JPH11290783A - Pneumatic classifier - Google Patents

Pneumatic classifier

Info

Publication number
JPH11290783A
JPH11290783A JP11629698A JP11629698A JPH11290783A JP H11290783 A JPH11290783 A JP H11290783A JP 11629698 A JP11629698 A JP 11629698A JP 11629698 A JP11629698 A JP 11629698A JP H11290783 A JPH11290783 A JP H11290783A
Authority
JP
Japan
Prior art keywords
dispersion chamber
flow
inflow pipe
particles
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11629698A
Other languages
Japanese (ja)
Inventor
Satoru Okano
覚 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP11629698A priority Critical patent/JPH11290783A/en
Publication of JPH11290783A publication Critical patent/JPH11290783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air classifier for classifying particles even in sizes of powder material such as a toner at low cost and with high accuracy. SOLUTION: In this air classifier, adjacent to an opening to a dispersing chamber 5 of a dispersing chamber inflow pipe 6, a reduction and enlargement part 8 is formed in which after the flow passage area of the dispersing inflow pipe 6 is reduced at a prescribed reduction ratio, it is enlarged at a prescribed expansion ratio. A powdery material containing primary air current introduced into the dispersing chamber 5 through the dispersing chamber inflow pipe 6 has its flow velocity raised when its flow passage area is suddenly narrowed at a contraction area 9a by the reduction and enlargement part 8, and also particle density of the powder material is increased to raise collision probability of the particles with each other and to dissociate (disperse) aggregated particles firmly aggregated. The powdery material containing primary air current has its flow velocity suddenly reduced at an enlargement area 9b of the reduction and enlargement part 8, and also in the flow direction of the dispersing chamber inflow pipe 6, secondary collision of the particles with each other by a change in velocity due to a difference in particle size of the powdery material is encountered to promote the dispersion and to dissociate the aggregated particles, and the primary air current flows into the dispersing chamber with the aggregated particles being hardly present.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気流式分級装置に
関し、詳細には、トナー等の粉体材料を粒径の揃った粒
子に適切に分級する気流式分級装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an airflow classifier, and more particularly to an airflow classifier for appropriately classifying powder materials such as toner into particles having a uniform particle size.

【0002】[0002]

【従来の技術】電子写真方法や静電写真方法等の画像形
成方法においては、感光体等の像担持体に形成された静
電潜像を現像するためにトナーが使用されるが、良好な
画像品質を得るためには、トナー粒径が整っており、微
細であることが要求される。
2. Description of the Related Art In an image forming method such as an electrophotographic method or an electrostatic photographing method, toner is used to develop an electrostatic latent image formed on an image carrier such as a photoreceptor. In order to obtain image quality, it is required that the toner particle size is uniform and fine.

【0003】このように最終製品が微細であることの要
求されるトナーは、原料である結着剤樹脂、接着剤(染
料、顔料、磁性体等)等の所定材料を溶融混練し、冷却
・固化させた後、分級することにより作製される。
[0003] As described above, a toner which is required to have a fine final product is prepared by melting and kneading predetermined materials such as a binder resin and an adhesive (a dye, a pigment, a magnetic substance, etc.) as raw materials, After solidification, it is produced by classification.

【0004】このようなトナー等の粉体材料を分級する
には、一般に、旋回気流を利用した気流式分級装置が使
用される。このような気流式分級装置としては、例え
ば、ディスパージョンセバレータ(Dispersion Separat
or:日本ニューマチック社製、以下、DSという。)が
ある。
In order to classify such a powder material such as toner, an airflow classifier utilizing swirling airflow is generally used. As such an airflow classifier, for example, a dispersion separator (Dispersion Separat)
or: manufactured by Nippon Pneumatic Co., Ltd., hereinafter referred to as DS. ).

【0005】このDSは、分散室、本体ケーシング、分
級室、下部ケーシング及びホッパー等を備えており、円
筒形状の分散室の上部外周部には、一次空気流及び粉体
材料供給用の分散室流入口が円筒形状の接線方向に延在
した状態で配設されている。分散室の下部には、中央が
高い円錐状のセンターコアが取り付けられており、セン
ターコアの外周には、環状の供給溝が形成されている。
分散室の底部には、中央部分に微粉排気口への円筒状の
流路を有する円錐状のセバレータコアが配設されてお
り、このセパレータコアの外周には、環状の粗粉排気口
が形成されている。分級室の下部外周部には、二次空気
流が流入するための流路として、羽根形状をした二次空
気流入口(ルーバーとも呼ばれる)が備えられており、
粉体材料を分散させるとともに、旋回速度を加速させる
ように構成されている。
The DS includes a dispersion chamber, a main body casing, a classifying chamber, a lower casing, a hopper, and the like. A dispersion chamber for supplying a primary air flow and a powder material is provided at an upper outer peripheral portion of the cylindrical dispersion chamber. The inflow port is disposed in a state of extending in a tangential direction of the cylindrical shape. A conical center core with a high center is attached to the lower part of the dispersion chamber, and an annular supply groove is formed on the outer periphery of the center core.
At the bottom of the dispersion chamber, a conical severator core having a cylindrical flow path to the fine powder exhaust port is disposed at the center, and an annular coarse powder exhaust port is formed on the outer periphery of this separator core. ing. A blade-shaped secondary air inlet (also referred to as a louver) is provided on a lower outer peripheral portion of the classifying chamber as a flow path for the secondary air flow to flow in,
It is configured to disperse the powder material and accelerate the turning speed.

【0006】DSの分級原理は、分級室において流入す
る二次空気流が粉体材料を旋回状に半自動流動させる
際、該粉体材料中の比較的粒径の大きい粗粒子と比較的
粒径の小さい微粒子に対して働く遠心力が異なることを
利用するものである。したがって、少なくとも分級室に
入る前の分散室においては、粉体材料中の凝集粒子は、
内部にできる旋回気流によって生じる遠心力が、凝集粒
子間力よりも勝って解離、すなわち、分散され、あるい
は、分散室内壁面との衝突の衝撃により分散され、ま
た、分散された粗粒子と微粒子は、再凝集しないように
相互の粒子間距離を離したまま、速やかに分級室へ送ら
れることが望ましい。
[0006] The classification principle of DS is that when a secondary air flow flowing in a classification chamber causes a powder material to semi-automatically flow in a swirling shape, coarse particles having a relatively large particle size and a relatively This is to take advantage of the fact that the centrifugal force acting on fine particles having a small particle size is different. Therefore, at least in the dispersion chamber before entering the classification chamber, the aggregated particles in the powder material,
The centrifugal force generated by the swirling airflow generated inside dissociates more than the force between the agglomerated particles, that is, is dispersed, or is dispersed by the impact of collision with the wall of the dispersion chamber, and the dispersed coarse particles and fine particles are dispersed. It is desirable that the particles are immediately sent to the classification chamber with the distance between the particles kept apart so as not to reaggregate.

【0007】ところが、分散室流入口から分散室に供給
される粉体材料の中には、粗粒子と微粒子が予め強固に
凝集しあい、分散室内部の旋回気流あるいは分散室内壁
面との衝突によっても、分散されない凝集粒子が存在す
る。
However, in the powder material supplied from the inlet of the dispersion chamber to the dispersion chamber, coarse particles and fine particles are firmly agglomerated in advance, and may be caused by a swirling airflow inside the dispersion chamber or collision with the wall surface of the dispersion chamber. There are agglomerated particles that are not dispersed.

【0008】この場合、凝集粒子は、そのまま分散室か
ら分級室へ送られて、微粒子の付着した粗粒子である凝
集粒子が、粗粒子として分級される。この分級工程後の
工程で、万一、この凝集粒子が解離して粗粒子と微粒子
に分離した場合には、粒径分布が変わり、分級精度が低
下して、電子写真方式の画像形成方法においては、画質
が著しく低下することとなる。
In this case, the agglomerated particles are sent from the dispersion chamber to the classifying chamber as they are, and the agglomerated particles, to which the fine particles are attached, are classified as coarse particles. In the step after this classification step, in the event that the aggregated particles are dissociated and separated into coarse particles and fine particles, the particle size distribution changes, the classification accuracy is reduced, and in the electrophotographic image forming method, Means that the image quality is significantly reduced.

【0009】そこで、本出願人は、先に、粉体材料と一
次空気流との混合流体を分散室に導入し、次に周辺部か
ら二次空気流が流入するように構成された分級室に導入
して、該粉体材料を気流により粗粒子及び微粒子に分離
する気流式分級機において、前記混合気体を形成する手
段として粉体材料を圧送するための供給口と分散気流口
とを併設した気流式分級機を提案している(特開平7−
008916号公報参照)。
Therefore, the present applicant first introduced a mixed fluid of a powder material and a primary air flow into a dispersion chamber, and then introduced a classification chamber configured to allow a secondary air flow to flow in from a peripheral portion. In a gas stream classifier that separates the powder material into coarse particles and fine particles by a gas stream, a supply port and a dispersed gas stream port for pressure-feeding the powder material are provided as means for forming the mixed gas. (Japanese Patent Application Laid-Open No. 7-1995)
008916).

【0010】また、従来、円筒状の分散室を有してお
り、該分散室の内部にてその周面部に沿った渦流となる
ように、粉体が圧送管により圧送されて、該分散室内に
て遠心力により粉体が分級される分級機であって、前記
圧送間内を圧送される粉体を加速するように圧縮エアー
を該圧送管の内部に供給する第1の圧縮エアー供給管
と、該圧送管により該分散室内に圧送される粉体が衝突
して外周側へと案内するとともに、案内された粉体が通
過するように該分散室の周面部とは適当な間隔を開けて
前記分散室内に配置された粉砕板と、該分散室の周面部
に沿って流動する粉体を加速するように圧縮エアーを該
分散室内に供給する、該分散室の周面部に設けられた第
2の圧縮エアー供給管と、を有する粉体分級機が提案さ
れている(実開平5−039687号公報参照)。
Conventionally, a cylindrical dispersion chamber is provided, and powder is pressure-fed by a pressure pipe so as to form a vortex along the peripheral surface inside the dispersion chamber. A classifier that classifies the powder by centrifugal force at a first compressed air supply pipe that supplies compressed air to the inside of the pressure pipe so as to accelerate the powder that is pressure-fed in the space between the pressures. The powder fed into the dispersion chamber by the pressure feed pipe collides and is guided to the outer peripheral side, and an appropriate interval is provided between the powder and the peripheral surface of the dispersion chamber so that the guided powder passes therethrough. A crushing plate disposed in the dispersion chamber, and a compressed air supplied into the dispersion chamber so as to accelerate powder flowing along the peripheral surface of the dispersion chamber. A powder classifier having a second compressed air supply pipe has been proposed. See Japanese Unexamined Patent Publication No. 39687).

【0011】上記従来の提案は、いずれも粉砕材料を分
散室に供給する分散室流入口に圧縮空気を混入して、分
散室に供給される粉体材料の流速を向上させて、分散室
内での凝集粒子の解離を促進させて、分級性能の向上を
図っている。
In each of the above-mentioned conventional proposals, compressed air is mixed into an inlet of a dispersion chamber for supplying a pulverized material to a dispersion chamber, thereby increasing the flow rate of the powder material supplied to the dispersion chamber, and increasing the flow rate in the dispersion chamber. To promote the dissociation of the agglomerated particles to improve the classification performance.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の気流式分級機にあっては、粉砕材料を分散室
に供給する分散室流入口に圧縮空気を混入させるように
なっていたため、気流式分級機は、それ自体エネルギー
効率が悪く、効率化が要求されているなかで、さらに、
分散室流入口に圧縮空気を導入させる必要があり、分級
機自体がさらに大型化するとともに、より一層の効率化
が要望されている。
However, in such a conventional air-flow classifier, compressed air is mixed into the inlet of the dispersion chamber for supplying the pulverized material to the dispersion chamber. Energy-efficient classifiers themselves have poor energy efficiency, and are required to be more efficient.
It is necessary to introduce compressed air into the inflow port of the dispersion chamber, so that the classifier itself is further increased in size and further efficiency is required.

【0013】そこで、請求項1記載の発明は、円筒形状
の分散室の上部外周面に当該円筒形状の接線方向に延在
して分散室に連通する状態で配設された分散室流入管か
ら粉体材料を含んだ一次空気流を分散室に導入し、分散
室で分散させた粉体材料を、分散室の下部に配設された
円錐形状のセンターコアの外周縁と分散室の内周壁との
間の環状隙間を介して分級室に導入して、分級室の下部
に配設された円錐形状のセパレータコアの周方向に二次
空気流入口から二次空気を流入し、当該二次空気により
粉体材料を旋回させて粗粒子と微粒子に分級し、セパレ
ータコアの中央部に形成された微粒子排出口から分級し
た微粒子を排出させ、セパレータコアの外周縁と分級室
の内周壁との間の環状の粗粒子排出口から分級した粗粒
子を排出させる際に、分散室流入管の分散室への開口部
付近に、当該分散室流入管の流路を一次空気の流れ方向
に向かって所定の縮小率で所定の流路面積に狭めた後、
所定の拡大率で流路面積を拡大する流路縮小拡大部を設
けることにより、流路縮小拡大部で一次空気の流速を速
めて、粉体材料の流路内での密度を増大させて粉体材料
を高速で衝突させるとともに、一次空気流の流速を急激
に遅くして、粉体材料の粒径の異なる粒子の速度変化に
より二次衝突させて、簡単な構成で粉体材料、特に、凝
集粒子を充分に分散させた状態で分散室に導入し、以降
の分散室及び分級室での粉体材料の分散及び分級を向上
させて、小型でかつ安価に分級性能を向上させることの
できる気流式分級装置を提供することを目的としてい
る。
Therefore, the invention according to claim 1 is based on a dispersion chamber inflow pipe which extends in the tangential direction of the cylindrical shape and communicates with the dispersion chamber on the upper outer peripheral surface of the cylindrical dispersion chamber. The primary air flow containing the powder material is introduced into the dispersion chamber, and the powder material dispersed in the dispersion chamber is mixed with the outer peripheral edge of the conical center core disposed below the dispersion chamber and the inner peripheral wall of the dispersion chamber. The secondary air is introduced into the classifying chamber through the annular gap between the secondary air and the secondary air flowing from the secondary air inlet in the circumferential direction of the conical separator core disposed at the lower part of the classifying chamber. The powder material is swirled by air to classify into coarse particles and fine particles, and the classified fine particles are discharged from a fine particle discharge port formed in the center of the separator core. To discharge the classified coarse particles from the annular coarse particle discharge port , Near the opening to the dispersion chamber of the dispersion chamber inlet tube, after narrowing the predetermined flow path area at a predetermined reduction ratio the flow path of the dispersion chamber inlet tube towards the flow direction of the primary air,
By providing a flow channel reduction / expansion portion that expands the flow channel area at a predetermined expansion rate, the flow rate of primary air is increased in the flow channel reduction / expansion portion, and the density of the powder material in the flow channel is increased. The body material is made to collide at a high speed, the flow rate of the primary air flow is rapidly reduced, and the secondary material is collided by the speed change of particles having different particle diameters of the powder material. The agglomerated particles are introduced into the dispersion chamber in a sufficiently dispersed state, and the dispersion and classification of the powder material in the subsequent dispersion chamber and the classification chamber are improved, so that the classification performance can be improved at a small size and at low cost. An object of the present invention is to provide an airflow classifier.

【0014】請求項2記載の発明は、流路縮小拡大部
を、分散室流入管内の壁面に所定範囲にわたって当該分
散室流入管の流路中央方向に突出する状態で山形形状に
形成するとともに、当該山形形状のすそ野部分の曲面
を、円筒形状の分散室の半径と同じ曲率半径の曲面に形
成することにより、流路縮小拡大部で一次空気の流速を
変化させて、粉体材料を衝突させるとともに、一次空気
流を分散室の半径と同じ曲率半径の曲面に沿って分散室
の旋回流に合流させて、簡単な構成で粉体材料、特に、
凝集粒子を充分に分散させた状態でスムースに分散室に
導入し、以降の分散室及び分級室での粉体材料の分散及
び分級を向上させて、小型でかつ安価に分級性能をより
一層向上させることのできる気流式分級装置を提供する
ことを目的としている。
According to a second aspect of the present invention, the channel reducing / enlarging portion is formed in a chevron shape on a wall surface inside the dispersion chamber inflow pipe so as to protrude toward the center of the flow path of the dispersion chamber inflow pipe over a predetermined range. By forming the curved surface of the chevron-shaped skirt portion into a curved surface having the same radius of curvature as the radius of the cylindrical dispersion chamber, the flow rate of the primary air is changed in the flow channel reducing / enlarging portion to cause the powder material to collide. In addition, the primary air flow is merged with the swirling flow of the dispersion chamber along a curved surface having the same radius of curvature as the radius of the dispersion chamber, and the powder material with a simple configuration, particularly,
Smoothly introduce the agglomerated particles into the dispersion chamber, and improve the dispersion and classification of the powder material in the subsequent dispersion chamber and classification chamber to further improve the classification performance at a small size and at low cost. It is an object of the present invention to provide an airflow classifier that can be operated.

