thermistor is a material that has a positive temperature coefficient and a specific resistance increases rapidly at a specific temperature. is there.

【0003】正特性サーミスタの代表的な材料として
は、BaTiO3系セラミックスがある。これは、Ba
TiO3などの導電性を有しない酸化物に、イットリウ
ム、ランタンなどの希土類遷移元素あるいはニオブ、タ
ンタルなどの5価の遷移金属元素などを、上記酸化物を
半導体化させるドープ材として添加し、焼成したもので
ある。また、導電性フィラーとポリマーとのコンポジッ
トなども知られている。
As a typical material of the positive temperature coefficient thermistor, there is a BaTiO 3 ceramic. This is Ba
A rare earth transition element such as yttrium or lanthanum or a pentavalent transition metal element such as niobium or tantalum is added to a non-conductive oxide such as TiO 3 as a doping material for converting the oxide into a semiconductor, followed by firing. It was done. Also, composites of a conductive filler and a polymer are known.

【0004】さらに、Bi4Ti312で示される組成の
一部のTiをNbで置換したビスマス層状構造酸化物か
らなるもの(特開平6−163204号公報)、また、
酸化ビスマスと酸化チタンとを含む所定の酸化物の一部
を酸化ニオブ、酸化タンタル及び酸化アンチモンの少な
くとも一種で置換したもの(特開平6−283308号
公報)などが知られている。
Further, an oxide composed of a bismuth layered structure in which a part of Ti of the composition represented by Bi 4 Ti 3 O 12 is substituted with Nb (Japanese Patent Laid-Open No. 6-163204);
It is known that a predetermined oxide containing bismuth oxide and titanium oxide is partially replaced with at least one of niobium oxide, tantalum oxide and antimony oxide (Japanese Patent Laid-Open No. 6-283308).

【0005】[0005]

【発明が解決しようとする課題】従来より上述したよう
な各種正特性サーミスタが知られているが、これらの正
特性サーミスタは、温度上昇と共に比抵抗が上昇する
が、その比抵抗の上昇幅は、導電領域から半導体領域、
又は半導体領域から絶縁領域などの相変化で得られる。
Conventionally, various positive temperature coefficient thermistors as described above have been known. In these positive temperature coefficient thermistors, the specific resistance increases as the temperature rises. From the conductive region to the semiconductor region,
Alternatively, it can be obtained by a phase change from a semiconductor region to an insulating region.

【0006】ここで、常態で導電領域にあるものは、比
抵抗の上昇幅が狭いという問題がある。一方、常態で半
導体領域にあるものは比抵抗の上昇幅が広いが、常態で
の比抵抗が10-1〜102Ω・cm程度であり、大電流
を流すことができないという問題がある。この場合、大
電流を扱うのが困難であり、大容量ヒータ等の用途など
の使用には限界がある。
[0006] Here, those which are in the conductive region in a normal state have a problem that the rise of the specific resistance is small. Meanwhile, those in the semiconductor region in normal state is wider rise in resistivity, a resistivity of 10 -1 to 10 about 2 Omega · cm at normal, it is impossible to flow a large current. In this case, it is difficult to handle a large current, and there is a limit to the use of a large-capacity heater or the like.

【0007】本発明は、このような事情に鑑み、常態で
10-3〜10-2Ω・cmの比抵抗を有し、温度上昇時の
比抵抗の上昇幅が比較的広い、新規な正特性サーミスタ
材料を提供することを課題とする。
In view of such circumstances, the present invention provides a new positive electrode having a specific resistance of 10 −3 to 10 −2 Ω · cm in a normal state and a relatively wide range of increase in the specific resistance when the temperature rises. It is an object to provide a characteristic thermistor material.

【0008】[0008]

【課題を解決するための手段】前記課題を解決する本発
明は、Bi、Pb、Zn、Al、およびSnから選択さ
れる少なくとも一種の金属(M)と、絶縁性のセラミッ
クス(Cer)から選択される少なくとも一種とを複合
化したコンポジットからなることを特徴とする正特性サ
ーミスタ材料にある。
SUMMARY OF THE INVENTION The present invention for solving the above-mentioned problems is based on at least one kind of metal (M) selected from Bi, Pb, Zn, Al and Sn, and an insulating ceramic (Cer). A positive temperature coefficient thermistor material comprising a composite compounded with at least one of the above materials.

【0009】ここで、絶縁性のセラミックスとしては、
例えば、酸化タンタル(Ta25);アルミナ(Al2
3);シリカ(SiO2);アルミノ珪酸塩;長石(K
2O・Al23・6H2O);珪石(SiO2);カオリ
ン;ステアタイト(滑石(3MgO・4SiO2・H
2O)にアルカリ土類金属を少量添加してなるセラミッ
クス;フォルステライト(2MgO・SiO2);アル
ミナ(Al23)に粘土、CaO及びMgOの少なくと
も一種を混合してなるセラミックス;ジルコンにジルコ
ニウム珪酸塩及び粘土の少なくとも一種を添加したセラ
ミックス;およびチタニア(TiO2)にNbなどを添
加したセラミックスなどを挙げることができ、これらか
ら選択される少なくとも一種を用いることができる。
Here, the insulating ceramics include:
For example, tantalum oxide (Ta 2 O 5 ); alumina (Al 2
O 3 ); silica (SiO 2 ); aluminosilicate; feldspar (K
2 O.Al 2 O 3 .6H 2 O); silica (SiO 2 ); kaolin; steatite (talc (3MgO.4SiO 2 .H)
Ceramics made by adding a small amount of alkaline earth metal to 2 O); Forsterite (2MgO.SiO 2 ); Ceramics made by mixing at least one of clay, CaO and MgO with alumina (Al 2 O 3 ); Ceramics added with at least one of zirconium silicate and clay; and ceramics added with Nb or the like to titania (TiO 2 ), and at least one selected from these can be used.

【0010】また、金属としてBiを選択し、セラミッ
クスとしてTa25を選択した、Bi−Ta25が特に
好ましい。
Further, select Bi as the metal, was selected Ta 2 O 5 as a ceramic, Bi-Ta 2 O 5 is particularly preferred.

【0011】また、前記コンポジットは、例えば、xM
(1−x)Cerで表され、xは、0.05〜0.9の
範囲、特に、0.25〜0.5の範囲にあるのが好まし
い。この範囲より小さいと、コンポジット中に導電パス
が形成されず、一方、範囲より大きいと、金属単独の性
質が強くなって、正特性サーミスタとしての特性を顕著
には示さなくなるからである。
Further, the composite may be, for example, xM
It is represented by (1-x) Cer, and x is preferably in the range of 0.05 to 0.9, particularly preferably in the range of 0.25 to 0.5. If it is smaller than this range, a conductive path will not be formed in the composite, while if it is larger than the range, the properties of the metal alone will be strong and the characteristics as a positive temperature coefficient thermistor will not be remarkably exhibited.

【0012】本発明は、Bi、Pb、Zn、Al、およ
びSnなどの金属が、融点に加熱されると比抵抗が急上
昇する性質を有することを利用し、これを絶縁体である
所定のセラミックスに複合化することにより、新規の正
特性サーミスタとしたものである。
The present invention makes use of the fact that metals such as Bi, Pb, Zn, Al, and Sn have the property that the specific resistance rises sharply when heated to the melting point, and this is used as a predetermined ceramic which is an insulator. By combining these, a new PTC thermistor is obtained.

【0013】本発明のコンポジットの導電性は、コンポ
ジット中に金属による導電パスが形成されていることに
より確立されている。従って、常態での比抵抗が10-3
〜10-2Ω・cmと小さい。
The conductivity of the composite of the present invention is established by forming a conductive path of a metal in the composite. Therefore, the specific resistance under normal conditions is 10 −3.
It is as small as 10 -2 Ω · cm.

【0014】一方、本発明のコンポジットが金属の融点
近くまで加熱されると、導電パスの比抵抗が急上昇する
ことにより、コンポジット全体の抵抗が上昇し、さらに
加熱されると、導電パスの切断が発生し始め、コンポジ
ットの抵抗が一段と上昇する。これにより、サーミスタ
としての正特性を示すが、このときの上昇幅が、比較的
大きく、好適には、105〜107程度と大きい。
On the other hand, when the composite of the present invention is heated to a temperature close to the melting point of the metal, the specific resistance of the conductive path sharply increases, thereby increasing the resistance of the entire composite. It begins to occur and the resistance of the composite rises further. As a result, the positive characteristic of the thermistor is exhibited, but the rise width at this time is relatively large, and preferably about 10 5 to 10 7 .

【0015】かかる本発明のコンポジットは、金属の抵
抗と、混入されるセラミックスの種類、およびこれらの
比率により、電気抵抗を制御でき、また、使用する金属
種により比抵抗の上昇する温度を制御できる。
In the composite of the present invention, the electric resistance can be controlled by the resistance of the metal, the type of the ceramics to be mixed, and the ratio thereof, and the temperature at which the specific resistance increases can be controlled by the type of the metal used. .

【0016】本発明の正特性サーミスタ材料は、Bi、
Pb、Zn、Al、およびSnから選択される金属と、
Ta25、Al23、およびSiO2から選択される少
なくとも一種のセラミックスとを所定の割合で混合し、
この混合物を焼結して複合化することにより製造するこ
とができる。このようなコンポジットは高密度の方が有
利であるので、特に、放電プラズマ焼結(パルス通電加
圧焼結)により焼結するのが好ましい。勿論、これに限
定されるものではなく、例えば、還元雰囲気下で120
0℃程度の通常炉で焼結してもよい。
The positive temperature coefficient thermistor material of the present invention comprises Bi,
A metal selected from Pb, Zn, Al, and Sn;
Ta 2 O 5, Al 2 O 3, and at least one ceramic selected from SiO 2 were mixed at a predetermined ratio,
The mixture can be manufactured by sintering and compounding. Since such a composite is more advantageous in high density, it is particularly preferable to perform sintering by spark plasma sintering (pulse current pressure sintering). Of course, the present invention is not limited to this.
It may be sintered in a normal furnace at about 0 ° C.

【0017】[0017]

【発明の実施の形態】以下本発明を実施例に基づいて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0018】(実施例1〜4) xBi−(1−x)T
iO2コンポジットの製造 BiとTa25とを、下記表1に示すように、xが0.
30、0.20、0.10、0.05としたモル比で秤
量し、それぞれをめのう乳鉢にて30分間混合した。各
混合物を、外径40mm、内径20mm、高さ40mm
のカーボンダイスに封入し、両側を外径20mmのパン
チ棒で保持して400kg/cm2の加圧を行った。こ
の状態で、オン/オフ=12/2のパルス通電を行い、
10-2Torrの減圧下で、100℃/minで900
℃まで、さらに、50℃/minで950℃まで加熱
し、その後、3min保持後、通電および加圧を解き、
冷却し、実施例1〜4のコンポジットを製造した。
(Examples 1 to 4) xBi- (1-x) T
Production of iO 2 Composite Bi and Ta 2 O 5 were mixed with each other, as shown in Table 1 below, where x was 0.
It was weighed at a molar ratio of 30, 0.20, 0.10, and 0.05, and mixed in an agate mortar for 30 minutes. Each mixture has an outer diameter of 40 mm, an inner diameter of 20 mm, and a height of 40 mm
, And pressurized at 400 kg / cm 2 while holding both sides with a punch rod having an outer diameter of 20 mm. In this state, a pulse energization of ON / OFF = 12/2 is performed,
900 ° C. at 100 ° C./min under reduced pressure of 10 −2 Torr
To 950 ° C at a rate of 50 ° C / min.
It cooled and the composite of Examples 1-4 was manufactured.

【0019】(実施例5〜10) xBi−(1−x)
Ta25コンポジットの製造 BiとTa25とを、下記表1に示すように、xが0.
20、0.30、0.40、0.50、0.70、0.
80となるモル比で秤量した以外は、上述した実施例1
〜4と同様にして実施例5〜10のコンポジットを製造
した。
(Examples 5 to 10) xBi- (1-x)
Production of Ta 2 O 5 Composite Bi and Ta 2 O 5 were mixed with each other, as shown in Table 1 below, in which x was 0.
20, 0.30, 0.40, 0.50, 0.70,.
Example 1 described above, except that it was weighed at a molar ratio of 80
The composites of Examples 5 to 10 were produced in the same manner as in Examples 4 to 4.

【0020】(実施例11〜12) xBi−(1−
x)Al23コンポジットの製造 BiとAl23とを、下記表1に示すように、xが0.
30、0.40となるモル比で秤量した以外は、上述し
た実施例1〜4と同様にして実施例11及び12のコン
ポジットを製造した。
(Examples 11 to 12) xBi- (1-
x) Production of Al 2 O 3 Composite Bi and Al 2 O 3 were mixed with each other, as shown in Table 1 below, in which x was 0.
The composites of Examples 11 and 12 were manufactured in the same manner as in Examples 1 to 4 except that the molar ratios were 30 and 0.40.

【0021】(実施例13〜16) その他、xM−
(1−x)Cerコンポジットの製造 Pb、Zn、Snと、Al23とを、下記表1に示すモ
ル比で秤量し、実施例1〜4と同様にして実施例13〜
16のコンポジットを製造した。
(Examples 13 to 16) In addition, xM-
(1-x) Production of Cer Composite Pb, Zn, Sn and Al 2 O 3 were weighed at the molar ratios shown in Table 1 below, and were weighed in the same manner as in Examples 1 to 4.
Sixteen composites were produced.

【0022】(比抵抗温度特性測定試験)実施例1〜1
6の各コンポジットからなる試料の比抵抗温度特性を直
流2端子法を用いて以下の通り測定した。
(Specific Resistance Temperature Characteristic Measurement Test) Examples 1 to 1
The specific resistance / temperature characteristics of the sample composed of each composite of No. 6 were measured as follows using a direct current two-terminal method.

【0023】まず、各試料の両面に金蒸着により両電極
を形成し、これら電極上に白金線を密着させた状態でア
ルミナ板で挟持した。その後、大気中で、昇温及び降温
を行いながら、5mV/cmの電界を印加し、各試料を
流れる電流値を測定して比抵抗ρを求め、比抵抗変化幅
Δを求めた。なお、測定装置としては、ジェネレーター
(アドパンテスト R6142)およびデジタルマルチ
メーター(アドバンテスト R6452E)を用いた。
First, both electrodes were formed on both surfaces of each sample by gold vapor deposition, and a platinum wire was held tightly on these electrodes by an alumina plate. Thereafter, while raising and lowering the temperature in the air, an electric field of 5 mV / cm was applied, the current flowing through each sample was measured, the specific resistance ρ was obtained, and the specific resistance change width Δ was obtained. In addition, as a measuring device, a generator (Adpantest R6142) and a digital multimeter (Advantest R6452E) were used.

【0024】但し、比抵抗ρおよび比抵抗幅Δは、下記
式から求めた。
Here, the specific resistance ρ and the specific resistance width Δ were obtained from the following equations.

【0025】[0025]

【数1】ρ=(E/I)×(S/h) E:印加電荷 I:試料を流れる電流 S:試料の断面積 h:試料の厚さΡ = (E / I) × (S / h) E: applied charge I: current flowing through the sample S: cross-sectional area of the sample h: thickness of the sample

【0026】[0026]

【数2】Δ=log(ρMAX/ρMIN) ρMAX:昇温過程における最大比抵抗 ρMIN:昇温過程における最小比抵抗## EQU2 ## Δ = log (ρ MAX / ρ MIN ) ρ MAX : maximum specific resistance in the heating process ρ MIN : minimum specific resistance in the heating process

【0027】[0027]

【表1】 [Table 1]

【0028】(試験結果)Bi及びTiO2の実施例1
〜4では、表1及び図1に示すように、常態での比抵抗
が10-1〜10-3Ω・cmと小さく、また、比抵抗変化
幅はそれほど大きくないが、正特性サーミスタとしての
特性を示した。なお、xが0.05の実施例4は、ほぼ
酸化チタンの性質に近く、顕著な特性は見られなかっ
た。
(Test Results) Example 1 of Bi and TiO 2
1 to 4, as shown in Table 1 and FIG. 1, the specific resistance in a normal state is as small as 10 −1 to 10 −3 Ω · cm, and the specific resistance change width is not so large. The characteristics were shown. In Example 4, where x was 0.05, the properties were almost similar to those of titanium oxide, and no remarkable properties were observed.

【0029】Bi及びTa25の実施例5〜10では、
表1及び図2,図3に示すように、常態での比抵抗が1
0〜10-4Ω・cmと小さく、また、比抵抗変化幅も
4〜6と大きかった。特に、xが0.3〜0.5の実施
例6〜8は、理想的な正特性サーミスタの特性を示し
た。
In Examples 5 to 10 of Bi and Ta 2 O 5 ,
As shown in Table 1 and FIGS. 2 and 3, the specific resistance in the normal state is 1
0 0 ~10 -4 Ω · cm and less, also, the resistivity variation was also large as 4-6. In particular, Examples 6 to 8 where x is 0.3 to 0.5 exhibited ideal characteristics of the positive temperature coefficient thermistor.

【0030】Bi及びAl23の実施例11及び12
は、表1及び図4に示すように、常態での比抵抗が10
-2Ω・cm程度と小さく、また、比抵抗変化幅も5程度
と大きく、正特性サーミスタとしての特性を示した。
Examples 11 and 12 of Bi and Al 2 O 3
Is, as shown in Table 1 and FIG.
The resistivity was as small as about -2 Ω · cm, and the specific resistance change width was as large as about 5, showing characteristics as a positive temperature coefficient thermistor.

【0031】Pb及びAl23の実施例13及び14
は、表1及び図5に示すように、常態での比抵抗が10
-2Ω・cm程度と小さく、また、比抵抗変化幅も3〜4
程度と比較的大きく、正特性サーミスタとしての特性を
示した。
Examples 13 and 14 of Pb and Al 2 O 3
As shown in Table 1 and FIG.
It is as small as -2 Ωcm, and the specific resistance change width is 3-4.
It was relatively large and showed characteristics as a positive temperature coefficient thermistor.

【0032】Zn及びAl23の実施例15は、表1及
び図6に示すように、常態での比抵抗が10-3Ω・cm
程度と小さく、また、比抵抗変化幅は1程度とそれほど
大きくないが、正特性サーミスタとしての特性を示し
た。
In Example 15 of Zn and Al 2 O 3 , as shown in Table 1 and FIG. 6, the specific resistance in the normal state was 10 −3 Ω · cm.
Although the specific resistance change width was as small as about 1 and not as large as about 1, it exhibited characteristics as a positive temperature coefficient thermistor.

【0033】Sn及びAl23の実施例16は、表1及
び図7に示すように、常態での比抵抗が10-1〜10-3
Ω・cm程度と小さく、また、比抵抗変化幅はそれほど
大きくないが、正特性サーミスタとしての特性を示し
た。
In Example 16 of Sn and Al 2 O 3 , as shown in Table 1 and FIG. 7, the specific resistance in a normal state was 10 -1 to 10 -3.
Although it was as small as about Ω · cm, and the specific resistance change width was not so large, it exhibited characteristics as a positive temperature coefficient thermistor.

【0034】[0034]

【発明の効果】以上説明したように、本発明の正特性サ
ーミスタ材料は、常態での比抵抗が10-3〜10-2Ω・
cmと小さく、温度上昇時の比抵抗の上昇幅が比較的広
いものであり、大電流用途に使用できる優れたものであ
る。
As described above, the positive temperature coefficient thermistor material of the present invention has a specific resistance in a normal state of 10 −3 to 10 −2 Ω ·.
cm and a relatively wide range of increase in specific resistance when the temperature rises, and it is an excellent material that can be used for large current applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜4のコンポジットにおける温度と比
抵抗の関係を示す図である。
FIG. 1 is a diagram showing the relationship between temperature and specific resistance in composites of Examples 1 to 4.

【図2】実施例5〜8のコンポジットにおける温度と比
抵抗の関係を示す図である。
FIG. 2 is a diagram showing a relationship between temperature and specific resistance in composites of Examples 5 to 8.

【図3】実施例9及び10のコンポジットにおける温度
と比抵抗の関係を示す図である。
FIG. 3 is a diagram showing the relationship between temperature and specific resistance in composites of Examples 9 and 10.

【図4】実施例11及び12のコンポジットにおける温
度と比抵抗の関係を示す図である。
FIG. 4 is a diagram showing a relationship between temperature and specific resistance in composites of Examples 11 and 12.

【図5】実施例13及び14のコンポジットにおける温
度と比抵抗の関係を示す図である。
FIG. 5 is a diagram showing the relationship between temperature and specific resistance in composites of Examples 13 and 14.

【図6】実施例15のコンポジットにおける温度と比抵
抗の関係を示す図である。
FIG. 6 is a diagram illustrating a relationship between temperature and specific resistance in a composite of Example 15.

【図7】実施例16のコンポジットにおける温度と比抵
抗の関係を示す図である。
FIG. 7 is a diagram showing a relationship between temperature and specific resistance in a composite of Example 16.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Bi、Pb、Zn、Al、およびSnか
ら選択される少なくとも一種の金属(M)と、絶縁性の
セラミックス(Cer)から選択される少なくとも一種
とを複合化したコンポジットからなることを特徴とする
正特性サーミスタ材料。
1. A composite made of a composite of at least one metal (M) selected from Bi, Pb, Zn, Al, and Sn and at least one metal selected from insulating ceramics (Cer). A positive temperature coefficient thermistor material.
【請求項2】 請求項1において、前記セラミックス
が、酸化タンタル(Ta25);アルミナ(Al
23);シリカ(SiO2);アルミノ珪酸塩;長石;
珪石;カオリン;ステアタイトにアルカリ土類金属を添
加してなるセラミックス;フォルステライト;アルミナ
に粘土、CaO及びMgOの少なくとも一種を混合して
なるセラミックス;ジルコンにジルコニウム珪酸塩及び
粘土の少なくとも一種を添加したセラミックス;および
チタニアにNbを添加したセラミックスからなる群から
選択される少なくとも一種であることを特徴とする正特
性サーミスタ材料。
2. The method according to claim 1, wherein the ceramic is tantalum oxide (Ta 2 O 5 );
2 O 3 ); silica (SiO 2 ); aluminosilicate; feldspar;
Silica; Kaolin; Ceramics made by adding alkaline earth metal to steatite; Forsterite; Ceramics made by mixing at least one of clay, CaO and MgO with alumina; Zircon added with at least one of zirconium silicate and clay A positive temperature coefficient thermistor material, wherein the positive temperature coefficient thermistor material is at least one selected from the group consisting of ceramics obtained by adding Nb to titania.
【請求項3】 請求項1において、前記金属がBiで、
前記セラミックスがTa25であることを特徴とする正
特性サーミスタ材料。
3. The method according to claim 1, wherein the metal is Bi,
The positive temperature coefficient thermistor material, wherein the ceramic is Ta 2 O 5 .
【請求項4】 請求項1〜3の何れかにおいて、前記コ
ンポジットがxM(1−x)Cerで示され、前記xが
0.05〜0.9であることを特徴とする正特性サーミ
スタ材料。
4. The positive temperature coefficient thermistor material according to claim 1, wherein said composite is represented by xM (1-x) Cer, and said x is 0.05 to 0.9. .
【請求項5】 請求項4において、前記xが、0.25
〜0.5であることを特徴とする正特性サーミスタ材
料。
5. The method according to claim 4, wherein x is 0.25.
A positive temperature coefficient thermistor material characterized by being 0.5 to 0.5.
JP18525197A 1997-07-10 1997-07-10 Method for manufacturing positive thermistor material Expired - Fee Related JP3841238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18525197A JP3841238B2 (en) 1997-07-10 1997-07-10 Method for manufacturing positive thermistor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18525197A JP3841238B2 (en) 1997-07-10 1997-07-10 Method for manufacturing positive thermistor material

Publications (2)

Publication Number Publication Date
JPH1129358A true JPH1129358A (en) 1999-02-02
JP3841238B2 JP3841238B2 (en) 2006-11-01

Family

ID=16167550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18525197A Expired - Fee Related JP3841238B2 (en) 1997-07-10 1997-07-10 Method for manufacturing positive thermistor material

Country Status (1)

Country Link
JP (1) JP3841238B2 (en)

Also Published As

Publication number Publication date
JP3841238B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US6218928B1 (en) PTC thermistor material
US3586642A (en) Ptc thermistor of bati03,and other oxides
KR20140089334A (en) Semiconductor porcelain composition, positive temperature coefficient element, and heat-generating module
EP0165821B1 (en) Oxide resistor
US6144286A (en) PTCR-resistor
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
KR20190071658A (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for producing positive temperature coefficient resistor
JP2012169515A (en) Ptc element and heat-generating module
JPH1129358A (en) Positive characteristic thermistor material
JP2632347B2 (en) Ceramic heater
JP2008205384A (en) Thermistor composition and thermistor element
JP4217337B2 (en) Manufacturing method of semiconductor porcelain
JP2537606B2 (en) Ceramic Heater
JP3178083B2 (en) Barium titanate-based ceramic semiconductor and method for producing the same
JPH1197207A (en) Ptc thermister element
JPH08321404A (en) Batio3-based thermistor and its production
JP3956676B2 (en) Method for manufacturing voltage-dependent non-linear resistor porcelain
JPH08109063A (en) Ceramic heater
JP3121967B2 (en) Ceramic heating element
KR0147970B1 (en) A ceramic composite for a ptc thermister
JPH06316457A (en) Heat generating element made of ceramics
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JP3239719B2 (en) Method for manufacturing voltage non-linear resistor
JPH0255921B2 (en)
JP2004014950A (en) Ceramics material having ptc characteristic

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees