JPH11292522A - Silicon nitride powder - Google Patents

Silicon nitride powder

Info

Publication number
JPH11292522A
JPH11292522A JP10126698A JP10126698A JPH11292522A JP H11292522 A JPH11292522 A JP H11292522A JP 10126698 A JP10126698 A JP 10126698A JP 10126698 A JP10126698 A JP 10126698A JP H11292522 A JPH11292522 A JP H11292522A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
phase
weight
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10126698A
Other languages
Japanese (ja)
Other versions
JP3997596B2 (en
Inventor
Tetsuo Yamada
哲夫 山田
Takeshi Yamao
猛 山尾
Tetsuo Nakayasu
哲夫 中安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP10126698A priority Critical patent/JP3997596B2/en
Publication of JPH11292522A publication Critical patent/JPH11292522A/en
Application granted granted Critical
Publication of JP3997596B2 publication Critical patent/JP3997596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a powder with which a ceramic material having high toughness and high reliability can be stably produced with good reproducibility by controlling the amorphous ratio, α-phase ratio and β-phase ratio to specified ranges. SOLUTION: The amorphous ratio, α-phase ratio and β-phase ratio of the obtd. powder measured by the cross polarimetry magic angle spinning nuclear magnetic resonance spectroscopy of Si are 1.0 to 5.0 wt.%, 80 to 99 wt.% and <=19 wt.%, respectively. Further, preferably the α-phase particles have <=0.1 μm crystal diameter, 5 to 25 m<2> /g specific surface area, <=0.12 wt.% carbon content, 0.8 to 2.0 wt.% oxygen content, 0.3 to 0.8 wt.% surface oxygen content. Preferably, the obtd. powder has 1.5 to 5.0 aggregation index D2 /D1 , wherein D2 is the median average diameter of the secondary particles obtd. from the grain size distribution based on weight measured by a laser diffraction method and D1 is the average particle size of the primary particles. As for the producing method, an imide decomposing method is most preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、構造用セラミック
スとして使用される窒化ケイ素セラミックスの中で、特
に高靭性高信頼性の窒化ケイ素セラミックスの製造用原
料として好適な易焼結性の窒化ケイ素粉末に関するもの
である。
The present invention relates to an easily sinterable silicon nitride powder suitable as a raw material for producing silicon nitride ceramics having high toughness and high reliability, among silicon nitride ceramics used as structural ceramics. It is about.

【0002】[0002]

【従来の技術及びその問題点】窒化ケイ素セラミックス
は、高強度、高靱性、高耐蝕性という優れた特性を有
し、1000℃以下の温度で使用される構造部材や機械
部品として種々の分野への用途展開が進展している。し
かしながら、窒化ケイ素セラミックスの焼結において
は、通常Y23、Al23等の酸化物を5〜10重量%
程度添加して焼結を行う為に、焼結条件下で成長するS
34粒子の粒径、アスペクト比等により、得られる焼
結体の破壊靭性が変化するという難点があった。このよ
うな焼結条件による破壊靭性の変動を防止し、焼結条件
によらず安定して高い靭性を維持し得る窒化ケイ素セラ
ミックスを製造する為に、Y23、MgO、Al23
の焼結助剤の探索やCr2N、NbB、TaSi2、Zr
Si2等の硬質粒子による分散強化の検討と併行して、
焼結体製造原料として好適な特性を有する原料粉末の開
発が行われている。
2. Description of the Related Art Silicon nitride ceramics have excellent properties of high strength, high toughness, and high corrosion resistance, and are used in various fields as structural members and mechanical parts used at temperatures of 1000 ° C. or less. Applications are expanding. However, in the sintering of silicon nitride ceramics, oxides such as Y 2 O 3 and Al 2 O 3 are usually 5 to 10% by weight.
S grown under sintering conditions in order to perform sintering by adding
There is a problem that the fracture toughness of the obtained sintered body changes depending on the particle size, the aspect ratio, and the like of the i 3 N 4 particles. In order to prevent the fluctuation of fracture toughness due to such sintering conditions and to produce silicon nitride ceramics that can stably maintain high toughness regardless of sintering conditions, Y 2 O 3 , MgO, Al 2 O 3 Search for sintering aids such as Cr 2 N, NbB, TaSi 2 , Zr
In parallel with the study of dispersion strengthening by hard particles of Si 2, etc.,
Development of a raw material powder having characteristics suitable as a raw material for producing a sintered body has been performed.

【0003】従来、窒化ケイ素粉末の製法としては、
(1)金属ケイ素粉末の直接窒化法、(2)シリカ粉末
の還元窒化法、(3)ハロゲン化ケイ素とアンモニアと
を反応させるイミド分解法等が知られている。これらの
方法で製造された窒化ケイ素粉末は、製造履歴が異なる
為か、金属不純物量、酸素含有量、粒径等が同じ値であ
っても、粉末の焼結性や得られる焼結体の特性に大きな
相違がある。一般的には、上記(3)の方法で製造され
た窒化ケイ素粉末が易焼結性であり、かつ優れた焼結体
性能を示すと言われている。
[0003] Conventionally, as a method for producing silicon nitride powder,
(1) Direct nitriding method of metal silicon powder, (2) reduction nitriding method of silica powder, (3) imide decomposition method of reacting silicon halide with ammonia, and the like are known. Silicon nitride powders manufactured by these methods have different manufacturing histories, even if the metal impurity amount, oxygen content, particle size, etc. have the same value, the sinterability of the powder and the obtained sintered body There are significant differences in characteristics. Generally, it is said that the silicon nitride powder produced by the method (3) is easily sinterable and exhibits excellent sintered body performance.

【0004】粉末特性と焼結性及び焼結体特性に関する
研究の進展につれ、焼結性及び焼結体特性の支配因子が
解明されてきた結果、上記の製造履歴の影響は絶対的な
ものではなく、種々の粉末特性の交互作用によるもので
あることが徐々に分かってきた。この点について以下に
説明する。窒化ケイ素の結晶形態には、α相とβ相の2
種類が存在し、β相は酸素を固溶しない純粋な窒化ケイ
素であるのに対して、α相は結晶格子内に酸素を固溶す
ることが知られている。窒化ケイ素の焼結においては、
昇温過程において焼結助剤と窒化ケイ素粒子表面のシリ
カとが反応して融液相が生成し、この融液相への窒化ケ
イ素の溶解と、β相としての再析出により緻密化が進行
する。この為、焼結体製造原料としては、α相分率の高
い窒化ケイ素粉末が望ましいと言われている。
[0004] As the research on powder properties, sinterability and sintered body properties has progressed, the controlling factors of sinterability and sintered body properties have been elucidated. As a result, the influence of the above manufacturing history is not absolute. Rather, due to the interaction of various powder properties. This will be described below. Silicon nitride has two crystal forms, α phase and β phase.
There are types, and the β phase is known to be pure silicon nitride that does not dissolve oxygen, whereas the α phase is known to dissolve oxygen in the crystal lattice. In sintering silicon nitride,
During the heating process, the sintering aid reacts with the silica on the surface of the silicon nitride particles to form a melt phase, and the densification proceeds due to the dissolution of silicon nitride in the melt phase and the reprecipitation as a β phase. I do. For this reason, it is said that a silicon nitride powder having a high α-phase fraction is desirable as a raw material for producing a sintered body.

【0005】ところが従来法では、粉末X線回折法によ
り結晶相の同定と定量を行ってきた為、アモルファスを
含む相組成(β相分率、α相分率及びアモルファス分
率)と焼結性及び焼結体特性との相関の解析が十分では
なかった。特開昭63−147867号公報には、β相
含有率2%未満のα−Si34粉末とβ相含有率10%
以上のSi34粉末とを混合して、β相含有率を2〜3
0%の範囲に調整したSi34粉末を使用することによ
り、Si3492wt%、Al234wt%、Y23
wt%という配合組成で、高密度高強度な窒化ケイ素焼
結体を製造する方法が開示されている。しかしながら、
使用した原料粉末の中心粒径が0.5μmというやや粗
いものであった為、低β相含有率の粉末ではα→β相転
移の速度が遅く、総量10wt%の酸化物を添加しても
高密度な焼結体は得られていない。また、特開平2−1
75662号公報には、α相含有率98%以上、平均粒
径0.3〜0.5μmのSi34粉末と焼結助剤とから
なる成形体を1600〜1800℃で焼結することによ
る室温から高温まで高強度な窒化ケイ素質焼結体の製造
方法が開示されている。しかしながら、使用した原料粉
末の粉末特性としては、平均粒径とα相含有率以外の記
載はなく、これら以外の粉体特性が焼結性及び焼結体特
性に及ぼす効果については、全く言及されていない。ま
た、SiO2含有量6モル%未満では、高密度な焼結体
が得られていない。特開平8−12306号公報には、
高靭性、高信頼性の窒化ケイ素セラミックスの製造用原
料として好適なβ相分率0〜1.8重量%、α相分率9
3.2〜100重量%、結晶子径0.10μm以下、非
晶質分率5.0重量%以下、炭素含有量0.10重量%
以下の窒化ケイ素粉末が開示されている。しかしなが
ら、同公報では、加水分解法により非晶質分率を測定し
た為に、非晶質分率0〜5.0重量%の範囲においてさ
え、非晶質分率によって得られる窒化ケイ素セラミック
スの強度特性が変化することを見逃している。窒化ケイ
素粉末中の非晶質の影響については、更に詳細な解析が
必要であり、同公報に開示の窒化ケイ素粉末と本発明と
は同一ではない。
However, in the conventional method, since the crystal phase has been identified and quantified by the powder X-ray diffraction method, the phase composition including the amorphous phase (β phase fraction, α phase fraction, and amorphous fraction) and the sintering property And analysis of the correlation with the properties of the sintered body was not sufficient. JP-A-63-147867 discloses an α-Si 3 N 4 powder having a β phase content of less than 2% and a β phase content of 10%.
The above-mentioned Si 3 N 4 powder is mixed and the β phase content is adjusted to 2-3.
By using Si 3 N 4 powder adjusted to the range of 0%, 92 wt% of Si 3 N 4 , 4 wt% of Al 2 O 3 , and Y 2 O 3 6
A method for producing a high-density and high-strength silicon nitride sintered body with a composition of wt% is disclosed. However,
Since the raw material powder used had a slightly coarse center particle size of 0.5 μm, the powder having a low β phase content had a low α → β phase transition speed, and even when an oxide having a total amount of 10 wt% was added. High-density sintered bodies have not been obtained. Also, Japanese Patent Application Laid-Open No. 2-1
Japanese Patent No. 75662 discloses that a compact comprising an Si 3 N 4 powder having an α phase content of 98% or more and an average particle size of 0.3 to 0.5 μm and a sintering aid is sintered at 1600 to 1800 ° C. Discloses a method for producing a silicon nitride sintered body having a high strength from room temperature to a high temperature. However, there is no description other than the average particle diameter and the α phase content as the powder properties of the raw material powder used, and the effects of other powder properties on the sinterability and the properties of the sintered body are not mentioned at all. Not. If the SiO 2 content is less than 6 mol%, a high-density sintered body cannot be obtained. JP-A-8-12306 discloses that
Β-phase fraction 0 to 1.8% by weight, α-phase fraction 9 suitable as a raw material for producing highly tough and highly reliable silicon nitride ceramics
3.2 to 100% by weight, crystallite diameter 0.10 μm or less, amorphous fraction 5.0% by weight or less, carbon content 0.10% by weight
The following silicon nitride powders are disclosed: However, in the same publication, since the amorphous fraction was measured by a hydrolysis method, even in the range of 0 to 5.0% by weight of the amorphous fraction, the silicon nitride ceramic obtained by the amorphous fraction could be used. I overlook that the strength characteristics change. A more detailed analysis is required for the effect of the amorphous in the silicon nitride powder, and the silicon nitride powder disclosed in the publication is not the same as the present invention.

【0006】ところで、Analytical Che
mistry第59巻、第23号の2794〜2797
ページには、29Si核のマジック角回転核磁気共鳴分光
(MAS NMR)法により測定されたSi34粉末の
β相分率、α相分率及びアモルファス分率が記載されて
いる。しかしながら、この文献には焼結体製造原料の必
須要件である比表面積と化学組成(酸素含有量、炭素含
有量など)については、全く言及されていない。焼結体
製造原料としてのSi34粉末には比表面積、粒度分布
及び化学組成(酸素含有量、炭素含有量など)に最適値
があり、これらの特性が最適値を逸脱した粉末では、相
組成(β相分率、α相分率及びアモルファス分率)が制
御されていても十分な焼結性及び焼結体特性が発現しな
い。また、同文献では、ブロッホ・ディケイ法で測定し
たMAS NMRスペクトルのピーク解析からアモルフ
ァス分率を求めている為に、アモルファス分率の測定精
度が著しく悪く、±5重量%弱の測定誤差を含んでい
た。
[0006] Incidentally, Analytical Che
Mystery Vol. 59, No. 23, 2794-2797
The page describes the β-phase fraction, α-phase fraction, and amorphous fraction of Si 3 N 4 powder measured by magic angle rotation nuclear magnetic resonance spectroscopy (MAS NMR) of 29 Si nuclei. However, this reference does not mention at all the specific surface area and the chemical composition (oxygen content, carbon content, etc.) which are essential requirements of the raw material for producing a sintered body. Si 3 N 4 powder as a raw material for producing a sintered body has optimum values for specific surface area, particle size distribution, and chemical composition (oxygen content, carbon content, etc.). Even if the phase composition (β phase fraction, α phase fraction, and amorphous fraction) is controlled, sufficient sinterability and sintered body characteristics are not exhibited. In this document, since the amorphous fraction is obtained from the peak analysis of the MAS NMR spectrum measured by the Bloch Decay method, the measurement accuracy of the amorphous fraction is extremely poor, and a measurement error of less than ± 5% by weight is included. Was out.

【0007】以上の公知文献では、原料粉末のアモルフ
ァス分率が精度良く求められておらず、アモルファス分
率と焼結性及び焼結体特性との相関について定量的な解
析が行われていなかった。原料粉末の相組成と焼結性及
び焼結体特性との相関を解明する上で、高精度なアモル
ファス分率の測定方法の確立が非常に重要な事項である
ことはいうまでもないことである。このような事情によ
り、従来技術では、高靭性、高信頼性等の優れた特性を
有する窒化ケイ素セラミックスを再現性良く安定的に製
造することは困難であった。本発明の目的は、上記の課
題を解決し、高靭性高信頼性の窒化ケイ素セラミックス
を再現性良く安定して製造できる窒化ケイ素粉末を提供
することにある。
In the above-mentioned known documents, the amorphous fraction of the raw material powder is not accurately determined, and no quantitative analysis has been performed on the correlation between the amorphous fraction and the sinterability and the characteristics of the sintered body. . In order to elucidate the correlation between the phase composition of the raw material powder and the sinterability and characteristics of the sintered body, it is needless to say that establishing a highly accurate method for measuring the amorphous fraction is very important. is there. Under such circumstances, it has been difficult with the conventional technology to stably produce silicon nitride ceramics having excellent characteristics such as high toughness and high reliability with good reproducibility. An object of the present invention is to solve the above-mentioned problems and to provide a silicon nitride powder capable of stably producing silicon nitride ceramics having high toughness and high reliability with good reproducibility.

【0008】[0008]

【課題を解決するための手段】本発明者等は、窒化ケイ
素の粉体特性と焼結性及び焼結体特性との関係について
種々検討した結果、焼結性及び焼結体特性を支配する因
子としては、相組成(β相分率、α相分率及びアモルフ
ァス分率)、比表面積、酸素含有量、表面酸素含有量、
炭素含有量、粒度分布、凝集度及び結晶子径があり、特
に、29Si核の交差分極法MAS NMR分光により測
定されたアモルファス分率、α相分率、β相分率、結晶
子径、比表面積、及び炭素含有量がそれぞれ特定範囲に
ある窒化ケイ素粉末が、上記の目的を達成するものであ
ることを知見した。
The present inventors have conducted various studies on the relationship between the powder characteristics of silicon nitride, the sinterability and the characteristics of the sintered body, and as a result, the sinterability and the characteristics of the sintered body are controlled. Factors include phase composition (β phase fraction, α phase fraction and amorphous fraction), specific surface area, oxygen content, surface oxygen content,
There are carbon content, particle size distribution, degree of agglomeration, and crystallite size. In particular, the amorphous fraction, α-phase fraction, β-phase fraction, crystallite diameter, measured by cross-polarization MAS NMR spectroscopy of 29 Si nuclei, It has been found that a silicon nitride powder having a specific surface area and a carbon content within a specific range respectively achieves the above object.

【0009】本発明は、上記の知見に基づいてなされた
もので、29Si核の交差分極法マジック角回転核磁気共
鳴分光により測定したアモルファス分率が1.0〜5.
0重量%であり、α相分率が80〜99重量%、β相分
率が19重量%以下であることを特徴とする窒化ケイ素
粉末を提供するものである。また 本発明は、これらの
粉末特性に加えて、更に、結晶子径が0.1μm以下、
比表面積が5〜25m2/g、炭素含有量が0.12重
量%以下であることを特徴とする窒化ケイ素粉末を提供
するものである。
[0009] The present invention has been made based on the above findings, 29 Si nuclear cross polarization method magic angle spinning nuclear magnetic resonance spectroscopy by measures amorphous fraction 1.0 to 5.
The present invention provides a silicon nitride powder characterized by being 0% by weight, having an α phase fraction of 80 to 99% by weight and a β phase fraction of 19% by weight or less. Further, the present invention, in addition to these powder properties, further, the crystallite diameter is 0.1μm or less,
The present invention provides a silicon nitride powder having a specific surface area of 5 to 25 m 2 / g and a carbon content of 0.12% by weight or less.

【0010】以下に、本発明の窒化ケイ素粉末について
詳述する。本発明の窒化ケイ素粉末は、29Si核の交差
分極法マジック角回転核磁気共鳴分光により測定した
アモルファス分率が1.0〜5.0重量%、好ましくは
1.5〜4.5重量%、α相分率が80〜99重量%、
好ましくは85〜98重量%、β相分率が19重量%以
下、好ましくは1.9〜13.5重量%であることを特
徴とする窒化ケイ素粉末である。
Hereinafter, the silicon nitride powder of the present invention will be described in detail. The silicon nitride powder of the present invention was measured by cross-polarization magic angle rotation nuclear magnetic resonance spectroscopy of 29 Si nuclei.
An amorphous fraction of 1.0 to 5.0% by weight, preferably 1.5 to 4.5% by weight, an α-phase fraction of 80 to 99% by weight,
The silicon nitride powder is preferably 85 to 98% by weight, and has a β phase fraction of 19% by weight or less, preferably 1.9 to 13.5% by weight.

【0011】アモルファス窒化ケイ素はα相やβ相など
の結晶質窒化ケイ素よりも高活性であり、焼結時におけ
る構成原子の物質移動を加速して、迅速な緻密化を実現
する。この為、アモルファス分率が1.0重量%未満の
低濃度の完全結晶粒子になると、緻密化速度が低下し
て、焼結性が悪くなる。アモルファス成分が5.0重量
%よりも多く存在すると、焼結速度に不均一を生じ、焼
結体内部に残留気孔を生ずるばかりでなく、燒結体を構
成する柱状粒子のアスペクト比(長軸径/短軸径比)が
低下して、焼結体の強度特性を悪化させる原因となる。
窒化ケイ素粉末のアモルファス分率は種々の方法によっ
て測定することが可能であるが、特に、29 Si核の交差
分極法MAS NMR分光により、再現性よく測定する
ことができる。
Amorphous silicon nitride has an α phase, a β phase, etc.
Higher activity than crystalline silicon nitride
Accelerates mass transfer of constituent atoms to achieve rapid densification
I do. Therefore, the amorphous fraction is less than 1.0% by weight.
When the concentration of perfect crystal grains is low, the densification rate decreases.
As a result, the sinterability deteriorates. 5.0 weight of amorphous component
%, The sintering rate becomes non-uniform,
In addition to the formation of residual pores inside the sintered body,
The aspect ratio (major axis diameter / short axis diameter ratio) of the formed columnar particles is
This causes the strength characteristics of the sintered body to deteriorate.
The amorphous fraction of silicon nitride powder can be determined by various methods.
It is possible to measure29 Intersection of Si nuclei
Measured with good reproducibility by polarization method MAS NMR spectroscopy
be able to.

【0012】結晶質窒化ケイ素についても、α相の粒子
とβ相の粒子とでは、その焼結挙動に異なった寄与を及
ぼす。即ち、昇温過程で生成した焼結助剤−シリケート
系液相に、α相粒子は迅速に溶解するのに対して、β相
粒子の溶解速度は遅いので、α相粒子の方が緻密化に有
利である。この為、α分率が80重量%未満になると緻
密化速度が低下して、通常の焼結条件では高密度な焼結
体が得られなくなる。α分率が99重量%を越えると、
アモルファス成分の濃度が低下するので、やはり緻密化
速度が低下して、焼結性が悪くなる。
Regarding crystalline silicon nitride, α phase particles and β phase particles have different contributions to the sintering behavior. That is, the α-phase particles dissolve rapidly in the sintering aid-silicate-based liquid phase generated in the heating process, whereas the β-phase particles dissolve at a slower rate. Is advantageous. For this reason, when the α fraction is less than 80% by weight, the densification rate decreases, and a high-density sintered body cannot be obtained under ordinary sintering conditions. When the α fraction exceeds 99% by weight,
Since the concentration of the amorphous component decreases, the densification rate also decreases, and the sinterability deteriorates.

【0013】窒化ケイ素粉末中のβ相粒子は、結晶子径
が0.1μm以下の微粒になると焼結時のα→β相転移
を促進する核として作用し、相転移を低温で迅速に進行
させる作用があるものと考えられる。これにより緻密化
速度は上昇して、高密度な焼結体が得られる。したがっ
て、微量のβ相粒子が存在する方が好ましい。さらに、
β相の割合が19重量%以下であると、β相粒子の析出
時に異方的な粒成長が起こり、アスペクト比の高い柱状
結晶が多数生成して、破壊靭性が向上する。β相の割合
が19重量%を越えると、焼結時のα→β相転移に伴う
柱状結晶の成長が抑制され、等軸結晶が増加して、アス
ペクト比の高い柱状結晶の割合が減少する為に、焼結体
の破壊靭性が低下する。
When the β phase particles in the silicon nitride powder become fine particles having a crystallite diameter of 0.1 μm or less, they act as nuclei for promoting the α → β phase transition during sintering, and the phase transition rapidly proceeds at a low temperature. It is thought that there is an action to make it. As a result, the densification rate increases, and a high-density sintered body can be obtained. Therefore, it is preferable that a small amount of β-phase particles be present. further,
When the ratio of the β phase is 19% by weight or less, anisotropic grain growth occurs at the time of precipitation of the β phase particles, a large number of columnar crystals having a high aspect ratio are generated, and the fracture toughness is improved. When the ratio of the β phase exceeds 19% by weight, the growth of columnar crystals accompanying the α → β phase transition during sintering is suppressed, the equiaxed crystal increases, and the ratio of the columnar crystals having a high aspect ratio decreases. Therefore, the fracture toughness of the sintered body decreases.

【0014】また、本発明の窒化ケイ素粉末は、主成分
であるα相粒子の結晶子径が0.1μm以下、好ましく
は0.01〜0.08μm、比表面積が5〜25m2
g、好ましくは7〜20m2/g、炭素含有量が0.1
2重量%以下、好ましくは0.10重量%以下であるこ
とが望ましい。焼結の進行自体は、原料粉末の粒径を小
さくして、比表面積を上げるほど促進される。この為、
比表面積が5m2/g未満の粉末は緻密化速度が遅く、
焼結助剤を大量に添加しない限り高密度な焼結体は得ら
れない。比表面積が25m2/gを越えると成形体の嵩
密度が低下し、焼結時の収縮が増大するばかりでなく、
焼結収縮が不均一となって、焼結体が変形したり、ミク
ロクラックが発生するので好ましくない。原料粉末中の
炭素は、焼結時に添加される酸化物助剤と反応して一酸
化炭素ガスを発生し、これが残留気孔の発生原因となる
為に、0.12重量%以下にする必要がある。
[0014] Silicon nitride powder of the present invention, the crystallite diameter of the α-phase grains, the main component is 0.1μm or less, preferably 0.01~0.08Myuemu, specific surface area of 5~25m 2 /
g, preferably 7 to 20 m 2 / g, and a carbon content of 0.1
It is desirably 2% by weight or less, preferably 0.10% by weight or less. The progress of sintering itself is accelerated by reducing the particle size of the raw material powder and increasing the specific surface area. Because of this,
Powders having a specific surface area of less than 5 m 2 / g have a low densification rate,
Unless a large amount of a sintering aid is added, a high-density sintered body cannot be obtained. When the specific surface area exceeds 25 m 2 / g, not only does the bulk density of the molded body decrease, shrinkage during sintering increases, but also
Since the sintering shrinkage becomes non-uniform, the sintered body is deformed and micro cracks are generated, which is not preferable. The carbon in the raw material powder reacts with the oxide auxiliary added at the time of sintering to generate carbon monoxide gas, which causes the generation of residual pores. is there.

【0015】また、窒化ケイ素の焼結においては、原料
粉末の酸素含有量及び表面酸素含有量が緻密化速度に大
きな影響を及ぼす。酸素含有量は0.8〜2.0重量
%、好ましくは0.9〜1.8重量%、表面酸素含有量
は0.3〜0.8重量%、好ましくは0.4〜0.7重
量%であることが望ましい。酸素含有量が0.8重量%
未満になると、昇温過程において生成する焼結助剤−シ
リケート系液相の量が不足し、また粘度も高くなるの
で、緻密化が阻害される。酸素含有量が2.0重量%を
越えると、得られる焼結体の機械的性質が悪化する。特
に、破壊靭性の低下と高温強度の低下が顕著である。窒
化ケイ素の緻密化においては表面酸素が重要な役割を果
たす。表面酸素含有量が0.3重量未満になると、焼結
過程初期における焼結助剤−シリケート系液相の生成量
が不足する為、粒界気孔が成長して、高密度な焼結体が
得られない。表面酸素含有量が0.8重量%を越える
と、得られる焼結体の機械的性質が低下する。特に、破
壊靭性の低下が顕著である。
In the sintering of silicon nitride, the oxygen content and the surface oxygen content of the raw material powder have a great influence on the densification rate. The oxygen content is 0.8-2.0% by weight, preferably 0.9-1.8% by weight, and the surface oxygen content is 0.3-0.8% by weight, preferably 0.4-0.7%. % By weight. 0.8% oxygen content
If it is less than 3, the amount of the sintering aid-silicate liquid phase generated during the temperature raising process becomes insufficient, and the viscosity also becomes high, so that the densification is hindered. When the oxygen content exceeds 2.0% by weight, the mechanical properties of the obtained sintered body deteriorate. In particular, the decrease in fracture toughness and the decrease in high-temperature strength are remarkable. Surface oxygen plays an important role in densifying silicon nitride. If the surface oxygen content is less than 0.3 weight, the amount of sintering aid-silicate liquid phase generated in the early stage of the sintering process is insufficient, so that grain boundary pores grow and a high-density sintered body is formed. I can't get it. If the surface oxygen content exceeds 0.8% by weight, the mechanical properties of the obtained sintered body will deteriorate. In particular, the fracture toughness is significantly reduced.

【0016】本発明の窒化ケイ素粉末におけるアモルフ
ァス分率は29Si核の交差分極法MAS NMR分光に
より測定した。即ち、29Si核MAS NMR測定につ
いては Journal of American C
eramic Society第79巻、第2号(19
96年)の513〜517ページに記載の交差分極(ク
ロス・ポーラリゼーション)法で実施した。測定におい
ては、内部標準としてトリメチルシリルプロピオン酸ナ
トリウム塩(TSP)を、サンプルに10重量%添加し
た。測定精度を高める為に、コンタクト時間2ミリ秒、
サイクル時間4秒という条件で、8000回以上の積算
を行った。アモルファスSi34の交差分極 MAS
NMRスペクトルは線幅の広い1本のピークであり、−
43ppm付近に観測された。
The amorphous fraction of the silicon nitride powder of the present invention was measured by cross-polarization MAS NMR spectroscopy of 29 Si nuclei. That is, for 29 Si nuclear MAS NMR measurement, Journal of American C
Eramic Society Vol. 79, No. 2 (19
1996), pages 513 to 517. In the measurement, 10% by weight of sodium trimethylsilylpropionate (TSP) was added to the sample as an internal standard. Contact time 2ms to improve measurement accuracy,
Under the condition that the cycle time is 4 seconds, the integration was performed 8000 times or more. Cross-polarization MAS of amorphous Si 3 N 4
The NMR spectrum is a single peak with a broad line width,
It was observed around 43 ppm.

【0017】特開平8−12306号公報に記載の加水
分解法によるアモルファス分率と本発明の交差分極MA
S NMR法によるアモルファス分率とを比較すると、
加水分解法による測定値で0.1〜0.5重量%のもの
が、本発明の測定法では1.0〜5.0重量%に対応
し、より高精度な測定が可能である。従来行われてきた
測定法では、アモルファス分率を精度良く算出すること
が困難であった為、アモルファス分率が1.0〜5.0
重量%の窒化ケイ素粉末を再現性良く製造するという試
みが行われていなかった。本発明では、交差分極法MA
S NMR分光により少量のアモルファス分率の定量精
度を向上させることができ、アモルファス分率を制御し
た窒化ケイ素粉末を製造することが可能となった。
The amorphous fraction obtained by the hydrolysis method described in JP-A-8-12306 and the cross-polarized MA of the present invention
Comparing with the amorphous fraction by S NMR method,
The value of 0.1 to 0.5% by weight measured by the hydrolysis method corresponds to 1.0 to 5.0% by weight in the measurement method of the present invention, and more accurate measurement is possible. In the conventional measurement method, it was difficult to calculate the amorphous fraction with high accuracy, so that the amorphous fraction was 1.0 to 5.0.
Attempts have not been made to produce silicon nitride powder in a weight percentage with good reproducibility. In the present invention, the cross-polarization method MA
It was possible to improve the quantification accuracy of a small amount of amorphous fraction by S NMR spectroscopy, and it became possible to produce a silicon nitride powder in which the amorphous fraction was controlled.

【0018】本発明の窒化ケイ素粉末におけるβ相分率
及びα相分率は、回折角(2θ)15〜80゜の範囲を
0.02゜刻みでステップスキャンした粉末X線回折パ
ターンのリートベルト解析〔 Journal of
Materials Science第19巻の311
5〜3120ページ(F.Izumi、M.Mitom
o and Y.Bando著、1984年出版)参
照〕により求めた値である。リートベルト解析によれ
ば、従来の粉末X線回折法よりも高精度に、構成結晶相
の存在割合を定量することができる。
The β-phase fraction and α-phase fraction in the silicon nitride powder of the present invention are determined by the Rietveld of the powder X-ray diffraction pattern obtained by step-scanning the diffraction angle (2θ) range of 15 to 80 ° in steps of 0.02 °. Analysis [Journal of
Materials Science, Volume 19, 311
5-3120 pages (F. Izumi, M. Mitom
o and Y. Bando, 1984)). According to Rietveld analysis, the proportion of the constituent crystal phases can be quantified with higher accuracy than the conventional powder X-ray diffraction method.

【0019】また、本発明の窒化ケイ素粉末の結晶子径
は、同様に、回折角(2θ)15〜80゜の粉末X線回
折ピークの半値幅を高精度に算出し、下記〔数1〕のシ
ェラーの式より求めた結晶子径を平均したものである。
尚、回折ピークの半値幅の算出においては、回折装置の
光学系による線幅を補正する必要がある。この補正に
は、NIST(米国 National Institute of Standads
and Technology)より配布されている標準シリコン粉末
を使用した。
Similarly, the crystallite diameter of the silicon nitride powder of the present invention can be calculated by calculating the half-width of the powder X-ray diffraction peak at a diffraction angle (2θ) of 15 to 80 ° with high accuracy. Is the average of the crystallite diameters obtained from the Scherrer's formula.
In calculating the half width of the diffraction peak, it is necessary to correct the line width by the optical system of the diffraction device. This amendment includes the NIST (National Institute of Standads
and Technology) was used.

【0020】[0020]

【数1】 hkl :結晶子径(nm) λ:測定X線波長(nm) β:回折角のひろがり(ラジアン) θ:回折角のブラッグ角 K:定数〔βが半値幅(FWHM)の場合は0.94〕(Equation 1) D hkl : crystallite diameter (nm) λ: measured X-ray wavelength (nm) β: spread of diffraction angle (radian) θ: Bragg angle of diffraction angle K: constant [0 when β is half width (FWHM). 94]

【0021】本発明の窒化ケイ素粉末における酸素含有
量はLECO法により測定し、表面酸素含有量は日本セ
ラミックス協会誌第101巻、第12号(1993年出
版)の1419〜1422頁に記載の化学分析法により
測定した。酸素含有量と表面酸素含有量との差が内部酸
素含有量となる。さらに、粒度分布も粉末の焼結性及び
焼結体特性に影響を及ぼす重要な因子である。レーザー
回折法により測定した重量基準の粒度分布より求めた二
次粒子のメジアン平均径D2と一次粒子の平均粒径D1
の比である凝集度指標D2/D1が1.5〜5.0の範囲
にあることが望ましい。凝集度指標が1.5よりも小さ
いと焼結性が阻害され、逆に5.0よりも大きいと焼結
体の組織が不均一となり、残留ポア、マイクロクラック
等が生成して、所望の高強度高信頼性を実現することが
できない。尚、一次粒子の平均粒径は、工業材料誌第3
8巻第12号第114頁に記載されているように、TE
M写真より二次粒子を構成している一次粒子を二次元的
に透明シートにトレースし、画像解析装置により処理し
て求めたものである。
The oxygen content of the silicon nitride powder of the present invention is measured by the LECO method, and the surface oxygen content is determined by the chemical method described in the Ceramic Society of Japan, Vol. 101, No. 12 (published in 1993), pp. 1419-1422. It was measured by an analytical method. The difference between the oxygen content and the surface oxygen content is the internal oxygen content. Further, the particle size distribution is also an important factor affecting the sinterability and the characteristics of the sintered body of the powder. The average particle diameter ratio cohesion index D 2 / D 1 is 1.5 which is the D 1 of the median average size D 2 and the primary particles of the secondary particles determined from the particle size distribution of the weight measured by a laser diffraction method It is desirable to be in the range of 5.0. If the cohesion index is smaller than 1.5, the sinterability is hindered. If the cohesion index is larger than 5.0, the structure of the sintered body becomes non-uniform, and residual pores, micro cracks, etc. are generated, and High strength and high reliability cannot be realized. Incidentally, the average particle size of the primary particles is described in Industrial Material Magazine No. 3
As described in Vol. 8, No. 12, page 114, TE
The primary particles constituting the secondary particles are two-dimensionally traced on a transparent sheet from an M photograph and processed by an image analyzer to obtain the primary particles.

【0022】次に、本発明の窒化ケイ素粉末を製造する
方法について説明する。本発明の窒化ケイ素粉末は、金
属ケイ素粉末の直接窒化法、シリカ粉末の還元窒化法、
イミド分解法等、種々の方法で製造することができる
が、結晶相の割合、内部酸素量、二次粒子径、一次粒子
径、比表面積等の粉末特性を任意に調整できるイミド分
解法が最も適している。イミド分解法では、例えば、イ
ミドの比表面積を500〜950m2/g、軽装密度を
0.035〜0.075g/cm3に調整し、1400
〜1700℃の温度条件下で結晶化させることにより製
造することができる。本発明においては、前記の焼成に
より得られた結晶質窒化ケイ素粉末を、酸素を4〜30
%含有し、残部が不活性ガスからなる雰囲気中でミル処
理する。雰囲気ガスとしては、酸素を4〜30%含有
し、残部が窒素、ヘリウム、アルゴン等の不活性ガスか
らなる雰囲気であればよく、例えば、空気雰囲気が好ま
しく用いられる。ミル処理方法としては、特に制限はな
く、通常用いられるミル処理装置、例えば、振動ミル、
アトライター等が用いられる。このミル処理により焼成
時に起こった粒子間の融着や凝集を壊すことができるば
かりでなく、粒子表面のアモルファス層の厚さも増加さ
せることができる。
Next, a method for producing the silicon nitride powder of the present invention will be described. The silicon nitride powder of the present invention is a direct nitridation method of metal silicon powder, a reduction nitridation method of silica powder,
Although it can be produced by various methods such as an imide decomposition method, the imide decomposition method that can arbitrarily adjust powder properties such as a crystal phase ratio, an internal oxygen amount, a secondary particle diameter, a primary particle diameter, and a specific surface area is most preferable. Are suitable. In the imide decomposition method, for example, the specific surface area of imide is adjusted to 500 to 950 m 2 / g, the light packaging density is adjusted to 0.035 to 0.075 g / cm 3 , and 1400
It can be manufactured by crystallization under a temperature condition of 11700 ° C. In the present invention, the crystalline silicon nitride powder obtained by the above-mentioned calcination is mixed with 4 to 30 oxygen.
%, With the balance being inert gas. The atmosphere gas may be an atmosphere containing 4 to 30% of oxygen and the balance being an inert gas such as nitrogen, helium, or argon. For example, an air atmosphere is preferably used. The milling method is not particularly limited, and a commonly used milling device, for example, a vibration mill,
An attritor or the like is used. By this milling, not only can fusion and aggregation between particles occurring during firing be broken, but also the thickness of the amorphous layer on the particle surface can be increased.

【0023】金属ケイ素粉末の直接窒化法では、例え
ば、α相分率70%以上及び比表面積10m2/g以上
の窒化ケイ素粉末を比表面積10m2/g以上及び酸素
含有量2.0重量%以下の金属ケイ素粉末に5〜20重
量%添加混合し、混合物を、水素ガスと窒素ガスとの混
合雰囲気下あるいはアンモニアガスと窒素ガスとの混合
雰囲気下、昇温速度10〜50℃/hで1400〜16
00℃まで昇温することにより、本発明の窒化ケイ素粉
末を製造することができる。生成粉末の結晶相を制御す
る為には、特に、雰囲気中の水素分圧と、原料の金属ケ
イ素粉末の仕込量及び充填密度に注意を払う必要があ
る。生成粉末は粉砕処理した後、必要に応じて、酸処理
することにより、粒度調整と不純物除去を行い、所望の
粉末を得る。
In the direct nitriding method of metal silicon powder, for example, a silicon nitride powder having an α phase fraction of 70% or more and a specific surface area of 10 m 2 / g or more is converted to a specific surface area of 10 m 2 / g or more and an oxygen content of 2.0% by weight. The following metal silicon powder is added and mixed in an amount of 5 to 20% by weight, and the mixture is mixed under a mixed atmosphere of hydrogen gas and nitrogen gas or an mixed atmosphere of ammonia gas and nitrogen gas at a heating rate of 10 to 50 ° C./h. 1400-16
By raising the temperature to 00 ° C., the silicon nitride powder of the present invention can be produced. In order to control the crystal phase of the produced powder, it is necessary to pay particular attention to the hydrogen partial pressure in the atmosphere and the charged amount and packing density of the raw material silicon metal powder. After the resulting powder is pulverized, if necessary, it is subjected to an acid treatment to adjust the particle size and remove impurities to obtain a desired powder.

【0024】本発明の窒化ケイ素粉末は、従来の窒化ケ
イ素粉末の場合と同様な方法、例えば、酸化アルミニウ
ム、酸化イットリウム、酸化マグネシウム等の焼結助剤
と混合し、混合物を所定の形状に成形した後、焼結する
ことにより、窒化ケイ素セラミックス(焼結体)を製造
することができる。上記成形圧力は、0.5〜10ton
/cm2程度とすれば良く、また上記焼結条件は、焼結温
度1500〜2000℃、雰囲気圧力0.5〜100気
圧、焼結時間1〜10時間程度とすれば良い。
The silicon nitride powder of the present invention is mixed with a sintering aid such as aluminum oxide, yttrium oxide and magnesium oxide in the same manner as in the case of the conventional silicon nitride powder, and the mixture is formed into a predetermined shape. Then, by sintering, a silicon nitride ceramic (sintered body) can be manufactured. The molding pressure is 0.5 to 10 tons
/ Cm 2, and the sintering conditions are a sintering temperature of 1500 to 2000 ° C., an atmospheric pressure of 0.5 to 100 atm, and a sintering time of about 1 to 10 hours.

【0025】本発明の窒化ケイ素粉末を用いて製造され
た、窒化ケイ素セラミックス(焼結体)は、特に破壊靭
性が高く、高強度高ワイブル係数であることから、本発
明の窒化ケイ素粉末は、1300℃以下の温度で使用さ
れるターボローター、エンジンバルブ、ディーゼルエン
ジン副燃焼室等の熱機関用部品や機械部品として用いら
れる窒化ケイ素セラミックスの製造用原料として、特に
好適なものである。
The silicon nitride ceramics (sintered body) produced using the silicon nitride powder of the present invention has particularly high fracture toughness and high strength and high Weibull coefficient. It is particularly suitable as a raw material for the production of silicon nitride ceramics used as heat engine parts and mechanical parts such as turbo rotors, engine valves, diesel engine sub-combustion chambers and the like used at a temperature of 1300 ° C. or lower.

【0026】[0026]

【実施例】以下に本発明の実施例を比較例と共に挙げ、
本発明を更に詳しく説明する。 実施例1〜14及び比較例1〜4 下記の製造方法(イミド分解法)及び下記〔表1〕に示
す製造条件により、窒化ケイ素粉末をそれぞれ製造し
た。得られた窒化ケイ素粉末の粉末特性を、下記〔表
2〕に示す。 〔窒化ケイ素粉末の製造方法〕0℃に冷却された直径3
0cm、高さ45cmの縦型反応槽内の空気を窒素ガス
で置換した後、所定量の液体アンモニア及びトルエンを
仕込んだ。反応槽では、上層の液体アンモニアと下層の
トルエンとに分離した。予め調製した四塩化ケイ素20
〜35重量%、残部トルエンよりなる溶液を、導管を通
じて、ゆっくり撹拌されている下層に供給した。トルエ
ン溶液の供給と共に、上下層の界面近傍に白色の反応生
成物が析出した。反応終了後、反応液を濾過層に移送
し、生成物を濾別して、液体アンモニアで四回バッチ洗
浄し、精製シリコンジイミドを得た。
EXAMPLES Examples of the present invention will be described below together with comparative examples.
The present invention will be described in more detail. Examples 1 to 14 and Comparative Examples 1 to 4 Silicon nitride powders were produced according to the following production method (imide decomposition method) and the production conditions shown in the following [Table 1]. The powder properties of the obtained silicon nitride powder are shown in Table 2 below. [Method for producing silicon nitride powder] Diameter 3 cooled to 0 ° C
After the air in the vertical reaction vessel having a height of 0 cm and a height of 45 cm was replaced with nitrogen gas, predetermined amounts of liquid ammonia and toluene were charged. In the reaction tank, it was separated into liquid ammonia in the upper layer and toluene in the lower layer. Pre-prepared silicon tetrachloride 20
A solution consisting of .about.35% by weight, with the balance being toluene, was fed via a conduit to the slowly stirred lower layer. With the supply of the toluene solution, a white reaction product was deposited near the interface between the upper and lower layers. After the completion of the reaction, the reaction solution was transferred to a filtration layer, and the product was separated by filtration and washed four times with liquid ammonia to obtain purified silicon diimide.

【0027】反応の際の四塩化ケイ素と液体アンモニア
との比率(体積基準)を1/50〜2/50の範囲で変
化させることにより、比表面積500〜950m2/g
のシリコンジイミドを合成した。なお、前記の反応の初
期段階には、液体アンモニアは大過剰に存在するが、反
応の進行によりアンモニアが消費されるため、液体アン
モニアも連続的に反応槽へ供給することになる。そし
て、定常状態において反応槽内へ供給する四塩化ケイ素
と液体アンモニアとの体積比率を1/50〜2/50の
範囲で変化させることにより、比表面積500〜950
2/gのシリコンジイミドを合成した。また、生成シ
リコンジイミドを乾燥する際の乾燥時間と撹拌回転数を
変えることにより、シリコンジイミドの軽装密度を0.
035〜0.075g/cm3の範囲で変化させた。
By changing the ratio (by volume) of silicon tetrachloride and liquid ammonia in the reaction in the range of 1/50 to 2/50, the specific surface area is 500 to 950 m 2 / g.
Was synthesized. In the initial stage of the above-mentioned reaction, liquid ammonia is present in a large excess, but since ammonia is consumed as the reaction proceeds, liquid ammonia is also continuously supplied to the reaction tank. By changing the volume ratio of silicon tetrachloride and liquid ammonia supplied into the reaction tank in the steady state in the range of 1/50 to 2/50, the specific surface area is 500 to 950.
m 2 / g of silicon diimide was synthesized. Also, by changing the drying time and the stirring rotation speed when drying the produced silicon diimide, the light packing density of the silicon diimide is reduced to 0.5.
It was varied in the range of 035 to 0.075 g / cm 3 .

【0028】生成したシリコンジイミドを、下記〔表
1〕に記載した酸素濃度を有する窒素ガスを流通させな
がら1000℃で加熱分解させて、非晶質窒化ケイ素粉
末を得た。次いで、得られた非晶質窒化ケイ素粉末を振
動ミルにて摩砕処理した後、電気炉にて、窒素雰囲気
下、〔表1〕に記載の条件(昇温速度、最高温度及び同
温度での保持時間、炉内CO濃度)で加熱、焼成して、
灰白色の窒化ケイ素粉末を得た。尚、炉内のCO濃度
は、流通させる窒素ガスの純度(酸素濃度、露点)と流
量により調整した。この結晶質窒化ケイ素粉末を振動ミ
ルに投入し、水分含有量0.02%、酸素含有量10
%、残部が不活性ガスよりなる雰囲気下、振幅8mmで
所定の時間、ミル処理を行った。得られた窒化ケイ素粉
末の走査型電子顕微鏡による観察では、0.05〜0.5
μmの等軸的な粒状粒子のみが認められた。また、窒化
ケイ素粉末の塩素含有量は、いづれの場合にも50pp
m以下であった。BET1点法により窒化ケイ素粉末の
比表面積を、 LECO法(燃焼−赤外吸収法)により
炭素含有量を測定した。
The produced silicon diimide was thermally decomposed at 1000 ° C. while flowing a nitrogen gas having an oxygen concentration shown in the following Table 1 to obtain an amorphous silicon nitride powder. Next, the obtained amorphous silicon nitride powder was ground by a vibration mill, and then, in an electric furnace, under a nitrogen atmosphere, under the conditions described in [Table 1] (heating rate, maximum temperature and the same temperature). Heating time and CO concentration in the furnace)
An off-white silicon nitride powder was obtained. The CO concentration in the furnace was adjusted by the purity (oxygen concentration, dew point) and flow rate of the nitrogen gas to be circulated. This crystalline silicon nitride powder was put into a vibration mill, and the water content was 0.02% and the oxygen content was 10%.
%, And milling was performed for a predetermined time at an amplitude of 8 mm in an atmosphere consisting of an inert gas with the balance being an inert gas. Observation of the obtained silicon nitride powder with a scanning electron microscope revealed that the silicon nitride powder had a particle diameter of 0.05 to 0.5.
Only equiaxed granular particles of μm were observed. In addition, the chlorine content of the silicon nitride powder is 50 pp in any case.
m or less. The specific surface area of the silicon nitride powder was measured by the BET one-point method, and the carbon content was measured by the LECO method (combustion-infrared absorption method).

【0029】〔標準窒化ケイ素サンプルの調製〕実施例
1で得られた1000℃仮焼のアモルファスSi34
末を、再度 窒素雰囲気中1100℃で2時間焼成する
ことにより、29Si MAS NMR測定用の標準アモ
ルファスSi34サンプルを、同様に、同実施例で得ら
れた1500℃焼成のα-Si34粉末を、再度 窒素雰
囲気中1750℃で2時間焼成することにより、29Si
MAS NMR測定用の標準α-Si34サンプルを
調製した。
[Preparation of Standard Silicon Nitride Sample] The calcined amorphous Si 3 N 4 powder obtained in Example 1 at 1000 ° C. was calcined again at 1100 ° C. for 2 hours in a nitrogen atmosphere to obtain 29 Si MAS NMR measurement. standard amorphous Si 3 N 4 samples of use, similarly, the 1500 ℃ α-Si 3 N 4 powder calcined obtained in the example, by baking for 2 hours at 1750 ° C. in a nitrogen atmosphere again, 29 Si
A standard α-Si 3 N 4 sample for MAS NMR measurement was prepared.

【0030】〔交差分極法MAS NMR測定〕標準ア
モルファスSi34に内部標準としてトリメチルシリル
プロピオン酸ナトリウム塩(TSP)を10重量%添加
し、コンタクト時間2ミリ秒、サイクル時間4秒という
条件で、29Si核交差分極法MAS NMRスペクトル
を測定し、アモルファスSi34とTSPの吸収ピーク
の積分強度比を求めた。同様に、実施例1〜14及び比
較例1〜4で得られた粉末サンプルにTSPを10重量
%添加して、交差分極法MAS NMRスペクトルを測
定し、アモルファスSi3 4とTSPの吸収ピークの積
分強度比を求めた。各測定試料のアモルファスSi34
とTSPとの積分強度比を標準アモルファスのTSPに
対する積分強度比と比較することにより、アモルファス
分率を決定した。
[Cross-polarization method MAS NMR measurement]
Morphas SiThreeNFourTo trimethylsilyl as internal standard
Addition of 10% by weight of sodium propionate (TSP)
And the contact time is 2 milliseconds and the cycle time is 4 seconds.
By condition,29Si nucleus cross polarization MAS NMR spectrum
Is measured and the amorphous SiThreeNFourAnd TSP absorption peaks
Was determined. Similarly, Examples 1 to 14 and the ratio
10 weights of TSP was added to the powder samples obtained in Comparative Examples 1 to 4.
% And the cross-polarization method MAS NMR spectrum was measured.
And amorphous SiThree NFourProduct of absorption peak of TSP
The partial intensity ratio was determined. Amorphous Si of each measurement sampleThreeNFour
Of the integrated intensity ratio between TSP and TSP to standard amorphous TSP
Compared to the integrated intensity ratio for
The fraction was determined.

【0031】〔X線回折測定〕ターゲットが銅の管球と
グラファイトモノクロメーターを使用し、定時ステップ
走査法により、得られた窒化ケイ素粉末の粉末X線回折
パターンを測定した。回折角(2θ)15〜80゜の範
囲を0.02゜刻みでステップスキャンし、リートベル
ト解析によりα分率とβ分率を求めた。
[X-ray Diffraction Measurement] The powder X-ray diffraction pattern of the obtained silicon nitride powder was measured by a regular step scanning method using a copper tube as a target and a graphite monochromator. Step scanning was performed at a diffraction angle (2θ) of 15 to 80 ° in increments of 0.02 °, and α- and β-fractions were obtained by Rietveld analysis.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】使用試験例 実施例1〜14及び比較例1〜4で得られた窒化ケイ素
粉末を原料に用いて、下記の製造方法によりそれぞれの
焼結体を作製した。 〔焼結体の製造方法〕窒化ケイ素粉末にY235重量
%、Al232重量%及びHfO20.5重量%を添加
し、ボールミルにて湿式混合した後、2ton/cm2
の圧力でラバープレス成形してグリーン成形体を作製し
た。この成形体を窒化ケイ素製ルツボに充填し、電気炉
にて、1気圧の窒素ガス雰囲気中、昇温速度100℃/
hで昇温し、1760℃で4時間保持して、窒化ケイ素
質焼結体を得た。
Using Test Examples Using the silicon nitride powders obtained in Examples 1 to 14 and Comparative Examples 1 to 4 as raw materials, respective sintered bodies were produced by the following production methods. [Production Method of Sintered Body] 5 wt% of Y 2 O 3 , 2 wt% of Al 2 O 3 and 0.5 wt% of HfO 2 were added to silicon nitride powder, and wet-mixed with a ball mill, followed by 2 ton / cm. Two
A green compact was produced by rubber press molding under the following pressure. This compact was filled in a silicon nitride crucible and heated in an electric furnace in a nitrogen gas atmosphere at 1 atm.
h, and the temperature was maintained at 1760 ° C. for 4 hours to obtain a silicon nitride sintered body.

【0035】得られた焼結体の嵩密度はアルキメデス法
で測定した。焼結体よりJIS R1601に準拠した
3×4×40mm相当の抗折試験片を切り出し、JIS
R 1601に準拠して、外スパン30mm、内スパン
10mm、クロスヘッドスピード0.5mm/minの
条件で四点曲げ試験を行った。室温における曲げ強度は
40本の平均値である。高温での曲げ試験は、窒素雰囲
気中で試験片を1300℃に10分間保持した後、8本
以上の試験片について強度測定を行い、平均値を算出し
た。また、破壊靭性値はJIS R 1607規定のS
EPB法で測定した。到達密度、曲げ強度(室温強度、
室温強度のワイブル係数及び高温強度)、及び破壊靭性
値の測定結果を下記〔表3〕に示す。
The bulk density of the obtained sintered body was measured by the Archimedes method. A 3 × 4 × 40 mm equivalent bending test piece in accordance with JIS R1601 was cut out from the sintered body, and JIS
According to R 1601, a four-point bending test was performed under the conditions of an outer span of 30 mm, an inner span of 10 mm, and a crosshead speed of 0.5 mm / min. The bending strength at room temperature is an average value of 40 pieces. In the bending test at a high temperature, after holding the test pieces in a nitrogen atmosphere at 1300 ° C. for 10 minutes, the strength of eight or more test pieces was measured, and the average value was calculated. Further, the fracture toughness value is S in accordance with JIS R 1607.
It was measured by the EPB method. Ultimate density, bending strength (room temperature strength,
The following Table 3 shows the measurement results of the Weibull coefficient at room temperature strength and high-temperature strength) and the fracture toughness value.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【発明の効果】 本発明の窒化ケイ素粉末は、高靭性高
信頼性の窒化ケイ素セラミックスを再現性良く安定して
製造できる。
EFFECT OF THE INVENTION The silicon nitride powder of the present invention can stably produce silicon nitride ceramics having high toughness and high reliability with good reproducibility.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 29Si核の交差分極法マジック角回転核
磁気共鳴分光により測定したアモルファス分率が1.0
〜5.0重量%であり、α相分率が80〜99重量%、
β相分率が19重量%以下であることを特徴とする窒化
ケイ素粉末。
1. The amorphous silicon fraction measured by cross-polarization magic angle rotation nuclear magnetic resonance spectroscopy of 29 Si nuclei is 1.0.
~ 5.0 wt%, α phase fraction is 80 ~ 99 wt%,
A silicon nitride powder having a β phase fraction of 19% by weight or less.
【請求項2】 29Si核の交差分極法マジック角回転核
磁気共鳴分光により測定したアモルファス分率が1.5
〜4.5重量%であり、α相分率が85〜98重量%、
β相分率が1.9〜13.5重量%であることを特徴と
する窒化ケイ素粉末。
2. The amorphous fraction measured by the cross-polarization magic angle rotation nuclear magnetic resonance spectroscopy of 29 Si nuclei is 1.5.
44.5% by weight, and the α-phase fraction was 85-98% by weight,
A silicon nitride powder having a β phase fraction of 1.9 to 13.5% by weight.
【請求項3】 結晶子径が0.1μm以下、比表面積が
5〜25m2/g、炭素含有量が0.12重量%以下で
あることを特徴とする請求項1又は2記載の窒化ケイ素
粉末。
3. The silicon nitride according to claim 1, wherein the crystallite diameter is 0.1 μm or less, the specific surface area is 5 to 25 m 2 / g, and the carbon content is 0.12% by weight or less. Powder.
【請求項4】 酸素含有量が0.8〜2.0重量%、表
面酸素含有量が0.3〜0.8重量%である請求項1〜
3記載の窒化ケイ素粉末。
4. The method according to claim 1, wherein the oxygen content is 0.8 to 2.0% by weight and the surface oxygen content is 0.3 to 0.8% by weight.
4. The silicon nitride powder according to 3.
【請求項5】 二次粒子のメジアン平均径D2と一次粒
子の平均粒径D1との比である凝集度指標D2/D1
1.5〜5.0の範囲にある請求項1〜4記載の窒化ケ
イ素粉末。
Claims wherein the ratio cohesion index D 2 / D 1 is the average particle diameter D 1 of the median average size D 2 and the primary particles of the secondary particles is in the range of 1.5 to 5.0 The silicon nitride powder according to any one of claims 1 to 4.
JP10126698A 1998-04-13 1998-04-13 Silicon nitride powder Expired - Lifetime JP3997596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10126698A JP3997596B2 (en) 1998-04-13 1998-04-13 Silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10126698A JP3997596B2 (en) 1998-04-13 1998-04-13 Silicon nitride powder

Publications (2)

Publication Number Publication Date
JPH11292522A true JPH11292522A (en) 1999-10-26
JP3997596B2 JP3997596B2 (en) 2007-10-24

Family

ID=14296102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10126698A Expired - Lifetime JP3997596B2 (en) 1998-04-13 1998-04-13 Silicon nitride powder

Country Status (1)

Country Link
JP (1) JP3997596B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194552A1 (en) * 2014-06-16 2015-12-23 宇部興産株式会社 Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
CN110779849A (en) * 2019-12-05 2020-02-11 成都中医药大学 Method for measuring specific surface area of amorphous silicon dioxide
WO2021200814A1 (en) * 2020-03-30 2021-10-07 デンカ株式会社 Silicon nitride powder and method for producing silicon nitride sintered body
WO2021200830A1 (en) * 2020-03-30 2021-10-07 デンカ株式会社 Silicon nitride powder, and method for producing silicon nitride sintered body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194552A1 (en) * 2014-06-16 2015-12-23 宇部興産株式会社 Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
JPWO2015194552A1 (en) * 2014-06-16 2017-04-27 宇部興産株式会社 Silicon nitride powder, silicon nitride sintered body and circuit board, and method for producing silicon nitride powder
EP3156366A4 (en) * 2014-06-16 2017-11-29 UBE Industries, Ltd. Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
US10399854B2 (en) 2014-06-16 2019-09-03 Ube Industries, Ltd. Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
CN110779849A (en) * 2019-12-05 2020-02-11 成都中医药大学 Method for measuring specific surface area of amorphous silicon dioxide
CN110779849B (en) * 2019-12-05 2022-05-03 成都中医药大学 Method for measuring specific surface area of amorphous silicon dioxide
WO2021200814A1 (en) * 2020-03-30 2021-10-07 デンカ株式会社 Silicon nitride powder and method for producing silicon nitride sintered body
WO2021200830A1 (en) * 2020-03-30 2021-10-07 デンカ株式会社 Silicon nitride powder, and method for producing silicon nitride sintered body

Also Published As

Publication number Publication date
JP3997596B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
Liu et al. High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings
Wang et al. Solid–liquid reaction synthesis of layered machinable Ti 3 AlC 2 ceramic
Arashi Pressure‐induced phase transformation of HfO2
US6214309B1 (en) Sinterable carbides from oxides using high energy milling
US5108962A (en) Composition and method for producing boron carbide/titanium diboride composite ceramic powders using a boron carbide substrate
Xidong et al. Synthesis, microstructures and properties of γ-aluminum oxynitride
WO2018110565A1 (en) Method for producing high-purity silicon nitride powder
US4122152A (en) Process for preparing silicon nitride powder having a high α-phase content
Wei et al. Studies on the Al2OC mesophase in synthesized AlN powder and its effects on properties of AlN ceramic substrates
Guo et al. Growth, structural and thermophysical properties of TbNbO 4 crystals
JP7317737B2 (en) Hexagonal boron nitride powder and raw material composition for sintered body
Huang et al. Preparation and formation mechanism of elongated (Ca, Dy)‐α‐Sialon powder via carbothermal reduction and nitridation
JPH0812306A (en) Silicon nitride powder
JPH11292522A (en) Silicon nitride powder
JP3669406B2 (en) Silicon nitride powder
JP3475614B2 (en) Silicon diimide
US5169832A (en) Synthesis of refractory metal boride powders of predetermined particle size
Li et al. Preparation of h-BN nano-film coated α-Si 3 N 4 composite particles by a chemical route
JP3438928B2 (en) Method for producing silicon nitride powder
US5585084A (en) Silicon nitride powder
Feng et al. Synthesis, densification, microstructure, and mechanical properties of samarium hexaboride ceramic
CN112110731B (en) Sc2SC (metal-ceramic) laminated material and preparation method thereof
Groen et al. New ternary nitride ceramics: CaSiN 2
Sun et al. In situ synthesis of Al2O3-SiC powders via molten-salt method
Jiang et al. Pretreatment and sintering of Si3N4 powder synthesized by the high-temperature self-propagation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term