【0015】請求項3記載の発明は、分散室流入管内
に、分散室流入管内の流路を複数の流路に分割して当該
分割した各流路の流路面積を一次空気の流れ方向に向か
って所定の縮小率で所定の流路面積に狭めた後、所定の
拡大率で流路面積を拡大するとともに、分散室内あるい
は分散室近傍で再度1つの流路に集合させる状態で流路
縮小拡大部を配設することにより、複数の流路に分割さ
れた各流路での一次空気の流速の変化により粉体材料を
衝突させるとともに、流路の合流部分で再度粉体材料を
衝突させて、簡単な構成で粉体材料、特に、凝集粒子を
より一層充分に分散させた状態で分散室に粉体材料を導
入し、以降の分散室及び分級室での粉体材料の分散及び
分級を向上させて、小型でかつ安価に分級性能をより一
層向上させることのできる気流式分級装置を提供するこ
とを目的としている。
According to a third aspect of the present invention, in the dispersion chamber inflow pipe, the flow path in the dispersion chamber inflow pipe is divided into a plurality of flow paths, and the flow path area of each of the divided flow paths is set in the flow direction of the primary air. After narrowing to a predetermined flow area at a predetermined reduction rate, the flow area is expanded at a predetermined expansion rate, and the flow path is reduced in a state where the flow area is gathered again in one flow path in or near the dispersion chamber. By arranging the enlarged portion, the powder material collides with the change in the flow rate of the primary air in each of the plurality of flow passages, and the powder material again collides at the merging portion of the flow passages. Then, the powder material is introduced into the dispersion chamber in a state in which the powder material, particularly the agglomerated particles, is more sufficiently dispersed with a simple structure, and the powder material is dispersed and classified in the subsequent dispersion chamber and classification chamber. To improve the classification performance even more compactly and inexpensively. And its object is to provide a air classifier that can.

【0016】請求項4記載の発明は、角度調整機構によ
り、分散室流入管内の一次空気流の流れ方向に対する流
路縮小拡大部の角度を調整可能とすることにより、流路
縮小拡大部の角度を分級する粒子の粒径に応じて、適宜
変更し、様々な粒径に対応した高精度な分級を行うこと
のできる小型でかつ安価な気流式分級装置を提供するこ
とを目的としている。
According to a fourth aspect of the present invention, the angle of the flow passage reducing / enlarging portion with respect to the flow direction of the primary air flow in the dispersion chamber inflow pipe can be adjusted by the angle adjusting mechanism. It is an object of the present invention to provide a small and inexpensive airflow classifier capable of appropriately changing according to the particle size of particles to be classified and performing high-precision classification corresponding to various particle sizes.

【0017】請求項5記載の発明は、加振機構により、
流路縮小拡大部を所定方向に所定周期の振動を付与可能
とすることにより、粉体材料の凝集粒子の状態や分級す
る粒子の粒径等に応じて、その方向及び大きささらには
周期を変化させて流路縮小拡大部を振動させ、様々な粒
径に対応したより一層高精度な分級を行うことのできる
小型でかつ安価な気流式分級装置を提供することを目的
としている。
According to a fifth aspect of the present invention, the vibration mechanism
By allowing the passage contraction / enlargement section to be subjected to a predetermined period of vibration in a predetermined direction, the direction, size, and further the period can be adjusted according to the state of the aggregated particles of the powder material, the particle size of the particles to be classified, and the like. It is an object of the present invention to provide a small and inexpensive airflow classifier capable of changing and vibrating a channel expansion / contraction section to perform more accurate classification corresponding to various particle diameters.

【0018】[0018]

【課題を解決するための手段】請求項1記載の発明の気
流式分級装置は、円筒形状の分散室と、当該分散室の上
部外周面の所定位置に当該円筒形状の接線方向に延在し
て前記分散室に連通する状態で配設され粉体材料を含ん
だ一次空気流を前記分散室に導入する分散室流入管と、
前記分散室の下部に配設された円錐形状のセンターコア
の外周縁と前記分散室の内周壁との間の環状隙間を介し
て前記分散室に連通する状態で配設された分級室と、前
記分級室の下部に配設されその中央部に微粒子排出口が
形成されるとともにその外周縁と前記分級室の内周壁と
の間に環状の粗粒子排出口の形成された円錐形状のセパ
レータコアと、前記セパレータコアの外周縁に対向する
部分に配設され二次空気を前記セパレータコアの周方向
に流入する二次空気流入口と、を備え、前記分散室流入
管から前記粉体材料を含んだ前記一次空気を前記分散室
に導入して、前記分散室内を旋回させて前記粉体材料を
分散させた後、前記センターコアの環状隙間から前記分
級室に前記粉体材料を導入させ、前記二次空気流入口か
ら前記セパレータコアの周方向に流入される前記二次空
気流で前記粉体材料を旋回させて粗粒子と微粒子に分級
し、前記粗粒子排出口及び前記微粒子排出口から排出さ
せる気流式分級装置において、前記分散室流入管は、前
記分散室への開口部付近に、当該分散室流入管の流路を
前記一次空気の流れ方向に向かって所定の縮小率で所定
の流路面積に狭めた後、所定の拡大率で流路面積を拡大
する流路縮小拡大部が設けられていることにより、上記
目的を達成している。
According to a first aspect of the present invention, there is provided an airflow classifying apparatus, comprising: a cylindrical dispersion chamber; and a cylindrical tangential direction extending at a predetermined position on an upper outer peripheral surface of the dispersion chamber. A dispersion chamber inflow pipe for introducing a primary air flow including a powder material, which is disposed in communication with the dispersion chamber and includes a powder material, to the dispersion chamber;
A classifying chamber disposed in communication with the dispersion chamber through an annular gap between the outer peripheral edge of the conical center core disposed at the lower part of the dispersion chamber and the inner peripheral wall of the dispersion chamber, A conical separator core disposed at the lower portion of the classifying chamber and having a fine particle discharge port formed in the center thereof and having an annular coarse particle discharge port formed between the outer peripheral edge thereof and the inner peripheral wall of the classifying chamber. And a secondary air inlet disposed at a portion facing the outer peripheral edge of the separator core and inflow of secondary air in the circumferential direction of the separator core, and the powder material from the dispersion chamber inflow pipe. The containing primary air is introduced into the dispersion chamber, and after the powder material is dispersed by swirling in the dispersion chamber, the powder material is introduced into the classification chamber from the annular gap of the center core, The separator from the secondary air inlet In the air-flow type classification device, the powder material is swirled by the secondary air flow flowing in the circumferential direction to classify into coarse particles and fine particles, and discharged from the coarse particle discharge port and the fine particle discharge port. The dispersion chamber inflow pipe, near the opening to the dispersion chamber, after narrowing the flow path of the dispersion chamber inflow pipe toward the flow direction of the primary air at a predetermined reduction rate to a predetermined flow area, The above-described object is achieved by providing a flow passage reducing / enlarging portion for expanding the flow passage area at an enlargement ratio of.

【0019】上記構成によれば、円筒形状の分散室の上
部外周面に当該円筒形状の接線方向に延在して分散室に
連通する状態で配設された分散室流入管から粉体材料を
含んだ一次空気流を分散室に導入し、分散室で分散させ
た粉体材料を、分散室の下部に配設された円錐形状のセ
ンターコアの外周縁と分散室の内周壁との間の環状隙間
を介して分級室に導入して、分級室の下部に配設された
円錐形状のセパレータコアの周方向に二次空気流入口か
ら二次空気を流入し、当該二次空気により粉体材料を旋
回させて粗粒子と微粒子に分級し、セパレータコアの中
央部に形成された微粒子排出口から分級した微粒子を排
出させ、セパレータコアの外周縁と分級室の内周壁との
間の環状の粗粒子排出口から分級した粗粒子を排出させ
る際に、分散室流入管の分散室への開口部付近に、当該
分散室流入管の流路を一次空気の流れ方向に向かって所
定の縮小率で所定の流路面積に狭めた後、所定の拡大率
で流路面積を拡大する流路縮小拡大部を設けているの
で、流路縮小拡大部で一次空気の流速を速めて、粉体材
料の流路内での密度を増大させて粉体材料を高速で衝突
させるとともに、一次空気流の流速を急激に遅くして、
粉体材料の粒径の異なる粒子の速度変化により二次衝突
させ、簡単な構成で粉体材料、特に、凝集粒子を充分に
分散させた状態で分散室に導入することができ、以降の
分散室及び分級室での粉体材料の分散及び分級を向上さ
せて、小型でかつ安価に分級性能を向上させることがで
きる。
According to the above configuration, the powder material is supplied from the dispersion chamber inflow pipe which is provided on the upper outer peripheral surface of the cylindrical dispersion chamber so as to extend in the tangential direction of the cylindrical shape and communicate with the dispersion chamber. The containing primary air flow is introduced into the dispersing chamber, and the powder material dispersed in the dispersing chamber is moved between the outer peripheral edge of the conical center core disposed at the lower part of the dispersing chamber and the inner peripheral wall of the dispersing chamber. The secondary air is introduced into the classifying chamber through the annular gap, and the secondary air flows from the secondary air inlet in the circumferential direction of the conical separator core disposed at the lower part of the classifying chamber, and the secondary air causes powder The material is swirled to classify into coarse particles and fine particles, and the classified fine particles are discharged from a fine particle discharge port formed at the center of the separator core, and an annular ring is formed between the outer peripheral edge of the separator core and the inner peripheral wall of the classification chamber. When discharging the classified coarse particles from the coarse particle discharge port, In the vicinity of the opening of the pipe to the dispersion chamber, after narrowing the flow path of the dispersion chamber inflow pipe toward the flow direction of the primary air at a predetermined reduction rate to a predetermined flow area, the flow path at a predetermined expansion rate A flow path reduction / expansion section that increases the area is provided, so the primary air velocity is increased in the flow path reduction / expansion section to increase the density of the powder material in the flow path and collide the powder material at high speed. Along with the primary air flow
Secondary collisions can be made by changing the speed of particles having different particle diameters of the powder material, and the powder material, especially the aggregated particles, can be introduced into the dispersion chamber in a sufficiently dispersed state with a simple structure, and the subsequent dispersion The dispersion and classification of the powder material in the chamber and the classification chamber can be improved, and the classification performance can be improved at a small size and at low cost.

【0020】この場合、例えば、請求項2に記載するよ
うに、前記流路縮小拡大部は、前記分散室流入管内の壁
面に所定範囲にわたって当該分散室流入管の流路中央方
向に突出する状態で山形形状に形成されているととも
に、当該山形形状のすそ野部分の曲面が、前記円筒形状
の分散室の半径と同じ曲率半径の曲面に形成されていて
もよい。
In this case, for example, as described in claim 2, the flow channel reducing / enlarging portion projects over a predetermined range on a wall surface inside the dispersion chamber inflow pipe toward the center of the flow path of the distribution chamber inflow pipe. And the curved surface of the base portion of the chevron may be formed as a curved surface having the same radius of curvature as the radius of the cylindrical dispersion chamber.

【0021】上記構成によれば、流路縮小拡大部を、分
散室流入管内の壁面に所定範囲にわたって当該分散室流
入管の流路中央方向に突出する状態で山形形状に形成す
るとともに、当該山形形状のすそ野部分の曲面を、円筒
形状の分散室の半径と同じ曲率半径の曲面に形成してい
るので、流路縮小拡大部で一次空気の流速を変化させて
粉体材料を衝突させるとともに、一次空気流を分散室の
半径と同じ曲率半径の曲面に沿って分散室の旋回流に合
流させて、簡単な構成で粉体材料、特に、凝集粒子を充
分に分散させた状態でスムースに分散室に導入すること
ができ、以降の分散室及び分級室での粉体材料の分散及
び分級を向上させて、小型でかつ安価に分級性能をより
一層向上させることができる。
According to the above construction, the channel reducing / enlarging portion is formed in the shape of a mountain on the wall surface inside the dispersion chamber inflow pipe so as to protrude toward the center of the flow path of the dispersion chamber inflow pipe over a predetermined range. Since the curved surface of the base of the shape is formed as a curved surface having the same radius of curvature as the radius of the cylindrical dispersion chamber, the flow rate of the primary air is changed at the flow path reducing and expanding section to collide the powder material, The primary air stream joins the swirling flow of the dispersion chamber along the curved surface with the same radius of curvature as the radius of the dispersion chamber, and the powder material, especially the agglomerated particles, is dispersed smoothly with a simple structure with sufficient dispersion. It can be introduced into the chamber, and the dispersion and classification of the powder material in the subsequent dispersion chamber and classification chamber can be improved, and the classification performance can be further improved at a small size and at low cost.

【0022】また、例えば、請求項3に記載するよう
に、前記流路縮小拡大部は、前記分散室流入管内の流路
を複数の流路に分割して当該分割した各流路の流路面積
を前記一次空気の流れ方向に向かって所定の縮小率で所
定の流路面積に狭めた後、所定の拡大率で流路面積を拡
大するとともに、前記分散室内あるいは前記分散室近傍
で再度1つの流路に集合させる状態で前記分散室流入管
内に所定長さにわたって延在して配設されていてもよ
い。
For example, as described in claim 3, the flow passage reducing / enlarging portion divides the flow passage in the dispersion chamber inflow pipe into a plurality of flow passages, and the flow passage of each of the divided flow passages After reducing the area to a predetermined flow path area at a predetermined reduction rate in the primary air flow direction, the flow path area is expanded at a predetermined expansion rate, and 1 is again set in the dispersion chamber or in the vicinity of the dispersion chamber. It may be arranged so as to extend over a predetermined length in the dispersion chamber inflow pipe in a state of being gathered in one flow path.

【0023】上記構成によれば、分散室流入管内に、分
散室流入管内の流路を複数の流路に分割して当該分割し
た各流路の流路面積を一次空気の流れ方向に向かって所
定の縮小率で所定の流路面積に狭めた後、所定の拡大率
で流路面積を拡大するとともに、分散室内あるいは分散
室近傍で再度1つの流路に集合させる状態で流路縮小拡
大部を配設しているので、複数の流路に分割された各流
路での一次空気の流速の変化により粉体材料を衝突させ
るとともに、流路の合流部分で再度粉体材料を衝突させ
て、簡単な構成で粉体材料、特に、凝集粒子をより一層
充分に分散させた状態で分散室に粉体材料を導入するこ
とができ、以降の分散室及び分級室での粉体材料の分散
及び分級を向上させて、小型でかつ安価に分級性能をよ
り一層向上させることができる。
According to the above construction, the flow path in the dispersion chamber inflow pipe is divided into a plurality of flow paths in the dispersion chamber inflow pipe, and the flow path area of each of the divided flow paths is set in the direction of the primary air flow. After narrowing to a predetermined flow area at a predetermined reduction rate, the flow path area is enlarged at a predetermined expansion rate, and the flow path reduction / expansion unit is assembled again in one flow path in or near the dispersion chamber. Since the powder material collides with the change in the flow rate of the primary air in each of the plurality of flow paths divided into a plurality of flow paths, the powder material collides again at the merging portion of the flow paths. The powder material can be introduced into the dispersion chamber in a state where the aggregated particles are more sufficiently dispersed with a simple configuration, and the powder material can be dispersed in the subsequent dispersion chamber and the classification chamber. And improve classification, and further improve classification performance in a small size and at low cost Door can be.

【0024】さらに、例えば、請求項4に記載するよう
に、前記気流式分級装置は、前記分散室流入管内の一次
空気流の流れ方向に対する前記流路縮小拡大部の角度を
調整する角度調整機構を、さらに備えていてもよい。
[0024] Further, for example, as set forth in claim 4, the air flow type classifier includes an angle adjusting mechanism for adjusting an angle of the flow passage reducing / enlarging portion with respect to a flow direction of a primary air flow in the dispersion chamber inflow pipe. May be further provided.

【0025】上記構成によれば、角度調整機構により、
分散室流入管内の一次空気流の流れ方向に対する流路縮
小拡大部の角度を調整可能としているので、流路縮小拡
大部の角度を分級する粒子の粒径に応じて、適宜変更す
ることができ、小型でかつ安価に様々な粒径に対応した
高精度な分級を行うことができる。
According to the above arrangement, the angle adjusting mechanism allows
Since the angle of the flow passage reduction / enlargement portion with respect to the flow direction of the primary air flow in the dispersion chamber inflow pipe is adjustable, the angle of the flow passage reduction / enlargement portion can be appropriately changed according to the particle size of the particles to be classified. In addition, high-precision classification corresponding to various particle sizes can be performed at a small size and at low cost.

【0026】また、例えば、請求項5に記載するよう
に、前記気流式分級装置は、前記流路縮小拡大部を所定
方向に所定周期の振動を付与する加振機構を、さらに備
えていてもよい。
Further, for example, as described in claim 5, the airflow type classification device may further include a vibrating mechanism for imparting a predetermined period of vibration to the flow path reducing / enlarging portion in a predetermined direction. Good.

【0027】上記構成によれば、加振機構により、流路
縮小拡大部を所定方向に所定周期の振動を付与可能とし
ているので、粉体材料の凝集粒子の状態や分級する粒子
の粒径等に応じて、その方向及び大きささらには周期を
変化させて流路縮小拡大部を振動させることができ、小
型かつ安価に様々な粒径に対応したより一層高精度な分
級を行うことができる。
According to the above configuration, the vibrating mechanism makes it possible to apply a predetermined period of vibration to the channel reducing / enlarging portion in a predetermined direction. In accordance with the above, the direction and size of the channel and the period can be changed to vibrate the channel reducing / enlarging portion, and more accurate classification corresponding to various particle sizes can be performed at a small size and at low cost. .

【0028】[0028]

【発明の実施の形態】以下、本発明の好適な実施の形態
を添付図面に基づいて詳細に説明する。なお、以下に述
べる実施の形態は、本発明の好適な実施の形態であるか
ら、技術的に好ましい種々の限定が付されているが、本
発明の範囲は、以下の説明において特に本発明を限定す
る旨の記載がない限り、これらの態様に限られるもので
はない。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. It should be noted that the embodiments described below are preferred embodiments of the present invention, and therefore, various technically preferable limitations are added. However, the scope of the present invention is not limited to the following description. The embodiments are not limited to these embodiments unless otherwise specified.

【0029】図1及び図2は、本発明の気流式分級装置
の第1の実施の形態を示す図であり、本実施の形態は、
分散室に粉体材料と一次空気流を導入する分散室流入口
部分に、流入通路を縮小拡大する縮小拡大部を設けたも
ので、請求項1に対応するものである。
FIGS. 1 and 2 show a first embodiment of an airflow classifier according to the present invention.
According to claim 1, a reduction / enlargement portion for reducing / expanding an inflow passage is provided at an inlet portion of a dispersion chamber for introducing a powder material and a primary air flow into the dispersion chamber.

【0030】図1は、本発明の気流式分級装置の第1の
実施の形態を適用した気流式分級装置1の正面断面図、
図2は、図1のA−A矢視断面図である。
FIG. 1 is a front sectional view of an airflow classifier 1 to which the first embodiment of the airflow classifier of the present invention is applied.
FIG. 2 is a sectional view taken along the line AA of FIG.

【0031】図1において、気流式分級装置1は、ホッ
パー2上に、下部ケーシング3、本体ケーシング4及び
分散室5が順次配設されており、分散室5の上部外周部
には、分散室流入管6が取り付けられている。
In FIG. 1, an air flow type classification device 1 has a lower casing 3, a main casing 4 and a dispersion chamber 5 arranged in this order on a hopper 2, and a dispersion chamber 5 An inflow pipe 6 is attached.

【0032】分散室5は、円筒形状に形成されており、
その中心部に分散室排気口7が配設されている。分散室
流入管6は、図1のA−A矢視断面図である図2に示す
ように、円筒形状の接線方向に延在する状態で配設され
ており、分級対象である粉体材料と当該粉体材料を搬送
する一次空気を、図2に矢印で示す方向に、流入させ
る。
The dispersion chamber 5 is formed in a cylindrical shape.
A dispersion chamber exhaust port 7 is provided at the center. As shown in FIG. 2, which is a cross-sectional view taken along the line AA in FIG. 1, the dispersion chamber inflow pipe 6 is disposed so as to extend in a tangential direction of a cylindrical shape, and is a powder material to be classified. And the primary air carrying the powder material flows in the direction indicated by the arrow in FIG.

【0033】この分散室流入管6には、その分散室5へ
の開口部近くに、分散室流入管6の流路面積を所定の縮
小率で縮小させた後、所定の拡大率で拡大させる縮小拡
大部(流路縮小拡大部)8が形成されており、縮小拡大
部8は、分散室流入管6の流路面積を最も縮小させる部
分から分散室流入管6の流れ方向に沿って流路面積を滑
らかに縮小させるとともに、滑らかに拡大させるすそ野
部分を有した山形に形成されている。
In the dispersion chamber inflow pipe 6, near the opening to the dispersion chamber 5, the flow area of the dispersion chamber inflow pipe 6 is reduced at a predetermined reduction rate, and then enlarged at a predetermined expansion rate. A reduction / expansion section (flow path reduction / expansion section) 8 is formed, and the reduction / expansion section 8 flows along the flow direction of the dispersion chamber inflow pipe 6 from the portion where the flow area of the dispersion chamber inflow pipe 6 is reduced most. It is formed in a mountain shape having a base portion for smoothly reducing the road area and smoothly expanding the road area.

【0034】したがって、分散室流入管6内を図2中矢
印方向に流れてきた粉体材料と一次空気流は、縮小拡大
部8の手前部分からその流路面積が狭くなって収縮し
て、図2に破線で示す収縮領域9aが形成され、縮小拡
大部8の最も流路面積の狭い部分を通過した位置からそ
の流路面積が広くなって拡大して、図2に破線で示す拡
大領域9bが形成される。
Therefore, the powder material and the primary air flow flowing in the dispersion chamber inflow pipe 6 in the direction of the arrow in FIG. A contraction region 9a indicated by a broken line in FIG. 2 is formed, and the passage area is enlarged from a position where the passage portion passes through the narrowest portion of the reduction / enlargement portion 8 to be enlarged. 9b is formed.

【0035】再び、図1において、分散室流入管6から
分散室5に導入された粉体材料と一次空気流は、図1中
矢印で示すように、分散室5内を旋回し、粉体材料が分
散室5から本体ケーシング4へと下降し、一次空気流
は、分散室5の中央部に配設された分散室排気口7から
排出される。
Referring again to FIG. 1, the powder material and the primary air flow introduced into the dispersion chamber 5 from the dispersion chamber inflow pipe 6 circulate in the dispersion chamber 5 as indicated by the arrow in FIG. The material descends from the dispersion chamber 5 to the main casing 4, and the primary air flow is discharged from the dispersion chamber exhaust port 7 provided in the center of the dispersion chamber 5.

【0036】分散室5の下部には、その中央部に中央が
高くなった円錐状のセンターコア10が配設されてお
り、このセンターコア10よりも下方に分級室11が形
成されている。センターコア10の外周縁と分散室5の
内壁面との間には、環状の所定の間隔が形成されて、分
級室11へ粉体材料を供給する供給溝12となってい
る。
In the lower part of the dispersion chamber 5, a conical center core 10 whose center is higher at the center is disposed, and a classification chamber 11 is formed below the center core 10. A predetermined annular gap is formed between the outer peripheral edge of the center core 10 and the inner wall surface of the dispersion chamber 5 to form a supply groove 12 for supplying a powder material to the classification chamber 11.

【0037】分級室11の底部であってセンターコア1
0の下方には、円錐状のセパレータコア13が配設され
ており、セパレータコア13の中央部には、微粉排気口
(微粒子排出口)14が開口している。また、セパレー
タコア13の外周縁と分級室11の内壁面である本体ケ
ーシング4の内壁面との間には、環状の所定の間隔が形
成されて、粗粉排気口(粗粒子排出口)15が形成され
ており、セパレータコア13の下方のホッパー2内に粗
粉排気口15を通過した粗粒子が収納される。
The center core 1 at the bottom of the classifying chamber 11
Below 0, a conical separator core 13 is provided, and at the center of the separator core 13, a fine powder outlet (fine particle outlet) 14 is opened. A predetermined annular space is formed between the outer peripheral edge of the separator core 13 and the inner wall surface of the main body casing 4 which is the inner wall surface of the classifying chamber 11, and a coarse powder exhaust port (coarse particle discharge port) 15 is formed. Are formed, and the coarse particles that have passed through the coarse powder exhaust port 15 are stored in the hopper 2 below the separator core 13.

【0038】上記本体ケーシング4のセパレータコア1
3に対向する部分には、羽根形状を有した二次空気流入
口16が周状に形成されており、二次空気流入口16
は、セパレータコア13の上表面部分に旋回状の二次空
気流を噴出して、粉体材料を分散させるとともに、分級
室11内の旋回空気流の旋回速度を加速させる。
The separator core 1 of the main body casing 4
A secondary air inlet 16 having a blade shape is formed circumferentially at a portion opposing the secondary air inlet 3.
The jetting of the swirling secondary airflow onto the upper surface portion of the separator core 13 disperses the powder material and accelerates the swirling speed of the swirling airflow in the classification chamber 11.

【0039】次に、本実施の形態の作用を説明する。気
流式分級装置1は、分級対象の粉体材料を含んだ一次空
気流を分散室流入管6から分散室5に流入し、分散室5
で粉体材料を含んだ一次空気流を旋回させつつ、粉体材
料中の比較的粒径の大きい粗粒子と比較的粒径の小さい
微粒子とをその遠心力で分級・分散させるとともに、粉
体材料を旋回流により分散室5内を旋回させて、旋回流
の遠心力や粉体材料と分散室5壁面との衝突により、粉
体材料中の凝集粒子を解離(分散)させて、これら分散
された粗粒子と微粒子を相互に粒子間距離を離したま
ま、再凝集するの防止しつつ、供給溝12から分級室1
1内に速やかに供給する。
Next, the operation of the present embodiment will be described. The airflow type classification device 1 flows a primary airflow containing a powder material to be classified into the dispersion chamber 5 from the dispersion chamber inflow pipe 6 and the dispersion chamber 5.
The primary air flow containing the powder material is swirled to separate and separate the coarse particles and the relatively small particles in the powder material by centrifugal force. The material is swirled in the dispersion chamber 5 by the swirling flow, and the agglomerated particles in the powder material are dissociated (dispersed) by the centrifugal force of the swirling flow or the collision between the powder material and the wall of the dispersion chamber 5, and the dispersion is performed. The separated coarse particles and the fine particles are separated from the supply groove 12 while keeping the distance between the particles away from each other, while preventing reaggregation.
Supply quickly into 1.

【0040】分級室11に供給された粉体材料は、セン
ターコア10の円錐形状とセパレータコア13の円錐形
状及び二次空気流入口16から流入される二次空気流に
より分級室11内でさらに旋回され、その重量差から、
微粒子がセパレータコア13の中央部に集まって、微粉
排気口14から排出され、粗粒子が粗粉排気口15から
ホッパー2内に収納される。
The powder material supplied to the classification chamber 11 is further divided in the classification chamber 11 by the conical shape of the center core 10, the conical shape of the separator core 13, and the secondary air flow flowing from the secondary air inlet 16. Turned, and from the difference in weight,
Fine particles gather at the center of the separator core 13 and are discharged from the fine powder exhaust port 14, and coarse particles are stored in the hopper 2 from the coarse powder exhaust port 15.

【0041】この場合、上述のように、分散室流入管6
から分散室5に供給される粉体材料の中には、粗粒子と
微粒子が強固に凝集しあって、分散室5内部の旋回気流
や分散室5内壁面との衝突によっても分散されない凝集
粒子が存在し、この凝集粒子の中には、粗粒子に微粒子
が付着したものも含まれる。この凝集粒子がそのまま分
散室5から分級室11に送られると、分級室11で微粒
子が解離されずに、そのまま粗粒子として、粗粉排気口
15からホッパー2内に入る。この粗粒子をトナーとし
て利用した場合、後で、凝集粒子が解離して粗粒子と微
粒子に分離すると、粒径分布が変化して、分級精度が低
下し、電子写真方式の画像形成方法においては、画質が
著しく低下することとなる。
In this case, as described above, the dispersion chamber inflow pipe 6
In the powder material supplied to the dispersion chamber 5 from the above, coarse particles and fine particles are strongly agglomerated, and are not dispersed even by the swirling airflow inside the dispersion chamber 5 or the collision with the inner wall surface of the dispersion chamber 5. Exists, and the aggregated particles include those obtained by attaching fine particles to coarse particles. When the aggregated particles are sent from the dispersion chamber 5 to the classifying chamber 11 as they are, the fine particles are not dissociated in the classifying chamber 11 but enter the hopper 2 from the coarse powder exhaust port 15 as coarse particles as they are. When the coarse particles are used as a toner, when the aggregated particles are later dissociated and separated into coarse particles and fine particles, the particle size distribution changes, the classification accuracy is reduced, and in the electrophotographic image forming method, , The image quality is significantly reduced.

【0042】ところが、本実施の形態の気流分級装置1
は、分散室流入管6に縮小拡大部8か形成されており、
分散室流入管6を通過する粉体材料を含んだ一次空気流
は、縮小拡大部8により図2に示した収縮領域9aに到
達すると、収縮領域9aで流路面積が急激に狭くなっ
て、流速が上昇する。この収縮領域9aにおいては、一
次空気流中の粉体材料の粒子密度が増加して、粒子同士
の衝突確率が上昇し、特に、見かけ上の粒径の大きい凝
集粒子にとっては、より一層衝突確率が上昇して、粉体
材料の粒子同士の衝突回数が増加する。この粉体材料の
粒子同士の衝突により強固に凝集する凝集粒子が解離
(分散)される。
However, the airflow classification device 1 of the present embodiment
Is formed in the dispersion chamber inflow pipe 6 with a reduction / enlargement portion 8,
When the primary air flow containing the powder material passing through the dispersion chamber inflow pipe 6 reaches the contraction region 9a shown in FIG. 2 by the contraction / enlargement unit 8, the flow passage area is sharply reduced in the contraction region 9a, The flow velocity increases. In the contraction region 9a, the particle density of the powder material in the primary air flow increases, and the collision probability between the particles increases. In particular, for the aggregated particles having a large apparent particle size, the collision probability is further increased. And the number of collisions between particles of the powder material increases. Agglomerated particles that are strongly agglomerated by the collision of the particles of the powder material are dissociated (dispersed).

【0043】そして、粉体材料を含む一次空気流は、縮
小拡大部8の頂上部分を通過すると、図2に示した拡大
領域9bに到達し、この拡大領域9bで流速が急激に低
下して、粉体粒子の流速も急激に低下した状態となると
ともに、分散室流入管6の流れ方向において、粉体粒子
の微粒子と粗粒子という粒径の相違、特に、凝集粒子と
の粒径の相違による速度変化から粒子同士の二次的な衝
突が生じて解離(分散)が促進され、凝集粒子が解離さ
れて凝集粒子のほとんど存在しない状態で分散室5内に
流入する。
When the primary air flow containing the powder material passes through the top of the reduction / enlargement section 8, it reaches the expansion area 9b shown in FIG. 2, where the flow velocity sharply decreases. In addition, the flow velocity of the powder particles suddenly decreases, and the difference in the particle size between the fine particles and the coarse particles of the powder particles, particularly the difference in the particle size from the aggregated particles, in the flow direction of the dispersion chamber inflow pipe 6. The secondary particles collide with each other due to the change in velocity, and dissociation (dispersion) is promoted. The aggregated particles are dissociated and flow into the dispersion chamber 5 with almost no aggregated particles.

【0044】分散室5に流入した粉体材料は、上述のよ
うに、分散室5内で旋回気流による粒子同士の衝突や分
散室5の壁面との衝突により解離(分散)がさらに行わ
れて、速やかに分級室11に送り込まれ、分級室11
で、二次空気流入口16からの二次空気により旋回され
て、粒径に依存した遠心力の相違による旋回半径の違い
から、粗粒子が粗粉排気口15からホッパー2内へ、微
粒子がセパレータコア13中央の微粉排気口14から速
やかに、かつ、高精度に分級されて排出される。
As described above, the powder material flowing into the dispersion chamber 5 is further dissociated (dispersed) by collision of particles in the dispersion chamber 5 due to swirling airflow and collision with the wall surface of the dispersion chamber 5. , Is immediately sent to the classification room 11,
Then, the particles are swirled by the secondary air from the secondary air inlet 16, and coarse particles are transferred from the coarse particle exhaust port 15 into the hopper 2 due to the difference in the turning radius due to the difference in centrifugal force depending on the particle size. The powder is quickly and accurately classified and discharged from the fine powder exhaust port 14 at the center of the separator core 13.

【0045】このように、本実施の形態の気流式分級装
置1は、円筒形状の分散室5の上部外周面に当該円筒形
状の接線方向に延在して分散室5に連通する状態で配設
された分散室流入管6から粉体材料を含んだ一次空気流
を分散室5に導入し、分散室5で分散させた粉体材料
を、分散室5の下部に配設された円錐形状のセンターコ
ア10の外周縁と分散室5の内周壁との間の環状隙間で
ある供給溝12を介して分級室11に導入して、分級室
11の下部に配設された円錐形状のセパレータコア13
の周方向に二次空気流入口16から二次空気を流入し、
当該二次空気により粉体材料を旋回させて粗粒子と微粒
子に分級し、微粒排気口14から微粒子を排出させ、粗
粉排気口15から粗粒子を排出させる際に、分散室流入
管6の分散室5への開口部付近に、当該分散室流入管6
の流路を一次空気の流れ方向に向かって所定の縮小率で
所定の流路面積に狭めた後、所定の拡大率で流路面積を
拡大する縮小拡大部8を設けている。
As described above, the airflow classifier 1 of this embodiment is arranged on the upper outer peripheral surface of the cylindrical dispersion chamber 5 so as to extend in the tangential direction of the cylindrical shape and communicate with the dispersion chamber 5. A primary air flow containing the powder material is introduced into the dispersion chamber 5 from the provided dispersion chamber inflow pipe 6, and the powder material dispersed in the dispersion chamber 5 is conically shaped in the lower part of the dispersion chamber 5. Is introduced into the classifying chamber 11 through the supply groove 12 which is an annular gap between the outer peripheral edge of the center core 10 and the inner peripheral wall of the dispersion chamber 5, and a conical separator disposed below the classifying chamber 11. Core 13
Secondary air flows in from the secondary air inlet 16 in the circumferential direction of
When the powder material is swirled by the secondary air to classify the particles into coarse particles and fine particles, and the fine particles are discharged from the fine particle exhaust port 14 and the coarse particles are discharged from the coarse particle exhaust port 15, Near the opening to the dispersion chamber 5, the dispersion chamber inflow pipe 6
After reducing the width of the flow path to a predetermined flow path area at a predetermined reduction rate in the primary air flow direction, a reduction / enlargement unit 8 is provided for expanding the flow path area at a predetermined expansion rate.

【0046】したがって、縮小拡大部8で一次空気の流
速を速めて、粉体材料の流路内での密度を増大させて粉
体材料を高速で衝突させるとともに、一次空気流の流速
を急激に遅くして、粉体材料の粒径の異なる粒子の速度
変化により二次衝突させ、簡単な構成で粉体材料、特
に、凝集粒子を充分に分散させた状態で分散室に導入す
ることができ、以降の分散室5及び分級室11での粉体
材料の分散及び分級を向上させて、小型でかつ安価に分
級性能を向上させることができる。
Accordingly, the flow rate of the primary air is increased in the reduction / enlargement section 8 to increase the density of the powder material in the flow path, thereby causing the powder material to collide at a high speed and to rapidly reduce the flow rate of the primary air flow. By slowing down, secondary collisions can be made by changing the speed of particles having different particle diameters of the powder material, and the powder material, especially the aggregated particles, can be introduced into the dispersion chamber in a sufficiently dispersed state with a simple structure. Thus, the dispersion and classification of the powder material in the subsequent dispersion chamber 5 and the classification chamber 11 can be improved, and the classification performance can be improved at a small size and at low cost.

【0047】図3は、本発明の気流式分級装置の第2の
実施の形態を示す図であり、本実施の形態は、分散室流
入管に設けた縮小拡大部のすそ野部分を分散室の半径と
同じ曲率を有する曲面に形成したもので、請求項2に対
応するものである。
FIG. 3 is a view showing a second embodiment of the airflow type classification device according to the present invention. In this embodiment, the skirt portion of the reduction / enlargement section provided in the dispersion chamber inflow pipe is provided in the dispersion chamber. It is formed on a curved surface having the same curvature as the radius, and corresponds to claim 2.

【0048】なお、本実施の形態は、上記第1の実施の
形態の気流式分級装置と同様の気流式分級装置に適用し
たものであり、本実施の形態の説明においては、上記第
1の実施の形態と同様の構成部分には、同一の符号を付
して、その詳細な説明を省略する。
This embodiment is applied to an airflow classifier similar to the airflow classifier of the first embodiment. In the description of the present embodiment, the first embodiment will be described. The same components as those in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0049】図3は、本発明の気流式分級装置の第2の
実施の形態を適用した気流式分級装置20の分散室5及
び分散室流入管21の平面断面図である。
FIG. 3 is a plan cross-sectional view of the dispersion chamber 5 and the dispersion chamber inflow pipe 21 of the airflow classifier 20 to which the second embodiment of the airflow classifier of the present invention is applied.

【0050】図3において、分散室5は、所定の半径R
を有した円筒状に形成されており、気流式分級装置20
は、円筒状の分散室5にその接線方向に延在する状態で
分散室流入管21が取り付けられている。
In FIG. 3, the dispersion chamber 5 has a predetermined radius R
Is formed in a cylindrical shape having an airflow classifier 20
The dispersion chamber inflow pipe 21 is attached to the cylindrical dispersion chamber 5 so as to extend in the tangential direction.

【0051】分散室流入管21内には、その分散室5へ
の開口部分近くに、分散室流入管21の流路面積を所定
の縮小率で縮小させた後、所定の拡大率で拡大させる縮
小拡大部(流路縮小拡大部)22が形成されており、縮
小拡大部22は、分散室流入管21の流路面積を最も縮
小させる部分から分散室流入管21の流れ方向に沿って
流路面積を所定の縮小率で縮小させるとともに、所定の
拡大率で拡大させるすそ野部分を有した山形形状に形成
されている。
In the dispersion chamber inflow pipe 21, near the opening to the dispersion chamber 5, the flow area of the dispersion chamber inflow pipe 21 is reduced at a predetermined reduction rate, and then enlarged at a predetermined enlargement rate. A reduction / expansion portion (flow channel reduction / expansion portion) 22 is formed, and the reduction / expansion portion 22 flows along the flow direction of the dispersion chamber inflow pipe 21 from the portion where the flow area of the dispersion chamber inflow pipe 21 is reduced most. The road area is formed in a chevron shape having a base portion for reducing the road area at a predetermined reduction rate and expanding at a predetermined expansion rate.

【0052】縮小拡大部22は、そのすそ野部分、特
に、分散室5側のすそ野部分が、分散室5の半径Rと同
じ大きさの曲率半径Pを有する滑らかな曲面に形成され
ている。
The reduction / enlargement portion 22 has a skirt portion, particularly a skirt portion on the dispersion chamber 5 side, formed into a smooth curved surface having a radius of curvature P of the same size as the radius R of the dispersion chamber 5.

【0053】本実施の形態の気流式分級装置20では、
図3に矢印で示すように、分散室流入管21内を分散室
5方向に流れてきた粉体材料を含む一次空気流は、縮小
拡大部22の一次空気流の流れ方向手前側のすそ野部分
で流路が狭められて、流速が急激に上昇し、粉体材料同
士の衝突確率が上昇して、高速で衝突することにより、
凝集粒子が解離(分散)される。粉体材料を含む一次空
気流は、縮小拡大部22の頂上部分を通過すると、分散
室5側のすそ野部分を下りおりる状態で流れて、流路が
急激に拡大されて流速が急激に低下し、粒径の異なる微
粒子と粗粒子及び残留する凝集粒子がその重量差に起因
する速度差により、相互に衝突して、さらに解離(分
散)された状態で分散室5に流入する。
In the airflow classifier 20 of this embodiment,
As shown by arrows in FIG. 3, the primary air flow including the powder material flowing in the dispersion chamber inflow pipe 21 in the direction of the dispersion chamber 5 is a skirt portion on the front side in the flow direction of the primary air flow of the reduction / enlargement section 22. By narrowing the flow path, the flow velocity sharply increases, the probability of collision between the powder materials increases, and by colliding at high speed,
Aggregated particles are dissociated (dispersed). When the primary air flow containing the powder material passes through the top portion of the reduction / expansion section 22, it flows down the skirt portion on the dispersion chamber 5 side, the flow path is rapidly expanded, and the flow velocity drops rapidly. Then, the fine particles having different particle diameters, the coarse particles, and the remaining aggregated particles collide with each other due to a speed difference caused by the weight difference, and flow into the dispersion chamber 5 in a dissociated (dispersed) state.

【0054】このとき、縮小拡大部22は、少なくとも
その分散室5側のすそ野部分が分散室5の半径Rと同じ
曲率半径Pの凹凸の無い滑らかな曲面に形成されている
ため、流れが乱れることなく、分散状態を保った状態
で、分散室5内に流れ込み、分散室5内部の旋回気流に
分散された粉体粒子を供給する。
At this time, the flow of the reduction / expansion unit 22 is disturbed because at least the skirt portion on the dispersion chamber 5 side is formed on a smooth curved surface having the same radius of curvature P as the radius R of the dispersion chamber 5 without irregularities. Without dispersing, the powder particles flow into the dispersion chamber 5 while being kept in a dispersed state, and supply the powder particles dispersed in the swirling airflow inside the dispersion chamber 5.

【0055】分散室5に供給された粉体粒子は、上記第
1の実施の形態と同様に、分散室5でさらに分散された
後、分級室11に速やかに供給され、分級室11で微粒
子と粗粒子が分級されて、ホッパー2内と微粉排気口1
4に排出される。
The powder particles supplied to the dispersion chamber 5 are further dispersed in the dispersion chamber 5 and immediately supplied to the classification chamber 11 as in the first embodiment. And coarse particles are classified into the hopper 2 and the fine powder exhaust port 1
It is discharged to 4.

【0056】したがって、縮小拡大部22で一次空気の
流速を変化させて粉体材料を衝突させるとともに、一次
空気流を分散室5の半径Rと同じ曲率半径Pの曲面に沿
って分散室5の旋回流に合流させて、簡単な構成で粉体
材料、特に、凝集粒子を充分に分散させた状態でスムー
スに分散室5に導入することができ、以降の分散室5及
び分級室11での粉体材料の分散及び分級を向上させ
て、小型でかつ安価に分級性能をより一層向上させるこ
とができる。
Therefore, the powder material is caused to collide with the flow rate of the primary air in the reduction / expansion section 22 and the primary air flow is caused to flow along the curved surface having the same curvature radius P as the radius R of the dispersion chamber 5. By merging with the swirling flow, the powder material, particularly the agglomerated particles, can be smoothly introduced into the dispersion chamber 5 with a simple structure in a state of being sufficiently dispersed. By improving the dispersion and classification of the powder material, the classification performance can be further improved at a small size and at low cost.

【0057】図4は、本発明の気流式分級装置の第3の
実施の形態を示す図であり、本実施の形態は、分散室流
入管に流路を縮小拡大させつつ2つに分割するととも
に、合流させる縮小拡大部を形成したもので、請求項3
に対応するものである。
FIG. 4 is a view showing a third embodiment of an airflow classifier according to the present invention. In this embodiment, the flow path is divided into two while reducing and expanding the flow path in the inflow pipe of the dispersion chamber. And a reduction / enlargement section for merging.
It corresponds to.

【0058】なお、本実施の形態は、上記第1の実施の
形態の気流式分級装置と同様の気流式分級装置に適用し
たものであり、本実施の形態の説明においては、上記第
1の実施の形態と同様の構成部分には、同一の符号を付
して、その詳細な説明を省略する。
This embodiment is applied to an airflow classifier similar to the airflow classifier of the first embodiment. In the description of this embodiment, the first embodiment will be described. The same components as those in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0059】図4は、本発明の気流式分級装置の第3の
実施の形態を適用した気流式分級装置30の分散室5及
び分散室流入管31の平面断面図である。
FIG. 4 is a plan sectional view of the dispersion chamber 5 and the dispersion chamber inflow pipe 31 of the airflow type classification device 30 to which the third embodiment of the airflow type classification device of the present invention is applied.

【0060】図4において、分散室5は、円筒状に形成
されており、気流式分級装置30は、円筒状の分散室5
にその接線方向に延在する状態で分散室流入管31が取
り付けられている。
In FIG. 4, the dispersion chamber 5 is formed in a cylindrical shape, and the air-flow classifier 30 is provided with a cylindrical dispersion chamber 5.
A dispersion chamber inflow pipe 31 is attached so as to extend in the tangential direction.

【0061】分散室流入管31内には、その分散室5へ
の開口部分近くに、分散室流入管31の流路を2つに分
割するとともに、分割した各流路の流路面積を所定の縮
小率で縮小させた後、所定の拡大率で拡大させる縮小拡
大部32が形成されており、縮小拡大部32は、分散室
流入管31の分割した流路の流路面積を一次空気流の流
れ方向に沿って滑らかに縮小させるとともに、最も縮小
させた部分から分割した流路面積を滑らかに拡大させる
すそ野部分を有した断面が略円盤形に形成されている。
縮小拡大部32は、その分散室5側のすそ野部分が、分
散室5への開口部近くで合流して消滅する状態で形成さ
れている。
In the dispersion chamber inflow pipe 31, near the opening to the dispersion chamber 5, the flow path of the dispersion chamber inflow pipe 31 is divided into two, and the flow passage area of each divided flow path is set to a predetermined value. A reduction / enlargement portion 32 is formed to reduce the flow rate at a predetermined reduction rate and then expand at a predetermined expansion rate. The reduction / enlargement portion 32 reduces the flow path area of the divided flow path of the dispersion chamber inflow pipe 31 by the primary air flow. The cross-section having a skirt portion for smoothly reducing the flow path area divided from the most reduced portion along with the flow direction is formed substantially in a disk shape.
The reduction / enlargement portion 32 is formed in a state where the skirt portion on the dispersion chamber 5 side joins near the opening to the dispersion chamber 5 and disappears.

【0062】本実施の形態の気流式分級装置30では、
図4に矢印で示すように、分散室流入管31内を分散室
5方向に流れてきた粉体材料を含む一次空気流は、縮小
拡大部32の一次空気流の流れ方向手前側の図4中上下
方向に膨らみを生じるすそ野部分で、その流路が2つに
分割されるとともに、流路が狭められて、流速が急激に
上昇し、粉体材料同士の衝突確率が上昇して、高速で衝
突することにより、凝集粒子が解離(分散)される。
In the airflow classifier 30 of the present embodiment,
As indicated by arrows in FIG. 4, the primary air flow containing the powder material flowing in the dispersion chamber inflow pipe 31 in the direction of the dispersion chamber 5 is directed toward the flow side of the primary air flow of the reduction / enlargement section 32 in FIG. In the base part where bulges occur in the middle and vertical directions, the flow path is divided into two, and the flow path is narrowed, the flow velocity rises sharply, the probability of collision between powder materials rises, , The aggregated particles are dissociated (dispersed).

【0063】粉体材料を含む一次空気流は、縮小拡大部
32の頂上部分を通過すると、分散室5側のすそ野部分
を下りおりる状態で流れて、流路が急激に拡大されて流
速が急激に低下つつ、縮小拡大部32のすそ野の端(図
4に円33で示す合流領域)で合流し、粒径の異なる微
粒子と粗粒子及び残留する凝集粒子がその重量差に起因
する速度差により、相互に衝突して、さらに解離(分
散)されるとともに、合流することにより、粒子同士、
特に、残留する凝集粒子が衝突してより一層解離(分
散)された状態で分散室5に流入する。
When the primary air flow containing the powder material passes through the top portion of the reduction / enlargement section 32, it flows down the skirt portion on the dispersion chamber 5 side, the flow path is rapidly expanded, and the flow velocity is reduced. While rapidly decreasing, they merge at the end of the base of the reduction / enlargement section 32 (the confluence area indicated by the circle 33 in FIG. 4), and the fine particles, the coarse particles, and the remaining agglomerated particles having different particle diameters have a speed difference due to the weight difference. Collide with each other, and are further dissociated (dispersed).
In particular, the remaining agglomerated particles flow into the dispersion chamber 5 in a state of being further dissociated (dispersed) by collision.

【0064】分散室5に供給された粉体粒子は、上記第
1の実施の形態と同様に、分散室5でさらに分散された
後、分級室11に速やかに供給され、分級室11で微粒
子と粗粒子が分級されて、ホッパー2内と微粉排気口1
4に排出される。
The powder particles supplied to the dispersion chamber 5 are further dispersed in the dispersion chamber 5 and then immediately supplied to the classification chamber 11 as in the first embodiment. And coarse particles are classified into the hopper 2 and the fine powder exhaust port 1
It is discharged to 4.

【0065】このように、本実施の形態の気流式分級装
置30によれば、分散室流入管31内に、分散室流入管
31内の流路を2の流路に分割して当該分割した各流路
の流路面積を一次空気の流れ方向に向かって所定の縮小
率で所定の流路面積に狭めた後、所定の拡大率で流路面
積を拡大するとともに、分散室5近傍で再度1つの流路
に集合させる状態で縮小拡大部32を配設しているの
で、2つの流路に分割された各流路での一次空気の流速
の変化により粉体材料を衝突させるとともに、流路の合
流部分33で再度粉体材料を衝突させて、簡単な構成で
粉体材料、特に、凝集粒子をより一層充分に分散させた
状態で分散室5に粉体材料を導入することができ、以降
の分散室5及び分級室11での粉体材料の分散及び分級
を向上させて、小型でかつ安価に分級性能をより一層向
上させることができる。
As described above, according to the airflow type classification device 30 of the present embodiment, the flow path in the dispersion chamber inflow pipe 31 is divided into two flow paths in the dispersion chamber inflow pipe 31 and divided. After narrowing the flow channel area of each flow channel toward the primary air flow direction at a predetermined reduction ratio to a predetermined flow channel area, the flow channel area is expanded at a predetermined expansion ratio, and again in the vicinity of the dispersion chamber 5. Since the reduction / enlargement portion 32 is disposed in a state of being gathered in one flow path, the powder material collides with the change in the flow rate of the primary air in each of the two flow paths divided into two flow paths. The powder material is collided again at the merging portion 33 of the path, and the powder material can be introduced into the dispersion chamber 5 with a simple configuration in which the powder material, in particular, the aggregated particles are more sufficiently dispersed. By improving the dispersion and classification of the powder material in the subsequent dispersion chamber 5 and classification chamber 11, Inexpensively classification performance can be further improved.

【0066】なお、本実施の形態においては、縮小拡大
部32により分散室流入管31内を2つの流路に分割し
ているが、分割する流路の数は、2つに限るものではな
く、適宜2つ以上の数に分割するように縮小拡大部を形
成してもよい。
In the present embodiment, the inside of the dispersion chamber inflow pipe 31 is divided into two flow paths by the reduction / enlargement section 32, but the number of divided flow paths is not limited to two. Alternatively, the reduction / enlargement portion may be formed so as to be appropriately divided into two or more numbers.

【0067】図5は、本発明の気流式分級装置の第4の
実施の形態を示す図であり、本実施の形態は、分散室流
入管に流路を縮小拡大させつつ2つに分割するととも
に、合流させる流線形状の縮小拡大部を形成したもの
で、請求項3に対応するものである。
FIG. 5 is a view showing a fourth embodiment of the airflow classifier according to the present invention. In this embodiment, the flow path is divided into two while reducing and expanding the flow path in the dispersion chamber inflow pipe. In addition, a reduction / enlargement portion having a streamline shape to be joined is formed, and corresponds to claim 3.

【0068】なお、本実施の形態は、上記第1の実施の
形態の気流式分級装置と同様の気流式分級装置に適用し
たものであり、本実施の形態の説明においては、上記第
1の実施の形態と同様の構成部分には、同一の符号を付
して、その詳細な説明を省略する。
This embodiment is applied to an airflow classifier similar to the airflow classifier of the first embodiment. In the description of this embodiment, the first embodiment will be described. The same components as those in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0069】図5は、本発明の気流式分級装置の第4の
実施の形態を適用した気流式分級装置40の分散室5及
び分散室流入管41の平面断面図である。
FIG. 5 is a plan sectional view of a dispersion chamber 5 and a dispersion chamber inflow pipe 41 of an airflow classifier 40 to which the fourth embodiment of the airflow classifier of the present invention is applied.

【0070】図5において、分散室5は、所定の円筒状
に形成されており、気流式分級装置40は、円筒状の分
散室5にその接線方向に延在する状態で分散室流入管4
1が取り付けられている。
In FIG. 5, the dispersion chamber 5 is formed in a predetermined cylindrical shape, and the air-flow classifier 40 is arranged so that the dispersion chamber inflow pipe 4 extends in the cylindrical dispersion chamber 5 in a tangential direction.
1 is attached.

【0071】分散室流入管41内には、その分散室5へ
の開口部分近くに、分散室流入管41の流路を2つに分
割するとともに、分割した各流路の流路面積を所定の縮
小率で縮小させた後、所定の拡大率で拡大させる縮小拡
大部42が分散室流入管41の流路略中央部に形成され
ており、縮小拡大部42は、分散室流入管41を2つに
分割するとともに、分割した各流路の流路面積を急激に
縮小させた後、当該分割した流路を一次空気流の流れ方
向に沿って流路面積を滑らかに縮小させるとともに、流
路面積を滑らかに拡大させる断面が略流線形に形成され
ている。縮小拡大部42は、その分散室5側の端部が、
分散室5への開口部近くで一体となって消滅する状態で
形成されている。
In the dispersion chamber inflow pipe 41, near the opening to the dispersion chamber 5, the flow path of the dispersion chamber inflow pipe 41 is divided into two, and the area of each of the divided flow paths is set to a predetermined value. After reducing at a reduction rate of, a reduction / enlargement section 42 for enlarging at a predetermined expansion rate is formed substantially at the center of the flow path of the dispersion chamber inflow pipe 41, and the reduction / enlargement section 42 After being divided into two and the flow passage area of each divided flow passage is rapidly reduced, the flow passage area of the divided flow passage is smoothly reduced along the flow direction of the primary air flow, The cross section for smoothly expanding the road area is formed substantially streamlined. The end of the reduction / enlargement section 42 on the dispersion chamber 5 side is
It is formed in such a state that it disappears integrally near the opening to the dispersion chamber 5.

【0072】本実施の形態の気流式分級装置40では、
図5に矢印で示すように、分散室流入管41内を分散室
5方向に流れてきた粉体材料を含む一次空気流は、縮小
拡大部42の一次空気流の流れ方向手前側の図5中上下
方向に急激に所定の膨らみを生じる部分で、その流路が
2つに分割されるとともに、流路が滑らかに狭められ
て、流速が急激に上昇するとともに、その流れが乱さ
れ、流速の上昇により粉体材料同士の衝突確率が上昇し
て、高速で衝突することにより、凝集粒子が解離(分
散)されるとともに、その流れが乱されることにより、
さらに粉体材料同士の衝突が生じて、粉体材料、特に、
凝集粒子が解離(分散)される。
In the airflow classifier 40 of the present embodiment,
As indicated by arrows in FIG. 5, the primary air flow containing the powder material flowing in the dispersion chamber inflow pipe 41 in the direction of the dispersion chamber 5 is directed toward the flow side of the primary air flow of the reduction / enlargement section 42 in FIG. At the part where a predetermined bulge occurs suddenly in the middle and vertical directions, the flow path is divided into two, and the flow path is smoothly narrowed, the flow velocity rises rapidly, and the flow is disturbed. As the probability of collision between the powder materials increases due to the rise of the particles, and the particles collide at high speed, the aggregated particles are dissociated (dispersed) and the flow thereof is disturbed.
Furthermore, collision between powder materials occurs, and powder materials, particularly,
Aggregated particles are dissociated (dispersed).

【0073】粉体材料を含む一次空気流は、縮小拡大部
42の流線形状により加速された後、頂上部分を通過す
ると、分散室5側のすそ野部分を下る状態で流れて、流
路が滑らかに拡大されて流速が低下つつ、縮小拡大部4
2のすそ野の端(図5に円43で示す合流領域)で合流
し、粒径の異なる微粒子と粗粒子及び残留する凝集粒子
がその重量差に起因する速度差により、相互に衝突し
て、さらに解離(分散)されるとともに、合流すること
により、粒子同士、特に、残留する凝集粒子が衝突して
より一層解離(分散)された状態で分散室5に流入す
る。
After the primary air flow containing the powder material is accelerated by the streamline shape of the reduction / enlargement section 42 and passes through the top portion, it flows down the skirt portion on the dispersion chamber 5 side, and the flow path is reduced. While being enlarged smoothly, the flow velocity is reduced,
At the end of the base 2 (the converging area indicated by circle 43 in FIG. 5), the fine particles, the coarse particles, and the remaining agglomerated particles having different particle diameters collide with each other due to the speed difference caused by the weight difference, The particles are further dissociated (dispersed) and merged, so that the particles, particularly the remaining aggregated particles, collide with each other and flow into the dispersion chamber 5 in a more dissociated (dispersed) state.

【0074】分散室5に供給された粉体粒子は、上記第
1の実施の形態と同様に、分散室5でさらに分散された
後、分級室11に速やかに供給され、分級室11で微粒
子と粗粒子が分級されて、ホッパー2内と微粉排気口1
4に排出される。
The powder particles supplied to the dispersing chamber 5 are further dispersed in the dispersing chamber 5 and immediately supplied to the classifying chamber 11 as in the first embodiment. And coarse particles are classified into the hopper 2 and the fine powder exhaust port 1
It is discharged to 4.

【0075】図6は、本発明の気流式分級装置の第5の
実施の形態を示す図であり、本実施の形態は、分散室流
入管に流路を縮小拡大させつつ2つに分割するととも
に、合流させる流線形状の縮小拡大部を一次空気流の流
れに対して所定角度傾斜させて配設し、また、角度調整
可能としたもので、請求項4に対応するものである。
FIG. 6 is a view showing a fifth embodiment of the airflow classifier according to the present invention. In this embodiment, the flow path is divided into two parts while reducing and expanding the flow path in the dispersion chamber inlet pipe. In addition, the streamlined converging / reducing portion is arranged to be inclined at a predetermined angle with respect to the flow of the primary air flow, and the angle can be adjusted.

【0076】なお、本実施の形態は、上記第1の実施の
形態の気流式分級装置と同様の気流式分級装置に適用し
たものであり、本実施の形態の説明においては、上記第
1の実施の形態と同様の構成部分には、同一の符号を付
して、その詳細な説明を省略する。
This embodiment is applied to an airflow classifier similar to the airflow classifier of the first embodiment. In the description of the present embodiment, the first embodiment will be described. The same components as those in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0077】図6は、本発明の気流式分級装置の第5の
実施の形態を適用した気流式分級装置50の分散室5及
び分散室流入管51の平面断面図である。
FIG. 6 is a plan sectional view of a dispersion chamber 5 and a dispersion chamber inflow pipe 51 of an airflow classifier 50 to which the fifth embodiment of the airflow classifier of the present invention is applied.

【0078】図6において、分散室5は、所定の円筒状
に形成されており、気流式分級装置50は、円筒状の分
散室5にその接線方向に延在する状態で分散室流入管5
1が取り付けられている。
In FIG. 6, the dispersion chamber 5 is formed in a predetermined cylindrical shape, and the air-flow classifier 50 is provided in the cylindrical dispersion chamber 5 so as to extend in the tangential direction of the dispersion chamber inflow pipe 5.
1 is attached.

【0079】分散室流入管51内には、その分散室5へ
の開口部分近くに、分散室流入管51の流路を2つに分
割するとともに、分割した各流路の流路面積を所定の縮
小率で縮小させた後、所定の拡大率で拡大させる縮小拡
大部52が形成されており、縮小拡大部52は、分散室
流入管51を2つに分割するとともに、分割した各流路
の流路面積を急激に縮小させた後、当該分割した流路を
一次空気流の流れ方向に沿って流路面積を滑らかに縮小
させるとともに、流路面積を滑らかに拡大させる断面が
略流線形に形成されている。縮小拡大部52は、その分
散室5側の端部が、分散室5への開口部近くで一体とな
って消滅する状態で形成されており、分散室流入管51
の中心(図6に線X0で表示)に対して、所定角度θa
だけ分散室5の接線方向(図6において、上方向)に傾
斜した状態、すなわち、一次空気流の流れ方向(図6の
線X0方向)に対して、所定角度θaだけ分散室5の接
線方向に傾斜した状態で配設されている。
In the dispersion chamber inflow pipe 51, near the opening to the dispersion chamber 5, the flow path of the dispersion chamber inflow pipe 51 is divided into two, and the flow path area of each divided flow path is set to a predetermined value. A reduction / enlargement section 52 for reducing the image at the predetermined reduction rate and then enlarging the image at a predetermined expansion rate is formed. The reduction / enlargement section 52 divides the dispersion chamber inflow pipe 51 into two, After abruptly reducing the flow path area of the divided flow path, the flow path area is smoothly reduced along the flow direction of the primary air flow, and the cross section for smoothly expanding the flow path area is substantially streamlined. Is formed. The reduction / enlargement portion 52 is formed such that the end on the dispersion chamber 5 side disappears integrally near the opening to the dispersion chamber 5, and the dispersion chamber inflow pipe 51.
A predetermined angle θa with respect to the center (represented by line X0 in FIG. 6).
Only in the tangential direction of the dispersion chamber 5 (in the upward direction in FIG. 6), that is, the tangential direction of the dispersion chamber 5 by a predetermined angle θa with respect to the flow direction of the primary air flow (the direction of the line X0 in FIG. 6). It is disposed in an inclined state.

【0080】本実施の形態の気流式分級装置50では、
図6に矢印で示すように、分散室流入管51内を分散室
5方向に流れてきた粉体材料を含む一次空気流は、縮小
拡大部52の一次空気流の流れ方向手前側の図6中上下
方向に急激に所定の膨らみを生じる部分で、その流路が
2つに分割されるとともに、流路が滑らかに狭められ
て、流速が急激に上昇するとともに、その流れが乱さ
れ、流速の上昇により粉体材料同士の衝突確率が上昇し
て、高速で衝突することにより、凝集粒子が解離(分
散)されるとともに、その流れが乱されることにより、
さらに粉体材料同士の衝突が生じて、粉体材料、特に、
凝集粒子が解離(分散)される。さらに、縮小拡大部5
2が一次空気流の流れ方向X0に対して所定角度θa傾
斜した状態で配設されているため、分散室流入管51と
縮小拡大部52との間隔が縮小拡大部51の傾斜方向に
応じて異なったものとなり、当該分散室流入管51と縮
小拡大部52との間隔の相違に応じて、2つの流路に分
割された各流路の一次空気流の流速が変化し、当該流速
の変化に応じて、凝集量子の解離(分散)が促進され
る。
In the airflow classifier 50 of the present embodiment,
As shown by the arrows in FIG. 6, the primary air flow containing the powder material flowing in the dispersion chamber inflow pipe 51 in the direction of the dispersion chamber 5 is the same as that shown in FIG. At the part where a predetermined bulge occurs suddenly in the middle and vertical directions, the flow path is divided into two, and the flow path is smoothly narrowed, the flow velocity rises rapidly, and the flow is disturbed. As the probability of collision between the powder materials increases due to the rise of the particles, and the particles collide at high speed, the aggregated particles are dissociated (dispersed) and the flow thereof is disturbed.
Furthermore, collision between powder materials occurs, and powder materials, particularly,
Aggregated particles are dissociated (dispersed). Further, the reduction / enlargement unit 5
2 is arranged at a predetermined angle θa with respect to the flow direction X0 of the primary air flow, so that the distance between the dispersion chamber inflow pipe 51 and the reduction / enlargement portion 52 depends on the inclination direction of the reduction / enlargement portion 51. The flow rate of the primary air flow of each of the two flow paths divided into two flow paths changes according to the difference in the distance between the dispersion chamber inflow pipe 51 and the reduction / enlargement portion 52, and the change in the flow velocity , The dissociation (dispersion) of the aggregation quantum is promoted.

【0081】そして、粉体材料を含む一次空気流は、縮
小拡大部52の流線形状により加速された後、頂上部分
を通過すると、分散室5側のすそ野部分を下りおりる状
態で流れて、流路が滑らかに拡大されて流速が低下つ
つ、縮小拡大部52のすそ野の端(図6に円53で示す
合流領域)で合流し、粒径の異なる微粒子と粗粒子及び
残留する凝集粒子がその重量差に起因する速度差によ
り、相互に衝突して、さらに解離(分散)されるととも
に、合流することにより、粒子同士、特に、残留する凝
集粒子が衝突してより一層解離(分散)された状態で分
散室5に流入する。さらに、縮小拡大部52の傾斜によ
り2つに分割された各流路を流れてくる一次空気流の流
速が異なっており、当該流速の異なった非対称の2つの
一次空気流が合流領域53で合流する。その結果、粉体
材料同士、特に、凝集粒子の衝突がより一層多く発生
し、粉体材料は、より一層解離(分散)された状態で分
散室5に流入する。
The primary air flow containing the powder material is accelerated by the streamline shape of the reduction / enlargement section 52 and, after passing through the top, flows down the skirt of the dispersion chamber 5. While the flow path is smoothly expanded and the flow velocity decreases, they merge at the end of the base of the contraction / expansion section 52 (the converging area indicated by the circle 53 in FIG. 6), and the fine particles and the coarse particles and the remaining aggregated particles having different particle diameters. Are mutually dissociated (dispersed) due to the speed difference caused by the weight difference, and are merged, so that the particles, particularly the remaining aggregated particles, collide and are further dissociated (dispersed). Then, it flows into the dispersion chamber 5. Further, the flow rates of the primary air flows flowing through the two divided flow paths are different due to the inclination of the reduction / enlargement portion 52, and the two asymmetric primary air flows having different flow velocities merge in the merge area 53. I do. As a result, the collision between the powder materials, particularly the aggregated particles, occurs more frequently, and the powder material flows into the dispersion chamber 5 in a more dissociated (dispersed) state.

【0082】分散室5に供給された粉体粒子は、上記第
1の実施の形態と同様に、分散室5でさらに分散された
後、分級室11に速やかに供給され、分級室11で微粒
子と粗粒子が分級されて、ホッパー2内と微粉排気口1
4に排出される。
The powder particles supplied to the dispersion chamber 5 are further dispersed in the dispersion chamber 5 and immediately supplied to the classification chamber 11 as in the first embodiment. And coarse particles are classified into the hopper 2 and the fine powder exhaust port 1
It is discharged to 4.

【0083】したがって、分散室流入管51内の一次空
気流の流れ方向X0に対して縮小拡大部52を所定角度
θaだけ傾斜させて配設しているので、より一層凝集粒
子を分散させて分散室5に導入することができ、より一
層分級性能を向上させることができる。
Therefore, since the reduction / enlargement portion 52 is disposed at a predetermined angle θa with respect to the flow direction X0 of the primary air flow in the dispersion chamber inflow pipe 51, the aggregated particles are further dispersed and dispersed. It can be introduced into the chamber 5, and the classification performance can be further improved.

【0084】なお、上記説明においては、縮小拡大部5
2を一次空気流の流れに対して所定角度θaだけ傾斜し
た状態で固定的に配設しているが、縮小拡大部52は、
所定の角度調整機構により角度調整可能に配設してもよ
い。このようにすると、分級対象の粉体材料や一次空気
流の流速や流量等、特に、分級する粉体粒子の粒径に応
じて、当該粉体材料が最も効率的に解離(分散)される
角度に、角度調整機構により適宜縮小拡大部52の角度
調整を行うことができ、気流式分級装置50の分級性能
をより一層向上させることができる。
In the above description, the reduction / enlargement unit 5
2 is fixedly arranged in a state of being inclined by a predetermined angle θa with respect to the flow of the primary air flow.
It may be arranged so that the angle can be adjusted by a predetermined angle adjusting mechanism. In this way, the powder material is most efficiently dissociated (dispersed) in accordance with the powder material to be classified, the flow rate and the flow rate of the primary air flow, and in particular, the particle size of the powder particles to be classified. The angle of the reduction / enlargement unit 52 can be appropriately adjusted by the angle adjusting mechanism, and the classification performance of the airflow type classification device 50 can be further improved.

【0085】図7は、本発明の気流式分級装置の第6の
実施の形態を示す図であり、本実施の形態は、分散室流
入管に流路を縮小拡大させつつ2つに分割するととも
に、合流させる流線形状の縮小拡大部を配設し、かつ、
分散室側の先端部分に、一次空気流の流れに対して所定
角度傾斜させた合流先端部を配設し、また、この合流先
端部を角度調整可能としたもので、請求項4に対応する
ものである。
FIG. 7 is a view showing a sixth embodiment of the airflow classifier according to the present invention. In this embodiment, the flow path is divided into two while reducing and expanding the flow path in the dispersion chamber inflow pipe. At the same time, a streamlined reduction / enlargement part to be merged is arranged, and
At the distal end portion on the dispersion chamber side, a merging front end inclined at a predetermined angle with respect to the flow of the primary air flow is disposed, and the merging front end can be adjusted in angle. Things.

【0086】なお、本実施の形態は、上記第1の実施の
形態の気流式分級装置と同様の気流式分級装置に適用し
たものであり、本実施の形態の説明においては、上記第
1の実施の形態と同様の構成部分には、同一の符号を付
して、その詳細な説明を省略する。
This embodiment is applied to an airflow classifier similar to the airflow classifier of the first embodiment. In the description of the present embodiment, the first embodiment will be described. The same components as those in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0087】図7は、本発明の気流式分級装置の第6の
実施の形態を適用した気流式分級装置60の分散室5及
び分散室流入管61の平面断面図である。
FIG. 7 is a plan sectional view of a dispersion chamber 5 and a dispersion chamber inflow pipe 61 of an airflow type classification device 60 to which a sixth embodiment of the airflow type classification device of the present invention is applied.

【0088】図7において、分散室5は、所定の円筒状
に形成されており、気流式分級装置60は、円筒状の分
散室5にその接線方向に延在する状態で分散室流入管6
1が取り付けられている。
In FIG. 7, the dispersion chamber 5 is formed in a predetermined cylindrical shape, and the air-flow type classification device 60 is provided in the cylindrical dispersion chamber 5 so as to extend in the tangential direction of the dispersion chamber inflow pipe 6.
1 is attached.

【0089】分散室流入管61内には、その分散室5へ
の開口部分近くに、分散室流入管61の流路を2つに分
割するとともに、分割した各流路の流路面積を所定の縮
小率で縮小させた後、所定の拡大率で拡大させる縮小拡
大部62が形成されており、縮小拡大部62は、分散室
流入管61を2つに分割するとともに、分割した各流路
の流路面積を急激に縮小させた後、当該分割した流路を
一次空気流の流れ方向に沿って流路面積を滑らかに縮小
させるとともに、流路面積を滑らかに拡大させる断面が
略流線形に形成されている。縮小拡大部62の分散室5
側の端部には、縮小拡大部62の曲面に沿うとも分散室
5への開口部近くに延在する略三角形状の先端部材63
が配設されており、先端部材63は、その分散室5側の
先端部分が、分散室流入管51の中心(図7に線X0で
表示)に対して、所定角度θbだけ分散室5の中央方向
(図7において、下方向)に傾斜した状態、すなわち、
一次空気流の流れ方向(図7の線X0方向)に対して、
所定角度θbだけ分散室5の中央方向に傾斜した状態で
配設されている。
In the dispersion chamber inflow pipe 61, near the opening to the dispersion chamber 5, the flow path of the dispersion chamber inflow pipe 61 is divided into two, and the flow passage area of each divided flow path is set to a predetermined value. A reduction / enlargement portion 62 is formed to reduce the size at a predetermined reduction ratio and then expand at a predetermined magnification ratio. The reduction / enlargement portion 62 divides the dispersion chamber inflow pipe 61 into two, After abruptly reducing the flow path area of the divided flow path, the flow path area is smoothly reduced along the flow direction of the primary air flow, and the cross section for smoothly expanding the flow path area is substantially streamlined. Is formed. Dispersion room 5 of reduction / expansion unit 62
A substantially triangular tip member 63 extends along the curved surface of the reduction / enlargement portion 62 and also near the opening to the dispersion chamber 5 at the side end.
The distal end member 63 has a distal end portion on the dispersion chamber 5 side with respect to the center of the dispersion chamber inflow pipe 51 (indicated by a line X0 in FIG. 7) at a predetermined angle θb. A state inclined in the center direction (downward in FIG. 7), that is,
With respect to the flow direction of the primary air flow (the direction of line X0 in FIG. 7),
It is arranged in a state of being inclined toward the center of the dispersion chamber 5 by a predetermined angle θb.

【0090】本実施の形態の気流式分級装置60では、
図7に矢印で示すように、分散室流入管61内を分散室
5方向に流れてきた粉体材料を含む一次空気流は、縮小
拡大部62の一次空気流の流れ方向手前側の図7の上下
方向に急激に所定の膨らみを生じる部分で、その流路が
2つに分割されるとともに、流路が滑らかに狭められ
て、流速が急激に上昇するとともに、その流れが乱さ
れ、流速の上昇により粉体材料同士の衝突確率が上昇し
て、高速で衝突することにより、凝集粒子が解離(分
散)されるとともに、その流れが乱されることにより、
さらに粉体材料同士の衝突が生じて、粉体材料、特に、
凝集粒子が解離(分散)される。
In the airflow classifier 60 of this embodiment,
As indicated by the arrow in FIG. 7, the primary air flow including the powder material flowing in the dispersion chamber inflow pipe 61 in the direction of the dispersion chamber 5 is directed to the front side in FIG. The flow path is divided into two parts at the portion where a predetermined bulge suddenly occurs in the up and down direction, and the flow path is smoothly narrowed, the flow velocity rises sharply, and the flow is disturbed. As the probability of collision between the powder materials increases due to the rise of the particles, and the particles collide at high speed, the aggregated particles are dissociated (dispersed) and the flow thereof is disturbed.
Furthermore, collision between powder materials occurs, and powder materials, particularly,
Aggregated particles are dissociated (dispersed).

【0091】そして、粉体材料を含む一次空気流は、縮
小拡大部62の流線形状により加速された後、頂上部分
を通過すると、縮小拡大部62の曲面に沿って流れた
後、先端部材63の曲面に沿って流れて、流路が滑らか
に拡大されて流速が低下つつ、先端部材63の先端(図
7に円64で示す合流領域)で合流し、粒径の異なる微
粒子と粗粒子及び残留する凝集粒子がその重量差に起因
する速度差により、相互に衝突して、さらに解離(分
散)されるとともに、合流することにより、粒子同士、
特に、残留する凝集粒子が衝突してより一層解離(分
散)された状態で分散室5に流入する。
Then, the primary air flow containing the powder material is accelerated by the streamline shape of the reduction / enlargement portion 62, passes through the top portion, flows along the curved surface of the reduction / enlargement portion 62, Flowing along the curved surface of 63, the flow path is smoothly expanded, and the flow velocity is reduced, while merging at the front end of the front end member 63 (the confluence area indicated by a circle 64 in FIG. 7), and fine particles and coarse particles having different particle diameters. And the remaining agglomerated particles collide with each other due to the speed difference caused by the weight difference, and are further dissociated (dispersed).
In particular, the remaining agglomerated particles flow into the dispersion chamber 5 in a state of being further dissociated (dispersed) by collision.

【0092】さらに、縮小拡大部62の分散室5側端部
に連続する状態で配設された先端部材63が一次空気流
の流れ方向に対して所定角度θbだけ傾斜した状態で配
設されているため、2つの流路に分割された各流路の一
次空気流の流速が変化し、当該流速の異なった非対称の
2つの一次空気流が合流域64で合流する。したがっ
て、粉体材料同士、特に、凝集粒子の衝突がより一層多
く発生し、粉体材料は、より一層解離(分散)された状
態で分散室5に流入する。
Further, a tip member 63 disposed in a state of being continuous with the end of the reduction / expansion section 62 on the dispersion chamber 5 side is disposed in a state of being inclined by a predetermined angle θb with respect to the flow direction of the primary air flow. Therefore, the flow velocity of the primary air flow divided into the two flow paths changes, and two asymmetric primary air flows having different flow velocities merge in the junction area 64. Therefore, the collision between the powder materials, particularly the aggregated particles, occurs more frequently, and the powder material flows into the dispersion chamber 5 in a more dissociated (dispersed) state.

【0093】分散室5に供給された粉体粒子は、上記第
1の実施の形態と同様に、分散室5でさらに分散された
後、分級室11に速やかに供給され、分級室11で微粒
子と粗粒子が分級されて、ホッパー2内と微粉排気口1
4に排出される。
The powder particles supplied to the dispersion chamber 5 are further dispersed in the dispersion chamber 5 and immediately supplied to the classification chamber 11 as in the first embodiment. And coarse particles are classified into the hopper 2 and the fine powder exhaust port 1
It is discharged to 4.

【0094】なお、上記説明においては、先端部材63
を一次空気流の流れに対して所定角度傾斜した状態で固
定的に配設しているが、先端部材63は、所定の角度調
整機構により角度調整可能に配設してもよい。このよう
にすると、分級対象の粉体材料や一次空気流の流速や流
量等、特に、粉体粒子の粒径に応じて、当該粉体材料が
最も効率的に解離(分散)される角度に、角度調整機構
により適宜先端部材63の角度調整を行うことができ、
気流式分級装置60の分級性能をより一層向上させるこ
とができる。
In the above description, the tip member 63
Is fixedly arranged at a predetermined angle with respect to the flow of the primary air flow, but the tip member 63 may be arranged so that the angle can be adjusted by a predetermined angle adjustment mechanism. In this way, the angle at which the powder material is most efficiently dissociated (dispersed) in accordance with the powder material to be classified, the flow rate and the flow rate of the primary air flow, and particularly, the particle size of the powder particles. The angle of the tip member 63 can be appropriately adjusted by the angle adjusting mechanism,
The classification performance of the airflow classifier 60 can be further improved.

【0095】図8は、本発明の気流式分級装置の第7の
実施の形態を示す図であり、本実施の形態は、分散室流
入管に流路を縮小拡大させつつ2つに分割するととも
に、合流させる流線形状の縮小拡大部を形成し、この縮
小拡大部を振動させるもので、請求項5に対応するもの
である。
FIG. 8 is a view showing a seventh embodiment of the airflow classifier according to the present invention. In this embodiment, the flow path is divided into two while reducing and expanding the flow path in the dispersion chamber inflow pipe. At the same time, a streamline-shaped reduction / enlargement portion to be merged is formed, and this reduction / enlargement portion is vibrated.

【0096】なお、本実施の形態は、上記第1の実施の
形態の気流式分級装置と同様の気流式分級装置に適用し
たものであり、本実施の形態の説明においては、上記第
1の実施の形態と同様の構成部分には、同一の符号を付
して、その詳細な説明を省略する。
This embodiment is applied to an airflow classifier similar to the airflow classifier of the first embodiment. In the description of this embodiment, the first embodiment will be described. The same components as those in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0097】図8は、本発明の気流式分級装置の第7の
実施の形態を適用した気流式分級装置70の分散室5及
び分散室流入管71の平面断面図である。
FIG. 8 is a plan sectional view of a dispersion chamber 5 and a dispersion chamber inflow pipe 71 of an airflow classifier 70 to which the seventh embodiment of the airflow classifier of the present invention is applied.

【0098】図8において、分散室5は、所定の円筒状
に形成されており、気流式分級装置70は、円筒状の分
散室5にその接線方向に延在する状態で分散室流入管7
1が取り付けられている。
In FIG. 8, the dispersion chamber 5 is formed in a predetermined cylindrical shape, and the air-flow classifier 70 is installed in the cylindrical dispersion chamber 5 so as to extend in the tangential direction of the dispersion chamber inlet pipe 7.
1 is attached.

【0099】分散室流入管71内には、その分散室5へ
の開口部分近くに、分散室流入管71の流路を2つに分
割するとともに、分割した各流路の流路面積を所定の縮
小率で縮小させた後、所定の拡大率で拡大させる縮小拡
大部72が形成されており、縮小拡大部72は、分散室
流入管71を2つに分割するとともに、分割した各流路
の流路面積を急激に縮小させた後、当該分割した流路を
一次空気流の流れ方向に沿って流路面積を滑らかに縮小
させるとともに、流路面積を滑らかに拡大させる断面が
略流線形に形成されている。縮小拡大部72は、その分
散室5側の端部が、分散室5への開口部近くで一体とな
って消滅する状態で形成されている。
In the dispersion chamber inflow pipe 71, near the opening to the dispersion chamber 5, the flow path of the dispersion chamber inflow pipe 71 is divided into two, and the flow area of each divided flow path is set to a predetermined value. A reduction / enlargement portion 72 is formed to reduce the image at a predetermined reduction ratio and then expand the image at a predetermined enlargement ratio. The reduction / enlargement portion 72 divides the dispersion chamber inflow pipe 71 into two, After abruptly reducing the flow path area of the divided flow path, the flow path area is smoothly reduced along the flow direction of the primary air flow, and the cross section for smoothly expanding the flow path area is substantially streamlined. Is formed. The reduction / enlargement portion 72 is formed such that its end on the dispersion chamber 5 side disappears integrally near the opening to the dispersion chamber 5.

【0100】そして、この縮小拡大部72は、図示しな
い加振機構に連結されており、加振機構は、図8に閉じ
た矢印で示すように、縮小拡大部72を一次空気流の流
れ方向に対して垂直方向に所定周波数で所定の大きさの
振動を付与する。
The reduction / expansion unit 72 is connected to a vibration mechanism (not shown). The vibration mechanism moves the reduction / expansion unit 72 in the primary air flow direction as shown by the closed arrow in FIG. , A vibration of a predetermined magnitude is applied in a vertical direction at a predetermined frequency.

【0101】本実施の形態の気流式分級装置70では、
図8に矢印で示すように、分散室流入管71内を分散室
5方向に流れてきた粉体材料を含む一次空気流は、縮小
拡大部72の一次空気流の流れ方向手前側の図8中上下
方向に急激に所定の膨らみを生じる部分で、その流路が
2つに分割されるとともに、流路が滑らかに狭められ
て、流速が急激に上昇するとともに、その流れが乱さ
れ、流速の上昇により粉体材料同士の衝突確率が上昇し
て、高速で衝突することにより、凝集粒子が解離(分
散)されるとともに、その流れが乱されることにより、
さらに粉体材料同士の衝突が生じて、粉体材料、特に、
凝集粒子が解離(分散)される。
In the airflow classifier 70 of this embodiment,
As shown by the arrows in FIG. 8, the primary air flow including the powder material flowing in the dispersion chamber inflow pipe 71 in the direction of the dispersion chamber 5 is directed to the front side in FIG. At the portion where a predetermined bulge occurs suddenly in the vertical direction, the flow path is divided into two, and the flow path is smoothly narrowed, the flow velocity rises rapidly, and the flow is disturbed. As the probability of collision between the powder materials increases due to the rise of the particles, and the particles collide at high speed, the aggregated particles are dissociated (dispersed) and the flow is disturbed.
Furthermore, collision between powder materials occurs, and powder materials, particularly,
Aggregated particles are dissociated (dispersed).

【0102】また、このとき、縮小拡大部72は、図示
しない加振機構により一次空気流の流れ方向に対して垂
直方向に振動され、この縮小拡大部72の振動により上
記2つの流路に分割されて縮小拡大部72に沿って流れ
る一次空気流に乱れが生じる。この一次空気流の流れの
乱れにより、粉体材料同士の衝突確率がさらに上昇し
て、高速で衝突し、凝集粒子が解離(分散)される。
At this time, the contracting / enlarging portion 72 is vibrated in a direction perpendicular to the flow direction of the primary air flow by a vibration mechanism (not shown). As a result, a turbulence occurs in the primary airflow flowing along the reduction / enlargement portion 72. The turbulence of the primary air flow further increases the probability of collision between the powder materials, collides at high speed, and dissociates (disperses) the aggregated particles.

【0103】そして、粉体材料を含む一次空気流は、縮
小拡大部72の流線形状により加速された後、頂上部分
を通過すると、分散室5側のすそ野部分を下りおりる状
態で流れて、流路が滑らかに拡大されて流速が低下つ
つ、縮小拡大部72のすそ野の端(図8に円73で示す
合流領域)で合流し、粒径の異なる微粒子と粗粒子及び
残留する凝集粒子がその重量差に起因する速度差によ
り、相互に衝突して、さらに解離(分散)されるととも
に、合流することにより、粒子同士、特に、残留する凝
集粒子が衝突してより一層解離(分散)された状態で分
散室5に流入する。特に、縮小拡大部72が加振機構に
より振動されて、2つに分割された一次空気流が非対称
の流れとなって合流領域73で合流し、残留する凝集粒
子のより一層衝突回数が増加して、粉体材料は、より一
層解離(分散)された状態で分散室5に流れ込む。
Then, the primary air flow containing the powder material is accelerated by the streamline shape of the reduction / enlargement section 72 and, after passing through the top portion, flows down the skirt portion on the dispersion chamber 5 side. While the flow path is smoothly expanded and the flow velocity decreases, they merge at the end of the base of the reduction / expansion section 72 (the converging area indicated by the circle 73 in FIG. 8), and the fine particles and the coarse particles and the remaining aggregated particles having different particle diameters. Are mutually dissociated (dispersed) due to the speed difference caused by the weight difference, and are merged, so that the particles, particularly the remaining aggregated particles, collide and are further dissociated (dispersed). Then, it flows into the dispersion chamber 5. In particular, the reduction / enlargement portion 72 is vibrated by the vibration mechanism, and the two divided primary air flows become an asymmetrical flow and merge in the merging region 73, so that the number of collisions of the remaining aggregated particles is further increased. Thus, the powder material flows into the dispersion chamber 5 in a more dissociated (dispersed) state.

【0104】分散室5に供給された粉体粒子は、上記第
1の実施の形態と同様に、分散室5でさらに分散された
後、分級室11に速やかに供給され、分級室11で微粒
子と粗粒子が分級されて、ホッパー2内と微粉排気口1
4に排出される。
The powder particles supplied to the dispersion chamber 5 are further dispersed in the dispersion chamber 5 and immediately supplied to the classification chamber 11 as in the first embodiment. And coarse particles are classified into the hopper 2 and the fine powder exhaust port 1
It is discharged to 4.

【0105】このように、加振機構により、縮小拡大部
72を所定方向に所定周期の振動を付与しているので、
粉体材料の凝集粒子の状態や分級する粒子の粒径等に応
じて、その方向及び大きささらには周期を変化させて縮
小拡大部72を振動させることができ、小型かつ安価に
様々な粒径に対応したより一層高精度な分級を行うこと
ができる。
As described above, since the vibrating mechanism applies vibrations of the contraction / enlargement unit 72 in a predetermined direction in a predetermined cycle,
Depending on the state of the agglomerated particles of the powder material, the particle size of the particles to be classified, and the like, the direction and size, and even the period, can be changed to vibrate the reduction / enlargement section 72, and various small and inexpensive particles Classification can be performed with higher accuracy corresponding to the diameter.

【0106】なお、上記説明においては、図5に示した
第4の実施の形態の気流式分級装置の縮小拡大部42と
同様の形状の縮小拡大部72を加振機構により加振した
場合について説明したが、振動させる縮小拡大部として
は、第4の実施の形態の縮小拡大部と同様の形状のもの
に限るものではなく、上記第1の実施の形態の気流式分
級装置の縮小拡大部から上記第5の実施の形態の気流式
分級装置の縮小拡大部のいずれの形状のものにも同様に
適用することができる。
In the above description, the case where the reduction / expansion unit 72 having the same shape as the reduction / expansion unit 42 of the airflow classifier of the fourth embodiment shown in FIG. As described above, the reduction / expansion unit to be vibrated is not limited to the same shape as the reduction / expansion unit of the fourth embodiment. The reduction / expansion unit of the airflow classifier of the first embodiment is described. Accordingly, the present invention can be similarly applied to any shape of the reduction / enlargement portion of the airflow type classification device of the fifth embodiment.

【0107】図9は、本発明の気流式分級装置の第8の
実施の形態を示す図であり、本実施の形態は、分散室流
入管に流路を縮小拡大させつつ2つに分割するととも
に、合流させる流線形状の縮小拡大部を配設し、かつ、
分散室側の先端部分に、一次空気流の流れに対して所定
角度傾斜させた合流先端部を配設し、また、この合流先
端部を振動させるもので、請求項4及び請求項5に対応
するものである。
FIG. 9 is a view showing an eighth embodiment of the airflow classifier according to the present invention. In this embodiment, the flow path is divided into two while reducing and expanding the flow path in the inflow pipe of the dispersion chamber. At the same time, a streamlined reduction / enlargement part to be merged is arranged, and
At the tip of the dispersion chamber, a merging tip inclined at a predetermined angle with respect to the flow of the primary air flow is provided, and the merging tip is vibrated. Is what you do.

【0108】なお、本実施の形態は、上記第1の実施の
形態の気流式分級装置と同様の気流式分級装置に適用し
たものであり、本実施の形態の説明においては、上記第
1の実施の形態と同様の構成部分には、同一の符号を付
して、その詳細な説明を省略する。
This embodiment is applied to an airflow classifier similar to the airflow classifier of the first embodiment. In the description of this embodiment, the first embodiment will be described. The same components as those in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0109】図9は、本発明の気流式分級装置の第8の
実施の形態を適用した気流式分級装置80の分散室5及
び分散室流入管81の平面断面図である。
FIG. 9 is a plan sectional view of a dispersion chamber 5 and a dispersion chamber inflow pipe 81 of an airflow classifier 80 to which the eighth embodiment of the airflow classifier of the present invention is applied.

【0110】図9において、分散室5は、所定の円筒状
に形成されており、気流式分級装置80は、円筒状の分
散室5にその接線方向に延在する状態で分散室流入管8
1が取り付けられている。
In FIG. 9, the dispersion chamber 5 is formed in a predetermined cylindrical shape, and the air-flow classifier 80 is installed in the cylindrical dispersion chamber 5 so as to extend in the tangential direction of the dispersion chamber inflow pipe 8.
1 is attached.

【0111】分散室流入管81内には、その分散室5へ
の開口部分近くに、分散室流入管81の流路を2つに分
割するとともに、分割した各流路の流路面積を所定の縮
小率で縮小させた後、所定の拡大率で拡大させる縮小拡
大部82が形成されており、縮小拡大部82は、分散室
流入管81を2つに分割するとともに、分割した各流路
の流路面積を急激に縮小させた後、当該分割した流路を
一次空気流の流れ方向に沿って流路面積を滑らかに縮小
させるとともに、流路面積を滑らかに拡大させる断面が
略流線形に形成されている。縮小拡大部82の分散室5
側の端部には、縮小拡大部82の曲面に沿うとも分散室
5への開口部近くに延在する略三角形状の先端部材83
が配設されており、先端部材83は、その分散室5側の
先端部分が、分散室流入管81の中心に対して、所定角
度だけ分散室5の中央方向に傾斜した状態、すなわち、
一次空気流の流れ方向に対して、所定角度だけ分散室5
の中央方向に傾斜した状態で配設されている。
In the dispersion chamber inflow pipe 81, near the opening to the dispersion chamber 5, the flow path of the dispersion chamber inflow pipe 81 is divided into two, and the flow passage area of each divided flow path is set to a predetermined value. A reduction / enlargement portion 82 is formed for reducing the image at a predetermined reduction ratio and then enlarging the image at a predetermined expansion ratio. The reduction / enlargement portion 82 divides the dispersion chamber inflow pipe 81 into two, After abruptly reducing the flow path area of the divided flow path, the cross-sectional area for smoothly reducing the flow path area along the flow direction of the primary air flow and expanding the flow path area is substantially streamlined. Is formed. Dispersion room 5 of reduction / enlargement unit 82
A substantially triangular tip member 83 extends along the curved surface of the reduction / enlargement portion 82 and near the opening to the dispersion chamber 5 at the side end.
The tip member 83 has a tip portion on the dispersion chamber 5 side inclined with respect to the center of the dispersion chamber inflow pipe 81 by a predetermined angle toward the center of the dispersion chamber 5, that is,
With respect to the flow direction of the primary air flow, the dispersion chamber 5 is at a predetermined angle.
Are arranged in a state of being inclined toward the center of the vehicle.

【0112】そして、この先端部材83は、図示しない
加振機構に連結されており、加振機構は、図9に閉じた
矢印で示すように、先端部材83を一次空気流の流れ方
向に対して垂直方向に所定周波数で所定の大きさの振動
を付与する。
The tip member 83 is connected to a vibration mechanism (not shown). The vibration mechanism moves the tip member 83 in the direction of the primary air flow as shown by the closed arrow in FIG. To give a vibration of a predetermined magnitude at a predetermined frequency in the vertical direction.

【0113】本実施の形態の気流式分級装置80では、
図9に矢印で示すように、分散室流入管81内を分散室
5方向に流れてきた粉体材料を含む一次空気流は、縮小
拡大部82の一次空気流の流れ方向手前側の図9の上下
方向に急激に所定の膨らみを生じる部分で、その流路が
2つに分割されるとともに、流路が滑らかに狭められ
て、流速が急激に上昇するとともに、その流れが乱さ
れ、流速の上昇により粉体材料同士の衝突確率が上昇し
て、高速で衝突することにより、凝集粒子が解離(分
散)されるとともに、その流れが乱されることにより、
さらに粉体材料同士の衝突が生じて、粉体材料、特に、
凝集粒子が解離(分散)される。
In the airflow classifier 80 of the present embodiment,
As shown by the arrows in FIG. 9, the primary air flow including the powder material flowing in the dispersion chamber inflow pipe 81 in the direction of the dispersion chamber 5 is directed to the front side in FIG. The flow path is divided into two parts at the portion where a predetermined bulge suddenly occurs in the up and down direction, and the flow path is smoothly narrowed, the flow velocity rises sharply, and the flow is disturbed. As the probability of collision between the powder materials increases due to the rise of the particles, and the particles collide at high speed, the aggregated particles are dissociated (dispersed) and the flow thereof is disturbed.
Furthermore, collision between powder materials occurs, and powder materials, particularly,
Aggregated particles are dissociated (dispersed).

【0114】そして、粉体材料を含む一次空気流は、縮
小拡大部82の流線形状により加速された後、頂上部分
を通過すると、縮小拡大部82の曲面に沿って流れた
後、先端部材83の曲面に沿って流れて、流路が滑らか
に拡大されて流速が低下つつ、先端部材83の先端(図
9に円84で示す合流領域)で合流し、粒径の異なる微
粒子と粗粒子及び残留する凝集粒子がその重量差に起因
する速度差により、相互に衝突して、さらに解離(分
散)されるとともに、合流することにより、粒子同士、
特に、残留する凝集粒子が衝突してより一層解離(分
散)された状態で分散室5に流入する。
The primary air flow containing the powder material is accelerated by the streamline shape of the reduction / enlargement section 82, passes through the top portion, flows along the curved surface of the reduction / enlargement section 82, and then flows through the tip member. Flowing along the curved surface of 83, the flow path is smoothly expanded and the flow velocity is reduced, while merging at the tip of the tip member 83 (the confluence area indicated by the circle 84 in FIG. 9), the fine particles and the coarse particles having different particle diameters And the remaining agglomerated particles collide with each other due to the speed difference caused by the weight difference, and are further dissociated (dispersed).
In particular, the remaining agglomerated particles flow into the dispersion chamber 5 in a state of being further dissociated (dispersed) by collision.

【0115】また、縮小拡大部82の分散室5側端部に
連続する状態で配設された先端部材83が一次空気流の
流れ方向に対して所定角度だけ傾斜した状態で配設され
ているため、2つの流路に分割された各流路の一次空気
流の流速が変化し、当該流速の異なった非対称の2つの
一次空気流が合流領域84で合流する。したがって、粉
体材料同士、特に、凝集粒子の衝突がより一層多く発生
し、粉体材料は、より一層解離(分散)された状態で分
散室5に流入する。
Further, a distal end member 83, which is provided continuously to the end of the reduction / enlargement section 82 on the dispersion chamber 5 side, is provided in a state of being inclined by a predetermined angle with respect to the flow direction of the primary air flow. Therefore, the flow velocity of the primary air flow divided into the two flow paths changes, and the two asymmetric primary air flows having different flow velocities merge in the merge area 84. Therefore, the collision between the powder materials, particularly the aggregated particles, occurs more frequently, and the powder material flows into the dispersion chamber 5 in a more dissociated (dispersed) state.

【0116】さらに、先端部材83が加振機構により振
動されて、2つに分割された一次空気流が先端部材83
の振動により非対称の流れとなって合流領域73で合流
し、残留する凝集粒子のより一層衝突回数が増加して、
粉体材料は、より一層解離(分散)された状態で分散室
5に流れ込む。
Further, the tip member 83 is vibrated by the vibrating mechanism, and the divided primary air flow is divided into two.
As a result of the vibration, the flow becomes an asymmetric flow and merges in the merge area 73, and the number of collisions of the remaining aggregated particles further increases,
The powder material flows into the dispersion chamber 5 in a more dissociated (dispersed) state.

【0117】分散室5に供給された粉体粒子は、上記第
1の実施の形態と同様に、分散室5でさらに分散された
後、分級室11に速やかに供給され、分級室11で微粒
子と粗粒子が分級されて、ホッパー2内と微粉排気口1
4に排出される。
The powder particles supplied to the dispersing chamber 5 are further dispersed in the dispersing chamber 5 and then immediately supplied to the classifying chamber 11 as in the first embodiment. And coarse particles are classified into the hopper 2 and the fine powder exhaust port 1
It is discharged to 4.

【0118】このように、加振機構により、縮小拡大部
82の先端部材83を所定方向に所定周期の振動を付与
しているので、粉体材料の凝集粒子の状態や分級する粒
子の粒径等に応じて、その方向及び大きささらには周期
を変化させて先端部材83を振動させることができ、小
型かつ安価に様々な粒径に対応したより一層高精度な分
級を行うことができる。
As described above, since the vibrating mechanism applies the vibration of the tip member 83 of the reduction / enlargement portion 82 in a predetermined direction at a predetermined period, the state of the agglomerated particles of the powder material and the particle size of the particles to be classified are determined. The direction and size of the tip member 83 can be changed in accordance with the direction, the size, and the period, so that the tip member 83 can be vibrated.

【0119】また、先端部材83を一次空気流の流れに
対して所定角度傾斜した状態で固定的に配設して振動さ
せているが、先端部材83は、所定の角度調整機構によ
り角度調整可能に配設してもよい。このようにすると、
分級対象の粉体材料や一次空気流の流速や流量等、特
に、粉体粒子の粒径に応じて、当該粉体材料が最も効率
的に解離(分散)される角度に、角度調整機構により適
宜先端部材83の角度調整を行うことができ、気流式分
級装置80の分級性能をより一層向上させることができ
る。
Further, the tip member 83 is fixedly arranged and vibrated while being inclined at a predetermined angle with respect to the flow of the primary air flow, but the tip member 83 can be adjusted in angle by a predetermined angle adjusting mechanism. May be arranged. This way,
According to the powder material to be classified, the flow velocity and flow rate of the primary air flow, etc., and in particular, the particle size of the powder particles, the angle at which the powder material is most efficiently dissociated (dispersed) is adjusted by the angle adjusting mechanism. The angle of the tip member 83 can be adjusted appropriately, and the classification performance of the airflow type classification device 80 can be further improved.

【0120】以上、本発明者によってなされた発明を好
適な実施の形態に基づき具体的に説明したが、本発明は
上記のものに限定されるものではなく、その要旨を逸脱
しない範囲で種々変更可能であることはいうまでもな
い。
Although the invention made by the inventor has been specifically described based on the preferred embodiments, the invention is not limited to the above-described embodiment, and various modifications may be made without departing from the gist of the invention. It goes without saying that it is possible.

【0121】[0121]

【発明の効果】請求項1記載の発明の気流式分級装置に
よれば、円筒形状の分散室の上部外周面に当該円筒形状
の接線方向に延在して分散室に連通する状態で配設され
た分散室流入管から粉体材料を含んだ一次空気流を分散
室に導入し、分散室で分散させた粉体材料を、分散室の
下部に配設された円錐形状のセンターコアの外周縁と分
散室の内周壁との間の環状隙間を介して分級室に導入し
て、分級室の下部に配設された円錐形状のセパレータコ
アの周方向に二次空気流入口から二次空気を流入し、当
該二次空気により粉体材料を旋回させて粗粒子と微粒子
に分級し、セパレータコアの中央部に形成された微粒子
排出口から分級した微粒子を排出させ、セパレータコア
の外周縁と分級室の内周壁との間の環状の粗粒子排出口
から分級した粗粒子を排出させる際に、分散室流入管の
分散室への開口部付近に、当該分散室流入管の流路を一
次空気の流れ方向に向かって所定の縮小率で所定の流路
面積に狭めた後、所定の拡大率で流路面積を拡大する流
路縮小拡大部を設けているので、流路縮小拡大部で一次
空気の流速を速めて、粉体材料の流路内での密度を増大
させて粉体材料を高速で衝突させるとともに、一次空気
流の流速を急激に遅くして、粉体材料の粒径の異なる粒
子の速度変化により二次衝突させ、簡単な構成で粉体材
料、特に、凝集粒子を充分に分散させた状態で分散室に
導入することができ、以降の分散室及び分級室での粉体
材料の分散及び分級を向上させて、小型でかつ安価に分
級性能を向上させることができる。
According to the air-flow type classification device of the first aspect of the present invention, the air-flow classifier is disposed on the upper outer peripheral surface of the cylindrical dispersion chamber so as to extend in the tangential direction of the cylinder and communicate with the dispersion chamber. The primary air flow containing the powder material is introduced into the dispersion chamber from the dispersion chamber inflow pipe, and the powder material dispersed in the dispersion chamber is supplied to the outside of the conical center core disposed at the lower part of the dispersion chamber. Secondary air is introduced into the classifying chamber through an annular gap between the peripheral edge and the inner peripheral wall of the dispersion chamber, and from the secondary air inlet in the circumferential direction of the conical separator core disposed at the lower part of the classifying chamber. And the powdered material is swirled by the secondary air to classify into coarse particles and fine particles, and the classified fine particles are discharged from a fine particle discharge port formed in the central portion of the separator core. Coarse particles classified from an annular coarse particle outlet between the inner peripheral wall of the classification chamber When discharging the dispersion chamber, near the opening of the dispersion chamber inflow pipe to the dispersion chamber, the flow path of the dispersion chamber inflow pipe was narrowed to a predetermined flow area at a predetermined reduction ratio toward the flow direction of the primary air. After that, a flow path reduction / expansion section that expands the flow path area at a predetermined expansion rate is provided, so that the flow rate of the primary air is increased at the flow path reduction / expansion section to increase the density of the powder material in the flow path. In addition to causing the powder material to collide at a high speed, the flow velocity of the primary air flow is sharply reduced, and the secondary collision is caused by a change in the speed of particles having different particle diameters of the powder material. In particular, the agglomerated particles can be introduced into the dispersion chamber in a sufficiently dispersed state, and the dispersion and classification of the powder material in the subsequent dispersion chamber and the classification chamber can be improved, and the classification performance can be reduced in size and at low cost. Can be improved.

【0122】請求項2記載の発明の気流式分級装置によ
れば、流路縮小拡大部を、分散室流入管内の壁面に所定
範囲にわたって当該分散室流入管の流路中央方向に突出
する状態で山形形状に形成するとともに、当該山形形状
のすそ野部分の曲面を、円筒形状の分散室の半径と同じ
曲率半径の曲面に形成しているので、流路縮小拡大部で
一次空気の流速を変化させて粉体材料を衝突させるとと
もに、一次空気流を分散室の半径と同じ曲率半径の曲面
に沿って分散室の旋回流に合流させて、簡単な構成で粉
体材料、特に、凝集粒子を充分に分散させた状態でスム
ースに分散室に導入することができ、以降の分散室及び
分級室での粉体材料の分散及び分級を向上させて、小型
でかつ安価に分級性能をより一層向上させることができ
る。
According to the second aspect of the present invention, the flow path reducing / expanding portion extends over the wall surface inside the dispersion chamber inflow pipe over a predetermined range toward the center of the flow path of the dispersion chamber inflow pipe. Since it is formed in the shape of a chevron, the curved surface of the base of the chevron is formed as a curved surface having the same radius of curvature as the radius of the cylindrical dispersion chamber. The primary air flow joins the swirling flow of the dispersion chamber along a curved surface having the same radius of curvature as the radius of the dispersion chamber, and the powder material, in particular, the agglomerated particles can be sufficiently mixed with a simple structure. Can be smoothly introduced into the dispersion chamber in a dispersed state, and the dispersion and classification of the powder material in the subsequent dispersion chamber and the classification chamber are improved, thereby further improving the classification performance at a small size and at low cost. be able to.

【0123】請求項3記載の発明の気流式分級装置によ
れば、分散室流入管内に、分散室流入管内の流路を複数
の流路に分割して当該分割した各流路の流路面積を一次
空気の流れ方向に向かって所定の縮小率で所定の流路面
積に狭めた後、所定の拡大率で流路面積を拡大するとと
もに、分散室内あるいは分散室近傍で再度1つの流路に
集合させる状態で流路縮小拡大部を配設しているので、
複数の流路に分割された各流路での一次空気の流速の変
化により粉体材料を衝突させるとともに、流路の合流部
分で再度粉体材料を衝突させて、簡単な構成で粉体材
料、特に、凝集粒子をより一層充分に分散させた状態で
分散室に粉体材料を導入することができ、以降の分散室
及び分級室での粉体材料の分散及び分級を向上させて、
小型でかつ安価に分級性能をより一層向上させることが
できる。
According to the third aspect of the present invention, the flow path in the dispersion chamber inflow pipe is divided into a plurality of flow paths in the dispersion chamber inflow pipe, and the flow area of each of the divided flow paths is determined. Is reduced in the predetermined flow area at a predetermined reduction rate in the flow direction of the primary air, and then the flow path area is expanded at a predetermined expansion rate. Since the channel reduction / enlargement part is arranged in the state of being assembled,
The powder material collides with the change in the flow rate of the primary air in each of the flow paths divided into a plurality of flow paths, and the powder material collides again at the merging portion of the flow paths, so that the powder material has a simple configuration. In particular, the powder material can be introduced into the dispersion chamber in a state where the aggregated particles are more sufficiently dispersed, and the dispersion and classification of the powder material in the subsequent dispersion chamber and the classification chamber are improved.
Classification performance can be further improved at a small size and at low cost.

【0124】請求項4記載の発明の気流式分級装置によ
れば、角度調整機構により、分散室流入管内の一次空気
流の流れ方向に対する流路縮小拡大部の角度を調整可能
としているので、流路縮小拡大部の角度を分級する粒子
の粒径に応じて、適宜変更することができ、小型でかつ
安価に様々な粒径に対応した高精度な分級を行うことが
できる。
According to the air flow classifier of the fourth aspect of the present invention, the angle of the flow passage reducing / enlarging portion with respect to the flow direction of the primary air flow in the inflow pipe of the dispersion chamber can be adjusted by the angle adjusting mechanism. The angle of the road reduction / enlargement portion can be changed as appropriate in accordance with the particle size of the particles to be classified, and small-sized and inexpensive high-precision classification corresponding to various particle sizes can be performed.

【0125】請求項5記載の発明の気流式分級装置によ
れば、加振機構により、流路縮小拡大部を所定方向に所
定周期の振動を付与可能としているので、粉体材料の凝
集粒子の状態や分級する粒子の粒径等に応じて、その方
向及び大きささらには周期を変化させて流路縮小拡大部
を振動させることができ、小型かつ安価に様々な粒径に
対応したより一層高精度な分級を行うことができる。
According to the air flow classification device of the fifth aspect of the present invention, the vibrating mechanism can apply the vibration of the flow path contracting / enlarging portion in the predetermined direction at the predetermined period, so that the agglomerated particles of the powder material are removed. Depending on the state, the particle size of the particles to be classified, and the like, the direction and size, and even the period, can be changed to vibrate the channel reduction / enlargement portion, and the size and cost are reduced to accommodate various particle sizes. High-precision classification can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の気流式分級装置の第1の実施の形態を
適用した気流式分級装置の正面概略断面図。
FIG. 1 is a schematic front sectional view of an airflow classifier to which a first embodiment of an airflow classifier according to the present invention is applied.

【図2】図1の分散室及び分散室流入管のA−A矢視断
面図。
FIG. 2 is a sectional view of the dispersion chamber and the dispersion chamber inflow pipe of FIG.

【図3】本発明の気流式分級装置の第2の実施の形態を
適用した気流式分級装置の分散室及び分散室流入管の平
面断面図。
FIG. 3 is a plan sectional view of a dispersion chamber and a dispersion chamber inflow pipe of an airflow classifier to which a second embodiment of the airflow classifier of the present invention is applied.

【図4】本発明の気流式分級装置の第3の実施の形態を
適用した気流式分級装置の分散室及び分散室流入管の平
面断面図。
FIG. 4 is a plan sectional view of a dispersion chamber and a dispersion chamber inflow pipe of an airflow classifier to which a third embodiment of the airflow classifier of the present invention is applied.

【図5】本発明の気流式分級装置の第4の実施の形態を
適用した気流式分級装置の分散室及び分散室流入管の平
面断面図。
FIG. 5 is a plan sectional view of a dispersion chamber and a dispersion chamber inflow pipe of an airflow classifier to which a fourth embodiment of the airflow classifier of the present invention is applied.

【図6】本発明の気流式分級装置の第5の実施の形態を
適用した気流式分級装置の分散室及び分散室流入管の平
面断面図。
FIG. 6 is a plan sectional view of a dispersion chamber and a dispersion chamber inflow pipe of an airflow classifier to which a fifth embodiment of the airflow classifier of the present invention is applied.

【図7】本発明の気流式分級装置の第6の実施の形態を
適用した気流式分級装置の分散室及び分散室流入管の平
面断面図。
FIG. 7 is a plan sectional view of a dispersion chamber and a dispersion chamber inflow pipe of an airflow classifier to which a sixth embodiment of the airflow classifier of the present invention is applied.

【図8】本発明の気流式分級装置の第7の実施の形態を
適用した気流式分級装置の分散室及び分散室流入管の平
面断面図。
FIG. 8 is a plan sectional view of a dispersion chamber and a dispersion chamber inflow pipe of an airflow classifier to which a seventh embodiment of the airflow classifier of the present invention is applied.

【図9】本発明の気流式分級装置の第8の実施の形態を
適用した気流式分級装置の分散室及び分散室流入管の平
面断面図。
FIG. 9 is a plan cross-sectional view of a dispersion chamber and a dispersion chamber inflow pipe of an airflow classifier to which an eighth embodiment of the airflow classifier of the present invention is applied.

【符号の説明】[Explanation of symbols]

1 気流式分級装置 2 ホッパー 3 下部ケーシング 4 本体ケーシング 5 分散室 6 分散室流入管 7 分散室排気口 8 縮小拡大部 9a 収縮領域 9b 拡大領域 10 センターコア 11 分級室 12 供給溝 13 セパレータコア 14 微粉排気口 15 粗粉排気口 16 二次空気流入口 20 気流式分級装置 21 分散室流入管 22 縮小拡大部 30 気流式分級装置 31 分散室流入管 32 縮小拡大部 33 合流領域 40 気流式分級装置 41 分散室流入管 42 縮小拡大部 43 合流領域 50 気流式分級装置 51 分散室流入管 52 縮小拡大部 53 合流領域 60 気流式分級装置 61 分散室流入管 62 縮小拡大部 63 先端部材 64 合流領域 70 気流式分級装置 71 分散室流入管 72 縮小拡大部 73 合流領域 80 気流式分級装置 81 分散室流入管 82 縮小拡大部 83 先端部材 84 合流領域 DESCRIPTION OF SYMBOLS 1 Air flow type classification apparatus 2 Hopper 3 Lower casing 4 Main casing 5 Dispersion chamber 6 Dispersion chamber inflow pipe 7 Dispersion chamber exhaust port 8 Reduction / expansion part 9a Shrinkage area 9b Expansion area 10 Center core 11 Classification chamber 12 Supply groove 13 Separator core 14 Fine powder Exhaust port 15 Coarse powder exhaust port 16 Secondary air inlet 20 Air flow classifier 21 Dispersion chamber inflow pipe 22 Reduction / enlargement section 30 Airflow type classification apparatus 31 Dispersion chamber inflow pipe 32 Reduction / expansion section 33 Merging area 40 Airflow type classification apparatus 41 Dispersion chamber inflow pipe 42 Reduction / expansion section 43 Merging area 50 Air flow classifier 51 Dispersion chamber inflow pipe 52 Reduction / expansion section 53 Merging area 60 Airflow classification apparatus 61 Dispersion chamber inflow pipe 62 Reduction / expansion section 63 Tip member 64 Merging area 70 Airflow Type classifier 71 Dispersion chamber inlet pipe 72 Shrinking / expanding part 73 Merging area 80 Air flow type classifier 8 Dispersion chamber inlet pipe 82 scaled part 83 tip 84 joining region

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】円筒形状の分散室と、当該分散室の上部外
周面の所定位置に当該円筒形状の接線方向に延在して前
記分散室に連通する状態で配設され粉体材料を含んだ一
次空気流を前記分散室に導入する分散室流入管と、前記
分散室の下部に配設された円錐形状のセンターコアの外
周縁と前記分散室の内周壁との間の環状隙間を介して前
記分散室に連通する状態で配設された分級室と、前記分
級室の下部に配設されその中央部に微粒子排出口が形成
されるとともにその外周縁と前記分級室の内周壁との間
に環状の粗粒子排出口の形成された円錐形状のセパレー
タコアと、前記セパレータコアの外周縁に対向する部分
に配設され二次空気を前記セパレータコアの周方向に流
入する二次空気流入口と、を備え、前記分散室流入管か
ら前記粉体材料を含んだ前記一次空気を前記分散室に導
入して、前記分散室内を旋回させて前記粉体材料を分散
させた後、前記センターコアの環状隙間から前記分級室
に前記粉体材料を導入させ、前記二次空気流入口から前
記セパレータコアの周方向に流入される前記二次空気流
で前記粉体材料を旋回させて粗粒子と微粒子に分級し、
前記粗粒子排出口及び前記微粒子排出口から排出させる
気流式分級装置において、前記分散室流入管は、前記分
散室への開口部付近に、当該分散室流入管の流路を前記
一次空気の流れ方向に向かって所定の縮小率で所定の流
路面積に狭めた後、所定の拡大率で流路面積を拡大する
流路縮小拡大部が設けられていることを特徴とする気流
式分級装置。
1. A dispersion chamber having a cylindrical shape, and a powder material disposed at a predetermined position on an upper outer peripheral surface of the dispersion chamber so as to extend in a tangential direction of the cylinder and communicate with the dispersion chamber. Through a dispersion chamber inflow pipe for introducing the primary air flow into the dispersion chamber, and an annular gap between an outer peripheral edge of a conical center core disposed below the dispersion chamber and an inner peripheral wall of the dispersion chamber. A classifying chamber arranged in communication with the dispersion chamber, and a fine particle discharge port formed at the center of the classifying chamber at the lower portion of the classifying chamber and having an outer peripheral edge and an inner peripheral wall of the classifying chamber. A conical separator core having an annular coarse particle discharge port formed therebetween, and a secondary air flow that is disposed at a portion facing the outer peripheral edge of the separator core and flows secondary air in the circumferential direction of the separator core And an inlet, wherein the powder material is supplied from the dispersion chamber inlet pipe. The primary air is introduced into the dispersion chamber, and after the powder material is dispersed by swirling in the dispersion chamber, the powder material is introduced into the classification chamber from the annular gap of the center core, The powder material is swirled by the secondary air flow flowing in the circumferential direction of the separator core from the secondary air inlet to classify the particles into coarse particles and fine particles,
In the airflow classifier that discharges from the coarse particle discharge port and the fine particle discharge port, the dispersion chamber inflow pipe has a flow path of the primary air flowing through the flow path of the dispersion chamber inflow pipe near an opening to the dispersion chamber. An airflow classification device, comprising: a flow path reduction / enlargement unit that narrows a flow path area at a predetermined reduction rate in a direction to a predetermined flow area and then expands the flow path area at a predetermined expansion rate.
【請求項2】前記流路縮小拡大部は、前記分散室流入管
内の壁面に所定範囲にわたって当該分散室流入管の流路
中央方向に突出する状態で山形形状に形成されていると
ともに、当該山形形状のすそ野部分の曲面が、前記円筒
形状の分散室の半径と同じ曲率半径の曲面に形成されて
いることを特徴とする請求項1記載の気流式分級装置。
2. The flow path reducing / enlarging portion is formed in a chevron shape on a wall surface inside the dispersion chamber inflow pipe so as to protrude toward a center of the flow path of the dispersion chamber inflow pipe over a predetermined range. The airflow classification device according to claim 1, wherein the curved surface of the base portion of the shape is formed as a curved surface having the same radius of curvature as the radius of the cylindrical dispersion chamber.
【請求項3】前記流路縮小拡大部は、前記分散室流入管
内の流路を複数の流路に分割して当該分割した各流路の
流路面積を前記一次空気の流れ方向に向かって所定の縮
小率で所定の流路面積に狭めた後、所定の拡大率で流路
面積を拡大するとともに、前記分散室内あるいは前記分
散室近傍で再度1つの流路に集合させる状態で前記分散
室流入管内に所定長さにわたって延在して配設されてい
ることを特徴とする請求項1記載の気流式分級装置。
3. The flow path reducing / enlarging section divides a flow path in the dispersion chamber inflow pipe into a plurality of flow paths and increases a flow path area of each of the divided flow paths in a direction of the primary air flow. After narrowing to a predetermined flow area at a predetermined reduction rate, the flow area is expanded at a predetermined enlargement rate, and the dispersion chamber is gathered again in one flow path in or near the dispersion chamber. The airflow classification device according to claim 1, wherein the airflow classification device is provided so as to extend over a predetermined length in the inflow pipe.
【請求項4】前記気流式分級装置は、前記分散室流入管
内の一次空気流の流れ方向に対する前記流路縮小拡大部
の角度を調整する角度調整機構を、さらに備えたことを
特徴とする請求項3記載の気流式分級装置。
4. The air-flow classification device further comprises an angle adjusting mechanism for adjusting an angle of the flow passage reducing / expanding portion with respect to a flow direction of the primary air flow in the dispersion chamber inflow pipe. Item 3. An airflow classifier according to Item 3.
【請求項5】前記気流式分級装置は、前記流路縮小拡大
部を所定方向に所定周期の振動を付与する加振機構を、
さらに備えたことを特徴とする請求項1から請求項4の
いずれかに記載の気流式分級装置。
5. The airflow classifier includes a vibrating mechanism for imparting a predetermined period of vibration to the flow path reducing / enlarging section in a predetermined direction.
The airflow classifier according to any one of claims 1 to 4, further comprising:
JP11629698A 1998-04-10 1998-04-10 Pneumatic classifier Pending JPH11290783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11629698A JPH11290783A (en) 1998-04-10 1998-04-10 Pneumatic classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11629698A JPH11290783A (en) 1998-04-10 1998-04-10 Pneumatic classifier

Publications (1)

Publication Number Publication Date
JPH11290783A true JPH11290783A (en) 1999-10-26

Family

ID=14683522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11629698A Pending JPH11290783A (en) 1998-04-10 1998-04-10 Pneumatic classifier

Country Status (1)

Country Link
JP (1) JPH11290783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106040589A (en) * 2016-07-11 2016-10-26 阜阳师范学院 Method for separating nanometer aluminum powder with different particle sizes
CN114345064A (en) * 2021-12-14 2022-04-15 苏州市大象印刷包装有限公司 Printing packaging printing ink waste gas collecting and treating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106040589A (en) * 2016-07-11 2016-10-26 阜阳师范学院 Method for separating nanometer aluminum powder with different particle sizes
CN106040589B (en) * 2016-07-11 2018-08-31 阜阳师范学院 A method of separation different-grain diameter nanometer aluminium powder
CN114345064A (en) * 2021-12-14 2022-04-15 苏州市大象印刷包装有限公司 Printing packaging printing ink waste gas collecting and treating device

Similar Documents

Publication Publication Date Title
US5839670A (en) Pneumatic impact pulverizer, fine powder production apparatus, and toner production process
KR940018234A (en) Gas flow classifier, gas flow classification method, toner production method and apparatus
KR910004253A (en) Impingement air pulverizer and pulverization method
JPH0857424A (en) Raw material supply device in air classifier
JP3592520B2 (en) Airflow classifier
JPH11290783A (en) Pneumatic classifier
US4545897A (en) Classifier
JP2011045819A (en) Powder classifying apparatus
JP2000042494A (en) Air-current classification
JPH11138103A (en) Pneumatic classifier
US6910585B1 (en) Dynamic centrifugal gas classifier and method of classifying performed therewith
JP3176779B2 (en) Airflow classifier and airflow classification method
JP3162740B2 (en) Airflow classifier
JP3510346B2 (en) Airflow classification method, airflow classifier, and classifier equipped with the classifier
JP2579763Y2 (en) Classifier
JP6238104B2 (en) Classification device and pulverization classification device
JP3679163B2 (en) Airflow classifier
JP3731077B2 (en) Airflow classifier
JP3606710B2 (en) Airflow type DS classifier
JP3647644B2 (en) Powder classifier
JPH0780415A (en) Air classifier and air classification
JPH02303559A (en) Gas flow classifier
JPH0515802A (en) Impact type pneumatic grinder
JPH09187733A (en) Air current-utilizing type classifying apparatus
JP6569060B2 (en) Classifier