JPH11289188A - Electromagnetic wave absorbing material - Google Patents

Electromagnetic wave absorbing material

Info

Publication number
JPH11289188A
JPH11289188A JP10700798A JP10700798A JPH11289188A JP H11289188 A JPH11289188 A JP H11289188A JP 10700798 A JP10700798 A JP 10700798A JP 10700798 A JP10700798 A JP 10700798A JP H11289188 A JPH11289188 A JP H11289188A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
absorbing material
wave absorbing
titanium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10700798A
Other languages
Japanese (ja)
Other versions
JP3796680B2 (en
Inventor
Ario Yamamoto
有男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP10700798A priority Critical patent/JP3796680B2/en
Publication of JPH11289188A publication Critical patent/JPH11289188A/en
Application granted granted Critical
Publication of JP3796680B2 publication Critical patent/JP3796680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic wave absorbing material, which can be easily made from a material containing a titanium oxide that can be obtained in a large quantity and at low cost. SOLUTION: This material is made from a titanium slug containing 70 to 90 wt.% titanium as TiO2 . The molded body which is formed by compression molding by using a small quantity of this fine powder as a binder to indicate the maximum electromagnetic absorption of around 4.3 GHz, even when it is measured by the releasing method of short-circuit method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チタン酸化物系の
電磁波吸収材料に関する。
The present invention relates to a titanium oxide-based electromagnetic wave absorbing material.

【0002】[0002]

【従来の技術】本発明者は磁気損失を発現させる材料と
して酸化鉄を、誘電損失を発現させる材料として酸化チ
タンを選び、これらの混合物を還元雰囲気の誘導炉中で
1800℃に加熱、溶融し、直ちに融液を水冷し、破
砕、粉砕、篩い分けした後、さらに1150℃において
水素還元、粉砕、篩分して得た粉末組成物が電磁波吸収
材料として優れた特性を持つことを見出した(特公平5
−15664号公報)。また、この粉末組成物とその他
の充填材との組み合わせが、磁気損失と誘電損失とを同
時に起こすことができ、かつ、吸収すべき不要の電磁波
を消滅させるために用いてきた金属板の取付けが、電磁
波の周波数によっては不要となることも見出した(特願
平8−327611)。
2. Description of the Related Art The present inventor has selected iron oxide as a material exhibiting magnetic loss and titanium oxide as a material exhibiting dielectric loss, and heated and melted a mixture thereof at 1800 ° C. in an induction furnace in a reducing atmosphere. Immediately after the melt was water-cooled, crushed, crushed and sieved, the powder composition obtained by hydrogen reduction, crushing and sieving at 1150 ° C. was found to have excellent properties as an electromagnetic wave absorbing material ( Tokuhei 5
No. 15664). In addition, the combination of the powder composition and other fillers can cause magnetic loss and dielectric loss at the same time, and the attachment of a metal plate that has been used to extinguish unnecessary electromagnetic waves to be absorbed. It has also been found that it becomes unnecessary depending on the frequency of electromagnetic waves (Japanese Patent Application No. 8-327611).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記し
たチタン酸化物系電磁波吸収材料は、1800℃の溶融
状態での還元処理や1150℃という高温下での水素還
元を行うために製造工程が煩雑であり、かつ、コストが
高くなるという難点があった。このために工業的に簡便
に製造できる低コストの電磁波吸収材料が求められてい
た。
However, the above-described titanium oxide-based electromagnetic wave absorbing material requires a complicated manufacturing process because it undergoes a reduction treatment in a molten state at 1800 ° C. and a hydrogen reduction at a high temperature of 1150 ° C. In addition, there was a problem that the cost was high. For this reason, there has been a demand for a low-cost electromagnetic wave absorbing material that can be easily manufactured industrially.

【0004】また、電磁波吸収領域が広範囲にわたる吸
収材料として従来から使用されてきたフェライトは、数
GHz以上程度の吸収材料としては吸収が少なく実用上
はカーボン、カーボニル鉄、フェライト粉などを組み合
わせて使用されていた。
Ferrite, which has been conventionally used as an absorbing material having a wide electromagnetic wave absorption range, has a low absorption as an absorbing material of about several GHz or more, and practically uses a combination of carbon, carbonyl iron, ferrite powder and the like. It had been.

【0005】[0005]

【問題を解決するための手段】本発明者は、各種のチタ
ン酸化物について、それらの電磁波吸収材料としての諸
物性を調査していたが、近年、工業的な規模で入手が可
能となったチタンスラグが、電磁波吸収材料としての基
本的な要求特性を満たす物性を備えていることを見出
し、本発明に到達した。
Means for Solving the Problems The present inventor has investigated the various physical properties of various titanium oxides as an electromagnetic wave absorbing material, but has recently become available on an industrial scale. The present inventors have found that titanium slag has physical properties satisfying basic characteristics required as an electromagnetic wave absorbing material, and have reached the present invention.

【0006】チタンスラグは、チタン含有量がTiO2
として35%程度のイルメナイト鉱を脱硫処理後、無煙
炭を加えて電気炉で精錬し銑鉄分離工程を経て、水冷、
破砕、粉砕処理を施された粒状物であり、チタン含有量
がTiO2 として70〜90%程度まで高められてい
る。
[0006] Titanium slag has a titanium content of TiO 2.
After desulfurization of about 35% of ilmenite ore, anthracite is added, refined in an electric furnace, passed through a pig iron separation process, water cooled,
It is a granular material that has been crushed and pulverized, and has a titanium content of about 70 to 90% as TiO 2 .

【0007】このチタンスラグは低周波の電磁波、例え
ばテレビ帯などではその材料の厚みに関係なく、ほとん
ど吸収能がなかったが、より高周波である4.3GHz
を中心に幅広く電磁波を吸収することを見出した。ま
た、この材料はその成形体裏側の金属板の有無によって
吸収能の変化が少ないことも確認できた。
[0007] This titanium slag has almost no absorption capacity in low frequency electromagnetic waves, for example, in a television band irrespective of the thickness of its material, but it has a higher frequency of 4.3 GHz.
It has been found that a wide range of electromagnetic waves can be absorbed, centering on. It was also confirmed that this material had little change in absorption capacity depending on the presence or absence of a metal plate on the back side of the molded product.

【0008】チタンスラグは、近年、酸化チタンなどの
原料としてイルメナイト鉱からアーク還元炉法によって
大量に生産されており、工業的に廉価に入手できる化学
品となっている。このチタンスラグは、通常、TiO2
換算でチタン分を70〜90%含有するが、電磁波吸収
材料としては70%程度以上のチタンスラグが好まし
い。チタンスラグの粒子径としては、粉末状をなすもの
であれば、特に制限されるものではないが、4μm〜3
mm、好ましくは4〜100μmの範囲に調整されたも
のであれば使用可能である。しかしながら周波数が20
0〜3500MHzの領域においては、1mmの粒子径
であっても3μm程度の場合と、ほぼ、同じ性能を示
す。
[0008] In recent years, titanium slag has been produced in large quantities from ilmenite ore by the arc reduction furnace method as a raw material for titanium oxide and the like, and is a chemical that can be obtained industrially at low cost. This titanium slag is usually TiO 2
Although the titanium content is 70 to 90% in terms of conversion, titanium slag of about 70% or more is preferable as the electromagnetic wave absorbing material. The particle size of the titanium slag is not particularly limited as long as it is in the form of powder,
mm, preferably within the range of 4 to 100 μm. However, if the frequency is 20
In the range of 0 to 3500 MHz, even if the particle diameter is 1 mm, the performance is almost the same as the case of about 3 μm.

【0009】チタンスラグ粉末は、圧縮成型しても十分
な成形強度を持たないため、電磁波吸収能測定用治具に
挿入する過程で破損する。そのため有機質バインダーの
粉末を使用して成形する。この粉体バインダーの粒子径
は、数ミクロンから数十ミクロンまでの範囲に分布して
おり、使用に際しては有姿のままチタンスラグに添加
し、ミキサーで1〜3分間程度混合する。その後、SU
S304製の加圧成型用治具にこの粉末を所定量採り、
3.3トン/cm2 の圧力で圧縮成型する。次に成形体
を治具から取り出して180℃において30分間加熱硬
化させる。さらに電磁波吸収測定用治具に正確に収納で
きるように微細加工して測定サンプルとする。
[0009] Since titanium slag powder does not have sufficient molding strength even if it is compression molded, it is broken during the process of insertion into a jig for measuring electromagnetic wave absorption. Therefore, molding is performed using powder of an organic binder. The particle size of the powder binder is distributed in a range from several microns to several tens of microns. When used, the powder binder is added to titanium slag as it is, and mixed with a mixer for about 1 to 3 minutes. Then SU
Take a predetermined amount of this powder in a pressure molding jig made of S304,
It is compression molded at a pressure of 3.3 ton / cm 2 . Next, the molded body is taken out of the jig and cured by heating at 180 ° C. for 30 minutes. Further, the sample is finely processed so as to be accurately stored in a jig for measuring electromagnetic wave absorption.

【0010】本発明の電磁波吸収材料は、成形圧力によ
って電磁波吸収曲線が変化するが、高圧力で成形した場
合には吸収能が増加する。これは同じ厚みであっても、
測定サンプルの密度が成形圧力の増加と共に大きくなる
ことに起因する効果とも考えられる。
The electromagnetic wave absorbing material of the present invention changes its electromagnetic wave absorption curve depending on the molding pressure. However, when molded at a high pressure, the absorbing power increases. This is the same thickness,
This is also considered to be an effect due to the fact that the density of the measurement sample increases as the molding pressure increases.

【0011】[0011]

【実施例】以下に本発明を実施例によりさらに詳細に説
明するが、本発明はその要旨を越えない限り、以下の実
施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which, however, are not intended to limit the scope of the invention.

【0012】測定サンプル調製 (イ)RTZ Iron&Titanium Inc.
社製チタンスラグ粉末、Jグレード(TiO2 分:90
%、平均粒子径1000μm)、1kgをステンレス製
ボールミルに入れて48時間湿式粉砕した後、そのスラ
リーをバットに移し105℃において24時間乾燥し
た。その乾燥粉末、200gをアルミナ製乳鉢に採り3
0分間雷解した。このチタンスラグ粉体、100gを採
り、さらに大日本インキ社製熱硬化性樹脂粉末、ファイ
ンディックA−56−1024−Y(平均粒子径、数ミ
クロン〜数十ミクロン)、7g(7wt%)を前記のチ
タンスラグ粉末、100gに加え、ミキサーで1分間、
混合した。
Preparation of measurement sample (a) RTZ Iron & Titanium Inc.
Titanium slag powder, J grade (TiO 2 min: 90
%, Average particle diameter 1000 μm), 1 kg was placed in a stainless steel ball mill and wet-pulverized for 48 hours, and then the slurry was transferred to a vat and dried at 105 ° C. for 24 hours. 200 g of the dried powder is placed in an alumina mortar and placed in a mortar 3
Thundered for 0 minutes. Take 100 g of this titanium slag powder, and further add a thermosetting resin powder, Fine Dick A-56-1024-Y (average particle diameter, several microns to several tens of microns), 7 g (7 wt%) manufactured by Dainippon Ink and Chemicals, Inc. In addition to the titanium slag powder, 100 g, 1 minute with a mixer,
Mixed.

【0013】次にこの混合粉末を加圧成形用治具に所定
量採り、3.3トン/cm2 で圧縮成型後、180℃に
おいて30分間加熱して熱硬化させ、次にネットワーク
アナライザーにセット出来るように、再度、内径8.6
6mm、外径19.94mmのトロイダルコア状に成型
加工して測定用サンプルとした。各サンプルの電磁波吸
収曲線ならびに厚みを図1および2に示した。
Next, a predetermined amount of the mixed powder is taken in a pressure molding jig, compression-molded at 3.3 tons / cm 2 , heated at 180 ° C. for 30 minutes, thermally cured, and then set in a network analyzer. Again, inside diameter 8.6
It was molded into a toroidal core having a diameter of 6 mm and an outer diameter of 19.94 mm to obtain a measurement sample. The electromagnetic wave absorption curve and thickness of each sample are shown in FIGS.

【0014】電磁波吸収能の測定法 測定用サンプルの成形:関東電子応用開発社製の同軸サ
ンプルホルダー(CSH2−20D)のサイズである内
径8.66mmよりわずかに小さく、外径19.94m
mよりわずかに大きな加圧可能な治具を作成して3.3
トン/cm2 で圧縮成型後、180℃において30分加
熱硬化させ、その後CSH2−20Dのサイズに入るよ
うに切削加工した。
Measurement of Electromagnetic Wave Absorbing Capability Molding of Sample for Measurement: Slightly smaller than 8.66 mm in inner diameter and 19.94 m in outer diameter which is the size of a coaxial sample holder (CSH2-20D) manufactured by Kanto Electronics Application Development Co., Ltd.
3.3 mm by making a pressurizable jig slightly larger than
After compression molding at ton / cm 2 , the mixture was cured by heating at 180 ° C. for 30 minutes, and then cut into a size of CSH2-20D.

【0015】測定:電磁波吸収測定はWILTRON社
製37269A型ネットワークアナライザによる短絡解
放法により測定した。
Measurement: Electromagnetic wave absorption was measured by a short circuit release method using a 37269A type network analyzer manufactured by WILTRON.

【0016】解放と短絡の説明:解放法とは、誘電特性
を測定する場合で電磁波の電界成分を最大になるように
サンプルの裏側を解放状態として電磁波吸収能を測定す
る方法である(具体的には治具のねじ付ふたをしない場
合を意味する)。短絡法とは磁気特性を測定する場合
で、電磁波の磁界成分を最大になるようにサンプルの裏
側を金属板(具体的には治具のねじ付きふたをする場
合)で閉鎖する方法である。
Explanation of release and short circuit: The release method is a method of measuring the electromagnetic wave absorbing ability by setting the back side of the sample to an open state so as to maximize the electric field component of the electromagnetic wave when measuring the dielectric properties (specifically). Means that the jig has no threaded lid.) The short-circuit method is a method of measuring magnetic properties, and is a method of closing the back side of a sample with a metal plate (specifically, using a screwed lid of a jig) so as to maximize the magnetic field component of the electromagnetic wave.

【0017】[0017]

【実施例1】図1および2に厚さを変化させた原料チタ
ンスラグの電磁波吸収曲線を示すが、図1は解放法、図
2は短絡法である。
Embodiment 1 FIGS. 1 and 2 show electromagnetic wave absorption curves of raw material titanium slag of which thickness is changed. FIG. 1 shows an open method and FIG. 2 shows a short circuit method.

【0018】図2からサンプル裏側の金属板の有無に関
係なく、4.3GHz付近に大きな電磁波吸収が認めら
れ、このことはこの周波数において理想的な吸収材料で
あることを示している。すなわち、空間インビーダンス
と整合がとれていることを示す材料であることが判明し
た。
From FIG. 2, large electromagnetic wave absorption is observed around 4.3 GHz regardless of the presence or absence of the metal plate on the back side of the sample, indicating that the material is an ideal absorbing material at this frequency. That is, it has been found that the material is a material indicating that it matches the spatial impedance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】種々の厚みを有する本発明の電磁波吸収材料成
形体の解放法によって測定した電磁波吸収能を示すグラ
フである。
FIG. 1 is a graph showing the electromagnetic wave absorbing ability measured by the release method of the molded article of the present invention having various thicknesses.

【図2】同じサンプルについて短絡法によって測定した
電磁波吸収能のグラフである。
FIG. 2 is a graph of the electromagnetic wave absorption capacity measured by the short circuit method for the same sample.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】TiO2 重量換算でチタン分を70〜90
%含有するチタンスラグからなる電磁波吸収材料。
1. A titanium content of 70 to 90 in terms of TiO 2 weight.
% Electromagnetic wave absorbing material composed of titanium slag.
【請求項2】請求項1の電磁波吸収材料の微粉末に少割
合のバインダーを混合し、圧縮成形してなる電磁波吸収
体。
2. An electromagnetic wave absorber obtained by mixing a fine powder of the electromagnetic wave absorbing material of claim 1 with a small proportion of a binder and compression molding.
JP10700798A 1998-04-01 1998-04-01 Electromagnetic wave absorbing material Expired - Fee Related JP3796680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10700798A JP3796680B2 (en) 1998-04-01 1998-04-01 Electromagnetic wave absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10700798A JP3796680B2 (en) 1998-04-01 1998-04-01 Electromagnetic wave absorbing material

Publications (2)

Publication Number Publication Date
JPH11289188A true JPH11289188A (en) 1999-10-19
JP3796680B2 JP3796680B2 (en) 2006-07-12

Family

ID=14448143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10700798A Expired - Fee Related JP3796680B2 (en) 1998-04-01 1998-04-01 Electromagnetic wave absorbing material

Country Status (1)

Country Link
JP (1) JP3796680B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039800A1 (en) * 2000-11-07 2002-05-16 National Institute Of Advanced Industrial Science And Technology Electric wave absorber
US7799100B2 (en) 2003-04-09 2010-09-21 Kobe Steel, Ltd. Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
US11539141B2 (en) * 2017-06-30 2022-12-27 Panasonic Holdings Corporation Radio wave absorber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039800A1 (en) * 2000-11-07 2002-05-16 National Institute Of Advanced Industrial Science And Technology Electric wave absorber
US7799100B2 (en) 2003-04-09 2010-09-21 Kobe Steel, Ltd. Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
US8790420B2 (en) 2003-04-09 2014-07-29 Kobe Steel, Ltd. Method for producing reduced metal and slag containing oxidized nonferrous metal using an upgraded coal
US11539141B2 (en) * 2017-06-30 2022-12-27 Panasonic Holdings Corporation Radio wave absorber

Also Published As

Publication number Publication date
JP3796680B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
CN102303116B (en) Manufacturing method of mu40 ferrum silicon aluminum magnetic powder core
CN109273185B (en) Method for preparing magnetic powder core by using iron-based nanocrystalline alloy powder
US2575099A (en) Magnetic compositions
JP6490259B2 (en) Method for producing Fe powder or alloy powder containing Fe
EP3842168A1 (en) Magnetic core powder, magnetic core and coil parts using same, and method for manufacturing magnetic core powder
JP2006077264A (en) METHOD FOR RECYCLING RARE-EARTH SINTERED MAGNET AND TRANSITION-METAL BASED SCRAP, AND METHOD FOR MANUFACTURING MAGNETIC-MATERIAL POWDER FOR GHz BAND WAVE ABSORBER AND METHOD FOR MANUFACTURING WAVE ABSORBER
CN109020571A (en) A kind of anti-erosion magnesia carbon brick and preparation method thereof
CN111540558B (en) Composite soft magnetic material and preparation method thereof
EP3689825A1 (en) Mn-zn ferrite particles, resin molded body, soft magnetic mixed powder, and magnetic core
JP2018186212A (en) Soft magnetic powder, method for manufacturing the same, soft magnetic material, and method for manufacturing powder-compact magnetic core
JPH09125108A (en) Production of powder for sendust core with little loss
JP7332856B2 (en) Method for producing anisotropic magnetic powder and anisotropic magnetic powder
JP3796680B2 (en) Electromagnetic wave absorbing material
JP2018178254A (en) Fe-Ni-BASED ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
JP2005268729A (en) Ferrite magnetic powder for bond magnet
KR102393236B1 (en) soft magnetic flat powder
JP2006332294A (en) Ferrite magnetic powder of garnet structure, and resin composition for sealing semiconductor containing the same
JP3796682B2 (en) Electromagnetic wave absorber
KR101387961B1 (en) Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof
JPS61238901A (en) Ferromagnetic powder
KR19980074887A (en) Manufacturing method of dust core containing dust in steel mill
CN117954189A (en) Iron-based amorphous/nanocrystalline soft magnetic powder, preparation method and application thereof
JP3294507B2 (en) Ferrite magnetic powder
CN117840422A (en) Manganese-based amorphous nanocrystalline composite powder and preparation method thereof
WO2021241466A1 (en) Soft magnetic powder, method for producing soft magnetic powder, soft magnetic material, powder magnetic core, and method for producing powder magnetic core

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20051124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Effective date: 20060123

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060404

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060405

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110428

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees